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Population annealing is a powerful sequential Monte Carlo algorithm designed to study the equilibrium
behavior of general systems in statistical physics through massive parallelism. In addition to the remarkable
scaling capabilities of the method, it allows for measurements to be enhanced by weighted averaging [J. Machta,
Phys. Rev. E 82, 026704 (2010)], admitting to reduce both systematic and statistical errors based on inde-
pendently repeated simulations. We give a self-contained introduction to population annealing with weighted
averaging, generalize the method to a wide range of observables such as the specific heat and magnetic
susceptibility and rigorously prove that the resulting estimators for finite systems are asymptotically unbiased
for essentially arbitrary target distributions. Numerical results based on more than 107 independent population
annealing runs of the two-dimensional Ising ferromagnet and the Edwards-Anderson Ising spin glass are
presented in depth. In the latter case, we also discuss efficient ways of measuring spin overlaps in population

annealing simulations.
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I. INTRODUCTION

Many successful methodological advances in science are
driven by the desire to solve certain notoriously hard problems
using contemporary tools. In this regard, recent developments
in statistical physics with a growing interest in understanding
complex systems such as large biomolecules as well as (struc-
tural and spin) glasses are no exception. Meanwhile, powerful
supercomputers are clearly among the most notable tools of
our time. Unfortunately, many of the systems of interest are
very hard to simulate, with problems such as divergent re-
laxation times and the need to average over a large number
of disorder samples—some such systems are even provably
NP-hard [1] leaving little hope for exact algorithms applied to
problems of reasonable size. On the other hand, the limit to
which approximate approaches can be pushed is largely de-
cided upon the ability to efficiently use parallel architectures
which form the backbone of all modern supercomputers.

Population annealing (PA) can be seen as one of the
answers from computational physics to systems displaying
frustration, complex free-energy landscapes, slow relaxation
times, and the associated phase transitions. In contrast to more
established methods in the field, such as parallel tempering
[2,3], PA is highly parallelizable and scales almost perfectly
[4-7] while at the same time providing state-of-the-art algo-
rithmic speed-up for systems with metastability and complex
free-energy landscapes [8,9]. It was first introduced by Iba
and Hukushima [10,11] and later revisited by Machta [12],
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but closely related approaches for different applications were
also independently proposed in other scientific communities.
For instance, Zhou and Chen [13,14] introduced an algorithm
for continuous global optimization, which is essentially PA
applied to a Boltzmann-like distribution. In another work that
has received significant attention among statisticians, Moral
et al. [15] established a very general framework for sequen-
tial Monte Carlo (SMC) methods that also includes PA and
provides a glimpse into the rich body of related work in
mathematical statistics. In molecular physics the technique
of diffusion quantum Monte Carlo is an early incarnation of
the same idea [16], to name only a few examples. In contrast
to the widely adopted Markov chain Monte Carlo (MCMC)
approach, PA is sequential in the sense that a population of
replicas (walkers) successively samples from the distributions
08y> Pp,» - - - While the control parameter 8 gradually changes
into a regime where equilibration is hard. The key ingredient
to PA is the alternation between an equilibration subroutine
and resampling steps, the latter prioritizing replicas repre-
sentative of the target distribution at the next value of the
control parameter. Thus, it is the interplay of preferential but
correlation-inducing resampling and decorrelating but indis-
criminate (MCMC) equilibration routines that is responsible
and decisive for the efficiency of PA.

In addition to the basic algorithm, a number of improve-
ments for PA have been proposed in recent years [5,6,17,18],
including adaptive temperature schedules and population sizes
among other suggestions. One somewhat underrated aspect
is the possibility of combining results from independent PA
runs in a way that reduces statistical as well as systematic
errors. This so-called weighted averaging scheme [12] thus
allows one to obtain better results on limited hardware, to
distribute the simulation effort over independent computing
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systems, and to rectify deficiencies in equilibration a posteri-
ori by adding further runs to the analysis. While this method
has been used in studies of spin glasses [8,12], hard-sphere
mixtures [19,20] and large-g Potts models [21], an in-depth
analysis of the details of bias reduction and possible pitfalls
has not been presented. The aim of this work is to close this
gap using the Ising ferromagnet and the Ising spin glass in two
dimensions as toy models while providing a more compre-
hensive picture of weighted averaging through new notions, a
more explicit notation and enhanced mathematical rigor.

The remainder of this paper is organized as follows. We
begin with a detailed introduction to the general PA al-
gorithm in Sec. II that should be particularly useful for
readers that are new to the topic. Hereafter, the Ising mod-
els under consideration and the associated observables are
discussed in Sec. III, including a comparison of techniques
to measure spin overlaps in single PA runs in Sec. IIID.
Weighted averaging is introduced in Sec. IV, where we also
discuss a general framework for weighted estimators in PA
and prove certain asymptotic results. Section V starts by
summarizing our methodology before various numerical re-
sults on the reduction of bias, on intrinsic properties of the
weighted-averaging scheme, as well as on statistical errors
are reported. Finally, a summary of our findings is given in
Sec. VL.

II. ALGORITHM

A. Requirements and basic ideas

A system to be simulated using PA needs to exhibit a
control parameter 8 which determines the equilibrium distri-
bution pg on the state space I'. As f§ is varied throughout the
annealing schedule B, 1, ..., By, the ratios pg (v )/0p,_, (v)
must (exist and) be known up to a state-independent factor
for every y € T that is potentially sampled at §;_;. Moreover,
one should be able to efficiently sample the initial equilibrium
distribution pg, .

To perform a PA simulation, a population of independent
states, whose members we call replicas, is drawn from pg, .
Hereafter, the annealing process begins, i.e., a loop running
through a resampling step corresponding to B;_; — B;, an
equilibration algorithm at §;, and measurements at §;. The
most crucial part is the resampling which is based on the
following observation. Suppose that the empirical distribution
induced through the population at B;_; is p;—1. If pi—1 ~ pg, |,
anew population close to pg, can be created through a copying
process by enforcing that the number of copies created of
eachreplicain y € I' is proportional to pg, (¥ )/0p,_, (). Thus,
if PA is reasonably equilibrated at 8;_;, resampling creates
an advantageous initial distribution for equilibration routines
at ﬂi'

For systems described by the canonical ensemble, as
for instance in our numerical work, B coincides with
the inverse temperature (kz7)~! and pp is the Boltz-
mann distribution, i.e., pg o< exp(—BH), where H is the
Hamiltonian. Hence, it is convenient to start the anneal-
ing process at infinite temperature corresponding to Sy =
0, where pg, is uniform on I'. Other ensembles and con-
trol parameters can be treated on the same footing. For

example, the PA simulations of hard-sphere mixtures re-
ported in Ref. [19] use packing fraction as the control
parameter.

B. General PA framework

In order to capture the full potential of PA and weighted
averages, the algorithm described below applies to (almost)
arbitrary target distributions pg and hence generalizes the no-
tation with respect to the PA literature such as Refs. [8,12,18].
At the end, we explicitly discuss the case of the canonical
ensemble that is also realized in the numerical simulations
discussed in Sec. V.

Let By, ..., By be an annealing schedule and suppose that
the respective target distributions are known up to constants,
vi(y)
pp (V) = —— o Vy el ey
G

The sequence pg,, pg,, . . . must be chosen such that the over-
laps [ pg.pp._, dy are sufficiently large [5,18]. After selecting
a target population size R >> 1 one may proceed as follows:
(i) Draw Ry := R independent configurations from pg,.
Puti=1.
(i) Forall1 <
in the state y./)

i < R;_1, calculate the scaled weight ratio
occupled by replica j at §;_1,

L. BT vi(%-(_j}) )
' Ri—1 O v,',l(yi(;’i)’
where the following normalization is used:
Ri-1 U; (J)
= Z <,> ®

—1 Vi— 1
(iii) Resampling: The number rl.(’ ) of descendants of
replica j from §;_; to B; is a nonnegative integer drawn from a
distribution with mean r(’ ) For instance, one may use nearest-
integer resampling [8],

0
) = { Lzm}

Herein, [x] (|x]) refers to the smallest (largest) integer greater
(less) than or equal to x, respectively. Update the population
size Rj =}, ry.

(iv) Apply an equilibration routine causing the resampled
population to approach pg,. In order for Eq. (2) to be well
defined at B, ensure that no forbidden configurations are
sampled, that is

with probability ri(j
otherwise.

) Lfi(j)J’ @

on (1) > 0

for every replica j in the state )/l.(‘i ) at Bi.

(v) Measure observables (details are given in Sec. III).

(vi) If B; < By, increment i and go to step (ii).

Note that the expected number of copies created of replica
J during step (iii) only differs from pg,/0p,_, evaluated in the
state of replica j by a replica-independent factor. The term
R/(R;—10;) in Eq. (2) assures that the average population size
R; at B; equals R, although small fluctuations occur based on
the variance of the (nearest-integer) resampling scheme in step
(iii) [22].
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In case of the canonical ensemble, we employ annealing
schedules of the form 0 = By < B; < --- < By and the weight
function becomes v;(y) = exp[—pB;H(y)], where H is the
system’s Hamiltonian. Consequently, one has

. R .
o) = ——exp[-(Bi - B-DH(y')]. (6
exp[—(8; — B—DH (v"))]. (7)

recovering established algorithms such as those of

Refs. [8,18].

