
GPU-Accelerated Population Annealing Algorithm: Frustrated
Ising Antiferromagnet on the Stacked Triangular Lattice

Michal Borovský1,a, Martin Weigel2,b, Lev Yu. Barash3,4,c, and Milan Žukovič1,d

1Department of Theoretical Physics and Astrophysics, Faculty of Science, P.J. Šafárik University,
Park Angelinum 9, 040 01 Košice, Slovak Republic
2Applied Mathematics Research Centre, Coventry University, Coventry, CV1 5FB, United Kingdom
3Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
4Science Center in Chernogolovka, 142432 Chernogolovka, Russia

Abstract. The population annealing algorithm is a novel approach to study systems with

rough free-energy landscapes, such as spin glasses. It combines the power of simulated

annealing, Boltzmann weighted differential reproduction and sequential Monte Carlo pro-

cess to bring the population of replicas to the equilibrium even in the low-temperature

region. Moreover, it provides a very good estimate of the free energy. The fact that

population annealing algorithm is performed over a large number of replicas with many

spin updates, makes it a good candidate for massive parallelism. We chose the GPU

programming using a CUDA implementation to create a highly optimized simulation.

It has been previously shown for the frustrated Ising antiferromagnet on the stacked trian-

gular lattice with a ferromagnetic interlayer coupling, that standard Markov Chain Monte

Carlo simulations fail to equilibrate at low temperatures due to the effect of kinetic freez-

ing of the ferromagnetically ordered chains. We applied the population annealing to study

the case with the isotropic intra- and interlayer antiferromagnetic coupling (J2/|J1| = −1).
The reached ground states correspond to non-magnetic degenerate states, where chains

are antiferromagnetically ordered, but there is no long-range ordering between them,

which is analogical with Wannier phase of the 2D triangular Ising antiferromagnet.

1 Introduction

The use of graphics processing units (GPU) for general purpose computing (GPGPU) is motivated by

the fact that the theoretical peak performance of the parallel GPU architecture significantly exceeds

the performance of the currently available CPU processors, which can be used to effectively reduce

the computational time for a suitable task that can be parallelized. This performance disproportion

arises from the fact that the increase in the CPU clock rates has slowed down considerably in the

last decade due to the limitations of the used semiconductor technology. Therefore, the focus has

been redirected to the multicore solutions. However, even with this approach the performance of the

ae-mail: borovsky.michal@gmail.com
be-mail: Martin.Weigel@coventry.ac.uk
ce-mail: barash@itp.ac.ru
de-mail: milan.zukovic@upjs.sk

DOI: 10.1051/
C© Owned by the authors, published by EDP Sciences, 201

/

0 008 (201)
201epjconf

EPJ Web of Conferences ,
0 0

1
610

6

6
8
2

2
1

1

�����������	
����

��������
���
����� �������
��
�������
��������
�����������������������������
����
��������������������
������������������������ ����
��
�����
������

4

6
6

Article available at http://www.epj-conferences.org or http://dx.doi.org/10.1051/epjconf/201610802016

http://www.epj-conferences.org
http://dx.doi.org/10.1051/epjconf/201610802016

CPUs has been increased by a factor of 161. On the other hand, in the same time frame the single

precision performance of the NVIDIA GPUs has grown by an order of two2. Of course, the efficiency

of completion of a parallel task does not depend only on the sheer performance of the computational

unit but also by the way of manipulation with individual types of GPU memories, which differ in size,

bandwidth, functionality and locality. The speedup that can be gained as compared to sequential CPU

computing, highly depends on our knowledge of the GPU CUDA architecture and the way it executes

kernels. It takes a lot of thought and caution to incorporate all of this to create a highly optimized

CUDA program.

The use of GPGPU for scientific applications is of interest for instance in the stochastic simula-

tions of spin models [1–4]. Our main goal is to incorporate the GPU-accelerated computing in the

population annealing (PA) method proposed by Hukushima and Iba [5]. In section 2, the principles of

the PA algorithm are reviewed. The section 3 describes techniques implemented in the creation and

optimization of a GPU code of this algorithm. Our second goal is to study the highly frustrated Ising

antiferromagnet on the stacked triangular lattice, which suffers from a slow spin dynamics in the low

temperature region [6], where standard Markov Chain Monte Carlo (MCMC) simulations fail. This

problem will be briefly discussed in the section 4. To deal with this problem we applied PA annealing

algorithm on this system and the results will be presented in the section 5.

