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Universal Amplitudes in the Finite-Size Scaling of Three-Dimensional Spin Models
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In a Monte Carlo study using a cluster update algorithm we investigate finite-size scaling (FSS)
of the correlation lengths of several representatives of the class of three-dimensional clagsjcal O
symmetric spin models on the geomefy X R. For all the models we find strong evidence of a
linear relation between FSS amplitudes and scaling dimensions when applyfipgriodic instead
of periodic boundary conditions across the torus. This type of scaling relation can be proven
analytically for systems on two-dimensional strips witeriodic boundary conditions using conformal
field theory. [S0031-9007(99)08669-X]

PACS numbers: 64.60.Fr, 11.25.Hf, 75.40.Mg

Conformal invariance of 2D systems at a critical pointto hold, unless the boundary conditions are changed to
has turned out to be the key feature for a completebe antiperiodic This is in qualitative agreement with
analytical description of their critical behavior [1,2]. In numerical work done by Weston [7].
particular, conformal field theory (CFT) supplies exact In this Letter we analyze the scaling behavior of the
finite-size scaling (FSS) relatiomscluding the amplitudes class of Gn) spin models on thel'”> X R geometry,
for these 2D models. For strips of widthwith periodic  taking the cases: = 1,2,3 as examples. As at the
boundary conditions, i.e., th! X R geometry, Cardy moment the conjectured relation (1) has no theoretical
[3] has shown that the FSS amplitudes of the correlatiomacking in terms of CFT for the considered 3D geometry,
lengths &; of primary (conformally covariant) operators it is a nontrivial question whether it should be more than
are entirely determined by the corresponding scaling special feature of the Ising model, per chance coinciding

dimensionsy;: with a universal law of 2D CFT. If it turns out to be a
A general property, this might indicate the feasibility of an
& = x_, L, (1) analytical approach also for nontrivial 3D systems.
with a model independent overall amplitude= 1/27. The model—We consider an () symmetric classical

This result relies on both the greater restrictive strengt§Pin model with nearest-neighbor, ferromagnetic interac-
of the 2D conformal group compared with the higher di-tions in zero field with Hamiltonian
mensional cases, which is needed for the definition of the

“primarity” of operators, and the fact that the considered H = —JZs,- - S, s; € s"L 3)
geometry is conformally related to the corresponding flat (ij)
spaceR?.

Generalizing these results to more realistic 3D geomeThe spins are located on a simple cubic lattice of

. . . - ) ”
tries within the CFT framework generically destroys thed|menS|ons(Lx,Ly,LZ) W'th. Le = Ly, mOd?"”_g ther
rich 2D group structure. Keeping at least the conformal eometry by applying periodic or antiperiodic bc along

flatness condition, Cardy [4] arrived at a conjecture of thet::e T t{;\_nd Y ollt:ectlo?ns. " Effects O.f _th_e fldm;[)e Iel?gth. of
form (1) for the S4~1 x R, d > 2 geometries. Mainly e lattice in thez direction are minimized by choosing

for reasons of the numerical inaccessibility of these ge—LZ such thatL./¢ > 1 and sticking the ends together

ometries Henkel [5,6] considered the situation where evelf@ periodic be. As is well known [8], all of these

this latter condition is canceled: investigating the scal-mOOIe'S undergo a continuous phase transition in three

. . . imension h he critical point th rrelation
ing behavior of theS = % Ising model on 3D columns dimensions, so that at the critical point the correlatio

. S o length diverges linearly with the finite length = L,.
2 X
T X.R with periodic (pbc) or antlp_erlodlc boundary.ParticuIar representatives of this class are the Ising(
conditions (apbc) across the torus via a transfer matmi) the XY (n = 2), and the Heisenberg (= 3) models

caIcuIat_lon,_ he found for the cprrelatlon Iength_s of the The simulation—For our Monte Carlo (MC) simu-
magnetization and energy densities (the only primary op.

) ; . . ? “Flations we used the Wolff single-cluster update algo-
erators in the 2D model) in the scaling regime the ratios rithm [9] which is known to be more effective than the

s/ € = 3.62(7), periodic bc, Swendsen-Wang [10] update for 3D systems [11]. As we
.)€ = 276(4) antiperiodic bc (2)  want to consider antiperiodic bc for all systems in addition

arse ) ’ ) to the generic periodic bc case, the algorithm had to be
Comparing this to the ratio of scaling dimensions ofadapted to this situation using the fact that in the case of
xe/xs = 2.7326(16) a relation of the form (1) seems not nearest-neighbor interactions antiperiodic bc are equiva-
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lent to the insertion of a seam of antiferromagnetic bonds 1s
along the relevant boundary.