C. Sources of bias and asymptotics

Following the algorithm above, the initial population is an
unbiased sample from pg, and only statistical fluctuations are
present at By. For subsequent annealing steps however, finite
population sizes and finite time spent in equilibration routines
also cause systematic errors [18].

In fact, the resampling step (iii) reduces the number of
independent replicas and introduces correlations. Moreover,
fluctuations due to nearest-integer resampling are only con-
ditionally unbiased, i.e., resampling is only accurate “on
average” given that the population at §;_; is perfectly equi-
librated.

In the limit R — oo, step (iii) almost surely transforms
pg,., into pg,' and no equilibration routines are needed as
both systematic and statistical errors vanish [8]. Unsurpris-
ingly, if equilibration routines such as MCMC algorithms
receive an infinite amount of resources, populations repre-
sent pp, regardless of the resampling behavior. In practice,
correlation-inducing resampling and decorrelating MCMC
routines perform well in conjunction, since they naturally
alleviate each other’s shortcomings.

III. MODELS AND OBSERVABLES

PA is a fairly general approach, and our analytical results as
well as the main conclusions from the numerical simulations
are model independent. However, the practical assessment
of the effect of weighted averaging relies on simulations of
concrete models. To cover a wide range of practically rele-
vant behaviors, we test our predictions and analyze in detail
systematic and statistical errors for weighted averages of
simulations for the Ising ferrogmagnet (FM) and the Edwards-
Anderson Ising spin glass (SG), both in two dimensions. The
former is an example of a simple model with a continuous
phase transition while the latter is a problem with metastabil-
ity and a complex free-energy landscape.

A. Ising ferromagnet and spin glass

Both systems are studied on square lattices of linear size L
and each state y = (s1, ..., sy) of these models corresponds
to a choice of N = L? Ising spins s, = £=1. Thus, ' has

! An additional necessary condition is that no new states appear in
the support of p as the anneal progresses, cf. Eq. (38).

cardinality 2N, Only nearest neighbors m # n, denoted (m, n),
are allowed to interact directly via coupling constants J resp.
Jmn, and periodic boundary conditions are employed. In the
absence of external fields, the Ising FM is described by the
Hamiltonian

Hen(y) = =1 Y smsn, ®)

(m,n)

where in the following we set J = 1. This form is generalized
for the SG model to read

HEA()/) == Z Jmnsmsn- (9)
(m,n)

Here J,,, are quenched random variables drawn from {£1}
uniformly and independently. In general one is interested in
the disorder average of observables over such coupling real-
izations J := {Jy, : (m, n)}. For the purposes of our study,
however, it is also meaningful to consider individual real-
izations such as the hardest instance encountered. Without
further qualification, in the following H or H(y) stands for
either of the two Hamiltonian functions, Egs. (8) or (9). Recall
that the inverse critical temperature of the above square-lattice
Ising FM in the thermodynamic limit is given by [23,24]

1
Be =55 In(l+ V2), (10)

in particular 8. ~ 0.4407 in our case where J = 1.

B. Ensemble averages

Some of the most fundamental quantities in statistical
physics are ensemble averages of observables O at g;,

(O)g, 1=/F(9(ﬁi,7/)pﬂi(y)dy- Y

Approximation schemes such as Monte Carlo simulations
strive to estimate such expectation values. PA populations
are close to samples drawn from the respective equilibrium
distribution pg,, so a natural estimator for Eq. (11) during step
(v) is the population average [12]

R:

1

R;
i1

O = o v, (12)

where )/l.(j ) € T refers to the state of replica j at B;. Let p;(y)
be the empirical density obtained from a single population at
B;, that is [25]

R;

~ 1 ,
) =23 8(r =) (13)

1 ]:l

Then Eq. (12) is equivalent to

0, = [ o vimrdy. (14)
r
which is analogous to Eq. (11). Thus, we use the following

estimators for the (internal) energy and (modulus of the) mag-
netization per spin:

e ‘= NR. ZH(Vi(j))’ (15)
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R:

1

NR; P

m; == : (16)

ﬁ: 5. (v )

n=1

More generally, if observables can be expressed in terms of
functions of ensemble averages, one may derive the appropri-
ate PA estimator by substituting population averages instead.
In this manner, heat capacity and susceptibility per spin can
be measured in step (v) using

@ = BIN(G — @), (17)
Xi = BiN (m7 — (m:)%), (18)

where e7 and m? are defined similarly to Eqgs. (15) and (16)
with squared summands. Quantities involving m are only
computed in the FM case. With regard to the Ising SG, all
definitions given here rely on an implicit choice of disorder
realization J. Spin overlap measurements are discussed sep-
arately in Sec. III D.

C. Free energy

PA naturally allows for measurements of the potential
associated to the considered ensemble. This is most easily
seen for the free energy F () in the canonical ensemble (but
see Refs. [19,21] for the microcanonical case). Based on the
partition function

Z(B) 1=/6XP[—ﬁH(V)]d% 19)
r
it holds
1
F(B) = _E InZ(B). (20)
Thus, F' admits the following telescopic expansion [8,12]:
L Z(BY
—BiF(B) = In ——— 4+ InZ(By). 21
BiF (B) an(ﬁkil)ﬂLn (Bo) 1)

k=1
The ratio of partition functions Z(8;)/Z(B;—1) is exactly the
state-independent constant relating pg, /pg, , to v;/v;—1 and it
is naturally estimated by Eq. (7) [12],
Z(Bi)
Z(Bi-1)

1
= —BiH()]d
Z(ﬁi_l)freXp[ BiH (y)1dy

= /FeXP[—(,Bi = Bi—DH)]pp_,(y)dy
= (exp[—(Bi — Bi—DHW))p, = 0i.  (22)

More generally, a similar calculation invoking Eq. (3)
shows C;/Ci_1 = (vi/vi—1)p_, ~ Q;, given that supp(pg,) <
supp(pg,_, ), i.e., given that the ratio v;/v;—; is defined. To-
gether, Eqgs. (21) and (22) yield the free-energy estimator at
Bi [12],

—BiFi =Y In Qi +1In Z(Bo), (23)
k=1
which can be obtained without further computational ex-

pense from step (ii). In the Ising cases above, one has
InZ(By) =InZ(0) = N In2. The division of F; by N leads to

the free-energy per spin estimator, denoted by ]‘l\ If InZ(Bo)
is unknown, e.g., if By > 0, only free-energy differences can
be obtained.

Note that F' directly incorporates information of the whole
annealing process, in contrast to the single-temperature es-
timators in Egs. (15) to (18). While this leads to smooth
estimates, any bias “picked up” throughout the annealing
process is still present at subsequent temperatures. For the
d-dimensional Ising FM with constant coordination number
zone has f — —z/2 in the limit 8 — oo. This is sufficient to
show that bias decays proportional to 8~! for 8 — oo, as we
demonstrate in Appendix A.

D. Spin overlap

For the spin glass the magnetization of Eq. (16) does not
provide an order parameter and, instead, we consider the spin
overlap of two replicas with the same coupling configuration
(Parisi overlap parameter) [26],

1 N
97y, v) =5 D s Is(). (24)

n=1

The quantity of main interest then is the probability of finding
a specific overlap g:

Pr(q) = /F /r Slas (v v') — al ps( sy ) dy dy'. (25)

Here we make the dependence on the disorder realization J
explicit in order to clearly distinguish it from the disorder
average

P(q) = [P7(q)]4- (26)

A scalar order parameter can be constructed by considering
the mean absolute value of g,

(lghp.a :/PJ(Q)WUZCL (lg)g =/P(q)|61|d4- 27

Measuring the distribution (25) of ¢ in a simulation requires
independent pairs (y, y’), thus usually doubling the required
computational effort. For instance, it is common to use two
separate parallel tempering runs to obtain configurations com-
pletely independent from each other [8,27].

In the following paragraphs, we discuss different ap-
proaches to measure the spin-overlap distribution P(g) in
PA without having to run multiple simulations. Some of these
approaches are based on the concept of families, which are
the descendants of a single replica in the initial population
[8]. Replicas from different families evolve independently
throughout the annealing process, except for the resampling
step (iii) where normalizing by Q; allows replicas to influence
each other’s progeny. Thus, family sizes may be correlated,
although replicas from different families are independent. For
ease of implementation, we switch to zero-based indexing for
the remainder of this section.

