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Cluster percolation and dynamical scaling in the Baxter-Wu model
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We investigate the percolation behavior of Fortuin-Kasteleyn-type clusters in the spin-1/2 Baxter-Wu model
with three-spin interactions on a triangular lattice. The considered clusters are constructed by randomly freezing
one of the three sublattices, resulting in effective pairwise interactions among the remaining spins. Using Monte
Carlo simulations combined with a finite-size scaling analysis, we determine the percolation temperature of
these stochastic clusters and show that it coincides with the exact thermal critical point of the model. The critical
exponents derived from cluster observables are consistent with those of the underlying thermal phase transition.
Finally, we analyze the dynamical scaling of the multicluster and single-cluster algorithms resulting from the
cluster construction, highlighting their efficiency and scaling behavior with system size.
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I. INTRODUCTION

Cluster algorithms are a powerful tool for studying
condensed-matter systems, particularly in the vicinity of con-
tinuous phase transitions [1]. Owing to the nonlocal nature
of their update moves, they can substantially reduce—and
in some cases practically eliminate—critical slowing down,
which severely limits the efficiency of local Monte Carlo
simulations in the presence of divergent spatial correlations.
The archetypal, and spectacularly successful, examples are
found in the Ising and Potts models which, as shown by
Fortuin and Kasteleyn [2–4] and independently by Coniglio
and Klein [5], admit a formulation in an extended space of
spin and auxiliary bond variables, now known as the Fortuin-
Kasteleyn-Coniglio-Klein (FKCK) representation. With the
help of alternating updates in the spin and bond subspaces,
Swendsen and Wang [6] and later Wolff [7] developed
rejection-free cluster Monte Carlo algorithms that achieve a
fundamental acceleration in the decorrelation of system con-
figurations. The key to this success lies in the coincidence of
the onset of percolation of FKCK clusters with the thermal
phase transition of the spin model, as well as in the fact
that the geometric properties of the critical clusters mirror
the critical correlations of the spin degrees of freedom (for
a recent review, see Ref. [8]).
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These algorithms work extremely well for the Potts model.
Based on the embedded-cluster trick proposed by Wolff [7],
extensions to continuous-spin models with analogous inter-
actions are straightforward and similarly effective. When
moving beyond these paradigmatic examples, however, clus-
ter approaches often become more difficult to construct and/or
do not work so well. Although somewhat more general
cluster-update frameworks have been proposed [9–11], they
do not yield efficient algorithms in all situations, in partic-
ular, for systems with frustrated interactions. (Even greater
challenges arise in the presence of additional disorder; see
Ref. [12].) An especially interesting case occurs for systems
with multispin interactions, where an extension of configura-
tion space in terms of bond variables is no longer particularly
natural. Such models appear in several contexts, including
proposals for quantum computing architectures [13,14], the
design of alternative storage devices [15], models exhibiting
glassy dynamics without quenched disorder [16], and studies
of metastable phases following quenches [17].

The simplest nontrivial example of such a system is the
Baxter-Wu (BW) model, an Ising model on the triangular
lattice with three-spin interactions [18]. While, in principle,
a cluster algorithm based on freezing triangular plaque-
ttes could be devised following the general framework of
Refs. [10,11], the only concrete proposal to date for the
Baxter-Wu model is due to Novotny and Evertz [19]. Their ap-
proach effectively reduces the problem to the case of pairwise
interactions by freezing one of the three sublattices of the tri-
angular lattice and constructing clusters on the remaining two.
Building upon this idea, Deng et al. [20] developed cluster-
update schemes for generalized variants of the problem,
including versions with two distinct interaction strengths and
others incorporating three-spin interactions in a q-state Potts
model. To date, however, a detailed analysis of the approach of
Novotny and Evertz has not been presented. (Ref. [21] largely
repeats the original construction using different terminology,
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without offering significant further insight). It has also been
argued that the resulting clusters may not percolate precisely
at the thermal critical point [22], a phenomenon observed in
several related systems [23–25]. In other words, the percola-
tion threshold of the constructed clusters, Tp, may differ from
the actual critical temperature, Tc, implying that, asymptoti-
cally, the stochastic spin clusters cannot serve to efficiently
decorrelate configurations as the system size increases.

