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Thermal or finite-size scaling analyses of importance sampling Monte Carlo computer simulations in

the vicinity of phase transition points often combine different estimates for the same quantity, such as a

critical exponent, with the intent to reduce statistical fluctuations. We point out that the origin of such

estimates in the same time series often results in pronounced cross correlations which are usually ignored

even in high-precision studies, generically leading to significant underestimation of statistical fluctuations.

We suggest to use a simple extension of the conventional analysis taking correlation effects into account,

which leads to improved estimators with often substantially reduced statistical fluctuations at almost no

extra cost in terms of computation time.
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With the advent of the renormalization group in the
1960s, the notions of scaling and universality have been
combined into the solid basis of our understanding of
critical phenomena in statistical physics, field theory, and
a wealth of applications in areas ranging from solid-state
physics [1] to cosmology [2]. It is through the remarkable
fact that the most important properties of a continuous
phase transition are independent of many microscopic de-
tails and, instead, only depend on a small number of
fundamental characteristics of a system, such as the di-
mensionality and the symmetries of the order parameter,
that we can accurately describe such different situations as,
e.g., the liquid-vapor phase transition and the ferromag-
netic transition of uniaxial magnets, with one and the same
scaling theory. Recently, the investigation of quantum
phase transitions has opened up a new Pandora’s box
with a wealth of transitions partially defining novel uni-
versality classes [3]. The direct applicability of results
from simple models to a range of experimentally realized
systems implied by the principle of universality renders
high-precision determinations of critical parameters for the
most common universality classes a rewarding goal.

Particularly through the conception of advanced finite-
size scaling (FSS) approaches and novel efficient algo-
rithms [4], Monte Carlo (MC) simulations have grown up
to become a tool for the determination of universal critical
quantities clearly competitive compared to the more tradi-
tional approaches of high-temperature and field-theoretic
expansions [5]. Likewise, the detailed investigation of sys-
tems undergoing first-order phase transitions has become a
classic application of the MC simulation technique [6].
Major advances in the competitiveness of the MC method
for these purposes came with the advent of histogram
methods [7] and generalized-ensemble simulation tech-

niques such as the multicanonical method [8], both of
which allow for extracting estimates of thermal averages
for a continuous range of temperatures or other external pa-
rameters from a single MC simulation. It is only through
this effective continuity of information that high-precision
investigations of phase transitions have come into the reach
of simulation methods. For arriving at high-precision esti-
mates, however, all possible sources of error must be put
under close scrutiny. This is often done to a high degree of
sophistication concerning the systematic errors resulting
from corrections to scaling [5] and the statistical errors
resulting from the stochastic nature of MC time series (in-
cluding their timewise autocorrelations for the case of the
most commonly used Markov chain MC techniques)
[9,10]. It has not been systematically discussed previously,
however, that the extraction of different estimates from a
single time series in thermal or FSS analyses must entail
cross correlations. As will be shown below, neglecting their
effect not only results in systematically wrong estimates of
statistical errors, but also fails to fully exploit the available
time-series data to yield the maximum statistical precision
obtainable.

Although our considerations apply generally to all situ-
ations where a number of different estimates from the same
(set of) simulation(s) are combined to a final result, for
specificity we consider the FSS analysis of simulation data
in the vicinity of a critical point. For the purpose of
illustration we choose the technique outlined in Ref. [11],
but very similar considerations apply to alternative ap-
proaches; see, e.g., Refs. [12,13]. To be specific, we discuss
a magnetic ordering transition and first consider the max-

ima of the derivative of the magnetization cumulants

U2k ¼ 1� hjmj2ki=3hjmjki2 for k ¼ 1; 2; . . . :
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¼ Uk;0L
1=�ð1þUk;cL

�w þ � � �Þ; (1)

where L denotes the linear size of the system, � is the
inverse temperature, and Uk;0 and Uk;c are the amplitudes

of the leading and confluent scaling behavior, respectively.
This relation allows for a precise determination of the
correlation length exponent � without previous knowledge
of the critical temperature. In many cases, at least some of
the scaling corrections, such as an effective leading cor-
rection with exponent w as indicated in Eq. (1), need to be
taken into account to achieve the desired level of accuracy.
An analogous relation holds for the scaling of the maxima
of the logarithmic derivative of magnetization moments,
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¼ Dk;0L
1=�ð1þDk;cL

�w þ � � �Þ: (2)