1. Independent pairings from permutations

Wang et al. [8] proposed a method to obtain R; spin overlap
values at 8; in worst-case time complexity O(R?) using every
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FIG. 1. Systematic errors (top) and standard deviations (bottom)
in the spin overlap histogram of the hardest L = 32 Ising SG instance
encountered at 8 = 2.4 employing 6 = 10 Metropolis sweeps to a
target population size R = 2 x 10*. Compared are the permutation
method by Wang et al. [8], the modified version of the permutation
method with a random search pattern, as well as our suggestion of
using index shifts and forming pairs from two independent simula-
tions. In the two latter cases we also excluded measurements from
populations where a family exceeded R;/2 for a clearer comparison.
The number of repeated simulations entering this analysis is shown
in Table I. For easier readability, only every 32nd histogram value
carries a symbol.

replica exactly twice. To ensure independence, only pairs from
different families are considered, i.e., a permutation

. ,71;‘[_1) (28)

is needed, satisfying that k and 7} belong to different families
for all 0 <k < R; — 1. As long as family sizes are below
R;/2, such * exists and can be found by drawing a random
initial permutation 7 and repeating the following: Let k be
the smallest index with an “incestuous” pairing 77; and use the
short-hand notation k + [ for (k 4+ /) mod R;. Iterate through
i1, Tka2, - - . Until an element ;. ; is found such that
is not in the family of k and 7y is not in the family of k + 1.
Then swap m; and 74 to lower the number of incestuous
pairs. Since family sizes do not exceed R;/2, a suitable trans-
position is found after at most R; — 1 attempts which ensures
termination. Although the algorithm has quadratic worst-case
time complexity in R;, it was claimed to be close to linear in
practice [8].

We tested this approach and could not find significant devi-
ations from running two independent simulations with regards
to bias. This can be seen, for example, in the upper panel of
Fig. 1 showing data for the “hardest” instance encountered for
the two-dimensional Ising SG in a sense to be described in
Sec. V A 4. The figure is discussed in greater detail below.

Note that the algorithm described here does not transform
a uniform distribution of initial permutations into a uniform
distribution on the set of “nonincestuous” 7r*, which can be
easily checked numerically. We expect this not to be problem-

7t =@*0),..., 7R — 1) = (75, ..

atic for the PA use case as long as there is no prescribed order
within families, e.g., energetically ascending. Numerically,
we see that the introduction of a random search pattern can
restore this uniformness property if needed. That is, another
random permutation o may be drawn at the start, mismatches
may be checked along the positions o7, 03, ... and the se-
quence (1 © 0 )41, (T © 0 )42, ... used to find a transposition
for a mismatch at k = o;. This search process is stopped if
(r 0 0);4; is found such that (7 o ¢);4; is not in the family
of 0; and (7 o 0); is not in the family of o;;;. The original
algorithm is recovered by fixing o = id.

We struggled to parallelize the approach by Wang et al.,
however, resulting in a serial bottleneck in the optimized GPU
code of Ref. [5] that our numerical simulations are based on.
There are also implementation-independent drawbacks. Due
to the strong sample-to-sample fluctuations that are typical
for spin-glass systems (see, e.g., Ref. [8]), the existence of
families larger than R;/2 can often not be ruled out beforehand
and if such populations are encountered it is unclear how
to proceed. Possible choices include employing the present
incestuous permutation, omitting the ¢ measurement or ter-
minating the simulation entirely. Depending on the frequency
of spin overlap measurements throughout the annealing pro-
cess, it may be likely to encounter the same problem again
at subsequent annealing steps in the first two cases. The last
option poses the risk of rejecting simulations sampling rare
low-energetic states, thereby introducing a new source of bias.

2. Independent pairings from index shifts

As a simple alternative, we considered computing |R;/2]
spin overlaps from a population of size R; by choosing pairs
with distance |R;/2] in replica index space. This is based
on the fact that our implementation deliberately places re-
sampled copies next to each other, resulting in indices of
family members being contiguous. Hence, pairing replica j
with j + |R;/2] for 0 < j < |R;/2] avoids the problem of
dependence under the same assumption that family sizes are
below R;/2. This algorithm is clearly simpler and faster than
the permutation method, but the potential price of this speedup
are “blocks” of similar overlap values whenever the employed
equilibration routine is insufficient. However, this should only
increase statistical errors, since there is no prescribed relation
between a certain family and the families placed at a distance
of |R;/2].

We see this for example in Fig. 1 showing the “hardest”
instance encountered at § = 2.4, as explained in Sec. V A 4.
There is virtually no difference in systematic errors between
using index shifts and the Wang er al. permutation approach
while a minor increase in statistical errors is present. Introduc-
ing a random search pattern for transpositions does not change
bias or statistical fluctuations in our implementation. If an
ordering of replicas is imposed, however, this approach would
probably yield better results. Of course, the best estimates
are obtained by forming pairs from independent runs at the
price of doubling the required computational work. To get a
cleaner comparison to the approach of Wang et al. in Fig. 1,
we also rejected measurements if a family was larger than
R;/2 while using index shifts or two independent runs. The
number of included and excluded simulations is specified in
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TABLE I. Number of simulations entering the comparison of ¢
measurements in Fig. 1. Runs where one family at 8 = 2.4 exceeded
the size of R;/2 were excluded and counted towards the fraction
in the last column. One repetition of “two runs” corresponds to
two independently simulated populations in one GPU program to
parallelize the calculation of g. Since such a repetition is used only
if none of the families in two populations exceeds R;/2, the excluded
fraction in the last row is larger.

Method Repetitions Included Excluded fraction
Wang 5x 10* 42308 15.4%
Wang, rdm 5 x 10* 42308 15.4%
Index shift 5 x 10* 42092 15.8%
Two runs 10 71374 28.6%

Table I. Note that & = 10 was chosen to provoke deviations
in the comparison through insufficient equilibration, which
results in a relatively large fraction of simulations exceeding
the family size constraint.

Another advantage of using index shifts is that it preserves
the “locality” of correlations, thereby enabling the blocking
analysis introduced in Ref. [18]. That is, if correlations are
localized in replica index space, correlated g measurements
using index shifts will still posses this property and an ef-
fective population size R.g(q) based on the quality of spin
overlap measurements as well as statistical errors of estima-
tors can be computed from within a single PA run.

In conclusion, we form replica pairs from index shifts as
it provides the best results for GPU runtime in our case.
More details on the implementation of ¢ measurements and
reference solutions are given in Sec. V A 3.

IV. WEIGHTED AVERAGES

The focus of the present work is on the analysis of ways
to reduce both systematic and statistical errors in PA through
data from M independent simulations. Machta [12] first rec-
ognized this possibility and coined the term weighted average,
motivated by the appropriate formula for particularly “simple”
observables. He claimed that bias vanishes in the limit M —
oo. These ideas have been employed in several subsequent
publications [8,17,19,21]. The justification for this approach,
however, remained to be largely based on analogies related
to a theoretical version of PA called unnormalized population
annealing (uPA) [8,12] (but see Ref. [18] for an alternative
line of argument).

To give a self-contained presentation of the established
theory behind weighted averaging, we start by introducing
the general arguments leading to the weight functions in
Sec. IV A. The resulting weighted averaging formulas are
presented in Secs. IV B and IV C, before we turn to a rigorous
result on the convergence of weighted averages in the absence
of equilibration routines in Sec. IV D. Hereafter, appropriate
estimators for observables defined in terms of central mo-
ments such as the heat capacity and susceptibility are derived.
Finally, weighted averages for the spin-overlap distribution
and the variance of free-energy weights are discussed in
Secs. IVF and IV G.

A. Key ideas and free-energy weights

Weighted averaging exploits the existence of populations,
which can be “merged” to gain a larger sample. However, this
cannot be done trivially, since simply adding populations from
independent runs corresponds to adding identically distributed
quantities and therefore preserves systematic errors. To derive
the correct way of merging populations, one can use the fol-
lowing reasoning [8,12,18].

Consider a slight modification to the algorithm described
in Sec. IIB applied to the canonical ensemble, where the
desired number of copies of replica j in Eq. (6) is solely de-
fined as the exponential expression, i.e., without the prefactor
R/(R;—1Q;). Thereby, the primary tool of population size con-
trol is removed and, depending on the energy reference point,
resampling can drastically increase or decrease the number
of replicas, rendering the uPA scheme impractical [8]. At the
same time, the normalization presents the only interaction
between competing families. As a consequence of its removal,
it is impossible to tell whether a single uPA run was initial-
ized with states yp, ..., yg at By and therefore produced a
collection of surviving families at 8; or if R uPA runs indexed
1 < r < Rwereinitialized in single states y, and the surviving
replicas in every run at §; unified trivially. As this argument
generalizes to any partition of the initial population in uPA,
we obtain a convenient property. If we measure the population
average O; from Eq. (12) in M independent uPA runs, the
resulting estimates (’)l.(l), e, OEM) should be combined via

u R" o _. i HMA™. (29)
i . i i -

m=1 REI) +ot Rt(M) m=1

If the independent uPA runs are initialized with population
sizes RV, ..., R™), this estimator is equivalent to measuring
O, in a uPA simulation with initial population size R = RV +
-+ R™)_Thus, it is unbiased in the limit M — oo [8] since
this corresponds to R — oo.