Hence, a detailed percolation analysis of the original clus-
ter construction introduced in Ref. [19] has so far been lacking
in the literature. In the present work, we close this gap in the
understanding of cluster updates for spin systems by perform-
ing a comprehensive study of the percolation properties of the
Novotny-Evertz clusters for the Baxter-Wu model. We find
that these clusters indeed percolate precisely at the thermal
critical point and fully capture the thermal critical behav-
ior, thereby providing a firm justification for constructing
cluster algorithms based on this prescription. By investigat-
ing both multicluster and single-cluster variants, we further
demonstrate that these algorithms significantly reduce auto-
correlation times compared to single-spin flip updates, and we
determine the corresponding dynamical critical exponents.

The rest of this paper is organized as follows. In Sec. II,
we introduce the Baxter-Wu model, describe the Monte Carlo
algorithms employed in our simulations, and define the ob-
servables used in both the cluster and dynamical analyses.
Section III contains our main results. Specifically, Sec. III A
focuses on determining the percolation threshold of the clus-
ters and extracting the associated critical exponents, while
Sec. III B provides a detailed analysis of the dynamical scaling
behavior of the algorithm at equilibrium as a function of
system size. Finally, Sec. IV summarizes our main findings
and outlines potential directions for future work.

II. MODEL AND NUMERICS

A. Model

We consider the spin-1/2 BW model, defined on a triangu-
lar lattice by the Hamiltonian [18]

H = −J
∑
〈i jk〉

σiσ jσk, (1)

where the Ising spins σi take values ±1, and the summation
extends over all elementary triangular plaquettes formed by
nearest-neighbor triplets 〈i jk〉. Throughout this work, we set
the interaction strength J = 1, thereby fixing the energy scale,
and we apply periodic boundary conditions. As illustrated in
Fig. 1, the triangular lattice decomposes naturally into three
interpenetrating sublattices (A, B, and C), such that each
corner of a triangle belongs to a different sublattice. For a
system of linear size L, each sublattice contains N/3 spins,
where N = L2 is the total number of lattice sites.

The characteristic three-spin interaction results in a loss
of the overall spin-inversion symmetry of the standard Ising
model. On the other hand, a simultaneous inversion of all
spins on any two sublattices leaves the Hamiltonian invariant,
resulting in a fourfold degenerate ground state. Originally
introduced by Wood and Griffiths as a variation of the Ising
model with three-spin interactions that preserves self-duality

FIG. 1. Example of a 9 × 9 triangular lattice with the three
sublattices distinguished by color. Each spin interacts with its
nearest neighbors on the other two sublattices, illustrating the triplet-
interaction structure characteristic of the BW model.

[18], the BW model was later solved exactly by Baxter and
Wu [26–29]. It was shown to belong to the same universality
class as the four-state Potts model, exhibiting a continuous
phase transition with central charge c = 1 (but without loga-
rithmic corrections).

B. Algorithms

For constructing stochastic clusters, we follow the original
proposal of Novotny and Evertz [19]. Their approach starts
from the observation that we know how to construct cluster
updates for standard Ising systems through the FKCK rep-
resentation. They hence suggested a transformation of the
BW model into an effective two-body problem achieved by
freezing all spins on one of the three sublattices (which is
randomly selected at each update step). As a result, the spins
on the remaining two sublattices acquire effective two-body
couplings given by

J ′
i j = J (σ⊥(i, j),+1 + σ⊥(i, j),−1), (2)

where σ⊥(i, j),±1 denote the two spins on the frozen sublattice
opposite of the bond (i, j).

An example of this construction is illustrated in Fig. 2,
where sublattice C is frozen, resulting in renormalized cou-
plings between the A spin σ0 and the B spins σ2, σ4,

FIG. 2. Local mapping of the triangular lattice onto a honeycomb
lattice by freezing one of the three sublattices. In the example shown,
the spins on the frozen C sublattice lead to effective pair interactions
between the spins on the A and B sublattices, denoted by J ′. For the
bond (0, 2), the opposite spins on sublattice C are σ⊥(0,2),+1 = σ3 and
σ⊥(0,2),−1 = σ1.
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and σ6. We note that the frozen sublattice and the result-
ing honeycomb lattice are dual to each other. Since we set
J = 1 throughout, the effective couplings J ′

i j take values in
{−2, 0,+2}, corresponding to antiferromagnetic, diluted, and
ferromagnetic bonds, respectively. Importantly, this procedure
introduces no frustration: the product of the couplings along
any hexagon, and hence around any closed loop, is non-
negative.

