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We investigate the problem of packing identical hard objects on regular lattices in d dimensions.

Restricting configuration space to parallel alignment of the objects, we study the densest packing at a

given aspect ratio X. For rectangles and ellipses on the square lattice as well as for biaxial ellipsoids on a

simple cubic lattice, we calculate the maximum packing fraction ’dðXÞ. It is proved to be continuous with
an infinite number of singular points Xmin

� ; Xmax
� , � ¼ 0;�1;�2; . . . . In two dimensions, all maxima have

the same height, whereas there is a unique global maximum for the case of ellipsoids. The form of ’dðXÞ
is discussed in the context of geometrical frustration effects, transitions in the contact numbers, and

number-theoretical properties. Implications and generalizations for more general packing problems are

outlined.
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The question of how densely objects can fill a volume
has attracted both mathematicians and physicists for cen-
turies. One famous problem is that of packing spheres. In
1611, Kepler conjectured that the fcc and hcp lattice con-
figurations of identical spheres yield the highest packing

fraction ’d¼3
max ¼ �=

ffiffiffiffiffiffi
18

p ffi 0:7404. Gauß was able to show
in 1831 that these are the optimal periodic packings of
spheres, but only very recently it was proved that they are
optimal within all possible arrangements [1]. Even for
disks in the plane, the corresponding proof of optimality

of the hexagonal packing with ’d¼2
max ¼ �=

ffiffiffiffiffiffi
12

p ffi 0:9069
was only found in 1942 [2]. Apart from its theoretical
attraction along with its relation to coding theory [3],
packing is a problem of practical relevance. Not only
have practitioners long known that a densest packing of
oranges or cannon balls can be achieved via hexagonal
layering but, more recently, packing problems have re-
ceived substantial attention in engineering and operations
research as problems of optimizing yields in production or
minimizing leakage currents in integrated circuits (see,
e.g., Ref. [4]).

In physics, periodic packings [3,5,6] are relevant for
describing and understanding crystalline materials. In con-
trast, random close packings (RCPs) [7], i.e., maxima of
the packing fraction under some local dynamics starting
from loosely packed configurations, have been used to
model glasses [8] and granular materials [9]. For spheres
in 3D, random close packing leads to a packing fraction
’d¼3

RCP � 0:64, significantly below ’d¼3
max . The hard objects

considered in such packings need not be spheres, but can
be more general convex bodies. Although recently there
has been extensive numerical work using techniques from
dynamic programming and heuristic optimization, comple-
mented by experiments, for studying periodic packings
[10] or random close packing [11] for nonspherical objects,
there is a lack of analytical understanding of these

problems. For random close packing, it has been observed
that the packing fraction increases over ’d¼3

RCP � 0:64 as

spheres are replaced by ellipsoids, and might even ap-

proach ’d¼3
max ¼ �=

ffiffiffiffiffiffi
18

p ffi 0:7404 in some cases [11].
Concerning periodic packings, an affine transformation
maps the fcc or hcp sphere packing to a periodic lattice
packing of identically aligned ellipsoids with maximum

packing fraction ’d¼3
max ¼ �=

ffiffiffiffiffiffi
18

p
. It has been predicted in

Refs. [12,13] that nonparallel arrangement of ellipsoids of
revolution may lead to packing fractions exceeding

�=
ffiffiffiffiffiffi
18

p
. Such superdense packings of ellipsoids were

studied recently in more detail [14,15]. Particularly, it
has been shown that ’ ffi 0:7707 for all aspect ratios

X � ffiffiffi
3

p
[14].