In view of Eq. (29), the key idea is to estimate the popu-
lation size which a standard PA run would have reached in
the unnormalized setting and use this number as a weight
for the population [8,12]. Since the expected population size
after unnormalized resampling at f;_; is Ry—1Qy instead of
R, multiplying the ratios Ry_;Qx/R for all k < i yields an
estimate for the ratio of uPA and standard PA population
sizes at B;. Thus, independent PA runs with identical anneal-
ing schedules, equilibration algorithms, and target population
sizes R should be weighted against each other at 8; according
to

i

Ri_i 1
1_[ R Or = Z
k=1

where we have used Eq. (23). Consequently, as is shown based
on somewhat different arguments in Ref. [18], data from runs
1 < m < M should carry the following free-energy weight:

R _
R exp(—BiF;), (30)
k=1

(m . R§M) H;czl (Rl(:f)l /R(m)) exp ( - ﬂiﬁ;(m))

SR T (RE R e (- BET)
€Y
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Additionally, the simplified free-energy weight is considered,
which we expect to yield similar results [8,12,18],

w™ - Rz('m) eXp ( —
T R exp (— BR)

This form is exact for the case of constant population sizes
during the anneal [18], but it also provides a reasonable
approximation for not too large relative fluctuations in pop-
ulation size.

A potential flaw in this argumentation is that the estimation
quality of the hypothetical unconstrained population size of a
de facto constrained population remains rather unclear. After
all, the method appears to be based on treating PA observables
as uPA observables whilst they are differently distributed and
hence behave differently during resampling.

(32)

B. Configurational estimators

The most natural use of the free-energy weights is for
computing weighted averages for “elementary” observables O
of the simulation, for example, the energy or magnetization.
In this case, the appropriate weighted estimator W[O;] for the
population average O; from Eq. (12) is the configurational
weighted average

WIO;] Z w™ O™, (33)

Machta [12] claimed that W[@,-] is asymptotically unbiased
with respect to M — oo, in view of the arguments given
above. The similarly defined estimator with w substituted for
w is denoted as W[O;].

For more general observables such as, for instance, the free
energy, specific heat, and susceptibility, this basic weighting
scheme is not suitable [12,19] and appropriate modifications
are given in Secs. IV C and IV E below. As it stands, Eq. (33)
applies only to configurational estimators, where we call
an estimator O; configurational, if it is defined in terms of
Eq. (12), where O(B;, y) can be calculated without infor-
mation on the distribution pg . More generally, we refer to
asymptotically unbiased estimators with respect to M — o0
as weighted estimators and call the weighted estimator for
configurational quantities configurational weighted average.

We also note the following useful property: Suppose that
configurational weighted averages are asymptotically un-
biased W[O;] — (O)p, and consider a function g that is
continuous around (O)g,, then it holds that g(W[@,-]) —
8({0)p,). Hence, we immediately know how to deal with
continuous functions of configurational estimators.

C. Free energy

Thus, in view of Eq. (23), a reasonable weighted free-
energy estimator is [12]

—BWIF] =) InWI[Qi] + InZ(By), (34)

k=1

where we have to take into account that the configurational
estimator Qy, is evaluated at B_;:

WIQ] = Z w0, (35)

m=1

The weighted estimator (34) takes a particularly simple form
in case of constant population size during the annealing pro-
cess (for example using multinomial resampling). If one also
uses identical initial population sizes in the runs to be com-
bined, the weights of Eq. (31) simplify to

w™ = exp( ﬁlﬁ(m)) (m)
l ZZ*] eXp ( /31 ’\(m ))

Substituting these weights into Eq. (34) leads to a telescopic
expression which resolves to [12]

. 1 I
—BWIF] =In [M Y exp(— ﬁﬁ("’))}. (37)

That is, weighted averaging is performed on the level of
partition functions [12]. In the more general case, Egs. (31)
and (32) do not obey this telescopic property, which results
in rather lengthy explicit expressions for WW[F;] and W[F ]in
terms of F. Still, they remain to be incremental with respect
to subsequent annealing steps, allowing them to be computa-
tionally cheap.

(36)

D. Convergence to the equilibrium distribution

Suppose that T is finite and a PA algorithm analogous to
Sec. II B is applied satisfying the following conditions:

@ Elpo(y)] = pg(y) Yy eTl.

(b) Regions in I to which the target distributions attribute
positive probability are not expanding throughout the anneal,
i.e., for all i it holds

supp(pp,) < supp(op,.,)- (38)

(c) Resampling preserves population sizes and is (condi-
tionally) unbiased, i.e., R; = R and IE[r(j N = t(’ ). where t(’ )
originates from Eq. (2).

(d) No equilibration routines are employed.

Moreover, consider M independent simulations of this
algorithm employing identical annealing schedules, target dis-
tributions, and target population sizes.

Then, the configurational weighted average of the em-
pirical distribution converges almost surely to the target
distribution, i.e., it holds with probability one that

Jim WIpi(y)] = pg(y) Vy €T (39)

In this case, configurational weighted averages, the weighted
free-energy estimator from Sec. IV C and the central moment
estimators introduced below in Sec. IV E are asymptotically
unbiased. This is due to the identity

O]—Zw“")co(’") Y W10 y)  (40)

m=1 yell

for every configurational estimator 65 and the remark at the
end of Sec. IV B.
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Proof. Due to the assumption of constant and identical
population sizes, we have

(m)
w™ — [Ty O

v Z/IHkIQ(m)

Since I' is finite, E[Hiﬂ 0y ] exists and Kolmogorov’s strong
law of larger numbers [28, Theorem 11.3.1] implies almost
sure convergence as M — oo:

ZA(’”)(V)]_[Q("” =5 E[m(y)]‘[Qk}, (42a)
_ZHQW s [HQ,{}
k=1

m=1 k=1
The existence of these limits guarantees almost surely that

IE[ﬁ,w)‘H;;:1 0]
E[TTiz; O]

which is a normalized distribution on I' by linearity. Hence, it
suffices to show that the numerator in Eq. (43) is proportional
to v;(y) up to a constant. This is trivial, if we pick y € "
with v;(y) = 0 since resampling at 5;,_; — S; cannot create
replicas in y. Thus, we may assume v;(y) > O which, by
assumption (b), implies vi(y) > 0 for all £ < i. Denote the
population at B; by P, € I'® and let Py, ..., P,_; be any
possible sequence of populations throughout the anneal. A
short calculation shown in Appendix B using (c) and (d) yields

E [@»(y)]‘[gk

k=1

(41)

(42b)

Jim Wipi(y)] = ; (43)

7)(), ey Pi—l ﬁxed:|

ouy)
= P 1<y>1"[Qk, (44)

where it is also shown that Eq. (44) together with the law of
total expectation [28, Eq. (4.2.2) or p. 98] implies

E [ﬁ-(y)]‘[Qk
k=1
vi(y) -
= ! IE ,\1_
% [p I(V)]!:[le

As demonstrated in Appendix B, it follows that the recursion
in Eq. (45) enables one to successively reduce the number of
fixed populations until By is reached:

E [@(y)]‘[Qk

k=1

= 29 B3 ()01 Po fixed]. (46)

vi(y)

The right-hand side resolves to [v;(y)/vo(y)IPo(y) using
Eq. (44) at i = 1. Finally, the law of total expectation implies

7)0, ey 73,'_2 ﬁxed:|

Po, ..., Pis ﬁxedi|. (45)

Po ﬁxed:|

by assumption (a)

E[@(y)]‘[gk} = 2 S e gy @)

k=1 UO()/) Pyel'k
_uly)
= T)]E[ po(y)] (48)
= vi(y)/Co, (49)

which completes the proof and also shows that the numerator
in Eq. (43) equals C;/Cy.

We anticipate a similar statement to hold in the presence
of appropriate equilibration routines as they serve to reduce
systematic errors in each individual run already. However, a
rigorous proof in this setting would presumably require a more
advanced mathematical treatment. Apart from restriction (b),
which is needed only due to (d), no additional constraints on
the annealing schedule or target distributions are necessary
other than the remarks in Secs. Il A and II B required to run
PA in the first place.

E. Central moments

We now want to discuss further important examples of esti-
mators that are not configurational. An important class of such
quantities are (empirical) central moments of configurational
estimators,

£ —/[O(ﬁ )= Osl Ps(y)dy. keN, (50)

which most importantly includes sample variances. Through-
out this section, we omit indices related to the annealing
schedule and use subscripts to indicate the order of moments.
To this end, let u; be the /th central moment of some random
variable and p; be the /th moment about the origin, provided
they exist. It follows from the binomial theorem that p; is
determined by u/, ..., u; via

k

k
=y <l>(—1)k’(uﬁ)k’M}, (51)

1=0

where ug = 1. Applying this to Eq. (50), we can express K
in terms of ensemble averages of O, ..., O, which yields the
PA estimator

k
K= ; (?)(—1)’”(6)"@, (52)

where O , ..., Ok are the population averages of the respective
power of O according to Eq. (12). Note that Eq. (52) defines a
continuous function of configurational estimators from which
the appropriate weighted estimator for /C is obtained:

k

—~ k ~ —
WilK) =) ( l)(—l)"’(W[O])“W[ol]. (53)

=0

Almost sure convergence of configurational weighted av-
erages thus directly implies that weighted estimators for
arbitrary central moments are asymptotically unbiased.