As a consequence, the resulting effective Ising model with
only pairwise interactions on a diluted honeycomb lattice can
be simulated using standard FKCK-based cluster algorithms.
The established proof of detailed balance for these algorithms
for the conventional Ising and Potts models therefore applies
directly here. Moreover, because the choice of the frozen
sublattice is random, the dynamics are ergodic (the probability
of all clusters consisting of a single spin is nonzero) and
hence must converge to the correct equilibrium distribution
according to the Markov theorem [19].

If a spin σi already belongs to a given cluster, a neighboring
spin σ j is eligible to be added to the cluster if the effective in-
teraction is satisfied, i.e., if J ′

i jσiσ j > 0. Following the FKCK
rules, the probability of adding such a spin is given by

padd = 1 − exp (−2|J ′
i j |/T ),

where T is the system temperature. Bonds with J ′
i j = 0 can

be retained without explicitly considering a diluted lattice,
as they will never be activated. A simplified multicluster im-
plementation (in the spirit of the Swendsen–Wang algorithm)
proceeds as follows:

(1) Randomly freeze one sublattice (e.g., sublattice C, as
shown in Fig. 2). Only spins on the remaining two sublattices
are considered for the cluster construction.

(2) Choose a seed spin that has not yet been assigned to a
cluster.

(3) For each of its three neighbors not already in a cluster,
check whether the effective interaction condition J ′

i jσiσ j > 0
is satisfied. If so, add the neighbor to the current cluster with
probability padd = 1 − exp(−4/T ).

(4) Continue growing the cluster recursively by applying
step 3 to newly added spins until no further spins can be
added.

(5) If any unassigned spins remain, return to step 2.
(6) Once all 2N/3 active spins have been assigned to clus-

ters, flip each cluster with probability 1/2. Return to step 1 for
the next Monte Carlo step.

A single-cluster update (analogous to the Wolff algorithm)
can be implemented by constructing a single cluster per Monte
Carlo step, initiated from a randomly chosen spin in one
of the active sublattices. Each spin may participate in only
one cluster per step. Depending on the signs of the effective
interactions, the resulting clusters can be ferromagnetic or
antiferromagnetic. However, due to the bipartite nature of the
honeycomb lattice, the fixed configuration of the frozen sub-
lattice, and the available spin values, clusters containing both
ferromagnetic and antiferromagnetic bonds are not possible.

In a single Monte Carlo step, 2N/3 spins—those not on the
frozen sublattice—are considered for updates, thereby defin-
ing one Monte Carlo time step for the multicluster update. It
is clear from the construction of the system that for the sub-
lattice decomposition, and hence the validity of the presented

FIG. 3. (a) Comparison of simulation results obtained using the
Metropolis, single-cluster, and multicluster updates for the specific
heat and magnetic susceptibility of the spin-1/2 BW model at various
temperatures for a system of linear size L = 48. The main panel
shows the specific heat C(T ), while the inset displays the magnetic
susceptibility χ2(T ). The excellent agreement between the methods
confirms the correctness of the cluster-algorithm implementation.
(b) Finite-size scaling of the energy at the critical point. The exact
result e0 = −√

2 [26–28] is indicated by the dashed line.

algorithms, L and N = L2 must be multiples of three. The cor-
rectness of the cluster-update scheme and our implementation
was ascertained, among other checks, by comparing various
quantities between the Metropolis and cluster simulations.
The result of such comparisons are summarized in Fig. 3. In
particular, Fig. 3(a) shows a the specific heat C [main panel,
Eq. (7)] and the magnetic susceptibility χ2 [inset, Eq. (10)]
obtained using the multi- and single-cluster algorithms as well
as results from the standard Metropolis algorithm [1,30] for a
system of linear size L = 48. All data are fully compatible
within statistical errors. Figure 3(b) illustrates the finite-size
scaling (FSS) behavior of the energy and its convergence
toward the exact asymptotic value e0 = −√