2 Population annealing algorithm

The PA algorithm was developed to study systems with rough free energy landscapes. The conven-

tional approaches of stochastic statistical physics, such as MCMC algorithm, fail for such systems

due to their inability to overcome large energy barriers in the low temperature region. The main

strength of the population annealing algorithms lies in the use of a large number R of replicas that

undergo the annealing process, starting the replicas at a sufficiently large temperature T (usually at

β = (kBT)−1 = 0), where the energy landscape is quite smooth. The population of replicas helps us to
cover the large portion of this surface, so when we reach low temperatures by gradually cooling them,

there is a higher probability, that some replicas end up in the global minimum, which corresponds

to the searched ground state (GS). However, the effectiveness of this search strongly depends on the

ability of these replicas to explore their local neighborhood which brings the entire population to the

equilibrium. The population annealing algorithm uses two conceptually different approaches, which

are performed at each step Δβ > 0 to achieve this. The first of them is a resampling process. Resam-

pling is based on the use of a reweighting technique which moves the population closer to the Gibbs

distribution. The chances of a replica to survive and reproduce is proportional to the reweighting fac-

tor e−ΔβEi , where Ei is the energy of the i-th replica. Since Δβ > 0 the replicas with low energies are

more likely to produce copies than high-energy ones, which will probably die out in this process. To

keep the population size R more or less unchanged we have to apply a proper normalization factor Q
to the reweighting factors, which is in fact the partition function ratio

Q =
1

R

R∑

i=1

e−ΔβEi . (1)

Then the expected number of i-th replica’s copies is

τi =
e−ΔβEi

Q
. (2)

1comparison of Intel Pentium 4 570J (released in 2004) and Intel i7-4790K (2014)
2comparison of NVIDIA GeForce 6800 GT (2004) and GTX 980 (2014)

EPJ Web of Conferences

02016-p.2

In the ideal case with a statistical ensemble of R → ∞ samples, the resampling process should

be enough to obtain the Gibss distribution. However, practically we have only a finite population, so

the resampling only redistributes population among the already occupied energy levels, thus leaving

the lower energy states poorly sampled. Also making many copies of replicas leaves the population

correlated. These two obstacles can be overcome by applying θ MC equilibration sweeps on all

replicas. After that we are able to average the observables over replicas, which now should sample

more correctly the Gibbs distribution. The free energy estimates can be evaluated from partition

function ratios. A detailed discussion of the PA algorithm is given in [7].

3 GPU realization

Considering the fact that parts of the algorithm are performed over large number of replicas (R � 104)
it is rather straightforward to assume that the PA algorithm is suitable for massive parallelism. Since

the modern GPU architectures contains a few thousand of CUDA cores, we decided to use GPGPU to

create an optimized CUDA program for the PA algorithm.

We implemented two levels of parallelism. The first level is done over replicas, where each replica

is manipulated by a single thread. Such parallelism is used when we calculate the partition function

ratio Q and the normalized weights τi. The second and much deeper level is the one that is performed

over the spins of each replica, such as internal energy E calculation, magnetization M calculation

and parallel checkerboard MC update. In this case one block of threads operates on arrays of spins

from one replica, while one block is associated to one replica. To achieve the maximum occupancy of

streaming multiprocessors (SMs), we must consider a block size large enough to be partitioned into

several warps, but still within the thread-per-block limit, which is specific for each GPU architecture.

For instance, we can choose for a 3D system 8 × 8 × 8 = 512 threads per block. However, we have to
be very careful not to exceed the register and shared memory limitations for SMs.

The Boltzmann factors in the Metropolis algorithm are tabulated and are implemented on GPU

as fetches from a texture. We also used the optimized parallel reduction algorithm presented in [8]

for summing Q, M and E. Moreover, we chose the spin arrays to have a block-wise coalescent data
pattern to improve the global memory bandwidth.

Another issue of our simulation is to generate parallel long sequences of pseudo-random numbers

(PRN) for Metropolis checkerboard spin update and yet its buffer has to fit into the global memory and

we also have to think about the performance of a generator. For starters we are using Philox_4x32_10

from the “cuRAND” library, which meets these criteria quite satisfactorily.