We make progress in the analytical understanding of the
problem of packings of nonspherical bodies by taking a
complementary approach. Instead of finding the lattice
structure that maximizes the packing fraction for a given
typeK of objects, we start out fromafixedBravais lattice�
and attach a bodyK of the same shape and orientation! to
each lattice site (at its center of mass, say). We then deter-
mine themaximumpacking fraction as a function ofK, i.e.,
as a function of the parameters characterizing its shape and
orientation. To the best of our knowledge, this problem has
not been studied before. Our approach may contribute to
describing, for instance, plastic crystals, i.e., lattices with a
molecule fixed at each site. In particular, aromatic mole-
cules can be approximately described by hard ellipsoids.
Similarly, applications are envisaged in operations research
and manufacturing. Finally, insight into the frustration ef-
fects generated by the competing length scales ofK and�
could contribute to the understanding of packings without a
predetermined lattice structure.
Consider a class of identical d-dimensional convex

bodies K whose shape depends merely on their ‘‘length’’
l and ‘‘width’’ w, and consequently are characterized by a
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single parameter X ¼ l=w, the aspect ratio. As a general
example one might think of a d-dimensional ellipsoid of
revolution. Fixing the aspect ratio X and orientation !,
proportional rescaling of the bodies allows one to reach the
maximum packing fraction without overlaps, ’dðX;!Þ.
This fraction varies with !, and we are interested in the
maximum packing fraction irrespective of orientation,
’dðXÞ ¼ max!’dðX;!Þ. The maximum ’dðXÞ is continu-
ous as a function of X. Here, we only outline the idea of the
rigorous proof [16]. Let us assume that ’dðXÞ is discon-
tinuous at some X0 ¼ l0=w0, where, e.g., it jumps from ’�
to ’þ >’�, with ’� ¼ lim"!0’dðX0 � �Þ. The convex
bodies at ’� and ’þ are characterized by (l�; w�) and
(lþ; wþ), respectively. Both pairs differ from each other, as
’� � ’þ. Of course, it is lþ=wþ ¼ l�=w� ¼ X0. Now,
starting from the configuration at ’þ, we continuously
decrease the length of the hard objects. Consequently,
without change of orientation, both the aspect ratio X
and the corresponding packing fraction ~’dðXÞ decrease
continuously from X0 and ’þ ¼ ~’dðX0Þ, respectively.
Below but arbitrarily close to X0, ~’dðXÞmust be arbitrarily
close to ’þ, due to its continuity. On the other hand, it is
’dðXÞ � ~’dðXÞ for all X � X0, since ’dðXÞ is the maxi-
mum packing fraction by definition. Therefore, even if
’dðXÞ ¼ ~’dðXÞ holds (instead of � ) for all X � X0, we
get ’� ¼ lim"!0’dðX0 � �Þ ¼ ’þ. This contradicts the
original assumption ’þ >’�. Consequently, ’d must be
continuous.

We now turn to the calculation of’dðXÞ for specific hard
objects. As an example in two dimensions (2D), we study a
square lattice with lattice constant a ¼ 1. Consider first
the case of rectangles of length l and width w. Imagine
two identical rectangles with common direction e ¼
ðcos!; sin!Þ, of their long side, attached with their centers
to lattice sites ð0; 0Þ and Rjk ¼ ðj; kÞ, respectively. In the

following, we assume that j � 0 and k � 0 are coprime
integers; i.e., they do not have a common divisor other
than 1. For fixed aspect ratio X, it is obvious that the
rectangles will attain maximum volume �2ðl; wÞ if they
touch each other and line up precisely along their short or
long sides, cf. Fig. 1. Combining this and the periodicity of
the packing, it is straightforward to prove that e must be
parallel to Rjk [16]. In other words, for given X maximum

packing fractions will always occur for ‘‘rational’’ orien-
tations ! ¼ arctanðk=jÞ of the rectangles. Maximal pack-
ings for specific X can be constructed using the concept of

lattice lines. The line Lð0Þ
jk through the origin is defined by

the lattice vector Rjk ¼ ðj; kÞ. The distance of adjacent

lattice sites on Lð0Þ
jk equals ljk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 þ k2

p
. The square

lattice can be decomposed into a set of parallel lattice lines

Lð�Þ
jk ,� ¼ 0;�1; . . . , of distancewjk, wherewjkljk ¼ �0 ¼

1 (cf. the dashed lines in Fig. 1). Choosing l ¼ ljk and w ¼
wjk, i.e., X ¼ Xmax

jk ¼ ljk=wjk ¼ j2 þ k2, leads to a perfect

tiling with’max ¼ ’2ðXmax
jk Þ ¼ ljkwjk ¼ 1, for all coprime

pairs (j; k), cf. the maxima at ’2 ¼ 1 in the lower part of
the main panel of Fig. 2. The pairs (j; k) can be ordered
such that Xmax

��1 < Xmax
� , where Xmax

� ¼ Xmax
j�k�

, � ¼
0; 1; 2; . . . . Since e must be parallel to Rjk, the maximum

packing for X < Xmax
jk and X > Xmax

jk is obtained by de-

creasing l below ljk keeping w ¼ wjk and decreasing w

below wjk keeping l ¼ ljk, respectively (see Fig. 1).

