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Besides the well-known effect of autocorrelations in time series of Monte Carlo simulation data resulting
from the underlying Markov process, using the same data pool for computing various estimates entails addi-
tional cross correlations. This effect, if not properly taken into account, leads to systematically wrong error
estimates for combined quantities. Using a straightforward recipe of data analysis employing the jackknife or
similar resampling techniques, such problems can be avoided. In addition, a covariance analysis allows for the
formulation of optimal estimators with often significantly reduced variance as compared to more conventional
averages.
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I. INTRODUCTION

Monte Carlo simulations, and in particular Markov chain
based methods, have matured over the last decades into a
highly versatile and powerful toolbox for studies of systems
in statistical and condensed-matter physics �1,2�, ranging
from classical spin models �3� over soft-matter problems �4�
to quantum systems �5�. Their competitiveness with other
approaches such as, e.g., field-theoretic expansions for the
study of critical phenomena �6,7�, is largely based on the
development and refinement of a number of advanced simu-
lation techniques such as cluster algorithms �8� and
generalized-ensemble methods �9,10�.

Equally important to the generation of simulation data,
however, is their correct and optimal analysis. In this field, a
number of important advances over the techniques used in
the early days have been achieved as well. These include,
e.g., the finite-size scaling �FSS� approach �11�, turning the
limitation of simulational methods to finite system sizes into
a systematic tool for accessing the thermodynamic limit, re-
weighting techniques �12�, lifting the limitation of numerical
techniques to the study of single points in parameter space to
allow for continuous functions of estimates to be studied, as
well as advanced statistical tools such as the jackknife and
other resampling schemes of data analysis �13�.

Of these techniques, the statistical data analysis appears to
have received the least attention. Hence, while FSS analyses,
even including correction terms, are quite standard in com-
puter simulation studies �1�, a proper analysis and reduction
of statistical errors and bias appears to be much less com-
mon. Here, resampling methods turn out to be very valuable.
Although such techniques offer a number of benefits over
more traditional approaches of error estimation, their adop-
tion by practitioners in the field of computer simulations has

not yet been as universal as desirable. It is our understanding
that this is, in part, due to a certain lack in broadly accessible
presentations of the basic ideas which are, in fact, very
simple and easy to implement in computer codes, as is dem-
onstrated below.

More specifically, data generated by a Monte Carlo �MC�
simulation are subject to two types of correlation phenom-
ena, namely, �a� autocorrelations or temporal correlations for
the case of Markov chain MC �MCMC� simulations, which
are directly related to the Markovian nature of the underlying
stochastic process and lead to an effective reduction in the
number of independently sampled events and �b� cross cor-
relations between different estimates extracted from the
same set of original time series coming about by the origin of
estimates in the same statistical data pool. The former can be
most conveniently taken into account by a determination of
the relevant autocorrelation times and a blocking or binning
transformation resulting in an effectively uncorrelated auxil-
iary time series �14�. Such analyses are by now standard at
least in seriously conducted simulational studies. On the con-
trary, the effects of cross correlations have been mostly ne-
glected to date �see, however, Refs. �15–18�� but are only
systematically being discussed following our recent sugges-
tion �19,20�. In this paper, we show how such cross correla-
tions lead to systematically wrong estimates of statistical er-
rors of averaged or otherwise combined quantities when a
naïve analysis is employed, and how a statistically correct
analysis can be easily achieved within the framework of the
jackknife method. Furthermore, one can even take benefit
from the presence of such correlation effects for significantly
reducing the variance of estimates without substantial addi-
tional effort. We demonstrate the practical relevance of these
considerations for a finite-size scaling study of the Ising
model in two and three dimensions.

The rest of this paper is organized as follows. In Sec. II
we give a general recipe for a failsafe way of Monte Carlo
data analysis, taking into account the effects of autocorrela-
tions and cross correlations mentioned above. After discuss-
ing the complications for the more conventional analysis
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schemes �but not the jackknife method� introduced by histo-
gram reweighting and generalized-ensemble simulation tech-
niques in Sec. III, we outline the role of cross correlations in
the process of averaging over a set of MC estimates in Sec.
IV and discuss the choice of an optimal averaging procedure.
In Sec. V, these ideas are applied to a simulational study of
the critical points of the two- and three-dimensional Ising
models. Finally, Sec. VI contains our conclusions.

II. MONTE CARLO ERROR ANALYSIS

Compared to the task of estimating the uncertainty in the
result of a laboratory experiment by simply repeating it sev-
eral times, there are a number of complications in correctly
determining—and possibly even reducing—statistical fluc-
tuations in parameter estimates extracted from MCMC simu-
lations. Firstly, due to the memory of the Markovian process,
subsequent measurements in the time series are correlated,
such that the fluctuations generically appear smaller than
they are. This issue can be resolved by a blocking of the
original time-series data. Secondly, one often needs to know
the precision of parameter estimates which are complicated
�and sometimes nonparametric� functions of the measured
observables. Such problems are readily solved using resam-
pling techniques such as the jackknife.

A. Autocorrelations

Consider a general Monte Carlo simulation with the pos-
sible values O of a given observable O appearing according
to a probability distribution p�O�. This form, of course, im-
plies that the system is in thermal equilibrium, i.e., that the
underlying stochastic process is stationary. The probability
density p�O� could be identical to the Boltzmann distribution
of equilibrium thermodynamics as for the importance-
sampling technique �21�, but different situations are conceiv-
able as well, see the discussion in Sec. III below. If we as-
sume ergodicity of the chain, the average

Ō �
1

N
�
i=1

N

Oi

for a time series �O1 ,O2 , . . .� of N measurements is an unbi-
ased estimator of the mean

	O
 � � dO p�O�O .

In contrast to 	O
, the estimator Ō is a random number,
which only coincides with 	O
 in the limit N→�. Under
these circumstances, simulational results are only meaningful

if in addition to the average Ō we can also present an esti-

mate of its variance �2�Ō�. Note that, although the distribu-
tion p�O� of individual measurements might be arbitrary, by
virtue of the central limit theorem the distribution of the

averages Ō must become Gaussian for N→�. Hence, the

variance �2�Ō� is the �only� relevant parameter describing

the fluctuations of Ō. If subsequent measurements O1, O2 , . . .
are uncorrelated, we have

�2�Ō� � 	Ō2
 − 	Ō
2 =
�2�O�

N
, �1�

which can be estimated without bias from �22�

�̂2�Ō� =
1

N�N − 1��i=1

N

�Oi − Ō�2, �2�

i.e., 	�̂2�Ō�
=�2�Ō�. This is what we do when estimating the
statistical fluctuations from a series of independent labora-
tory experiments. Markov chain simulations entail the pres-
ence of temporal correlations, however, such that the con-
nected autocorrelation function,

CO�s,t� � 	OsOt
 − 	Os
	Ot
 �3�

is nonzero in general �see, e.g., Ref. �23��. Stationarity of the
chain implies that CO�s ,s+ t�=CO�0, t��CO�t�. Then, the

variance of Ō becomes

�2�Ō� =
�2�O�

N �1 + 2�
t=1

N 1 −
t

N
� CO�t�

CO�0�� . �4�

Monte Carlo correlations decline exponentially, i.e.,

CO�t� � CO�0�e−t/�exp�O� �5�

to leading order, defining the exponential autocorrelation
time �exp�O�. Due to this exponential decay, for N��exp the
deviations of the factors 1− t /N of Eq. �4� from unity can be
neglected �24�, and defining the integrated autocorrelation
time as

�int�O� �
1

2
+ �

t=1

N
CO�t�
CO�0�

, �6�

one has

�2�Ō� �
�2�O�

N/2�int�O�
. �7�

In view of the 1 /N reduction in variance of the average Ō
relative to a single measurement in Eq. �1�, Eq. �7� states that
the effective number of independent measurements in the
presence of autocorrelations is reduced by a factor of
1 /2�int�O�. The autocorrelation times �exp and �int are not
identical, but one can show that the latter is a lower bound of
the former, �int�O���exp�O� �25�.