2 [26–28] for
the two cluster algorithms. Since the multicluster and single-
cluster simiuations are statistically independent, we perform a
joint fit to the two data sets using the ansatz [31]

e(L) = e∞ + b L−(d−1/ν),

where e∞ denotes the thermodynamic-limit value of the
energy, b is a fitting parameter, d = 2 is the spatial dimension-
ality, and ν = 2/3 corresponds to the Baxter-Wu universality
class. Allowing both e∞ and d − 1/ν to vary, we obtain e0 −
e∞ = 0.0002(4) and d − 1/ν = 0.502(4). Fixing d − 1/ν =
0.5 and refitting yields e0 − e∞ = 0.00001(9). Finally, fixing
e∞ = −√

2 and fitting only the remaining parameters gives
d − 1/ν = 0.5000(8). All results are in excellent agreement
with the expected values.
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In our production runs, we performed 105 Monte Carlo
steps for sampling at the smallest system size, L = 12, with an
additional 104 steps used for equilibration. For larger systems,
the number of Monte Carlo steps was scaled proportionally
to N/122, roughly accounting for the expected dynamical
critical exponent z ≈ 2 for local algorithms. Specifically, we
considered systems with linear sizes 12 � L � 384. For each
size, 20 independent realizations were simulated, and sta-
tistical analysis was performed using the jackknife method
[32]. Critical behavior was extracted via least-squares fitting,
with a lower cutoff L � Lmin chosen to account for scaling
corrections. Fit quality was assessed using the standard χ2 test
[33], and fits were deemed acceptable if the goodness-of-fit
parameter satisfied Q � 10% [33].

C. Observables

While the discussion above demonstrates that the proposed
cluster update is formally correct, it is not a priori clear
whether it is effective in alleviating critical slowing down. One
necessary condition is that the clusters just begin to percolate
at the point of the thermal phase transition; otherwise, they
will asymptotically include either very few or nearly all spins,
effectively reducing the update to a local move. To investi-
gate the percolation properties of the BW clusters introduced
above, we studied standard observables from percolation the-
ory [34], namely, the wrapping probability Pwrap, the average
cluster size S, and the percolation strength P∞.

The wrapping (or spanning) probability Pwrap is defined
as the probability that at least one cluster spans the peri-
odic boundaries of the system, wrapping around the lattice
and reconnecting with itself. In the thermodynamic limit, the
wrapping probability Pwrap becomes a discontinuous func-
tion of temperature, taking the value Pwrap = 0 above the
percolation transition temperature Tp and Pwrap = 1 below
it. This discontinuity signals the appearance of percolating
clusters for T < Tp. In contrast, for finite systems, Pwrap(T )
is a smooth, continuous function. Nonetheless, curves corre-
sponding to different system sizes are expected to intersect
at a common point—modulo finite-size effects—marking the
percolation transition. Depending on the spatial direction
in which clusters wrap, various definitions of Pwrap can be
employed [35–37]. In this study, a cluster is considered to
percolate if it wraps around and reconnects to itself in either
the horizontal or vertical direction, or in both directions. As a
dimensionless quantity, Pwrap is expected to obey the standard
FSS form [34]

Pwrap(t, L) = P̃wrap(tL1/ν ), (3)

where P̃wrap is a universal scaling function, t = (T − Tp)/Tp

is the reduced temperature, and ν is the critical exponent
associated with the divergence of the correlation length.

The average cluster size is defined as

S =
∑

s nss2

∑
s nss

, (4)

where ns denotes the number of clusters of size s [34]. In
the thermodynamic limit, excluding the (infinite) percolat-
ing cluster from the sums in Eq. (4) causes S to peak near
the percolation transition. This intermediate maximum arises

because at high temperatures the system consists predom-
inantly of small clusters, whereas below the percolation
threshold Tp most spins belong to the macroscopic percolating
cluster (which is excluded from the sums). To reproduce this
behavior in finite systems, the largest cluster is excluded from
each measurement. As a result, S develops a peak at a pseud-
ocritical temperature, which approaches Tp as the system size
increases. In the critical regime, S obeys the FSS form

S(t, L) = Lγ /ν S̃(tL1/ν ), (5)

where γ /ν is the ratio of critical exponents associated with
the divergence of the average cluster size, analogous to the
finite-size scaling exponent of the magnetic susceptibility
[34]. In previous numerical studies, it was noted that this
exclusion of percolating clusters (or an analogous subtraction
in the susceptibility) introduces significant scaling corrections
in Ising-like systems [37,38]. In the present work, we there-
fore use a definition of S that includes all clusters, without
omitting the largest or spanning clusters. The downside of this
approach, of course, is that S no longer exhibits a maximum,
and must instead be evaluated either at the fixed temperature
Tp or at a separately determined sequence of pseudocritical
points.