Consequently,

’2ðXÞ ¼
�
w2

j�k�
X Xmin

��1 � X � Xmax
�

l2j�k�=X Xmax
� � X � Xmin

� :
(1)

FIG. 1 (color online). Maximum packing configurations
of rectangles with aspect ratios X ¼ 4 (green, bottom), X ¼
Xmax
21 ¼ 5 (blue, middle), and X ¼ 7 (red, top), respectively.

Lattice lines Lð�Þ
jk , � ¼ 0;�1; . . . , for ðj; kÞ ¼ ð2; 1Þ are indi-

cated with dashed lines.

FIG. 2 (color online). Maximum packing fraction ’2ðXÞ for
rectangles (dashed line, right scale) and for ellipses (solid line,
left scale). Inset: Orientation angle ! as a function of X for
rectangles (dashed line) and ellipses (solid line). The crosses
correspond to the positions of the maxima of ’2ðXÞ for ellipses.
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The positions Xmin
� ¼ lj�k� lj�þ1k�þ1

follow from the match-

ing condition ðlj�k�Þ2=Xmin
� ¼ ðwj�þ1k�þ1

Þ2Xmin
� and

lj�þ1k�þ1
wj�þ1k�þ1

¼ 1. ’2ðXÞ is shown in Fig. 2, together

with the optimal orientation !ðXÞ in the inset.
We now turn to the case of packing ellipses on the square

lattice. A naive approach would be to inscribe them into the
rectangles considered above. The resulting packing frac-
tion of ellipses is then just �=4 that of the rectangles. In
reality, however, maximally packed ellipses do not, in
general, touch each other ‘‘head’’ to ‘‘tail,’’ nor are they
oriented parallel to the lattice lines, cf. Fig. 3. In contrast to
the highly degenerate case of packing rectangles which
touch along whole line segments, packings of general,
smooth convex bodies are characterized by K contact
points per body of which, due to inversion symmetry,
onlyK=2 are independent. The three parameters describing
an ellipse (two half axes and the orientation angle) are
underdetermined in the generic case of K ¼ 4 contact
points (resulting in K=2 ¼ 2 equations), yielding a contin-
uum of solutions as a function of X. The case of K ¼ 6
contacts is nongeneric, leading to a discrete set of maxima
in ’2ðXÞ. For this situation, put one ellipse at the origin,
such that the sites of the other ellipses are at �ðli; miÞ, i ¼
1; 2, and �ðj; kÞ ¼ �ðl1 þ l2; m1 þm2Þ, cf. Fig. 3. Note
that 0 � li � j, 0 � mi � k. Then, the three correspond-
ing contact vectors ci ¼ 1

2 ðli; miÞ, i ¼ 1; 2, and c3 ¼ 1
2 �ðj; kÞ ¼ c1 þ c2 uniquely determine the three coefficients

a, b, and c in the ellipse equation ax2 þ 2bxyþ cy2 ¼ 1.
This allows us to determine the lengths of the half axes and
thus the aspect ratio to be

Xmax
jk ¼ ð�þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2� þ �2

0

q
Þ= ffiffiffi

3
p

;

�i ¼ c1 � "ic1 þ c2 � "ic2 þ c1 � "ic2; (2)

where

" 0 ¼ 0 1
1 0

� �

and

"� ¼ 1 0
0 �1

� �
:

The corresponding packing fraction is’max ¼ ’2ðXmax
jk Þ ¼

�=
ffiffiffiffiffiffi
12

p
for all (j; k), identical to the packing fraction of hcp

disks. In fact, each such maximal ellipse packing can be
continuously deformed via an affine transformation into a
packing of disks. On increasing (decreasing) X from Xmax

jk ,

the shortest (longest) contact vector disappears, and the
remaining four contacts allow us to determine the coeffi-
cients a, b, and c, and therefore ’2ðXÞ and !ðXÞ in
between the maxima Xmax

jk as a function of X in a closed-

form expression.
The result for ’2ðXÞ and !ðXÞ is displayed in Fig. 2.