4 Stacked triangular Ising antiferromagnet

The stacked triangular Ising antiferromagnet is described by the Hamiltonian

H = −J1
∑

〈i, j〉
SiSj − J2

∑

〈i,k〉
SiSk, (3)

where Si = ±1 are Ising spin variables, the first term is summed over all intralayer (interchain) cou-

plings with antiferromagnetic interaction J1 < 0 and the second term represents the sum over all

interlayer (intrachain) couplings with antiferromagnetic interaction J2 < 0. For simplicity, we will

consider the isotropic case with J1 = J2. Figure 1 describes the topology of this system with a

checkerboard system decomposition into six sublattices for the parallel spin update.

The main issue with this system is that when standard MCMC methods are applied the system is

unable to reach GS even for a large number of MC sweeps. Such a behavior happens due to the so

Mathematical Modeling and Computational Physics 2015

02016-p.3

Figure 1. Checkerboard decomposition of the stacked triangular
lattice

called kinetic freezing effect [6]. We performed MCMC simulation for a system of 24× 24× 32 spins
and 105 MC sweeps (+20% for equilibration) to demonstrate it. Figure 2(a) depicts the temperature

dependence of the internal energy and the heat capacity, which are consistent with the previous results

[9]. The primary heat capacity peak shows the transition from the paramagnetic to the partially ordered

phase. The round low-temperature peak represents a structural change which is accompanied by the

dominance of correlations in the chains, which leads to the gradual antiferromagnetic aligning of the

spin chains. However, the inset clearly demonstrates that the system froze in a metastable state, with

the energy slightly above the GS E/N|J1| = −2. To observe what happened, we plotted in figure 2(b)
the snapshot at kBT/|J1| = 0.01 of an intrachain staggered magnetization

oz =

Lz∑

k=1

(−1)kSk, (4)

where Lz = 32 is the number of layers. This parameter reaches saturated values of ±32 for fully
antiferromagnetically ordered chains. As we can see, most of the spin chains are fully ordered with

no long-range order between them, which matches a 3D analogue of the Wannier phase [10]. Only

one chain highlighted with a circle has the unsaturated value. Its spin configuration is illustrated in

the figure 2(c). The energy difference between the GS and this metastable state lies in the presence of

the two ferromagnetic couplings, which delimits the chain fragment which has to be flipped entirely

in order to get the desired GS. However, the slow spin dynamics at such low temperatures prevents

Figure 2. (a) The temperature dependence of the internal energy per spin and the heat capacity per spin. The inset
depicts a detail on the internal energy in the low-temperature region. The solid line refers to the GS energy. (b)

The snapshot of the intrachain staggered magnetization oz at kBT/|J1| = 0.01. The unsaturated chain is marked
with a circle. (c) Spin configuration of the selected unsaturated chain.

EPJ Web of Conferences

02016-p.4

that to happen. Of course, one can attempt to use multiple-spin-flip updates to resolve this problem

[11], in which one of the 2n states of the n-spin cluster is chosen at each MC trial. In our case, we

emphasize the strengths of the PA algorithm to find the GS of our system.

5 Results

We ran three simulations with different sets of parameters on the same lattice size as we used in a

MCMC simulation. The first simulation (simulation A) ran on a population of R = 104 replicas, with
θ = 100 MC sweeps and Δβ = 0.01 in the range from β = 0 to 10. In the second one (simulation

B) we used twice as finer a step Δβ = 0.005 and the third one (simulation C) has ten times the
population size compared to simulation B. The obtained results for the internal energy are plotted in

figure 3(a). As we can see for all simulations we have successfully converged to the GS configuration,

but there is a small difference in the slope of the energy curves. The case with a larger R samples the

Gibbs distribution better. Also the smaller temperature step is reducing the bias, because the energy

histograms have a larger overlap.

To quantify the equilibration of the population annealing we follow the procedure presented in

[12], where Wang et al. calculated the family entropy

Sf = −
∑

i

νi ln νi, (5)

where the νi is the fraction of the population that originates in the i-th replica from the initial pop-

ulation. The eSf represents the effective number of surviving families. Figure 3(b) shows the family

entropy as a function of the temperature for our PA simulations. The first thing that we can observe is

that Sf of a population with larger R is larger, which is obvious, because the larger R means reduction

of the statistical errors. The figure also shows that Sf substantially drops at the positions of the heat

capacity peaks. The effect of the kinetic freezing at the secondary peak drastically diminishes the

diversity of the families in the population in contrast to the high-T phase transition. However, this

drop is more prominent for the case of a larger population, which does not make much sense, because

we were expecting more families to survive in this case. Also the number of different GS observed at

the lowest T was 32, 23 and 171 for the simulations A, B and C respectively. The effective number

of survived families at the lowest temperature was eSf = 1.5857 for the simulation A, eSf = 2.1845 for