The percolation strength P∞ denotes the probability that
a randomly selected spin belongs to the percolating clus-
ter. It is computed as the fraction of sites comprising
the largest, system-spanning cluster. In the thermodynamic
limit, P∞ = 0 above the percolation threshold, indicating the
absence of a spanning cluster, while below Tp it grows con-
tinuously, approaching P∞ = 1 as T → 0, where all spins
belong to a single connected cluster. Serving as an order
parameter—analogous to the magnetization in a thermal phase
transition—P∞ captures the onset of long-range connectivity.
Its FSS form is given by [34]

P∞(t, L) = L−β/ν P̃∞(tL1/ν ), (6)

where β/ν is the finite-size scaling exponent associated with
the order parameter.

To study the thermodynamic properties of the system and,
by extension, the dynamical properties of the algorithm, we
measured the internal energy E , from which the specific heat
is obtained via the standard fluctuation–dissipation relation as

C = (〈E2〉 − 〈E〉2)/(NT 2). (7)

Magnetic ordering was characterized by evaluating the mag-
netization on each of the three sublattices, denoted by MA,
MB, and MC. From these, we define two commonly used order
parameters:

m1 = (|mA| + |mB| + |mC|)/3, (8)

m2 =
√(

m2
A + m2

B + m2
C

)/
3, (9)

where mx = Mx/(N/3) for each sublattice x = A, B, and C
[39–41]. In the thermodynamic limit, both m1 and m2 ap-
proach unity in the fully ordered ground states and vanish in
the completely disordered (paramagnetic) state. The associ-
ated magnetic susceptibilities are defined as

χi = N
(〈

m2
i

〉 − 〈mi〉2
)

T
, i = 1, 2, (10)
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FIG. 4. (a) Wrapping probability as a function of temperature
for different system sizes. (b) Extrapolation of the percolation tem-
perature Tp from the crossings of the wrapping probability curves
according to Eq. (12). The horizontal dashed line indicates the exact
critical temperature Tc of the BW model. The inset shows the differ-
ence Tp − Tc as a function of the minimum system size Lmin included
in the fits. The excellent agreement between the two temperatures
supports identifying the percolation transition with the thermal phase
transition.

quantifying the fluctuations in the respective order parameters.
As shown by Wood and Griffiths [18], the BW model is

self-dual and consequently exhibits the same critical tempera-
ture as the regular square-lattice Ising model [29,42]:

T Ising
c = 2

ln (
√

2 + 1)
≈ 2.269 185 314 · · · . (11)

All simulations were therefore conducted directly at this criti-
cal temperature. Furthermore, the use of the single-histogram
reweighting technique [43] enabled efficient extraction of ob-
servables over a range of temperatures near criticality. Our
independent estimate of the percolation temperature, reported
below, additionally justifies this choice of simulation tem-
perature a posteriori, confirming the self-consistency of the
analysis.

III. RESULTS

A. Percolation analysis

To determine the percolation temperature, we analyzed the
wrapping probabilities for pairs of system sizes (L, 2L). As
shown in Fig. 4(a), the wrapping probabilities approximately
cross at a common point. According to standard arguments of
FSS, these crossing points are expected to follow the law [31]

T ∗(L) = Tp + cpL−(ω+1/ν), (12)

FIG. 5. FSS of the derivatives of the wrapping probability evalu-
ated at their respective maxima (main panel). The inset in the top left
shows the temperature dependence of the derivative of the wrapping
probability for several system sizes. The bottom-right inset displays
the estimated exponent 1/ν as a function of 1/Lmin for fits including
corrections and a free ω parameter; the horizontal dashed line marks
the exact value 1/ν = 3/2.

where T ∗(L) denotes the crossing temperature, Tp is the per-
colation temperature in the thermodynamic limit L → ∞, cp

is a nonuniversal amplitude, and ω is the correction-to-scaling
exponent [44,45]. Figure 4(b) shows T ∗ as a function of 1/L,
while the inset displays the difference Tp − T Ising

c as a function
of the minimum system size Lmin included in the fits. From
this analysis, we obtain the final estimate

Tp = 2.269 186(5), (13)

corresponding to Tp − T Ising
c = (0 ± 5) × 10−6, where we

used Lmin = 12 and the resulting exponent estimate is ω +
1/ν = 1.9(1). (We will come back to this estimate further
below in the present section.) Within numerical uncertainty,
these results demonstrate that the percolation temperature of
the clusters coincides with the critical temperature of the
model.