Since we will mainly focus on the case k = 2, the more in-
structive notation W,,, is used to denote the weighted variance
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estimator, which is compared to the falsely applied config-
urational weighted average VWW[K] in Secs. VB and VD. In
particular, we consider the weighted heat capacity estimator,

Waal€l = BANIWVIE] — OV[ET, (54)
and also the susceptibility of the Ising FM,
Waal X1 = BNIWIm2] — V[, (55)

which may be compared to Egs. (17) and (18). The weighted
variance estimator is bounded from below by the falsely ap-
plied configurational weighted average

M
Waael K1 = WIKT+ )" w™(@™ — W[O]2. (56)

m=1

This is due to the fact that the configurational weighted
average of the sample variance does not take into account fluc-
tuations of the sample mean between independent simulations
and thus underestimates the actual variance. For a numerical
demonstration, see Fig. 3 at M = 50.

F. Spin overlap

Wang et al. [8] not only proposed a way to measure spin
overlaps in one PA simulation, but also claimed that con-
figurational weighted averaging works for the spin overlap
distribution, i.e., they introduced the estimator [8]

M
WIP7 ()] =Y _ w™ Py (q), (57)

m=1
where f’\g)(g),...,%m(q) are empirical distributions ob-

tained from independent runs. In contrast to Wang et al., we
apply this formula to estimators P (g) measured by the index
shift approach, due to its better parallel efficiency among other
reasons discussed in Sec. III D. The average of Eq. (57) over
several disorder realizations is used as an estimator for P(g),

WIP(9)] = IWIP7(q)]ay- (58)

Even more than in case of the single-run measurement ﬁj (@),
the stability of the weighted estimator W[P7(q)] depends
strongly on the number of surviving families. If replicas are
poorly equilibrated, the occasional encounter of low-energy
states results in a massive decline in surviving families due to
the rapid reproduction of such configurations. Consequently,
q values from this run are correlated since members of the
largest family are included in a significant fraction of pair-
ings. At the same time, the presence of relative low-energetic
states implies larger free-energy weights, thereby potentially
attaching a high weight to a PA simulation of already weak
family statistics.

G. Variance of free-energy weights

Lastly, we show that the variance of free-energy weights
can be predicted rather accurately for sufficiently large pop-
ulation sizes. It follows from the central limit theorem that
the free-energy estimator F is normally distributed in the
limit R — oo [8,18]. Given that simulations of identical target
population size are considered, we may disregard population

size related terms in Egs. (31) and (32) whose effect seems to
be rather small numerically. Thus, we arrive at

_ iﬁ(m)
L A
Ywrexp (= BE™)
(m)

If additionally M is large or the distribution of F narrow, w;
is the exponential of a Gaussian variable with an approxi-
mately “constant” prefactor scaling its mean to 1/M. Thus,
w™ is log-normal in this limit [18]. Since ", ..., K™
are i.i.d., it follows from mean and variance of log-normal
variables that

var exp(—ﬂf) exp(var ﬂf) -1
varw ~ — = . (60)
(M E exp(—BF))? M?

This formula is tested numerically in Sec. V C. Note, however,
that the right-hand side of Eq. (60) is unbounded while, in
contrast, the actual variance trivially cannot exceed one.

V. NUMERICAL RESULTS

We now turn to a detailed comparison of the theoretical
concepts for weighted averages discussed above with an ex-
tensive array of PA simulations for the two-dimensional Ising
FM and SG. A description of our methodology is given in
Sec. V A including details of our implementation, our simula-
tion data, the way in which it was processed and the reference
solutions needed to calculate systematic errors. Moreover, our
notion of “difficult” disorder realizations is explained.

The presentation of numerical results itself has a trifold
structure starting with the most important aspect of bias re-
duction through weighted averaging in Sec. V B. Particular
emphasis is placed on the weighted variance estimator, the
spin overlap distribution and the exponent of a potential
power-law decay of bias with respect to M. Second, we in-
vestigate previous claims [8,18] regarding the distribution of
the free-energy estimator F in Sec. V C before addressing the
question to which extent bias is reduced at the cost of larger
statistical errors in Sec. V D.

A. Methodology
1. Implementation

Our simulations of the Ising FM employ the optimized
GPU implementation provided by Barash et al. [5]. Only
slight modifications are needed to adapt the code to the Ising
SG such that essentially the same program was used for both
models. Unless mentioned otherwise, spin overlap measure-
ments were conducted by choosing pairs via index shifts as
explained in Sec. III D.

During the resampling step (c) of the algorithm given in
Sec. I B, copies of the same ancestor are placed next to each
other in replica index space [5] which localizes correlations
and allows to measure the performance of the equilibration
routine [18]. Step (d) consists of single-spin-flip Metropolis
updates, and 6 sweeps are performed at every temperature.
Additionally, a checkerboard decomposition allows to modify
spins inside the same sublattice in parallel; see Ref. [5] for
further details. The resulting update scheme does not satisfy
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detailed balance, but meets the required global balance condi-
tion [29].

2. Conducted simulations and averaging

We applied an equidistant annealing schedule of inverse
temperatures B; = iAB,i > 0 using A = 0.005 and AB =
0.03 for Ising FM and SG, respectively, terminating at 8, = 1
(FM) and B¢ = 3 (SG). The target population size was chosen
tobe R = 2 x 10* for all simulations (apart from the reference
runs described in Sec. V A 3). This value should be sub-
stantially larger in PA simulations aiming to study unknown
systems reliably [18], but in contrast here we are interested
in exposing systematic errors. To this end, the number of
Metropolis sweeps and the target population size are picked
rather small on purpose to more clearly see the resulting
artifacts.

For the same reason, we solely investigated 50 randomly
generated L = 32 disorder instances and ran numerous re-
peated simulations to effectively eliminate statistical errors:
5 x 10* runs were conducted for each instance and 6 €
{2, 5, 10} was chosen to take into account different equilibra-
tion levels. In combination with the reference runs described
in Sec. V A 3 and the additional simulations for Fig. 1 this
resulted in a total of more than 7.7 x 10° independent SG
simulations.

For given M, 6 and a specific realization, the pool of inde-
pendent runs was randomly partitioned into S = |5 x 10*/M |
subgroups within which weighted averaging over M simu-
lations was performed. Finally, we trivially averaged over
these S samples of weighted estimators to measure their mean
values. Since resulting bias estimates for the same disorder
instance, but different values of M, share the same pool of
simulations, they may be slightly correlated. In view of hav-
ing 5 x 10* runs to choose from, we disregard such effects,
however.

Simulations for the Ising FM include different values of
0 and system sizes L € {16, 32, 64, 128}, although the ma-
jority of our data was collected at L = 64. As this model is
computationally less expensive, we used entirely independent
simulations for different values of M. That is, for fixed L, 0,
and M we obtained S samples of weighted estimators, each
consisting of M separate PA runs which are independent to all
other runs including those for different M. For every choice
of simulation parameters, we ensured that § > 5 x 10? while
using § = 8 x 10% for M < 15. In total, data from at least
3.1 x 10% individual Ising FM simulations are shown in the
figures.

3. Reference solutions

The examples of the two-dimensional Ising FM and SG
introduced in Sec. III A were chosen to allow for precise
bias measurements by merit of the available exact solutions.
Onsager famously solved the ferromagnetic model in the limit
L — o0 [23] and for finite L explicit results for Z(8) are avail-
able as well [24,30]. The two-dimensional Ising SG admits
the evaluation of Z;(B) for a given disorder realization [/
and inverse temperature 8 by efficient algorithms such as the
publicly available implementation by Thomas and Middleton
[31] which has time complexity O(L?). Thus, we were able to

TABLE II. Parameters used for quasiexact reference PA simu-
lations for the Ising FM and Ising SG instances. Shown are linear
system size L, target population size R, number of Metropolis sweeps
0, independent repetitions, and number of considered disorder in-
stances J .

System L R 0 Runs Sampled J
FM 16 10° 50 2 x 10* -
FM 32 10° 50 10* -
FM 64 10° 70 104 -
FM 128 10° 80 10* -
SG 32 5 x 10° 25 100 50

evaluate the partition function of both models to obtain exact
values for the internal energy, heat capacity and free energy.

In contrast, we are unaware of efficient methods to cal-
culate the susceptibility x of the Ising FM or observables
related to the spin overlap g. We therefore reverted to quasiex-
act solutions, i.e., measurements from particularly large and
well equilibrated PA simulations, which were treated as be-
ing exact to enable bias estimations. The reference values
were obtained by arithmetic averaging over multiple runs
with parameters shown in Table II. For the SG problem, we
performed 100 reference runs for the same disorder instance
to drive down statistical errors and partitioned them into 50
pairs to compute approximately R spin overlap values between
two runs forming a pair. Hence, the reference g distribution
for each spin-glass instance originates from approximately
50 x R = 2.5 x 107 measured ¢ values. The smaller value of
& = 25 compared to the FM case was chosen since we did
not observe any change in the histograms P (g) on further
increasing the number of Metropolis sweeps.