These scaling relations for determining � only become
useful as soon as the maximum values ðdU2k=d�Þjmax

and ðd lnhjmjki=d�Þjmax can be computed to high accuracy
without the need for repeated simulations manually track-
ing their locations in �. In the case of a histogram or
reweighting analysis [4,7] of a single canonical simulation,
this is effected through the continuous family of estimates

Âð�Þ ¼
P

i Aie
�ð���0ÞEi

P

i e
�ð���0ÞEi

(3)

for the thermal average hAi� from a time series fAig of
measurements resulting from an importance sampling
simulation at inverse temperature �0. Conventional tech-
niques of numerical analysis such as a golden section
search then allow for an efficient determination of the
maxima of Eqs. (1) and (2) to high precision. Once � has
been determined, the scaling of the shifts of the location of
the maxima of quantities such as dU2k=d� and
d lnhjmjki=d� as well as the specific heat, susceptibility,
etc., allow the location of the transition coupling �c.
Finally, the remaining critical exponents may be estimated
from the FSS of the maxima of the specific heat to yield
�=�, of the susceptibility to yield �=�, etc. Since the
exponent � enters all FSS relations, it clearly is of utmost
importance to exploit the available data to their fullest for a
precise estimate of �. In view of the family of relations (1)
and (2), this certainly includes a combination of estimates
from dU2k=d� and d lnhjmjki=d�, as well as from the
different choices of the parameter k [11].

To see how this combination should be performed, con-

sider a number n of different estimators Ôi (e.g., Ôi ¼ �̂i)
with the same expectation value O ¼ hOii. A combined

average results from a linear combination �O ¼ P

i�iÔi

with
P

i�i ¼ 1. While any such combination yields a valid

estimator of O, e.g., the arithmetic mean �Oplain with �i ¼
1=n, the ensuing statistical fluctuations will be larger than

necessary. For uncorrelated estimates Ôi minimal variance

of �O is achieved for the error-weighted mean �Oerr with [14]

�i ¼ Z�1 1

�2ðÔiÞ
; (4)

where �2ðÔiÞ denotes the variance of Ôi and Z ¼
P

i1=�
2ðÔiÞ. In general, however, the estimates Ôi, stem-

ming from a reweighting analysis of the same MC time
series, will be substantially correlated. Under these circum-
stances, the optimum choice is a covariance-weighted

mean �Ocov with weights [14–16]

�i ¼ Z�1
X

j

½�ðÔÞ�1�ij; (5)

where �ðÔÞ�1 denotes the inverse of the covariance matrix

�ijðÔÞ ¼ hÔiÔji � hÔiihÔji and Z ¼ P

ij½�ðÔÞ�1�ij.
Since for uncorrelated estimates �ðÔÞij ¼ �ij�

2ðÔiÞ,
Eq. (4) is recovered in this special case. Even more dra-
matically affected by correlations are the statistical errors

of averages, where the standard formula �2
uncorrð �OÞ ¼

P

i�
2
i �

2ðÔiÞ is no longer valid and must be modified to

read �2
corrð �OÞ ¼ P

i;j�i�j�ijðÔÞ, generically leading to an

underestimate of fluctuations via the naive (and wrong)
estimator �2

uncorr.
To check for the strength of such correlation effects and

their influence on finding optimal averages endowed with
valid estimates of statistical errors, we performed a FSS
analysis of the critical points of the ferromagnetic Ising
model in two and three dimensions. Time series with 4�
105 approximately independent samples for the configura-
tional energy and magnetization at a fixed temperature
were produced from one simulation per system size using
the single-cluster algorithm [4]. Estimates for the exponent
�were extracted from FSS fits of the relations (1) and (2) to
the maxima of dU2k=d� with k ¼ 1 and 2 as well as
d lnhjmjki=d� with k ¼ 1, 2, and 3 extracted from a re-

weighting analysis. Estimates dVARðÔiÞ of the variances

�2ðÔiÞwere calculated via a jackknife analysis [9] over the
reweighting procedure, taking timewise autocorrelations
into account. Likewise, the covariance matrix � was de-
termined from the nonparametric jackknife estimator
known to be especially robust [9],

dCOVð�̂i; �̂jÞ ¼ n� 1

n

X
n

s¼1

½�̂iðsÞ � �̂ið�Þ�½�̂jðsÞ � �̂jð�Þ�: (6)