As long as the autocorrelation time is finite, the distribu-
tion of averages still becomes Gaussian asymptotically, such
that for N�� the variance remains the relevant quantity de-

scribing fluctuations. To practically determine �2�Ō� from
Eq. �4�, an estimate for the autocorrelation function is re-
quired. This can be found from definition �3� by replacing
expectation values with time averages. It turns out, however,
than upon summing over the contributions of the autocorre-
lation function for different time lags t in Eq. �4� divergent
fluctuations are incurred, enforcing the introduction of a cut-
off time �26,27�. Several approximation schemes have been
developed using such estimators, but they turn out to have
severe drawbacks in being computationally expensive, hard
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to automatize and in that estimating their statistical accuracy
is tedious �see Ref. �14��.

A more efficient and very intuitive technique for dealing
with autocorrelations results from a blocking transformation
in the spirit of the renormalization group �14� �in fact, this
idea was already formulated by Wilson �28��. Much like
block spins are defined there, one combines Nb=N /n adja-
cent entries of the time series,

Bt ª ��t − 1�Nb + 1, . . . ,tNb� , �8�

and defines block averages

Ot
Nb =

1

Nb
�

k�Bt

Ok, t = 1, . . . ,n , �9�

cf. Fig. 1�a�. This procedure results in a shorter effective time
series �O1

Nb ,O2
Nb , . . .� with n entries. �We assume for simplic-

ity that N is an integer multiple of n.� Obviously, the average

Ō and its variance �2�Ō� are invariant under this transforma-
tion. Under the exponential decay �5� of autocorrelations of
the original series it is clear �and can be shown explicitly
�14��, however, that subsequent block averages Ot

Nb, Ot+1
Nb are

less correlated than the original measurements Ot and Ot+1.
Furthermore, the remaining correlations must shrink as the
block length Nb is increased, such that asymptotically for
Nb→� �while still ensuring n�1� an uncorrelated time se-
ries is produced. Consequently, the naïve estimator �2� can

be legally used in this limit to determine the variance �2�Ō�
of the average. For the finite time series encountered in prac-
tice, a block length Nb�� and Nb�N must be used. This is
illustrated in Figure 2 showing the estimate �2� for a blocked
time series with autocorrelation time �int�13 as a function of

the block length Nb. It approaches the true variance �2�Ō�
from below, eventually reaching a plateau value where any
remaining preasymptotic deviations become negligible com-
pared to statistical fluctuations. If the available time series is
long enough �as compared to ��, it is often sufficient to sim-
ply lump the data into as few as some hundred blocks and
restrict the subsequent data analysis to those blocks. As a
rule of thumb, in practical applications it turns out that a time
series of length N�10 000� is required for a reliable deter-
mination of statistical errors as well as autocorrelation times.
From Eqs. �2� and �6� it follows that the integrated autocor-
relation time can be estimated from

�̂int�O� =
1

2

�̂2�ŌNb�

�̂2�Ō1�
�10�

within this scheme, where Nb needs to be chosen in the pla-
teau regime of Fig. 2.

B. Covariance and bias

Apart from providing an estimate of �2�Ō� for simple
quantities, the blocking procedure has the advantage of re-
sulting in an effectively uncorrelated auxiliary time series
which can then be fed into further statistical machinery,
much of which is restricted to the case of independent vari-
ables. Resampling schemes such as the jackknife �13� pro-
vide error and bias estimates also for nonlinear functions of
observables without entailing truncation error or requiring
assumptions about the underlying probability distributions.

While �2�Ō� can be directly computed from the blocked
time series of O via the estimator �2�, this approach fails for
nonlinear functions f�	A
 , 	B
 , . . .� of expectation values 	A
,
	B
 , . . . such as, e.g., susceptibilities or cumulants. A standard
approach for such cases is the use of error propagation for-
mulas based on Taylor expansions �22�,

�2�f�	A
,	B
, . . .�� =
� f

�	A

�2�A� +

� f

�	B

�2�B� + ¯ .

�11�

Apart from the truncation error resulting from the restriction
to first order in the expansion, this entails a number of fur-

ther problems: if the averages Ā, B̄, etc. are correlated due to
their origin in the same simulation, cross-correlation terms
need to be included as well. Even worse, for the case of
nonparametric parameter estimates, such as determining the
maximum of some quantity by reweighting �see below� or
extracting a critical exponent with a fitting procedure, error
propagation cannot be easily used at all.

Nb

(a)

(b)

(t − 1)Nb tNb

FIG. 1. �Color online� Blocking transformation on a time series.
In the binning analysis, the series is divided into blocks of length Nb

�a�. In the jackknifing analysis, the blocks consist of the whole
series apart from the entries of a single block �b�.
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FIG. 2. �Color online� Schematic representation of the estimate

�̂2�Ō� of the variance of the average according to Eq. �2� for a
reblocked time series as a function of the block length Nb.
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Such problems are avoided by methods based on repeated
sampling from the original data pool, using the properties of
these meta samples to estimate �co�variance, reduce bias, etc.
These are modern techniques of mathematical statistics
whose application only became feasible with the general
availability of computers �13�. Most straightforwardly appli-
cable is the jackknife procedure, where the meta samples
consist of all of the original time series apart from one data
block, cf. Fig. 1�b�. Assume that a set of simulations resulted
in a collection of time series �Ok,1 ,Ok,2 , . . .Ok,Nk

�,
k=1, 2 , . . . for different observables, system sizes, tempera-
tures, etc. Applying the blocking procedure described above,
it is straightforward to divide the series in effectively uncor-
related blocks. It is often convenient to use the same number
of blocks n for all series �e.g., 100� which can easily be
arranged for by the blocking transformation as long as Nk /�k
is larger than some minimum value �e.g., 10 000� for each
simulation and observable. If then B� t= �B1,t , . . . ,Bk,t�T de-
notes the tth block over all series according to Eq. �8�, where
for a constant number of blocks the block lengths Nb,k
=Nk /n might vary between the different series under consid-
eration, one defines the corresponding jackknife block as the
complement

Jk,t ª �1, . . . ,Nk� \ Bk,t, �12�

cf. Fig. 1. Considering now an estimator 	̂��O� t�� for some
parameter 	 depending on �some or all of� the different se-
ries, we define the corresponding estimates restricted to jack-
knife block J� s,

	̂�s� = 	̂ ���O1,t�J1,s
�, . . . ,�Ok,t�Jk,s

��T� . �13�

The variation between these estimates taken from the same
original data can be used to infer the sample variance. If one
denotes the average of the jackknife block estimators �13� as

	̂�·� =
1

n
�
s=1

n

	̂�s�, �14�

an estimate for the sample variance of the estimator 	̂ is
given by �29�

�̂jack
2 �	̂� �

n − 1

n
�
s=1

n

�	̂�s� − 	̂�·��2. �15�

This is very similar to the simple estimate �2� for the vari-
ance of the average, but it comes with a different prefactor
which serves a twofold purpose: it reweights the result from
the effective jackknife series of length n−1 to the original
length n and takes care of the fact that all of the jackknife

block estimates 	̂�s� are strongly correlated due to them being
based on �almost� the same data. The general Eq. �15� forms
a conservative and at most weakly biased estimate of the true
variance �13�, which lacks the truncation error of schemes
based on Eq. �11� and is applicable to nonparametric param-
eter estimates.

In a slight generalization of Eq. �15� it is possible to also

estimate covariances. For a number of estimators 	̂i��O� t��, i
=1,2 , . . ., a robust jackknife estimator of the covariance ma-
trix is given by


̂ij
2 �	̂� �

n − 1

n
�
s=1

n

�	̂i�s� − 	̂i�·���	̂ j�s� − 	̂ j�·�� . �16�

In a similar way the bias of estimators can be reduced, i.e.,
deviations between the mean of an observable and the expec-
tation value of some estimator that disappear with increasing
sample length. For a detailed discussion we refer the reader
to Refs. �13,29�.

A general procedure for the analysis of simulation data
based on blocking and jackknife techniques hence has the
following form:

�1� Decide on the number n of jackknife blocks to be
used. For most purposes, of the order of 100–500 blocks are
sufficient.

�2� For each original time series recorded in a collection
of simulations, examine the block averages �9� as a function
of the block length N /n. If the result for n blocks is in the
plateau regime of Fig. 2 everything is fine; otherwise, one
needs to record a longer time series �and possibly take mea-
surements less frequently to keep the amount of data man-
ageable�.