4. Hardness of realizations

Although we only considered a small number of 50 Ising
SG instances, this is sufficient to illustrate the sometimes
variable results of weighted averaging depending on the
“hardness” of disorder realizations. Due to the availability of
various PA equilibration metrics [8,12,18], such instances can
be conveniently identified. Here we relied on the mean square
Sfamily size [8]

p(B) =R Y np,. 61)
k

where ny ; is the fraction of replicas at B; in family k. Large
o, indicates the existence of large families, thereby often
resulting in poor sampling quality. Throughout this paper,
references such as “hardest” instance refer to comparisons
of the mean value p, for a given realization, using fixed PA
parameters and inverse temperatures.

B. Bias reduction
1. General behavior

As a first example, Fig. 2 shows systematic errors of the
weighted free-energy estimator VW[F] applied to the Ising FM.
Near the critical (inverse) temperature . = % In(1 + +2) ~

0.4407, populations start deviating from the equilibrium dis-
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FIG. 2. Measured bias of the weighted free-energy per spm esti-
mator W[f] of the L = 64 Ising FM at 6 = 10. The estimate VarF
was proposed by Wang ez al. [8] in the limit of large populatlons
and was adjusted here for the weighted average of f. The data for
B = 0.6 were used to determine the fit to the M = 2 curve drawn as
the dashed line. Only every fifth data point is highlighted on each of
the curves.

tribution due to critical slowing down, resulting in a steep
bias increase. This can be compensated by weighted aver-
aging, however, such that the bias steadily decreases for an
increasing number of runs, and systematic errors are no longer
discernible compared to the statistical errors for M = 50 sim-
ulations; cf. Fig. 2. Moreover, the reduction is mostly uniform
with respect to S, rendering this the prototypical situation
of successful weighted averaging. Wang et al. [8] suggested
that the bias of the (nonweighted) free-energy estimator F
is given by 5 BvarF for large population sizes R. They also
conjectured that the same formula should be a good approxi-
mation for the weighted estimator, i.e., when replacing F by
W[F ]. This indeed works well here, as is illustrated by the
corresponding data in Fig. 2. If the same formula is applied
to less well equilibrated runs, the difference between actual
bias and the prediction can be significantly larger, however
(see also Ref. [18]). Finally, the dashed curve represents the
least-squares fit of a + b,B‘1 to the M = 2 data for 8 > 0.6.
Recall that we argued in Sec. IIIC and Appendix A that
systematic errors of F in the Ising FM asymptotically behave
as B!; this apparently generalizes to W[F 1.

Next, we would like to point out the importance of choos-
ing the appropriate weighted estimator using the example of

the heat capacity and susceptibility. Note that the estimators ¢

and ¥ from Egs. (17) and (18) are not configurational as they
cannot be expressed in terms of a single ensemble average
[see Eq. (11)] unless the respective mean values are known
a priori. The systematic errors that result when the (wrong)
configurational weighted average W of Eq. (40) is applied are
depicted in the left panels of Fig. 3, whereas Eqs. (54) and
(55) were employed on the right-hand side [cf. also Eq. (56)].
In the latter case, bias is reduced uniformly at all temperatures
as more simulations are taken into account. In contrast, falsely
applying configurational weighted averages results in domi-
nant systematic errors, which may even surpass those of single
PA runs. In view of Eq. (56), one expects negative bias for YW

Q0
Q
()
=
E
<
WVB,I‘[E\:I
—*—M:50\
T
g
B 0.5
=
£
= 0
<
05 ‘ W(x] ‘anr[ﬂ
042 044 0.6 042 044  0.46

B B

FIG. 3. Bias comparison in measuring the heat capacity ¢ and
susceptibility x of the Ising FM through configurational weighted
averages YV (left) or the weighted variance estimator W,,, (right).
The system size is L = 64, 6 = 10 Metropolis sweeps were used,
and M represents the number of independent simulations entering
weighted averaging. Error bars at M = 50 are significantly smaller
than the symbols. Relative bias is used since ¢ and x vary strongly in
the vicinity of B. ~ 0.4407 (marked by the vertical line).

since it misses a nonnegative term that contains contributions
due to the variations of the population averages e and .

Turning to the simulations of the SG system, we find that
for single disorder realizations weighted estimators of the en-
ergy, free energy, and heat capacity behave fairly similar to the
results shown for the Ising FM in Figs. 2 and 3 (not shown).
Although bias curves occasionally display more complex be-
havior, the overall trend remains that systematic errors of
correctly weighted estimators are uniformly reduced in 8 by
increasing M.

An important natural benchmark in employing weighted
averages is the comparison of M runs of size R with a single
run of population size MR. Due to limited computational
resources, we only conducted two such comparisons, one
for the “hardest” and one for the “easiest” SG instance (see
Sec. V.A 4) at B =24, M =50 and the equilibration
levels 6 € {5, 10}. Additional to the S =5 x 10*/50 = 103
weighted estimators, we ran 103 repeated simulations with
population size MR. Similarly to the analogous curves for ¢
and f, the resulting energy estimations are remarkably ac-
curate which is shown in Fig. 4 for the “hardest” instance.
Although there is a clear difference in bias at & = 5, note that
these signals only become significant after 103 repetitions and
the great majority of systematic errors is successfully reduced,
as can be seen in the upper panel inset showing the plain
average of the runs of size R for comparison. Statistical errors
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energy bias

FIG. 4. Energy bias comparison between weighted averaging
over M = 50 runs of size R and increasing the population size to MR
for the “hardest” L = 32 Ising SG instance at 8 = 2.4, using = 5
(upper panel) and 6 = 10 (lower panel), respectively. For improved
readability, symbols and statistical errors are only drawn at every
third annealing step in the main plots and at every tenth step in
the 6 = 5 inset. Error bars show the standard deviation of the mean
based on 107 repetitions for both approaches. Thus, they can be used
to compare the standard deviation of the actual estimators. Bias of
single PA runs at size R is substantially larger, which is illustrated by
the upper curve in the inset.

are also comparable, which can be inferred from the error bars
as explained in the caption. Hence, it is unlikely that one is
able to reliably tell both estimators apart based on a smaller
data set, although one would not consider simulations of this
instance to be in equilibrium at § = 5 (for whichp; ~ 0.4 x R
at B = 2.4) and only moderately well equilibrated at 6 = 10.
For the “easiest” instance at B = 2.4, weighted averaging
and the scaled population size are virtually indistinguish-
able when measuring energy, heat capacity or free energy
using 6 € {5, 10} Metropolis sweeps (not shown). A similar
comparison was also conducted for the L = 64 Ising FM at
6 =10 and M € {30, 50}, resulting in very similar conclu-
sions for measurements of e, ¢, f, and x.

2. Weighted spin overlap measurements

For the spin-glass problem, it is well known that the
overlap is slower to equilibrate than the energy (see, e.g.,
Ref. [32]). Additionally, it is more difficult to get a reliable
estimate of the whole distribution P(q) than for a single
moment. Thus, it comes as no surprise that the measured his-
tograms are noticeably asymmetric at 6 € {2,5} and B > 1,
which violates the spin-flip symmetry of the Hamiltonian (9).
We conclude that these equilibration levels and the population
size R = 2 x 10* are insufficient for reliable ¢ measurements
and therefore focus on 6 = 10.

This ensures decent equilibration for most disorder in-
stances while a small proportion is still far enough from
equilibrium to infer prototypical behavior for such cases. To
give an example, we consider the “hardest 20%” of disorder
realizations at 8 = 2.4 in the sense of Sec. V A 4. The p,
threshold we obtain in this way is 1997 ~ R/10. Averaging
of the measured bias values at § = 2.4 over the instances
grouped in this fashion, we arrive at the result shown in Fig. 5.

x10~4

hardest 20% n

g -1 —bp

4 ()

= 2 = W[P(q)]
T 6

= -5

2 x10 remaining 80%

-1 -0.75 -0.5

-025 0 025 05 0.75 1
q

FIG. 5. Systematic errors in spin overlap measurements of L =
32 Ising SG instances at 8 = 2.4 for single PA runs (solid line) and
weighted averages (dashed line). The data sets are averaged over
instances of the respective difficulty as explained in the main text.
Although only a fraction of realizations is taken into account in each
case, we adapt the notation from Eq. (58) here. In both cases, 8 = 10
equilibration sweeps were employed and M = 50 runs are used to
form the weighted average. Error bars (not including sample-to-
sample contributions) were omitted for clarity as they are negligible
in the upper panel and comparable to the visible fluctuations below.