The primary observables to measure are the connected
correlation functions of the spin and the energy density:

Go(x1,%2) = (s(x1) - s(x2)) = (s) - (s),
Ge(x1,x2) = (e(x1)€(x2)) — (€)(e). £ Ll .

The correlation lengthg; in Eqg. (1) being understood as .
measuring the correlations in the longitudif@atlirection,
one may average over estimatés(x;,x,) such that
(x; — x») || &, andi = |x; — x| = const, thus ending
up at estimate&<ll(i). This average can be improved by
considering a zero momentum mode projection [12], i.e.,
by correlating layer variables made up out of the sum of 0 0 20 P 2 =0 50
variables in a given layer = const instead of the original i

spins or local energies; this reduces the variance by

2 h : EIG. 1. Example of the set of estimatofs for the magneti-
factor of 1/L3, the influence of transversal correlations ... density of al8? X 214 Ising system with periodic bc.

being irrelevant for large distance$13]. _ The typical distanceé\ in Eq. (6) was set to 8.

Assuming an exponential long-distance behavior of the
correlation functions (4), extracting the correlation lengthse theoretical variance of the final averageach ele-
via a straightforward fitting procedure requires a nonlineag, ont £, was weighted by a factor proportional to a row
three-parameter fit of the form sum of the inverse covariance matrix, this matrix itself

GN(i) = aexp—i/&) + b, (5) being aga_lin estimated by a jackknife techniql_Je [13,16].

_ _ o » ' . The Ising model—As a means of gauging the so

since any numerical estimation 6f*!(i) necessarily fails  far introduced numerical tools and in order to establish

to reproduce the correct long-distance lirGit-!(i) = 0 Henkel's results with an independent method and at an
asi — o exactly. As this amounts to an investment of theincreased level of accuracy, we first revisit the lIsing

gathered statistics into the determination of three paramenodel, Corresponding ta = 1. The simulations of the
ters, two of which are completely irrelevant for our endS,|Sing model were done at the most accurate estimate
we used an alternative method which intrinsically elimi-for the bulk inverse critical temperature availab, =
nates the two irrelevant parameters by using differenceg2216544(3) [17], where the influence of the given
and ratios ofG<ll(i) rather than the values themselves.error in 8. on the results for the correlation lengths

Given the fact that the correlation function behaves as (S\vas checked via a temperature reweighting technique and

(4)

°..,ooooooooooeooeeunuﬂHHﬂHHHHHH%Hﬁ

estimatorsg; for the correlation length are given by found negligible compared to the statistical errors; this
. Golli)y — Goli — A) - applies to the other models considered in this note as
& =Alln Gl + A) — Goll(; (6)  well. To be able to perform a FSS analysis, simulations

A ) 1) were done for system sizes betweenx 48 and30? X

The generic value fonA is one, but it might be advan- 356 =~ 3 X 10° sites, accumulating about eight million
tageous to choosA > 1 in order to enhance the local independent measurements for each system.

drop of Gll(i) betweeni andi + A (the signal) against As is obvious from the example in Fig. 2(a) the final
the fluctuations (the noise). Following this procedure oneestimates for the correlation lengths show up an almost
ends up with a set of estimators for the correlation lengthperfect linear scaling behavior as a function of the
as a function of distance as depicted in Fig. 1 for the transverse system size,. Considering the amplitudes
spin-spin correlations of the Ising model: after a transitioné /L, reveals, however, that corrections to the leading
regime starting ai = A which is a consequence of the linear scaling behavior are relevant and can be clearly
discreteness of the lattice as well as the above mentiongéesolved within the accuracy of the data; cf. Fig. 2(b).
zero momentum mode projection, the estimates settle din order to extract the leading amplitudes in the scaling
a plateau indicating that the exponential long-distance beregime nonlinear fits of the form

havior has been reached. . @

The error bars in Fig. 1 were generated using a com- ¢(Ly) = ALy + BL; (7)
bined binning and “jackknife” resampling scheme [14,15]were done. Even though some field theoretical estimates
which is necessary due to the strong nonlinearity of thdor the correction exponents exist [8], we decided to keep
transformation (6); on the same grounds we checked fox as a parameter, ending up at an effective correction
the necessity of a bias correction. Final values for theexponent that takes higher order corrections into account,
correlation lengths were obtained by an average over thehich have some importance for the small systems;
estimators; in the plateau regime; in order to minimize successively dropping systems from the smiall end
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while in the periodic case they differ by an amount of
some thirty sigma. In comparison to the first exploration
by Weston [7], who found ratios of aboGt7 for peri-
odic and2.6 for antiperiodic bc, the precision could be
increased by over an order of magnitude.