�3� For each parameter to be estimated, compute the n
jackknife block estimates �13� as well as the average �14�
and combine them to calculate the variance �15�. For a num-

ber of different parameter estimates 	̂i, the jackknife block
estimates can also be used to calculate the covariance �16�.

III. HISTOGRAMS AND ERRORS

An increasing number of successful Monte Carlo tech-
niques rely on reweighting and the use of histograms �1�.
This includes the �multi�histogram method of Refs. �12,30�
as well as the plethora of generalized ensemble techniques
ranging from multicanonical simulations �9� to Wang-
Landau sampling �10�. Such methods are based on the fact
that samples taken from a known probability distribution can
always be translated into samples from another distribution
over the same state space. Assume, for simplicity, that states
are labeled �si� as appropriate for a spin system. If a se-
quence �si�t, t=1,2 , . . . was sampled from a stationary simu-
lation with probability density psim��si��, an estimator for the
expectation value of the observable O relative to the equilib-
rium distribution is given by

Ô =

�
t=1

N

O��si�t�
peq��si�t�
psim��si�t�

�
t=1

N
peq��si�t�
psim��si�t�

. �17�

For a finite simulation this works as long as the sampled and
the equilibrium distributions have sufficient overlap, such
that the sampled configurations can be representative of the
equilibrium average at hand. For simple sampling one has
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psim=const and hence must weight the resulting time series
with the Boltzmann factor

peq��si�� � p���si�� =
1

Z�

e−�H��si��, �18�

where H��si�� denotes the energy of the configuration �si�
and Z� is the partition function at inverse temperature �
=1 /kBT. For importance sampling, on the other hand, psim
= peq, such that averages of time series are direct estimates of
thermal expectation values. If samples from an importance
sampling simulation with psim= p�0

should be used to esti-
mate parameters of peq= p�, Eq. �17� yields the familiar �tem-
perature� reweighting relation

Ô� =

�
t

O��si�t�e−��−�0�Et

�
t

e−��−�0�Et
, �19�

where Et=H��si�t�. Completely analogous equations can be
written down, of course, for reweighting in parameters other
than temperature. Similarly, canonical averages at inverse
temperature � are recovered from multicanonical simulations
via using Eq. �17� with psim= pmuca and peq= p�.

Reliable error estimation �as well as bias reduction, cova-
riance estimates, etc.� for reweighted quantities is rather te-
dious with traditional statistical techniques such as error
propagation �31�. Resampling methods, on the other hand,
allow for a very straightforward and reliable way of tackling
such problems �32�. For the jackknife approach, for instance,
one computes jackknife block estimates of the type �17� by
simply restricting the set of time series to the sth jackknife
block J� s. With the jackknife average �14�, e.g., the variance

estimate �15� with 	̂= Ô can be straightforwardly computed.
Similar considerations apply to covariance estimates or bias
reduced estimators �13�. Extremal values of thermal averages
can be determined to high precision from the continuous
family of estimates �19�, where error estimates again follow
straightforwardly from the jackknife prescription.

IV. VARIANCE REDUCTION

Temporal correlations resulting from the Markovian na-
ture of the sampling process have been discussed in Sec. II A
above, and we assume that they have been effectively elimi-
nated by an appropriate binning procedure. Extracting a

number of different parameter estimates 	̂i, i=1,2 , . . . from
the same number of original simulations it is clear, however,

that also significant cross correlations between estimates 	̂i

and 	̂ j can occur. These have profound consequences for
estimating the statistical error and reducing it by making the
best use of the available data �19�.

If a given parameter estimate 	̂ depends on several ob-
servables of the underlying time series that exhibit cross cor-
relations, this fact is automatically taken into account cor-
rectly by the jackknife error estimate �15�. This is in contrast
to error analysis schemes based on error propagation formu-
lae of the type �11�, where any cross correlations must be

taken into account explicitly. Insofar the outlined approach
of data analysis is failsafe. We want to go beyond that, how-
ever, in trying to optimize statistical precision of estimates
from the available data. If we attempt to estimate a parameter
	, we ought to construct an estimator

	̂ = F��O� t�� ,

which is a function of the underlying time series with the

property that 		̂
=	 �at least for n→��. Obviously, there
usually will be a large number of such functions F and it is

not possible, in general, to find the estimator 	̂ of minimal
variance. We therefore concentrate on the tractable case

where 	̂ is a linear combination of other estimators 	̂i, i
=1, . . . ,k,

	̂ = �
i=1

k

�i	̂i. �20�

There are different possibilities to ensure the condition 		̂

=	:

�1� All estimators have the same expectation, 		̂i
=	, and
�i�i=1.

�2� One estimator is singled out, say 		̂1
=	, �1=1, and

the rest has vanishing expectation, 		̂i
=0, �i arbitrary, i
2.

�3� More complicated situations.
The first type describes the case that we have several dif-

ferent estimators for the same quantity and want to take an
average of minimum variance �19�. The second case is tai-
lored for situations where existing symmetries allow to con-
struct estimators with vanishing expectation whose cross
correlations might reduce variance �20�.

To optimize the analysis, the parameters �i in Eq. �20�
should be chosen such as to minimize the variance

�2�	̂� = �
i,j=1

k

�i� j�		̂i	̂ j
 − 		̂i
		̂ j
� � �
i,j=1

k

�i� j
ij�	̂� .

�21�

For case one above, we introduce a Lagrange multiplier to
enforce the constraint �i�i=1, and the optimal choice of �i is
readily obtained as

�i =

�
j=1

k

�
�	̂�−1�ij

�
i,j=1

k

�
�	̂�−1�ij

, �22�

leading to a minimum variance of

�2�	̂� =
1

�
i,j=1

k

�
�	̂�−1�ij

. �23�

Very similarly, case two leads to the choice �33�

ERROR ESTIMATION AND REDUCTION WITH CROSS … PHYSICAL REVIEW E 81, 066701 �2010�

066701-5



�i = − �
j=2

k

�
��	̂�−1�ij
�	̂� j1, �24�

where 
��	̂� denotes the submatrix of �
�	̂��ij with i , j2.
Since the formalism for both cases is practically identical, in
the following we will concentrate on case one.

Let us take the time to compare the optimal choice of
weights expressed in Eqs. �22� and �24� with that used in
more traditional approaches. Ignoring the presence of cross
correlations, several parameter estimates are often combined
using an error weighting scheme only, i.e., by choosing
weights

�i
err =

1/�2�	̂i�

�
i=1

k

1/�2�	̂i�

. �25�

While the more general expression �22� reduces to the
weights �25� in the absence of correlations, the choice �25� is
not optimal as soon as cross correlations are present. Still,

the resulting average 	̂ remains a valid estimator of the pa-
rameter 	. In contrast, the usually used variance estimate
derived from the expression

�uncorr
2 err �	̂� =

1

�
i=1

k

1/�2�	̂i�

�26�

is no longer even correct when cross correlations come into
play. As will be seen below from the discussion of Ising

model simulations in Sec. V, �uncorr
2 err �	̂� generically leads to

underestimation of the true variance, but occasionally over-
estimates are possible as well.

The practical implementation of the described scheme of
weighting and error analysis is straightforward with the
toolset outlined in the previous sections. The covariance ma-

trix of the estimates 	̂i is readily computed via the jackknife
expression �16�. This allows to estimate the optimal weights

from inserting 
̂ij in Eq. �22� �or the analogue �24� for case
two� and the variance of the resulting optimal estimator is
determined from expression �23�. In total, the necessary
analysis can be summarized as follows:

�1� Perform a binning analysis to see whether for a given
number of blocks n the block averages �9� for all time series
at hand are effectively uncorrelated.

�2� For each parameter estimate 	̂i compute the n jack-
knife block estimates �13� as well as their average and esti-
mate their covariance matrix from Eq. �16�.

�3� For those estimates 	̂i to be combined into an average

	̂, an estimate of the optimal weighting parameters �i is

given by Eq. �22� with the estimate 
̂ij calculated in the
previous step. Likewise, the variance of the resulting average
is estimated from Eq. �23�.