Here, n denotes the number of jackknife blocks, �̂iðsÞ
denotes the value for jackknife block s and �̂ið�Þ is the

arithmetic average of the �̂iðsÞ. For the results presented

here, n ¼ 100 blocks were used, where we checked that the
results are invariant, at the level of statistical fluctuations,
to the choice of a significantly larger number of blocks.
For the case of the 2D model, simulations were per-

formed at the asymptotic critical coupling �c ¼ 1
2 lnð1þffiffiffi

2
p Þ ¼ 0:440 686 794 . . . , using a series of square lattices
of linear size L ¼ 16; 24; . . . ; 192. For this model, and the
considered range of system sizes, we do not find correc-
tions to scaling to be very pronounced, such that high-
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quality fits can be achieved while ignoring the terms pro-
portional to L�w in (1) and (2) and restricting the range of
system sizes to L � 32. The resulting estimates are col-
lected in the left part of Table I. Table II shows the matrix
of correlation coefficients �ij ¼ �ij=�i�j for these esti-

mates as computed from the jackknife approach (6). It is
perhaps not unexpected that all of the estimates for �,
resulting from structurally similar observables in the mag-
netic sector, are strongly correlated with �ij * 0:8. One

might naturally wonder, then, if it is indeed worthwhile to
consider all of these different estimators instead of, say, the
single most precise one. The different averages discussed
above are listed in the lower part of Table I together with
the error estimates �uncorr neglecting correlations and �corr

taking them into account. For the plain average as well as
the error-weighted mean it is apparent that, although
�uncorr seems to indicate smaller fluctuations than for any
single estimate, using the proper error �corr the situation is
reversed and the uncertainties of some of the single esti-
mates, namely, those stemming from the logarithmic de-
rivatives, are smaller than the true fluctuation of these
averages. For the full covariance-weighted mean, on the
other hand, one arrives at ��cov ¼ 0:9935ð78Þ, which has
clearly smaller fluctuations than any of the individual
estimates. As is apparent from the lower part of Table II,
this improvement is effected through a dramatically differ-
ent choice of weights for the individual estimates as com-
pared to the error-weighting or plain-average schemes.
Comparing the standard deviations of the most commonly
used average ��err and the new ��cov, it is striking that
statistical precision is increased by almost a factor of 3
merely by using different weights in the average. Against
our usual intuition developed from statistics of uncorre-
lated events, the average ��cov is here found to be smaller
than all individual estimates. This is illustrated in Fig. 1,
where ��cov can also be interpreted as a correlated fit to a
constant (see also Refs. [13,17]).
Simulations of the 3D Ising model were performed for

simple cubic lattices of edge lengths L ¼ 8; 12;
16; . . . ; 128 at the fixed coupling � ¼ 0:221 654 59 re-
ported in a high-precision study as estimate for the tran-
sition point [18]. Here, scaling corrections for the
logarithmic derivatives of magnetization moments are suf-
ficiently pronounced to warrant the inclusion of the L�w

correction term of Eq. (2). For the cumulants, corrections
are so small that, instead, fits of the uncorrected form were
used on the range L � 32. The resulting estimates of � are
collected on the right side of Table I. Concerning the
various averages, it is again found that errors are clearly

TABLE I. Estimates of the correlation length exponent � for
the 2D and 3D Ising models from the scaling of the maxima (1)
and (2), as well as different averages and error estimates ex-
plained in the main text. The 2D reference value is exact,
whereas in three dimensions it is taken from the recent review
[5].

2D 3D

� � � �

d lnhjmji
d� 1.0085 0.0183 0.6358 0.0127

d lnhm2i
d� 1.0128 0.0194 0.6340 0.0086

d lnhjmj3i
d� 1.0175 0.0201 0.6326 0.0062

dU2

d� 1.0098 0.0281 0.6313 0.0020
dU4

d� 1.0149 0.0511 0.6330 0.0024

��plain �uncorr 1.0127 0.0141 0.6334 0.0038

�corr 0.0269 0.0067

��err �uncorr 1.0123 0.0102 0.6322 0.0015

�corr 0.0208 0.0024

��cov �corr 0.9935 0.0078 0.6300 0.0017

Reference value 1 0.6301 0.0004

TABLE II. Correlation coefficients �ij ¼ �ij=�i�j between
estimates of the critical exponent � of the 2D Ising model
extracted from the maxima (1) and (2). The lower part of the
table shows the weights �i of the individual estimates in the
plain, error-weighted, and covariance-weighted averages, re-
spectively.