0 0.1 0.2 0.3 0.4 0.5

−2

−1.999

−1.998

−1.997

−1.996

−1.995

−1.994

−1.993

k
B
 T / |J

1
|

E
 /

N
 |J

1|

MCMC simulation
GS energy

PA, R = 104, θ = 102, Δβ = 0.01

PA, R = 104, θ = 102, Δβ = 0.005

PA, R = 105, θ = 102, Δβ = 0.005

(a)

0 1 2 3 4
0

1

2

3

4

5

6

7

8

9

k
B
 T / |J

1
|

S
f

PA, R = 104, θ = 102, Δβ = 0.01

PA, R = 104, θ = 102, Δβ = 0.005

PA, R = 105, θ = 102, Δβ = 0.005

(b)

Figure 3. (a) The internal energy comparison of the MCMC (see Fig. 2(a) inset) and PA results in the low-

temperature region for system of a size 24x24x32. (b) The family entropy as a function of the temperature for

different simulation setups.

Mathematical Modeling and Computational Physics 2015

02016-p.5

the simulation B and eSf = 3.7375 for the simulation C, which is far from the required eSf ≥ 100 (or

Sf � 4.6).
The best performance of the PA code what we can get so far was achieved in the simulation C

with 0.208 ns per spin-flip on NVIDIA GTX Titan with the speedup up to the 443 times compared to

the sequential MCMC code (92.274 ns per spin-flip), which ran on a single core of the Intel i7-4790K

processor at 4.4 GHz.

6 Conclusions

We created a GPU-accelerated population annealing algorithm for the stacked triangular Ising antifer-

romagnet in order to study its ground states. The algorithm converged for all tested sets of simulation

parameters. However, the numerical accuracy of averaging was insufficient due to the small num-

ber of different states in the population and the rather small family entropy under the secondary heat

capacity peak.

There are many possible ways to improve the performance, such as the choice of a more efficient

high quality PRN generator, the parallel resampling of replicas in the GPU global memory, the use of

asynchronous multispin coding and also by applying an adaptive inverse temperature step based on

the fixed overlap of the reweighted energy histograms. We would like to explore these possibilities in

the future.

Acknowledgements

M.B. and M.Ž. were supported by the Scientific Grant Agency of Ministry of Education of Slovak Republic

(Grant No. 1/0331/15) and M.B. also by the Faculty of Science UPJŠ (Grant ID. VVGS-PF-2015-490). M.W.

and L.Yu.B. acknowledge support from the European Commission through the IRSES network DIONICOS under

Contract No. PIRSES-GA-2013-612707. L.Yu.B. also acknowledges support by the Russian Science Foundation

grant No. 14-21-00158.

References

[1] T. Preis, P. Virnau, W. Paul, and J. J. Schneider, J. Comput. Phys. 228, 4468–4477 (2009)
[2] M. Weigel, J. Comput. Phys. 231, 3064–3082 (2012)
[3] Y. Komura, and Y. Okabe, Comput. Phys. Commun. 183, 1155–1161 (2012)
[4] Y. Fang, S. Feng, K.-M. Tam, Z. Yun, J. Moreno, J. Ramanujam, and M. Jarrell, Comput. Phys.

Commun. 185, 2467–2478 (2014)
[5] K. Hukushima, and Y. Iba, AIP Conf. Proc. 690, 200–206 (2003)
[6] R. R. Netz, and A. N. Berker, Phys. Rev. Lett. 66, 377–380 (1991)
[7] J. Machta, Phys. Rev. E 82, 026704 (2010)
[8] D. B. Kirk, and W.-M. W. Hwu, Programming Massively Parallel Processors: A Hands-on

Approach (Morgan Kaufmann, Burlington, USA, 2010) 102–103
[9] D. Blankschtein, M. Ma, A. N. Berker, G. S. Grest, and C. M. Soukoulis, Phys. Rev. B 29,

5250–5252 (1984)

[10] M. Žukovič, L. Mižišin, and A. Bobák, Acta Physica Polonica A 126, 40–41 (2014)
[11] J.-J. Kim, Y. Yamada, and O. Nagai, Phys. Rev. B 41, 4760–4763 (1990)
[12] W. Wang, J. Machta, and H. G. Katzgraber, Phys. Rev. E 92, 013303 (2015)

EPJ Web of Conferences

02016-p.6