In some cases, it is necessary to already have variance
estimates of intermediate data available for properly deter-

mining the jackknife block estimates 	̂i�·�. This typically oc-

curs when 	̂i is a parameter resulting from an �ideally error
weighted� fit to a number of data points, such as for the case
of a critical exponent, see the discussion below in Sec. V. In
these cases it is straightforward to iterate the jackknifing pro-
cedure to second order by considering each jackknife block
as the initial time series of another jackknife analysis �34�.

In view of the sometimes counter-intuitive results of com-
puting weighted averages taking cross correlations into ac-
count �see the results in Sec. V below�, it is instructive to

examine the simple case of just two different estimates 	̂1

and 	̂2 in somewhat more detail. This is done in the Appen-
dix.

V. APPLICATION TO THE ISING MODEL

Although the outlined scheme of Monte Carlo data analy-
sis is completely general, it is useful to see how it works out
for a specific example. In particular, one would like to know
if the typical cross correlations are sufficiently strong to have
significant impact on the results. To answer this question, we
performed a finite-size scaling �FSS� analysis of the ordering
transition of the ferromagnetic Ising model in two and three
dimensions.

A. Simulation details

We studied the critical behavior of the nearest-neighbor
zero-field ferromagnetic Ising model with Hamiltonian

H = − J�
	i,j


sisj, si = � 1 �27�

on square and simple cubic lattices of edge length L, using
periodic boundary conditions. Close to criticality, an
importance-sampling Monte Carlo simulation with local up-
date rule suffers from critical slowing down, ��Lz, with a
dynamical critical exponent z�2. To alleviate this problem,
we used the single-cluster update algorithm �35� resulting in
a dramatic speed-up of the relaxation process. For two and
three dimensions we performed simulations at a fixed tem-
perature close to the asymptotic critical temperature for a
number of different system sizes to enable a systematic FSS
study. The raw data consisted of time series with 4�105

approximately independent samples of the configurational
energy and magnetization for each system size under consid-
eration. Using the jackknifing analysis described above,
these original time series were then analyzed using n effec-
tively uncorrelated bins, where n=100 was chosen unless
stated otherwise.

B. Finite-size scaling analysis

There is now a broad consensus that finite-size effects are
�in most cases� not merely a drawback of approaches de-
pending on finite system sizes, but can be turned into a pow-
erful tool for extracting the asymptotic behavior �11�. A num-
ber of different practical implementations of this idea in
terms of specific FSS schemes have been derived and suc-
cessfully applied to the analysis of critical phenomena, see,
e.g., Refs. �36–38�. Although our considerations regarding
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the data analysis apply rather generally to all these tech-
niques, for illustrative purposes we concentrate here on the
rather popular method outlined in Ref. �36�. It is focused on
the analysis of the locations and values of extrema of stan-
dard thermodynamic quantities such as the specific heat,
magnetic susceptibility, cumulants, etc. According to the
theory of finite-size scaling �11,39�, the locations of such
pseudocritical points are shifted away from the true critical
coupling �c according to

��Amax,L� = �c + A0L−��1 + AcL
−w + ¯� , �28�

where A denotes an observable with a pseudocritical maxi-
mum such as the specific heat �for �0�. The generic value
for the shift exponent � predicted by FSS theory is �=1 /�,
where � is the correlation length exponent �for exceptions
see, e.g., Ref. �40��. A drawback of using Eq. �28� directly is
that nonlinear fits in the three parameters �c, A0, and � re-
spectively � are required even for the simplest case of ignor-
ing the correction-to-scaling terms in brackets. To alleviate
this problem, it has been suggested to consider quantities
such as the magnetization cumulants �41�

U2i = 1 −
	�m�2i


3	�m�i
2 , i = 1,2,3, . . . �29�

for which the maxima of the temperature derivatives have a
critical scaling form

�dU2i

d�
�

max
= Ui,0L1/��1 + Ui,cL

−w + ¯� , �30�

and hence allow to determine � without prior knowledge of
the transition coupling �c. If, again, the correction terms in
brackets are ignored, this form even represents a linear fit �in
logarithmic representation� resulting in very stable results.
While initially only the fourth-order cumulant U4 was con-
sidered, the authors of Ref. �36� suggested to use a variety of
different cumulants U2i with i=1,2 ,3 , . . . to improve the ac-
curacy of the � estimate. A number of further quantities with
the same scaling behavior can be constructed, for instance
logarithmic temperature derivatives of the magnetization,

�d ln	�m�i

d�

�
max

= Di,0L1/��1 + Di,cL
−w + ¯� , �31�

which for i=1,2 , . . . yields another series of � estimates.
Once � has been determined from fits of the functional

forms �30� and �31� to the data, one might return to the shift
relation �28� and �assuming �=1 /�� determine the transition
coupling �c from linear fits with a fixed value of �. Finally,
the remaining standard critical exponents can be estimated
from the well-known FSS forms of the specific heat cV, the
magnetization m and the magnetic susceptibility �,

cV�max = c0L�/��1 + ckL
−w + ¯� ,

	�m�
inf = m0L−�/��1 + mkL
−w + ¯� ,

��max = �0L�/��1 + �kL
−w + ¯� , �32�

where 	�m�
inf denotes the �modulus of the� magnetization at
its inflection point. The directly estimated exponents are

therefore � and the FSS exponents � /�, � /�, and � /�, which
can be combined to yield �, �, �, and �. The remaining
exponents � and � are not directly determined here; instead
we assume that their values are deduced from the exponents
�, �, �, and � via standard scaling relations.

For determining the �location and value of the� maxima
occurring in Eqs. �28� and �30�–�32�, we used the reweight-
ing technique outlined in Sec. III starting from the data of a
single simulation per system size performed at or close to the
asymptotic transition point. The derivatives with respect to �
in Eqs. �30� and �31� are easily shown to be equivalent to
combinations of moments of energy and magnetization at a
single fixed temperature �36�. For the fourth-order cumulant
U4, for instance, one has

dU4

d�
=

2	m4
�	m2
	e
 − 	m2e
� − 	m2
�	m4
	e
 − 	m4e
�
3	m2
3 .

�33�

Therefore no numerical differentiation is required when
making use of relations �30� and �31�. In some situations it
might be impractical to store the whole time series of origi-
nal measurements of internal energy and magnetization, in
which case the exact reweighting relation �19� might be re-
placed by a Taylor expansion with respect to � around the
simulation coupling �0, where then cumulants of e and m
appear as the expansion coefficients. In most cases, however,
it is much simpler and more versatile in terms of the data
analysis to work with the original time series. In view of the
typically available storage resources today, this approach
should be comfortably feasible in most situations.

Considering the set of critical exponents �, �, �, and � �as
well as � and ��, it is useful to recall that they are subject to
a number of exact scaling relations, namely, the Rushbrooke
identity �+2�+�=2, Fisher’s scaling law �=��2−��, the
relation �+��1+��=2, as well as �in most cases� the hyper-
scaling relation �=2−d�, where d is the spatial dimension
�42�. As a consequence of these four equations, only two of
the six original exponents are independent. While the scaling
relations have been occasionally used to check a set of inde-
pendently estimated exponents for consistency, we would
like to point out that the existence of these exact relations
should rather be used for improving the precision of expo-
nent estimates. In particular, in the language of the renormal-
ization group, it is natural to express the conventional scaling
exponents in terms of the scaling dimensions xt and xh of the
operators coupling to temperature and magnetic field �43�,
respectively, which are the only relevant operators for the
Ising model �44�. For the four exponents considered here,
this means that

�

�
= d − 2xt,

�

�
= xh,

�

�
= d − 2xh,

1

�
= d − xt, �34�

such that xh can be independently estimated from xh=� /�
and xh=d /2−� /2�, whereas xt might be determined from
xt=d−1 /� as well as xt=d /2−� /2�.
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C. Two-dimensional Ising model

For the two-dimensional �2D� Ising model, single-cluster
update simulations were performed for square lattices of size
L=16, 24, 32, 48, 64, 96, 128, and 192. All simulations were
done directly at the asymptotic critical coupling �c= 1

2 ln�1
+�2��0.440 686 8. For the range of system sizes under
consideration, it turned out that simulations at this single
temperature were sufficient for reliably studying the pseudo-
critical points defined by the maxima of the various quanti-
ties under consideration by reweighting, i.e., the overlap of
histograms between the simulation and analysis temperatures
turned out to be sufficiently large.