Since ’2ð1=XÞ ¼ ’2ðXÞ, only the regime X � 1 is shown.
The maximum packing fraction is singular at Xmax

� for all
�. The orientation !ðXÞ is discontinuous at those Xmin

� at
which ’0

2ðXÞ is discontinuous and at those Xmax
jk which are

degenerate, such as Xmax
51 ¼ Xmax

52 (cf. Fig. 2). At these

points there are two degenerate maximal packings with
the same packing fraction and aspect ratio but different
orientations. The global maximum value of ’max ¼ 1 and

’max ¼ �=
ffiffiffiffiffiffi
12

p
for rectangles and ellipses, respectively, is

attained for an infinite number of packings, uniquely
labeled by (j; k). From Fig. 2 it appears plausible that
limX!1’2ðXÞ ¼ ’max, which indeed can be proved [16].
The relation of the contact points can be understood

from a number-theoretical point of view. Note that the
centers (li; mi), i ¼ 1; 2, of two ellipses touching the cen-

tral one at ð0; 0Þ also define lattice lines Lð0Þ
limi

with direction

(li; mi). These are the directions closest to that of Lð0Þ
jk

provided that li and mi are coprime and 0 � li � j, 0 �
mi � k. In mathematical terms, this means that mi=li,
i ¼ 1; 2, are given by the best principal and best intermedi-
ate rational approximant [17] of k=j. They follow from the
finite continued fraction expansion of k=j,

k=j¼ a0 þ 1=½a1 þ 1=½a2 þ �� �þ 1=½an�1 þ 1=an	 � � �		;
(3)

where ai, i ¼ 1; . . . ; n (an � 2) are positive integers that
are uniquely determined by k=j. Then, it is l1 ¼ sn�1,
m1 ¼ rn�1, where the best principal approximant
rn�1=sn�1 follows from Eq. (3) for an ¼ 1, and l2 ¼
sn;an�1, m2 ¼ rn;an�1 follows analogously from the best

intermediate approximant rn;an�1=sn;an�1 obtained from

Eq. (3) replacing an by an � 1. Since coding problems
are strongly linked to number theory [3], these results also
promise insight into the connection between packing and
coding problems.

FIG. 3 (color online). Maximum packing configurations of

ellipses with aspect ratios X ¼ 3 (green, bottom), Xmax
21 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

29þ 8
ffiffiffiffiffiffi
13

pp
=

ffiffiffi
3

p ffi 4:4 (blue, middle), and X ¼ 6 (red, top).
Lattice lines for ðj; kÞ ¼ ð2; 1Þ (dashed lines) and contact points
(crosses).
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Finally, we have investigated ellipsoids of revolution on
a simple cubic lattice. Analytically, it is possible to proceed
in a similar fashion as for the ellipses. The resulting eighth-
order polynomial in w2 can only be solved numerically,
however, and the intermediate expressions are rather un-
wieldy. Therefore, we instead determined ’3ðXÞ numeri-
cally by a downhill-simplex minimization algorithm, the
result of which is shown in Fig. 4; it agrees with that
determined earlier in Ref. [18] and, as expected, shows
continuity, too. Similar to the results in 2D, the derivative
’0

3ðXÞ seems to be discontinuous at a series of maxima at

Xmax
� . It appears to be discontinuous at some, but not all,

minima Xmin
� . The symmetry between 1=X and X valid in

2D, however, is lost. Most strikingly, the global maximum

’max ¼ �=
ffiffiffiffiffiffi
18

p
for ellipsoids appears to be attained only

for the single packing fraction Xmax�1 ¼ 1=2, whereas in 2D
there was a countable infinity of degenerate maxima. This
maximum corresponds to the highly nongeneric case of
each ellipsoid touching 12 neighbors. Consequently, an
affine transformation can be applied to map this pattern
to closest packing of hard spheres resulting in a fcc or hcp
lattice. A second prominent maximum occurs at Xmax