The derivative of the wrapping probability is also of in-
terest, as it provides an independent route to estimating
the critical exponent ν. It was computed using a three-
point numerical differentiation scheme based on histogram
reweighting [43] with a temperature step of 10−6. The
peak value of this derivative is expected to follow the FSS
relation [34]

P′,max
wrap (L) = cP′L1/ν (1 + dP′L−ω ), (14)

where cP′ and dP′ are nonuniversal fitting constants, and the
superscript “max” indicates evaluation at the maximum of
P′

wrap. Figure 5 shows representative fits according to Eq. (14).
Three types of fits were performed: (i) without corrections,
excluding small system sizes to mitigate finite-size effects;
(ii) including corrections with a fixed ω = 2 [44,45]; and (iii)
allowing ω to vary freely. For the first case, excluding the
correction term, the estimates for 1/ν are several standard
deviations away from the expected value of 3/2; for example,
when Lmin = 120, 1/ν = 1.507(4). Only for Lmin � 192 do
we get values consistent with 3/2: for Lmin = 192 specifically,
1/ν = 1.504(6). From the fits with a correction-to-scaling ex-
ponent set to ω = 2, fits become acceptable for Lmin � 36 and
we again see a discrepancy from the exact value. Starting from
Lmin � 120, we find values in agreement with the expected
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one: For example, with Lmin = 120, we find 1/ν = 1.500(4).
Interestingly, for all values of Lmin, corrections seem to remain
relevant, since dP′ does not disappear within errors, which
would be expected as one eliminates smaller systems. With
a free correction exponent, 1/ν = 1.500(2) and ω = 1.0(2)
for Lmin = 12. Importantly, despite the uncertainty in correc-
tions, the estimates of 1/ν remain consistent across all fitting
procedures.

In view of the above results, one may wonder about the
consistency of values of the correction-to-scaling exponent ω

obtained from Eqs. (12) and (14). From the fit to the crossing
temperatures [Eq. (12)], we find ω + 1/ν = 1.9(1). Using
any of our estimates of 1/ν, this corresponds to ω ≈ 0.4.
However, previous studies by Alcaraz and Xavier [44,45]
reported ω = 2. On the other hand, the above quoted fit for
P′,max

wrap (L) yields ω = 1.0(2), while we do not find evidence in
favor of ω = 2 in our data. These discrepancies suggest that
the present data set may not be sufficient to reliably resolve
subleading corrections to scaling, indicating that additional
correction terms are likely relevant but cannot be captured
within our accessible range of system sizes. Consequently, in
the remainder of the analysis, we focus on fits including the
correction exponent as a free parameter. Only when the con-
stants in front of the correction term L−ω become minuscule
do we consider additional fitting processes.

Finally, by analyzing the scaling behavior of the percola-
tion strength P∞ and the average cluster size S, both evaluated
at the critical temperature Tc of Eq. (11)—which according to
our results equals the percolation temperature Tp—we obtain
estimates for the critical exponent ratios β/ν and γ /ν. These
quantities are expected to follow the FSS relations [34]

PTc∞(L) = cPL−β/ν (1 + dPL−ω ), (15)

STc (L) = cSLγ /ν (1 + dSL−ω ), (16)

where cP, cS and dP, dS are nonuniversal fitting constants. The
corresponding fits are shown in Figs. 6(a) and 6(b) for PTc∞ and
STc , respectively. As discussed in Sec. II C, our definition of
S includes all clusters; consequently, this quantity does not
exhibit a peak as a function of temperature. From the fits to
Eqs. (15) and (16), we obtain β/ν = 0.1251(9) and γ /ν =
1.750(2), with Lmin = 12, both in excellent agreement with
the exact values β/ν = 1/8 and γ /ν = 7/4 characteristic of
the BW universality class. The corresponding corrections-to-
scaling exponents are ω = 1.3(8) and 1.0(3). For the β/ν

fits, the correction amplitude dP is consistently zero within
errors. Fits performed without corrections yield compatible
results for Lmin � 120 only; for example, β/ν = 0.1244(6),
0.1243(7), 0.124(1), 0.123(1) for Lmin = 120, 144, 192, 240,
respectively, all consistent with the expected value 1/8.