Weighted averaging based on M = 50 independent runs
applied to the “hardest 20%” actually increases bias at large
values of g = 0.8, cf. the upper panel of Fig. 5. The +¢q
asymmetry in the arithmetic average is further amplified by
weighted averaging, visibly worsening the measurement due
to the lack of diversity among surviving families. However,
the procedure works reasonably well for the “remaining 80%,”
compensating negative bias for large absolute spin overlaps as
is visible in the lower panel of Fig. 5. Still, there is a slight but
significant overcompensation at ¢ & 0.8 which is reminiscent
of “harder” instances. A similar, yet amplified, behavior as
in the upper panel of Fig. 5 is observed at 6 € {2, 5} for the
majority of instances.

Nevertheless, it is possible for weighted averaging over
M runs of size R to reach the quality of single simulations
of size MR, at least for particularly “easy” instances. This is
illustrated in Fig. 6. For the “easiest” instance, a difference in
systematic errors between weighted averaging over M = 50
runs and scaling the population size by the same factor is
barely measurable, even after thousands of repetitions. For
the “hardest” instance, however, ¢ measurements from the
same simulation are correlated since descendants from large
families are present in virtually every replica pair, resulting
in the same artifacts as in Fig. 5. Here larger population sizes
are desperately needed to avoid such behavior and cannot be
replaced by weighted averaging since it is unable to remove
correlation within simulations. If we compare the upper panel
of Fig. 6 to the lower panel of Fig. 4 where data from the
same simulations are shown, we see even more clearly that
6 = 10 is in principle not insufficient for moderate equilibra-
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FIG. 6. Bias in measuring the spin overlap distribution of L = 32
Ising SG instances. Employing weighted averaging (dashed line)
to M =50 independent runs of population size R =2 x 10* is
compared to running single PA simulations (solid line) with pop-
ulation size MR = 10°. Both the “hardest” and “easiest” instance
encountered at f = 2.4 use 0 = 10 Metropolis sweeps throughout
the annealing process. The number of conducted runs of size MR is
10°. Statistical errors (not including sample-to-sample contributions)
are negligible in the upper panel and on the scale of the visible fluc-
tuations below. The insets show the respective overlap distributions
generated according to Sec. V A 3, illustrating the richer structure
for the “hardest” instance.

tion. Thus, the actual bottleneck for ¢ measurements of this
realization is that 6 is small enough for families to regularly
reach sizes no longer manageable at R = 2 x 10*. To under-
line this, we may additionally compare Figs. 1 and 6. The
+¢q symmetry in the former depiction is not in contradiction
to the lack of symmetry in the latter, since simulations with
large families (and therefore correlated ¢ measurements) are
removed in Fig. 1 to allow for the intended comparison (see
also Table I), which is sufficient to restore the symmetry
between +q at the same value of 6 = 10. It also follows from
this comparison that, although the resulting histogram of the
“hardest” instance in Fig. 6 is dominated by correlation arti-
facts, it still outperforms the measurements without weighted
averaging from Fig. 1.

We now turn to the spin-glass order parameter, i.e., the en-
semble average of |g| as discussed in Eq. (27). If we denote the
mean absolute value of all ¢ measurements obtained within
a simulation by |g|, we apply the configurational weighted
average W/[|g|]. This is equivalent to estimating the expected
absolute value based on W[P(q)]. Consequently, one may
hope that bumps as in the upper panels of Figs. 5 and 6
at g ~ +0.8 are sufficiently antisymmetric to cancel when
calculating WJ|q|]. e

In order to probe the bias reduction through W[|q|], we av-
eraged the absolute systematic error within the “hardest 20%”’
and “remaining 80%” of disorder instances, which results in
Fig. 7. Although the difficulty of instances is temperature-
dependent, we presume the groups, originally formed at 8 =

x1072 x1073
. hardest 20% | remaining 80% |
n
fg =M =2
— 4 s—M=5
(= M =10
= 0.5 —sk— M = 50
]
= 2
2
2
&
0 0 rmewRRERRe
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B B

FIG. 7. Disorder average of the absolute bias of configurational
weighted averages applied to |/cﬂ, i.e., the mean absolute value of
g measurements. Disorder instances of the L = 32 Ising SG were
grouped based on their “hardness” at 8 = 2.4, as explained in the
main text. & = 10 equilibration sweeps were used in both panels.
Statistical errors (not including sample-to-sample contributions) are
significantly smaller than the symbols which are only drawn at every
third data point.

2.4, to be a reasonable approximation. For & = 10, systematic
errors decrease through weighted averaging over the whole
temperature range while the factor of bias reduction is way
below M and visibly worsens at lower temperatures. Most
strikingly, it is not even monotonic with respect to M in con-
trast to the case of the observables in Figs. 2 and 3. Again, this
is due to the insufficiency of R = 2 x 10* at low temperatures
and the resulting correlations being amplified by weighted
averaging, thereby altering the otherwise monotonous M de-
pendence.

Hence, there is a crucial difference between ¢ measure-
ments and observables which are not defined on I x I such as
e, ¢, and f. While our data indicates that appropriate weighted
estimators of the latter class reduce systematic errors even for
simulations far from equilibrium, this cannot be said in full
generality for the spin overlap. Insufficient equilibration will
lead to correlated ¢ measurements within the same simulation
whenever R is too small. In the worst case, such correlations
are even amplified by free-energy weights such as in the upper
panels of Figs. 5 and 6. One should therefore carefully mon-
itor equilibration in conjunction with population size before
applying weighted averages to spin overlap observables. To
this end, the symmetry of the measured histogram can be a
useful rule of thumb as well as equilibration metrics, e.g., p;
and others discussed in Refs. [8,12,18].

3. Decay of bias with increasing M

Following this qualitative study, we quantitatively inves-
tigate the reduction of systematic errors with respect to
the number M of independent simulations over which the
weighted average is performed. This is not only decisive for
the efficiency of weighted averaging, but may also provide the
appropriate value of M, if a certain bias level shall be reached.
Wang et al. [8] argued that systematic errors in configurational
PA estimators as well as the free energy are proportional to
R~ !in the limit R — oo. They expected this relation to gener-
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FIG. 8. Ratio of the disorder averages of absolute systematic
errors for single PA runs and for weighted averaging. Fifty randomly
generated L = 32 Ising SG instances at § = 3 were simulated with
the same number of & Metropolis sweeps. Dotted lines represent
the result of substituting the respective least-squares fit of @ x M~*
(shown in Table III) into this ratio instead.

alize to the respective weighted averages of M runs with target
population size R by substituting R — MR [8], indicating an
asymptotic M~ dependence.

The simplest way of testing these claims is to fix an inverse
temperature 8; and consider bias of a given observable at j3; as
a function of M. In fact, we closely follow this strategy for
the Ising SG using the lowest temperature 8y = 3 as bias is
expected to be large in this regime. To prevent cancellation
of systematic errors across different instances, we take the
disorder average of the absolute values of bias measurements.
Finally, we perform least-squares fits of the functional form
a x M~ to the bias data (see Fig. 8 for a visual impression
of the data and fits). The resulting exponents b are shown
in the lower part of Table III and the associated standard
deviation o (b) was calculated by the jackknife [33] approach
applied to the set of 50 disorder realizations. As previously
mentioned, the fact that choosing R = 2 x 10* and 6 < 10 is
not sufficient for reliable ¢ measurements at low temperatures
causes the bias reduction of weighted spin overlap estimators
not to be monotonic with respect to M. We hence refrain from
applying fits to the data for g.

Regarding the Ising FM, systematic errors predominantly
occur in the critical regime around 8 =~ 0.44 and can change
sign, as demonstrated in Fig. 3. To get a notion of “near-
critical” systematic errors, we decided to consider the absolute
bias of a given observable averaged over the temperature

TABLE III. Exponents b obtained from least-squares fits of the
function @ x M~ to bias data in the Ising FM (8 ~ 0.44) and
SG (B = 3), as explained in the main text. Different equilibration
levels are taken into account by varying the number of Metropolis
sweeps 6.

System L Estimator 6 b o(b)
FM 64 Wlel 2 0.36 0.004
FM 64 Wlel 10 0.96 0.076
FM 64 WIF] 2 0.35 0.005
FM 64 WIF] 10 1.02 0.099
FM 64 Woul€] 2 0.32 0.003
FM 64 W€l 10 0.96 0.060
FM 64 Weal X1 2 0.43 0.004
FM 64 WaaelX1 10 0.96 0.061
SG 32 WIel 2 0.53 0.076
SG 32 WIel 5 0.76 0.047
SG 32 Wrel 10 0.88 0.026
SG 32 WIS 2 0.60 0.020
SG 32 WIF] 5 0.85 0.029
SG 32 WIF] 10 0.88 0.023
SG 32 Woul€] 2 0.45 0.061
SG 32 Woul€] 5 0.76 0.108
SG 32 Woul€l 10 0.78 0.106

range 0.42 < B < 0.46. Due to the pronounced peaks of heat
capacity and susceptibility near § = 0.44, this procedure was
conducted for relative bias values. Statistical errors on these
data were obtained by a bootstrapping approach and then
entered the same procedure as described above for the Ising
SG. The exponents estimating a proposed power-law decay of
bias are shown in the upper half of Table III (in this case, o (b)
relates to the standard fit error).