1 ¼ 2
with 8 contact points per ellipse. The corresponding trans-
formed hard sphere packing yields a bcc lattice. It can be
shown that ’3ðXÞ � ’min ¼ �=6 ¼ ’3ðX ¼ 1Þ; i.e., the
packing fraction of hard spheres on a simple cubic (sc)
lattice is a lower bound for ’3ðXÞ [16]. From the numerical
results in Fig. 4 we conjecture that, analogous to the 2D

case, ’3ðXÞ ! ’max ¼ �=
ffiffiffiffiffiffi
18

p
for X ! 1 and X ! 0,

respectively.
To conclude, the maximum packing fraction ’dðXÞ of

parallel-aligned convex objects K characterized by a
single aspect ratio exhibits universal features that appear
to be independent of K, the underlying Bravais lattice �,
and even its dimension d. In particular, ’dðXÞ has been
very generally proved to be continuous. In fact, this proof
can even be extended to the case of convex bodies charac-
terized by an arbitrary number of aspect ratios.
Furthermore, as shown for the case of rectangles and
ellipses on the square lattice as well as for biaxial ellipsoids
on the sc lattice, there is an infinite number of local

maxima and minima at which ’dðXÞ is singular. The
singularities at the minima and at certain, degenerate max-
ima (see Fig. 2 for the case of ellipses) are correlated to the
discontinuities in the orientation of K. For the studied
cases, we find that ’dðXÞ converges to its global maximum
for X ! 1 as well as for X ! 0. While we were only able
to prove this rigorously for the case of rectangles and
ellipses, we believe that this property holds far more gen-
erally, implying that convex hard objects, on average, pack
much better if they become more oblate or prolate.
On the other hand, there are also significant differences

between the systems studied in two and three dimensions.
For rectangles and ellipses, the global maximum packing

fraction ’max ¼ 1 (rectangles) and ’max ¼ �=
ffiffiffiffiffiffi
12

p
(ellip-

ses) is attained for an infinite number of discrete aspect
ratios Xmax

jk , uniquely labeled by pairs (j; k) of coprime

integers. On the contrary, for symmetric ellipsoids with
1=100 � X � 100, ’3ðXÞ takes its maximal height

’max ¼ �=
ffiffiffiffiffiffi
18

p
at the single value Xmax�1 ¼ 1=2 only. This

qualitative difference can be understood as follows.
Consider, for instance, a d-dimensional symmetric ellip-
soid which depends on dþ 1 parameters. In a packing, K
contacts lead to K=2 equations. In the generic case of
K=2 ¼ d, the system is underdetermined and ’d can be
found as a function of the aspect ratio X. For the nonge-
neric case K=2 ¼ dþ 1, there is always a solution corre-
sponding to the local maxima of ’dðXÞ at Xmax

� . It appears
likely that the competing point symmetries ofK and� are
responsible for the nonequal heights of these maxima for
d ¼ 3 and K ¼ 8. It is conceivable that this extra frustra-
tion might be relieved by considering convex hard objects
characterized by three length scales, possibly leading again
to an infinity of equal-height maxima. The even more
nongeneric situation K=2> dþ 1 as realized, e.g., in the

global maximum ’max ¼ �=
ffiffiffiffiffiffi
18

p
for our 3D ellipsoids

with K ¼ 12, corresponds to an overdetermined set of
equations such that, at most, only very few solutions can
be expected. It is worthwhile to point out that our results
for packing on fixed lattices should be closely related to
continuum packing with a fixed number of contacts since
the latter involves geometric frustration as well.
Of course, it might be a challenge to study packings of

the considered type on different lattices. Even richer be-
havior is expected on weakening the condition of parallel
alignment, paving the way for the occurrence of super-
dense packings in analogy to those recently found for
ellipsoids in the 3D continuum [14,15].
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