B. Dynamical critical exponent

To estimate the dynamical critical exponent z of the cluster
algorithms, we first compute the integrated autocorrelation
times τ for three observables: the energy [Eq. (1)] and the two
order parameters defined in Eqs. (8) and (9). The correspond-
ing autocorrelation times, denoted as τe, τm1 , and τm2 , are
evaluated at the critical temperature. Their scaling behavior

FIG. 6. FSS of (a) the percolation strength P∞ and (b) the average
cluster size S, including the largest cluster. Both observables are
evaluated at the Ising-model critical temperature (11). Power-law
fits yield the critical exponent ratios β/ν and γ /ν, respectively.
The insets show the estimated exponents as a function of Lmin, with
horizontal dashed lines indicating the exact values β/ν = 1/8 and
γ /ν = 7/4. Also included are insets with the corresponding curves
of P∞ and the normalized cluster size S/(2N/3).

with system size is expected to follow the FSS ansatz [46]

τx(L) = cxLzx (1 + dxL−ω ), (17)

where cx and dx are nonuniversal fitting coefficients, and
zx ≡ zint

x denotes the (integrated) dynamical critical exponent
associated with observable x ∈ {e, m1, m2}. We note that the
observable-independent exponent zexp, which characterizes
the scaling of exponential autocorrelation times, is not con-
sidered in the present analysis.

The integrated autocorrelation times τx are defined via a
summation of the normalized autocorrelation functions,

Ax(t ′) = 〈x(t )x(t + t ′)〉 − 〈x(t )〉〈x(t + t ′)〉
〈x(t )2〉 − 〈x(t )〉2

, (18)

where x denotes the observable under consideration. In
practice, the natural estimator Âx(t ′) of the autocorrelation
function is computed directly from the time series of measure-
ments. The integrated autocorrelation time is then estimated
employing a summation cutoff [47–49]:

τ̂x = Ix
(
k(x)

max

) = 1

2
+

k(x)
max∑

t ′=1

Âx(t ′). (19)

The cutoff k(x)
max is determined self-consistently as the smallest

lag t ′ satisfying k(x)
max > 6τ̂x [47]. This criterion provides a

useful tradeoff between the systematic error for too small
cutoff k(x)

max and a divergent variance of the estimator for
k(x)

max → ∞. For the single-cluster algorithm, the definition of
one Monte Carlo time step must take into account that only a
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FIG. 7. Scaling behavior of the integrated autocorrelation times
for the energy and the two order parameters defined in Eqs. (8) and
(9). The dynamical critical exponent z is extracted via fits of the
scaling form in Eq. (17). Panel (a) shows results for the multiclus-
ter update, while (b) corresponds to the single-cluster update. For
comparison, Metropolis results for m2 are also included. All curves
exhibit an overall linear trend on a log-log scale, with the single-
cluster data displaying a slightly steeper slope than the multicluster
results.

single cluster is constructed per update. To ensure comparable
time units with the multicluster algorithm, we scale time by
a factor 〈C〉/(2N/3), corresponding to the average fraction
of the 2N/3 active sites at each step that is updated in one
single-cluster step with average cluster size 〈C〉. This normal-
ization allows for a direct comparison of autocorrelation times
between the two update schemes.

Our main results for the autocorrelation times of the clus-
ter updates are presented in Fig. 7, which also shows, for
comparison, the autocorrelation behavior of the m2 observ-
able calculated with the Metropolis algorithm. The dynamical
critical exponent z is extracted by fitting the system-size de-
pendence of the integrated autocorrelation times τx to the FSS
form given in Eq. (17). The resulting estimates for the single-
and multicluster algorithms are summarized in Table I. For
fits with a free corrections-to-scaling exponent ω, the terms
dx consistently vanish for all x, for both the single- and the
multicluster algorithm. However, when ω is fixed to 2 [44,45],
we find a nonzero amplitude if using small Lmin. In these
cases including corrections, the results stated in Table I are for
Lmin = 12. For the case without corrections, Lmin is 24 for the
multicluster and 48 for the single-cluster case. Similar to the
results in Sec. III A, our estimates of z are consistent regard-
less of the method used and across all observables. From the
fits without corrections to scaling, we obtain average estimates
of z = 1.162(3) for the multicluster update [Fig. 7(a)] and z =
1.251(5) for the single-cluster update [Fig. 7(b)]. The latter