We first extracted a number of estimates of the correlation
length exponent � from investigating the maxima of logarith-
mic derivatives of magnetization moments for i=1, 2, and 3
as well as the maxima of the derivatives of the second-order
and fourth-order cumulants U2 and U4 using the reweighting
scheme outlined above. The locations and values of the
maxima themselves were determined by a golden section
search algorithm �45�. The resulting maxima as a function of
system size are shown in Fig. 3 together with fits of the
forms �30� and �31� to the data. Here, we used fits without
the correction terms in the brackets of Eqs. �30� and �31� on
the fit range L32, which works very well as is apparent
from the presentation in Fig. 3 and the corresponding values
of the quality-of-fit parameter Q �22� listed in the eighth
column of Table I. The fourth and fifth columns contain the
resulting estimates of the exponent � together with the sta-
tistical errors estimated from a weighted least-squares fitting
procedure �45�. A glance at Table I reveals that all single
estimates are statistically consistent with the exact result �
=1, but they exhibit a rather large variation in statistical ac-

curacy with the biggest statistical error being almost three
times larger than the smallest. We use the jackknife estimator
�16� and a second-order jackknifing procedure to estimate
the statistical correlations of the individual estimates of �.
The data on the right-hand side of Table I showing the cor-
relation coefficients �=
ij /�i� j for the different estimates
reveal that correlations between all pairs of estimates are
large with ��0.8. With all estimates being derived from
similar expressions containing magnetic moments, this result
probably does not come as a surprise.

Under these circumstances, one might wonder whether it
is worthwhile to attempt a linear combination of the form
�20� of the various � estimates rather than quoting the single
most precise estimate as final result, which in the present
case is given by the value �=1.0085�183� resulting from the
FSS of d ln	�m�
 /d�. For the purpose of combining esti-
mates, we consider the traditional approaches of taking a
plain average �̄plain with

�i
plain =

1

k
�35�

as well as the error-weighted average �̄err of Eq. �25� and
compare them to the truly optimal covariance-weighted av-
erage �̄cov defined by the weights of Eq. �22�. Ignoring the
presence of correlations �as was the case in most previous
studies�, one would estimate the error associated to the plain
average as

�uncorr
2 plain =

1

k2�
i

�2��̂i� , �36�

and, likewise, the variance of the error-weighted average is
given by �uncorr

2 err as defined in Eq. �26�. The true variances of
�̄plain and �̄err in the presence of correlations, on the other
hand, can also be easily derived formally and will contain the
elements of the covariance matrix 
 of the individual esti-
mates �̂i. From the practical perspective, the jackknifing
analysis outlined here automatically takes those correlations
into account. We refer to these correctly defined variances
with the notation �corr

2 .
The plain, error-weighted, and covariance-weighted aver-

ages for � with the corresponding variance estimates are
listed in the lower parts of columns four and five of Table I.
As with the individual estimates, each of the three averages
is statistically compatible with the exact result �=1. While
the naïve error estimates �uncorr seem to indicate that per-
forming the plain or error-weighted average reduces statisti-
cal fluctuations compared to the single estimates, taking cor-
relations into account with the jackknifing scheme resulting
in �corr

2 reveals that variances are grossly underestimated by
�uncorr

2 and, in fact, compared to both the plain ��corr
=0.0269� and error-weighted ��corr=0.0208� averages the
single estimate of � stemming from d ln	�m�
 /d� has smaller
statistical fluctuations ��=0.0183�. Performing those aver-
ages therefore decreases precision instead of improving it!
The truly optimal average of Eq. �22�, on the other hand,
results in the estimate �=0.9935�78�, whose fluctuation is
about 2–3 times smaller than those of the error-weighted
average and the single most precise estimate. The reduced

100

101

102

103

A
m

a
x

16 24 32 48 64 96 128 192
L

FIG. 3. �Color online� Fits of the functional forms �30�, respec-
tively, �31� to the maxima data Amax of the following quantities
computed for the case of the 2D Ising model: A= d ln	�m�3


d� , d ln	�m�2

d� ,

d ln	�m�

d� ,

dU4

d� , and
dU2

d� �from top to bottom�. For performing the fits,
the correction terms in brackets of Eqs. �30� and �31� were ne-
glected. The actual fits have been performed on the size range 32
�L�192. The slopes of the lines are identical to the inverse of the
corresponding estimates of the correlation length exponent � listed
in Table I.
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variance of this last estimate seems to be corroborated by the
smallest deviation also from the exact result �=1. A glance at
the data collected in Table I reveals that, somewhat astonish-
ingly, the optimal average is smaller than all of the indi-
vidual estimates of � �see also the graphical representation of
this fact in Fig. 1 of Ref. �19��. This situation, which, of
course, can never occur for the error-weighted average where
all weights 0��i�1, is connected to the fact that the more
general weights of Eq. �22� are unbounded and, in particular,
can become negative. This fact reflects in the computed
weights for the different averaging schemes collected in the
lower right-hand part of Table I. Clearly, the weights for the
error-weighted and covariance-weighted averages are dra-
matically different and, in particular, some of the latter turn
out to be negative. It is intuitively clear that such negative
weights are necessary to cancel the effects of strong mutual
correlations. The asymmetry in the weights leading to the
possibility of the average lying outside of the range of the
individual estimates results from the asymmetry of the indi-
vidual variances in connection with the cross correlations.
This effect can be explicitly understood for the case of only
two estimates, cf. the discussion in the Appendix.

One might wonder whether the suggested weighting
scheme requiring to estimate the full covariance matrix is
statistically robust. It is clear, for instance, that the jackknife
estimator �16� for the covariance will become more precise
as more jackknife blocks are used—at the expense of an

increased computational effort. To check for such effects we
repeated our analysis while using n=200 instead of n=100
jackknife blocks. Most of the estimates for the correlation
coefficients are almost unchanged by this new analysis with
the largest deviation being of the order of 3%. The same
holds true for the resulting weights in the optimal average,
where only the weight of the estimate resulting from
d ln	�m�3
 /d� changes substantially from �=−0.2807 to �
=−0.5499. The final optimal estimate �̄=0.9908�78� is fully
compatible statistically with the analysis using 100 jackknife
blocks. Using �as a consistency check� completely indepen-
dent simulations for producing the individual estimates of �,
on the other hand, indeed results in a unit matrix of correla-
tion coefficients within statistical errors and, consequently,
the error-weighted and covariance-weighted averages coin-
cide in this limit. Finally, we also find that the numerical
inversion of the covariance matrix required for computing
the weights in Eq. �22� is in general stable and unproblem-
atic. It is clear, however, that in the presence of very strong
correlations the resulting weights of individual estimates will
depend sensitively on the entries of the covariance matrix,
since in the limit of perfect correlations all choices of
weights become degenerate, see also the discussion of the
case of only two estimates in the Appendix.

We now turn to the determination of the transition cou-
pling �c from the shift relation �28�. We considered the lo-
cations of the extrema of the specific heat cV, the slope

TABLE I. Fit parameters and correlation data for estimating the critical exponent � from single-cluster update Monte Carlo simulations
of the 2D Ising model. The exponent estimates are extracted from fits of the functional forms �30� and �31� to the data, neglecting the
correction terms in the brackets. Deviations from the exact value �=1 are computed relative to �=1 ��rel� and in multiples of the estimated
errors listed in the column labeled “�” ����.