XY and Heisenberg models-Although being stringent
in itself, up to this point the above result is a singular,
maybe casual, statement for the special case of the Ising
model. Believing in a universal law needs a broader
backing with successful examples, two of which are being
considered here.

Simulations for theXY and Heisenberg models were
done at the estimated inverse critical temperature val-
ues B, = 0.4541670(32) and B, = 0.693004(7), re-
spectively, which are weighted means of recent literature
estimates [11,19-21]. Using the same system sizes as in
the Ising case, we took between four and eighteen million
independent measurements for each system. Applying the
outlined tools of data analysis we arrive at scaling and
amplitude plots similar to those in Fig. 2. Traversing the
above described fitting procedure leads to final estimates
for the amplitudest,, andA. according to Eq. (7), which
are shown in Table I. Comparing the results for the ra-
tios A, /A with the ratiox./x, of scaling dimensions,
we arrive at a highly precise agreement for the case of
antiperiodic bc and an obvious divergence in the standard
periodic bc situation for both th&Y and the Heisenberg
models. Thus a linear relation between scaling amplitudes
and scaling dimensions according to Eq. (1) is almost cer-
tainly valid for three generic, nontrivial examples of 3D
spin models, and one might well assume that it is satisfied
for the whole class of @) spin models, a view which

FIG. 2. (a) FSS plot for the spin correlation lengfy(L,) IS supported by further simulations for tlee= 10 case

of the 3D Ising model with antiperiodic bc. (b) Scaling of [16] and an analytic result for the limiting cage— o
the amplitudest, /L,. Solid lines represent least-squares fits[22]. In view of the analogous 2D results it is not too far

according to Eq. (7). fetched, then, to argue that the numerical results provide
evidence that this relation might be of a universal, model-
amdependent kind.

d Universal amplitudes—Given the fact that the scaling
amplitudes for the 3D systems with antiperiodic bc behave

while monitoring the goodness of fit parametgrs and
Q then acts as a consistency check. As arule, the over
corrections are negative for systems with periodic bc an
positive in the case of antiperiodic bc.

As a result of this fitting procedure we arrive at the
following final estimates for the amplitudesin Eq. (7)
and their ratios:

TABLE I. FSS amplitudes of the correlation lengths of the
Ising, XY, and Heisenberg models on tlié X R geometry.

Ay, = 0.8183(32) Model pbc apbc

Ae = 0.2232(16) for periodic bc A, 0.8183(32) 0.236 94(80)

Ay /A = 3.666(30) ®) Ising A, 0.2232(16) 0.08661(31)

A, = 0.23694(80) Ay /Ac 3.666(30) 2.736(13)

Ac = 0.08661(31) tfor antiperiodic bc Xe/Xo 2.7326(16)

Ay /A = 2.736(13) A, 0.754 09(59) 0.24113(57)

. . . . . . A 0.1899(15 0.0823(13
Comparing this to the ratio of scaling dimensions XY A, /A, 3_971(952)) 2.930(4(7))
[11,18,19], Xe/Xo 2.923(7)

_=-a)/v 2wd -1 _ A, 0.720 68(34) 0.24462(51)
¥e/Xo = B8/v  wvd—vy 27326(16), (9) Heisenberg A, 0.16966(36)  0.0793(20)
we find that the amplitude and exponent ratios agree very ?C”//f‘ 4'2478(92)3 091(8)3'085(78)

precisely in the case of antiperiodic bc across the torus
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0.140 ; ; ; ; contrast to the 2D case, where the influence of boundary
conditions on the operator content has been extensively
explored [24], it is theoretically not understood, up to
0135 | | now, why using antiperiodic bc in 3D should restore the
2D situation. In view of the total lack of exact results
for nontrivial 3D systems, it seems to us a rewarding
challenge for the field theorists to explain these results.
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