TABLE I. Final estimates of the dynamical critical exponent z of
the integrated autocorrelation times for the multi- and single-cluster
algorithms (labeled MC and SC, respectively) in the BW model,
based on the three observables analyzed in this work. We show
results obtained with fixed corrections using ω = 2, with free correc-
tions with variable ω, and without scaling corrections [see Eq. (17)].
For comparison, the last two rows include the estimate from Ref. [19]
and our results obtained using the Metropolis algorithm.

Algorithm Fit type ze zm1 zm2

Free correction 1.157(15) 1.152(15) 1.152(15)
MC Fixed correction 1.163(3) 1.158(3) 1.159(3)

No correction 1.166(3) 1.161(3) 1.162(3)

Free correction 1.254(22) 1.246(22) 1.246(22)
SC Fixed correction 1.255(6) 1.247(6) 1.247(6)

No correction 1.257(5) 1.248(5) 1.248(5)

Ref. [19] No correction 1.37(10)
Metropolis No correction 2.16(3)

lies at the lower end of the estimate reported by Novotny and
Evertz, z = 1.37(10) [19], which was obtained using a single-
cluster implementation and based on the root-mean-square
sublattice magnetization [see Eq. (9)]. Both cluster algorithms
clearly outperform the Metropolis method, for which we find
z = 2.16(3), demonstrating a substantial reduction of critical
slowing down. The Metropolis result is, within statistical un-
certainty, consistent with that of the Ising model [50–52].

IV. CONCLUSIONS

We have investigated the percolation properties of clus-
ters in the spin-1/2 Baxter-Wu model using the construction
scheme proposed by Novotny and Evertz [19], in which one
sublattice is frozen and clusters are built on the remaining two.
Implementing a multicluster update within this framework,
we first verified that, within numerical accuracy, the clusters
percolate precisely at the known critical temperature of the
model. Furthermore, we extracted the critical exponent ratios
1/ν, β/ν, and γ /ν associated with the cluster observables and
found them to be consistent with the known thermal values of
the universality class. These findings confirm the validity of
the algorithm and its suitability for simulating the Baxter-Wu
model.

To assess the efficiency of the cluster algorithm, we
analyzed its dynamical critical behavior by estimating the ex-
ponent z from the scaling of integrated autocorrelation times
for various observables, considering both multi- and single-
cluster implementations. The integrated autocorrelation time
was computed using a self-consistent cutoff method. This
analysis yields estimates of z = 1.251(5) for the single-cluster
variant and z = 1.162(3) for the multicluster algorithm. These
values lie close to the lower bound imposed by the Li-Sokal
inequality, z � α/ν = 2/ν − d = 1 [53], indicating that these
cluster algorithms operate near optimal efficiency for the
Baxter-Wu model.

Our present study lays the groundwork for a similar
percolation and dynamical scaling analysis in the spin-1
generalization of the Baxter-Wu model, which includes a
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chemical potential [54–57]. In this setting, the presence of
zero spins may hinder the effectiveness of cluster algorithms,
particularly at larger crystal-field strengths 
, where the den-
sity of zero spins increases significantly. Interestingly, this
model allows for clusters that combine both ferromagnetic
and antiferromagnetic interactions. Since zero spins cannot
be easily included in the cluster construction, a pure cluster
algorithm is no longer ergodic and must be complemented
by local single-spin updates in a hybrid scheme—a strategy
that has proven successful for other spin-1 models [58]. This
generalized model is also believed to host a pentacritical point
[54–57], leading to a phase diagram containing both first- and
second-order transition lines. This raises several intriguing
questions: (i) Do the clusters still percolate at the transition
points? (ii) How does the dynamical critical exponent z be-
have near the putative multicritical point? (iii) Does z depend
systematically on 
?

Another promising avenue is the study of the gonihedric
Ising model [59,60], where the presence of plaquette interac-
tions complicates cluster construction. In this case, a modified
cluster approach—splitting the lattice into frozen and active

sublattices to induce effective interactions—may provide a
viable strategy for future investigations.
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