Fits Correlation coefficients/weights

Lmin Lmax � �
�rel

�%� �� Q dof
d ln	�m�


d�

d ln	m2

d�

d ln	�m�3

d�

dU2

d�

dU4

d�

d ln	�m�

d� 32 192 1.0085 0.0183 0.85 0.47 0.52 4 1.0000 0.9743 0.9385 0.9197 0.8971

d ln	m2

d� 32 192 1.0128 0.0194 1.28 0.66 0.47 4 0.9743 1.0000 0.9910 0.8167 0.8687

d ln	�m�3

d�

32 192 1.0175 0.0201 1.75 0.87 0.40 4 0.9385 0.9910 1.0000 0.7431 0.8198

dU2

d�
32 192 1.0098 0.0281 0.98 0.35 0.57 4 0.9197 0.8167 0.7431 1.0000 0.8596

dU4

d�
32 192 1.0149 0.0511 1.49 0.29 0.70 4 0.8971 0.8687 0.8198 0.8596 1.0000

�̄plain �uncorr 1.0127 0.0141 1.27 0.90 1.0000 1.0000 1.0000 1.0000 1.0000

�corr 0.0269 1.27 0.47

�̄err �uncorr 1.0123 0.0102 1.23 1.21 0.3145 0.2714 0.2483 0.1322a 0.0336

�corr 0.0208 1.23 0.59

�̄cov �corr 0.9935 0.0078 −0.65 −0.84 5.0067 −2.4259 −0.2807 −1.1958 −0.1043

aNote that the similar Table II of Ref. �19� contains a mistake in the last two lines, where the weights 0.1322 and 0.0336 as well as −1.1958
and −0.1043 appear interchanged with respect to the correct data represented here.
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d	�m�
 /d� of the �modulus of the� magnetization, the loga-
rithmic derivatives d ln	�m�i
 /d� for i=1, 2, and 3, the cu-
mulant derivatives dU2 /d� and dU4 /d� as well as the mag-
netic susceptibility �. In order to most clearly demonstrate
the effects of the present correlations, we first performed fits
of the form �28� using the exact correlation length exponent
�=1. The corresponding fit results are collected in Table II.
For the fits we ignored the correction terms indicated in the
brackets of Eq. �28�, leaving out the smallest system sizes
instead. This approach appears justified in view of the good
fit qualities reflected in the Q values of Table II. As for the
fits for determining �, all single estimates of �c are consis-
tent with the true asymptotic values of �c�0.440 686 8
within error bars. The corresponding standard deviations,
however, vary dramatically, decreasing by a factor of 15
from the estimate resulting from dU4 /d� to that of the sus-
ceptibility �. The results of the correlation analysis are pre-
sented on the right-hand side of Table II: while the logarith-
mic magnetization derivatives and cumulants again show
very strong correlations, the results of the remaining quanti-
ties are somewhat more independent, showing, in particular,
a rather clear separation of the energetic from the magnetic
sector. For the averages of single estimates the present cor-
relations again lead to a significant underestimation of the
true variance for the plain and error-weighted cases and, in

fact, both of them are less precise than the best single esti-
mate stemming from the scaling of the susceptibility �, cf.
the data in the lower part of Table II. The truly optimal
average of Eq. �22� results in �c=0.440 687�18�, where the
statistical error is about threefold reduced compared to the
error-weighting scheme. Very similar results are found when
using the value �=0.9935�78� found from the analysis sum-
marized in Table I, where we arrive at a final covariance-
weighted average of �c=0.440 658�17��35�. Here, the sec-
ond error estimate in square brackets refers to the sensitivity
of the result for �c to the uncertainty in � indicated above,
which turns out to be symmetric with respect to upwards and
downwards deviations of � here.

As an alternative to the two-step process of first determin-
ing � from relations �30� and �31� and only afterwards esti-
mating �c from Eq. �28�, one might consider direct fits of the
form �28� to the maxima data of the eight observables listed
above determining � and �c in one go. Here, again, fits on
the range 32�L�192 neglecting any corrections to the
leading scaling behavior are found to be sufficient. The re-
sults for the plain, error-weighted and covariance-weighted
averages for both parameters, � and �c, are collected in Table
III. Consistent with the previous results, it is seen that ne-
glecting correlations in error estimation leads to a sizable
underestimation of errors and, on the other hand, using the

TABLE II. Fitting and averaging results for estimating the critical coupling �c of the 2D Ising model from the shifts of pseudocritical
temperatures according to Eq. �28�. For performing the fits, the correlation length exponent was fixed at its exact value �=1. The column �rel

indicates the relative deviation of the estimates from the exact result �c= 1
2 ln�1+�2��0.440 686 8.

Fits Correlation coefficients/weights

�c �
�rel

�%� Q cV

d	�m�

d�

d ln	�m�

d�

d ln	m2

d�

d ln	�m�3

d�

dU2

d�

dU4

d� �

cV 0.440709 0.000101 0.0051 0.35 1.0000 0.7881 0.3965 0.3645 0.3569 0.3502 0.2599 0.1394

d	�m�

d� 0.440798 0.000073 0.0251 0.09 0.7881 1.0000 0.7116 0.6417 0.6043 0.7166 0.5345 0.6236

d ln	�m�

d� 0.440711 0.000408 0.0055 0.56 0.3965 0.7116 1.0000 0.9740 0.9365 0.9122 0.8613 0.6477

d ln	m2

d� 0.440799 0.000504 0.0254 0.42 0.3645 0.6417 0.9740 1.0000 0.9899 0.8119 0.8111 0.5264

d ln	�m�3

d� 0.440918 0.000567 0.0525 0.29 0.3569 0.6043 0.9365 0.9899 1.0000 0.7415 0.7608 0.4554

dU2

d� 0.440576 0.000338 −0.0251 0.70 0.3502 0.7166 0.9122 0.8119 0.7415 1.0000 0.8854 0.8413

dU4

d� 0.440308 0.000708 −0.0860 0.94 0.2599 0.5345 0.8613 0.8111 0.7608 0.8854 1.0000 0.6265

� 0.440699 0.000045 0.0028 0.67 0.1394 0.6236 0.6477 0.5264 0.4554 0.8413 0.6265 1.0000

�̄c,plain �uncorr 0.440690 0.000151 0.0007 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

�corr 0.000322 0.0007

�̄c,err �uncorr 0.440725 0.000036 0.0086 0.1364 0.2530 0.0073 0.0049 0.0039 0.0105 0.0024 0.5815

�corr 0.000059 0.0086

�̄c,cov �corr 0.440687 0.000018 0.0001 0.2601 −0.3347 0.2086 −0.0566 −0.0186 −0.2997 0.0276 1.2133
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optimal weighting scheme of Eq. �22� statistical errors are
significantly reduced, an effect which is also nicely illus-
trated by the very good fit of the resulting parameter esti-
mates with the exact values.

Finally, we turn to the determination of the remaining
critical exponents. As outlined above, we do this by combin-
ing different estimates using covariance analysis to improve
the results for the scaling dimensions, thus ensuring that the
scaling relations are fulfilled exactly. From a glance at Eq.
�34� one reads off that the magnetic scaling dimension xh can
be determined from xh=� /� and xh=d /2−� /2�. We there-
fore determine � /� from the FSS of the �modulus of the�
magnetization at its inflection point and estimate � /� from
the FSS of the susceptibility maxima, resulting in � /�
=0.1167�54� and � /�=1.7458�40�, respectively. As the cor-
relation analysis reveals, the two resulting estimates of xh are
anti-correlated to a considerable degree with correlation co-
efficient −0.64. As a consequence, conventional error analy-
sis neglecting correlations overestimates statistical fluctua-
tions. Still, choosing optimal weights according to Eq. �22� is
able to reduce variance, resulting in a combined estimate
xh=0.1250�10� right on top of the exact result xh=1 /8, cf.
the data collected in Table IV. The energetic scaling dimen-
sion xt, on the other hand, might be computed from xt=d
−1 /� as well as xt=d /2−� /2�. We therefore use the five
individual estimates of � listed in Table I as well as the FSS
of the maximum of the specific heat to estimate xt. The latter
fits are somewhat problematic due to the logarithmic singu-
larity of the specific heat corresponding to � /�=0, and it
turns out that a fit of the form

cV,max = c0 + c1L�/� ln L

including a scaling correction is necessary to describe the
data. Combining all individual estimates in an optimal way,
we arrive at xt=1.0030�96�, well in agreement with the exact
result xt=1, cf. the right-hand side of Table IV.

D. Three-dimensional Ising model

Cluster-update simulations of the ferromagnetic Ising
model in three dimensions �3D� were performed for simple
cubic lattices of edge lengths L=8, 12, 16, 24, 32, 48, 64, 96,
and 128. All simulations were performed at the coupling �
=0.221 654 9 reported in a high-precision study as estimate
for the transition point �46�, since it turned out that the
maxima of the various quantities under consideration were
all within the reweighting range of this chosen simulation
point for the system sizes and lengths of time series at hand.