d lnhjmji
d�

d lnhm2i
d�

d lnhjmj3i
d�

dU2

d�
dU4

d�

d lnhjmji
d� 1.000 0.974 0.939 0.920 0.897

d lnhm2i
d� 0.974 1.000 0.991 0.817 0.869

d lnhjmj3i
d� 0.939 0.991 1.000 0.743 0.820

dU2

d� 0.920 0.817 0.743 1.000 0.860
dU4

d� 0.897 0.869 0.820 0.860 1.000

�i;plain 1.000 1.000 1.000 1.000 1.000

�i;err 0.315 0.271 0.248 0.034 0.132

�i;cov 5.007 �2:426 �0:281 �0:104 �1:196

FIG. 1 (color online). Estimates of the critical exponent � of
the 2D Ising model from the FSS of the indicated observables
(circles). The (almost identical) dotted and dashed lines indicate
the plain average ��plain and the error-weighted mean ��err, re-

spectively. The covariance-weighted mean ��cov corresponds to
the solid line. The shaded areas indicate the corresponding 1�
environments ��� �corr.
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underestimated when neglecting correlations, and for the
plain and error-weighted means the true fluctuations are
indeed larger than the errors of the single most precise
estimate. In contrast, the covariance-weighted mean yields
��cov ¼ 0:6300ð17Þ, significantly more precise than the
single estimates as well as the averages not taking corre-
lations into account.

Similar considerations apply to the correlations between
estimates of different exponents. In particular, taking the
scaling relations for critical exponents into account, the
magnetic and energetic scaling dimensions might be esti-
mated from different observables. For instance, the mag-
netic scaling dimension can be estimated via the relations
xh ¼ �=� and xh¼d=2��=2� from the FSS of the mag-
netization at its inflection point and the magnetic suscep-
tibility at its maximum via the relations hjmjiinfðLÞ ¼
m0L

��=� and �maxðLÞ ¼ �0L
�=�, respectively. Table III

summarizes the correlation analysis for xh in the 2Dmodel,
where through the pronounced anti-correlation of the two
estimates of xh the uncorrelated error �uncorr overestimates
statistical fluctuations, and already the error-weighted
mean is somewhat more precise than either of the two
single estimates. Still, the covariance-weighted mean is
even more precise, yielding �xh;cov ¼ 0:125ð1Þ, directly at

the exact value xh ¼ 1=8. For the 3D model, on the other
hand, (only) the correlation analysis reveals that both
estimates of xh are nearly uncorrelated such that, for this
specific case, the full result approximately coincides with
the naive approach neglecting correlations.

To summarize, we have seen that substantial cross cor-
relations exist between quantities estimated via histogram
analyses from time series of Markov chain MC simula-
tions. Taking these into account by a straightforward ex-
tension of the common data analysis reveals a generic
underestimation of statistical error by the conventional
approach. On the other hand, it suggests improved estima-
tors with often substantially reduced statistical fluctuation
resulting, for some examples, in a threefold reduction of
statistical error which could otherwise only be achieved
with an about tenfold increase of simulation time with the

conventional analysis. While these effects have been illus-
trated here for the case of the critical exponents of the Ising
model, very similar behavior is expected for nonuniversal
quantities, including properties of first-order transitions
[6], and for different applications, including the problems
in soft-matter systems [19], for quantum critical points [3],
or the extremely costly simulations of disordered systems
[20]. These applications, together with the flexibility in
choosing different thermal or FSS approaches, render the
outlined technique quite generic.
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[18] H.W. J. Blöte, L. N. Shchur, and A. L. Talapov, Int. J.

Mod. Phys. C 10, 1137 (1999).
[19] Advanced Computer Simulation Approaches for Soft

Matter Sciences, edited by C. Holm and K. Kremer
(Springer, Berlin, 2005), Vols. 1–2.

[20] Order, Disorder, and Criticality, edited by Y. Holovatch
(World Scientific, Singapore, 2007), Vols. 1–2.

TABLE III. Correlation analysis and averages of estimates of
the magnetic scaling dimension xh of the 2D Ising model from
the scaling of the magnetization at its inflection point and the
magnetic susceptibility at its maximum.

Fits Corr. coeff./weights

xh � hjmjiinf �max

hjmjiinf 0.1167 0.0054 1.0000 �0:6414

�max 0.1271 0.0020 �0:6414 1.0000

�xh;plain �uncorr 0.1219 0.0027 1.0000 1.0000

�corr 0.0021

�xh;err �uncorr 0.1261 0.0016 0.0944 0.9056

�corr 0.0013

�xh;cov �corr 0.1250 0.0010 0.2050 0.7950

Reference value 0.125
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