For determining the correlation-length exponent � we
again considered the scaling of the logarithmic magnetiza-
tion derivatives d ln	�m�i
 /d� for i=1, 2, and 3 and the de-
rivatives of the cumulants U2 and U4. We find scaling cor-
rections to be somewhat more pronounced than for the two-
dimensional model for the system sizes studied here. For the
logarithmic magnetization derivatives we therefore per-
formed fits of the form �31� including the correction term on
the full range 8�L�128, where the resulting values of the
effective correction exponent w were w=0.57�63� �i=1�, w
=0.69�56� �i=2�, and w=0.80�52� �i=3�, respectively. For
the cumulants U2 and U4, on the other hand, corrections were
too small to be fitted reliably with our data, such that they
were effectively taken into account by dropping the small
lattice sizes instead, while using fits of form �30� with Ui,c
=0 fixed. The corresponding fit data are collected in Table V.
The estimated standard deviations of the individual estimates
are again found to be very heterogeneous, but the correla-
tions between the different estimates are somewhat smaller
than in two dimensions, in particular between the magneti-
zation derivatives and the cumulants, cf. Table V. Comparing
to the case of fits without corrections, it is seen that this latter
effect is partially due to the use of two different fit forms for
the two types of quantities. �The fits for U2 and U4 also
include a reduced range of lattice sizes which could lead to a
decorrelation, but this effect is found to be much less impor-
tant than the difference in the fit forms.� Considering the
averages of individual estimates, as a result of these smaller
correlations the underestimation of statistical errors in the
naïve approach as well as the reduction in variance through
the optimized estimator �22� is somewhat less dramatic than
for the two-dimensional model, but the qualitative behavior
appears to be very much the same. As our final estimate we
quote �=0.6300�17�, very well in agreement with the refer-
ence value �=0.6301�4� taken from a survey of recent litera-
ture estimates compiled in Ref. �47�.

In a second step we determined the transition coupling
from fits of the functional form �28� to the maxima of the
quantities listed in Table II. As for the � fits, however, the
inclusion of an effective correction term as indicated in Eq.
�28� turned out to be necessary for a faithful description of
the scaling data. The plain, error-weighted and covariance-

TABLE III. Averaging results for estimates of the critical expo-
nent � and the critical coupling �c of the 2D Ising model from
nonlinear three-parameter fits to of functional form �28�. The ob-
servables used are those listed in Table II.

� � �c �

	̄plain �uncorr 0.8101 0.0428 0.439491 0.000337

�corr 0.0973 0.000715

	̄err �uncorr 0.8949 0.0228 0.440295 0.000099

�corr 0.0435 0.000169

	̄cov �corr 0.9980 0.0148 0.440658 0.000072

Exact 1.0000 0.440687

TABLE IV. Determining the magnetic and energetic scaling di-
mensions xh and xt of the 2D Ising model by weighted averages
over various individual estimates.

xh � xt �

	̄plain �uncorr 0.1219 0.0027 1.0085 0.0117

�corr 0.0021 0.0213

	̄err �uncorr 0.1261 0.0016 1.0048 0.0082

�corr 0.0013 0.0136

	̄cov �corr 0.1250 0.0010 1.0030 0.0096

Exact 0.1250 1.0000
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weighted averages of the corresponding estimates are listed
in the first two data columns of Table VI together with their
standard deviations, the results being consistent with the ref-
erence value. We also tried nonlinear three-parameter fits of
form �28� to the data, determining � and �c simultaneously.
For this case, the precision of the data is not high enough to
reliably include corrections to scaling. Still, the improved
results are well consistent with the reference values of Refs.
�46,47�, cf. the middle columns of Table VI.

Finally, we also considered the scaling dimensions xh and
xt. For the magnetic scaling dimension, we find that the de-
terminations from xh=� /� and xh=3 /2−� /2� are only very

weakly correlated, such that the error-weighted and
covariance-weighted averages are very similar, see the right-
hand side of Table VI. Larger correlations are present again
between the different estimates of the energetic scaling di-
mension xt from the various estimates of � via xt=3−1 /�
and the scaling of the specific heat via xt=3 /2−� /2�, lead-
ing to a considerable improvement in precision of the opti-
mal average over the plain and error-weighting schemes. The
results for both scaling dimensions are well compatible with
the values xh=0.51817�58� and xt=1.4130�10� extracted
from the reference values of Ref. �47�.

TABLE V. Fit parameters and correlation data for estimating the critical exponent � from single-cluster update Monte Carlo simulations
of the 3D Ising model. Fits of functional form �31� including the correction term were used for the logarithmic magnetization derivatives
d ln	�m�i
 /d� for i=1, 2, and 3, while fits of form �30� without correction term were used for the derivatives of the cumulants U2 and U4.
The relevant reference values is �=0.6301�4� taken from Ref. �47�.

Fits Correlation coefficients/weights

Lmin Lmax � �
�rel

�%� �� Q dof
d ln	�m�


d�

d ln	m2

d�

d ln	�m�3

d�

dU2

d�

dU4

d�

d ln	�m�

d� 8 128 0.6358 0.0127 0.91 0.45 0.61 5 1.0000 0.9809 0.9490 0.4401 0.4507

d ln	m2

d� 8 128 0.6340 0.0086 0.63 0.46 0.71 5 0.9809 1.0000 0.9910 0.4357 0.4630

d ln	�m�3

d� 8 128 0.6326 0.0062 0.39 0.40 0.77 5 0.9490 0.9910 1.0000 0.4363 0.4639

dU2

d� 32 128 0.6313 0.0020 0.20 0.62 0.54 3 0.4401 0.4357 0.4363 1.0000 0.9267

dU4

d� 32 128 0.6330 0.0024 0.46 1.20 0.77 3 0.4507 0.4630 0.4639 0.9267 1.0000

�̄plain �uncorr 0.6334 0.0038 0.52 0.85 1.0000 1.0000 1.0000 1.0000 1.0000

�corr 0.0067 0.52 0.49

�̄err �uncorr 0.6322 0.0015 0.33 1.35 0.0106 0.0254 0.0503 0.5315 0.3823

�corr 0.0024 0.33 0.84

�̄cov �corr 0.6300 0.0017 −0.01 −0.05 0.2485 −1.5805 1.6625 0.7948 −0.1253

TABLE VI. Different averages for the 3D Ising model and the associated standard deviations for the transition coupling �c from fits of
form �28� with �=0.6301 fixed, from nonlinear three-parameter fits of form �28� yielding � and �c simultaneously, and for the magnetic and
energetic scaling dimensions according to Eq. �34�. The reference values for xh and xt have been computed from the values �=0.3265�3� and
�=0.6301�4� taken from Ref. �47� via Eq. �34�.

Eq. �28�, �=0.6301 Eq. �28� Eq. �34�

�c � � � �c � xh � xt �

	̄plain �uncorr 0.22165681 0.00000108 0.6020 0.0105 0.2216530 0.0000025 0.51364 0.00401 1.4137 0.0138

�corr 0.00000170 0.0150 0.0000032 0.00435 0.0184

	̄err �uncorr 0.22165741 0.00000059 0.6247 0.0062 0.2216550 0.0000008 0.51489 0.00381 1.4180 0.0038

�corr 0.00000114 0.0077 0.0000016 0.00413 0.0061

	̄cov �corr 0.22165703 0.00000085 0.6381 0.0044 0.2216552 0.0000011 0.51516 0.00412 1.4121 0.0043

Reference 0.22165459 0.00000006 0.6301 0.0004 0.22165459 0.00000006 0.51817 0.00058 1.4130 0.0010
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VI. CONCLUSIONS

Time series data from Markov chain Monte Carlo simu-
lations are usually analyzed in a variety of ways to extract
estimates for the parameters of interest such as, e.g., critical
exponents, transition temperatures, latent heats etc. As long
as at least some of these estimates are based on the same
simulation data, a certain degree of cross correlations be-
tween estimators is unavoidable. We have shown for the case
of a finite-size scaling analysis of the ferromagnetic nearest-
neighbor Ising model on square and cubic lattices that more
often than not, such correlations are very strong, with corre-
lation coefficients well above 0.8. While such correlations,
although their existence is rather obvious, have been tradi-
tionally mostly neglected even in high-precision numerical
simulation studies, it was shown here that their presence is of
importance at different steps of the process of data analysis,
and neglecting them leads to systematically wrong estimates
of statistical fluctuations as well as nonoptimal combination
of single estimates into final averages.

As far as the general statistical analysis of simulation data
is concerned, it has been discussed that traditional prescrip-
tions such as error propagation have their shortcomings, in
particular as soon as nonparametric steps such as the deter-
mination of a maximum via reweighting or fitting procedures
come into play. These problems are circumvented by resort-
ing to the class of nonparametric resampling schemes, of
which we have discussed the jackknife technique as a con-
ceptually and practically very simple representative. Using
this technique, we have outlined a very general framework of
data analysis for MCMC simulations consisting of �a� a
transformation of the original set of time series into an aux-
iliary set of “binned” series, where successive samples are
approximately uncorrelated in time and �b� a general jack-
knifing framework, where the required steps of computing a
parameter estimate—possibly including reweighting or fit-
ting procedures, etc.—are performed on the full underlying
time series apart from a small window cut out from the data
stream allowing for a reliable and robust estimate of vari-
ances and covariances as well as bias effects without any
nonstochastic approximations. While this technique of data
analysis is not new, we feel that it still has not found the
widespread use it deserves and hope that the gentle and de-
tailed introduction given above will contribute to a broader
adoption of this approach.

A particular example of where the presence of cross cor-
relations comes into play occurs when taking averages of
different estimates for a parameter from the same data base.
Neglecting correlations there leads to �a� systematically
wrong, most often too small, estimates of statistical errors of
the resulting averages and �b� a suboptimal weighting of in-
dividual values in the average leading to larger-than-
necessary variances. Correct variances can be estimated
straightforwardly from the jackknifing approach, while opti-
mal weighting involves knowledge of the covariance matrix
which is a natural byproduct of the jackknife technique as
well. We have discussed these concepts in some detail for the
case of a finite-size scaling analysis of the critical points of
the 2D and 3D Ising models. It is seen there that the plain
and error-weighted averages most oftenly used in fact can

have larger fluctuations than the most precise single esti-
mates entering them, but this flaw is not being detected by
the conventional analysis due to the generic underestimation
of variances. On the contrary, by using the truly optimal
weighting of individual estimates an often substantial reduc-
tion in statistical fluctuations as compared to the error-
weighting scheme can be achieved. For some of the consid-
ered examples, a threefold reduction in standard deviation,
corresponding to saving an about tenfold increase in com-
puter time necessary to achieve the same result with the con-
ventional analysis, can be achieved with essentially no com-
putational overhead. In view of these results, heuristic rules
such as, e.g., taking an error-weighted average using the
smallest single standard deviation as an error estimate are
clearly found to be inadequate. We therefore see only two
statistically acceptable ways of dealing with the existence of
several estimates for the same quantity: �a� select the single
most precise estimate and discard the rest or �b� combine all
estimates in a statistically optimal way taking cross correla-
tions into account. Needless to say, the latter approach is
generally preferable in that it leads to more precise results at
very low costs.

We suggest to use the existence of scaling relations be-
tween the critical exponents for the case of a continuous
phase transition to improve the precision of estimates by
considering the scaling dimensions as the parameters of pri-
mary interest. Performing the corresponding analysis taking
cross correlations into account, results in a set of critical
exponents with reduced statistical fluctuations that fulfill the
scaling relations exactly. An application of this type of ap-
proach initially suggested in Ref. �19� for using mean-value
relations such as Callen identities or Schwinger-Dyson equa-
tions instead of scaling relations has been discussed in Ref.
�20�.

While the examples discussed were specific, it should be
clear that the method itself is rather generic and should apply
to all data sets generated from MCMC simulations. In par-
ticular, it is easy to envisage applications in the theory of
critical phenomena, reaching from classical statistical me-
chanics �48� over soft matter physics �4� to quantum phase
transitions �5� or for studying first-order phase transitions
�49�. The range of applications is not restricted to MCMC
simulations, however, but applies with little or no modifica-
tions to other random sampling problems, such as, e.g., sto-
chastic ground-state computations �50,51� or the sampling of
polymer configurations with chain-growth methods �52,53�.
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APPENDIX: OPTIMAL AVERAGE OF TWO CORRELATED
VARIABLES

Consider a general average of two random variables x1
and x2 �17�,
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x̄ = �x1 + �1 − ��x2,

where 0���1. According to Eq. �21�, the variance of x̄ is

�2�x̄� = �2�1
2 + 2��1 − ����1�2 + �1 − ��2�2

2, �A1�

where �1
2 and �2

2 are the variances of x1 and x2, respectively,
and � denotes the correlation coefficient of x1 and x2, �
=
12 /�1�2. Eq. �A1� is a quadratic form in �, which has a
minimum as long as

�1
2 + �2

2 − 2��1�2 � 0,

which is almost always fulfilled since −1���1:

�1
2 + �2

2 − 2��1�2  ��1 − �2�2  0.

Equality holds only for �1=�2=� and �=1, in which case
any choice of � yields the same variance �2�x̄�=�2. In all
other cases, the optimal weights are

� =
1/�2

2 − �/�1�2

1/�1
2 + 1/�2

2 − 2�/�1�2
,

1 − � =
1/�1

2 − �/�1�2

1/�1
2 + 1/�2

2 − 2�/�1�2
, �A2�

and the resulting variance of the average is

�2�x̄� =
1 − �2

1/�1
2 + 1/�2

2 − 2�/�1�2
. �A3�

A number of observations are immediate
�i� For the uncorrelated case �=0, one arrives back at the

error-weighted average of Eqs. �25� and �26�.

�ii� In the correlated case, and for fixed variances �1
2 and

�2
2, the variance �2�x̄� smoothly depends on the correlation

coefficient �. It has maxima at �1 /�2 and �2 /�1, only one of
which is in the range ����1. Notably, the relevant maximum
is always at non-negative values of �.

�iii� For �= �1, the variance vanishes identically, apart
from the singular case �1=�2 and �=1.

The generic form of �2�x̄� as a function of � is depicted in
Fig. 4. In the presence of moderate correlations, therefore,
anticorrelations are preferable over correlations in terms of
reducing the variance of the average. Note that result �A3� is
different from that of Eq. �8� in Ref. �20�, since the definition
of correlation coefficient used there is different from that in
our situation of taking an average. Instead of measuring the
correlation between x1 and x2, their definition refers to the
correlation of x1 and x2−x1.

The weights � and 1−� of Eq. �A2� are not restricted to
be between zero and one. It is easy to see that for ��1 or
��0, the average x̄ is in fact outside of the bracket
�min�x1 ,x2� ,max�x1 ,x2��. This seemingly paradoxical effect
is easily understood from the optimal weights derived here.
From Eq. �A2� one reads off that the weights � and 1−�
leave the range 0�� ,1−��1 as soon as ��1 /�2 resp.
��2 /�1, depending on whether �1��2 or �2��1, that is,
only for strong positive correlations to the right of the maxi-
mum in Fig. 4. Thus, if the smaller of x1 and x2 has the
smaller variance �and both are strongly correlated�, the aver-
age is below both values. If the larger value has the smaller
variance, the optimal average is above both values. The
asymmetry comes here from the difference in variance. To
understand this intuitively, assume for instance that x1�x2
and �1��2 with strong positive correlations ���1 /�2. It is
most likely, then, that x1 and x2 deviate in the same direction
from the true mean 	x
. Since �1��2, the deviation of x1
should be generically smaller than that of x2. For x1�x2,
however, this is only possible if 	x
�x1�x2. This is illus-
trated in Fig. 5.

0

σ
2
(x̄

)

−1 −0.5 0 0.5 1
ρ

FIG. 4. �Color online� Generic form of the minimal variance
�2�x̄� of Eq. �A3� as a function of the correlation coefficient �.

〈x〉

x1

x2

FIG. 5. For strong positive correlations, i.e., for ���1 /�2 in the
case �1��2, the most likely location of the true expectation 	x
 is
outside of the bracket �min�x1 ,x2� ,max�x1 ,x2��.
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