First of all, correctly employed estimators for e, f, ¢, and
x always reduce systematic errors in the measurements we
performed for Ising FM and SG—in contrast to the results
discussed for P(gq). Moreover, exponents obtained for the
Ising FM seem to be relatively independent of the observable
considered. However, the most crucial behavior displayed by
both models is that the rate at which systematic errors are
reduced by weighted averaging strongly depends on equili-
bration. While measurements at & = 10 often result in bias
declining roughly proportional to M~', this relation must
potentially be corrected to 1/+/M or worse if simulations
are far from equilibrium. This is consistent with the picture
that free-energy weights are increasingly dominant in regimes
with poor equilibration, which causes only few simulations to
contribute to the weighted average [8,12,18].

When bias is proportional to M ~b with b € (0, 1), the ratio
between error reduction and computational work worsens for
larger M, which can be seen in Fig. 8. Herein, the reduction
is calculated as the ratio of disorder-averaged absolute bias
of single PA runs and weighted averaging at 8 = 3. Dotted
lines correspond to the least-squares fits related to Table III.
In this representation, the statistical error without sample-to-
sample contributions is negligible, whereas the inclusion of
such fluctuations causes certain error bars at 6 = 10 and 6 =
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FIG. 9. Empirical distribution of — ,Bf , i.e., the negative dimen-
sionless free-energy for different system sizes of the Ising FM at
B = 0.44. Solid lines represent normal distributions with mean and
variance given by the empirical distribution at the respective number
of Metropolis sweeps 6.

5 to overlap. Thus, the data shown are very reliable for the
fixed number of considered disorder realizations, whereas the
number of 50 instances is hardly sufficient to generalize our
results to a larger number of realizations.

To better understand how free-energy weights work in the
background, the distribution of ' and w is studied in the next
section. We want to emphasize that even for the moderate
population size R = 2 x 10* we could not find any drawback
with regards to bias from using the simplified free-energy
weights w defined in Eq. (32) instead of w.

C. Free energy and weight distribution

Previous work predicts F tobe normally distributed if R —
oo [8]. Such behavior is depicted for the Ising FM at 8 = 0.44
in Fig. 9. Since the state space of the small L = 16 system
is accurately sampled even if & = 5 equilibration sweeps are
performed at every temperature, the resulting empirical distri-
bution of —BF is remarkably close to the solid Gaussian curve
having identical mean and variance. In contrast, the L = 128
system in the right panel displays strongly skewed free-energy
histograms at & = 5 and 6 = 60. Despite this poor sampling,
weighted averaging reduces bias for e, f, ¢ and x even for
these parameters, albeit at a remarkably inefficient rate with
respect to M (not shown).

A broad free-energy distribution has immediate conse-
quences for the free-energy weights. If a PA simulation at
the lower tail of the distribution was to be weighted against
a counterpart from the upper tail, we may encounter weight
ratios of exp(15218 — 15212) ~ 403 in the right panel at
6 = 5. In contrast, exp(238.42 — 238.35) &~ 1.07 should be a
reasonable upper bound for the L = 16 system at the same
number of Metropolis sweeps. Thus, we can confirm that
equilibration and system size are crucial for the stability of
weighted averaging [8,12,18].

Note that even in the limit 6 — oo, /t\he finite value of R re-
sults in a strictly positive variance of BF [18], as demonstrated
by the distributions filled with a dotted pattern in Fig. 9.
This 6 = oo limit is realized by replacing the Metropolis
spin updates (used during step (iv) in Sec. II B) by simple
sampling of the energy density of states. This is possible since
for the FM we have access to the exact energy distribution
for finite systems [34]. The remainder of the PA framework
is unchanged and measurements are carried out in the same

é 0.1 6= 2
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FIG. 10. Disorder-averaged empirical distribution of free-energy
weights for the SG model encountered during § = 5 x 10° weighted
averages performed over M = 10 runs. Every distribution consists of
2.5 x 10° individual PA runs and has a mean value of 1/M = 0.1 due
to the normalization. In the present histograms, a bin size of 200! is
used.

manner as for finite 8. We refer to Ref. [22] for a detailed
discussion of this artificial setup.

To see the effects of insufficient equilibration on the dis-
tribution of free-energy weights, consider Fig. 10 showing
weight histograms at different equilibration levels averaged
over 50 instances of the Ising SG. Based on the relatively
symmetric distribution at & = 10, weight frequencies become
increasingly skewed the further from equilibrium PA popula-
tions are. Most astonishingly, the histogram at 6 = 2 displays
a large tail and shows that the most probable weights are
remarkably small. Note that, by construction, the weight
histograms for each contributing realization have mean
1/M = 0.1. Hence such skewed shapes are indicative of
individual contributing disorder realizations with similarly
broad and skewed distributions. At least for smaller systems,
the log-normality of free-energy weights can be conve-
niently checked by comparing the variance prediction formula
Eq. (60) to the actual variance. In doing so, data for the
L e {16, 32} Ising FM are found to be in good agreement,
whereas significant deviations start to occur at L = 64, as is
illustrated in Fig. 11. Atlarge numbers of equilibration sweeps
such as 8 = 40, F is normally distributed and our approxima-
tion is valid. While 6 is lowered, however, more significant
disagreements emerge spanning more than an order of mag-
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FIG. 11. Sample variance of simplified free-energy weights w
when averaging over M = 30 runs in the critical regime of the L =
64 Ising FM. Dashed lines represent the respective predictions of
Eq. (60) becoming increasingly inaccurate further from equilibrium.
Simplified weights w were used as they are closer to the assumptions
made in Sec. IV G. The difference between w and w is marginal,
however. The critical temperature 8. ~ 0.4407 is marked by a verti-
cal line.
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nitude at 6 = 2 and B > 0.48. Similar behavior is observed
at L = 128. Generally speaking, Eq. (60) is accurate if the
distribution of F is sufficiently narrow and close to Gaussian,
i.e., for small systems, particularly well equilibrated runs or
large population sizes. Therefore, it might still be helpful for
simulations of the largest scale.

The already mentioned unnoticeable difference with re-
gards to bias reduction between using w and w is reflected
in mostly indistinguishable distributions (not shown). We
attribute this to the small relative fluctuations of the popu-
lation size that are observed already for the moderate value
R =2 x 10* used here. It is only in the limit § — oo that the
empirical distribution of w is slightly narrower than its non-
simplified counterpart. This is plausible, since w incorporates
additional terms related to the population size which fluctuate
independently of the exponential expression in Eq. (31).

D. Statistical errors

Besides the effect of diminished reduction rates of system-
atic errors, excessive fluctuations of the free-energy weights
pose the threat of seriously increasing statistical errors,
thereby potentially rendering weighted averaging practically
useless [8,12,18]. In this section, we discuss to which extent
these concerns are justified if populations in PA are far from
equilibrium in simulations of the L = 64 Ising FM and L = 32
SG.

To incorporate both systematic and statistical errors in one
quantity, the root-mean-square deviation is considered:

RMSD := v/ bias” 4 variance. (62)

For both systems, we choose 6 = 2 Metropolis sweeps at
every temperature, which is largely insufficient for equilibra-
tion and results in dominant free-energy weights, as shown
in Fig. 10 at B = 2.4. For the Ising FM, we mainly focus on
the critical regime 8 & 0.44, since systematic errors are very
small everywhere else.

Figure 12 shows the RMSD increasing over three orders
of magnitude as the annealing process approaches 8 = f..
While there is no difference for 8 < 0.4, weighted energy
and heat capacity estimators outperform arithmetic averages
at most near-critical temperatures, even if only a small num-
ber of simulations is combined. Since arithmetic averages
over M = 3 and M = 50 runs have similar RMSD values at
the critical point, systematic errors dominate in this regime,
demonstrating a clear advantage of weighted estimators. As
a consequence of the incremental nature of F, weights re-
main dominant even at temperatures way below g =0.5.
This results in the majority of simulations being effectively
disregarded by the weighted average, while systematic errors
are negligible even at & = 2. Most drastically, the weighted
average over M = 50 runs behaves similarly to the arith-
metic average over M = 3 runs at 8 > 0.5 for both e and
¢, as can be seen in the respective insets. Thus, one should
always keep in mind that free-energy weights can remain
exceedingly dominant after a regime of poor equilibration,
and one might want to reconsider whether weighted averag-
ing should be employed at such temperatures. On the other
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FIG. 12. RMSD for different estimators of the internal energy
(top) and susceptibility (bottom) in the L = 64 Ising FM. Arithmetic
averages (dashed lines) over M independent runs employing 6 = 2
equilibration sweeps are compared to the respective weighted esti-
mators (solid lines). The insets show the same data on a logarithmic
scale and a larger range of inverse temperatures.

hand, weighted estimators seem to provide better measure-
ments in the critical regime, even if simulations are far from
equilibrium.

In case of the Ising SG, we decided to define bias in
Eq. (62) as the disorder average of the absolute value of
systematic errors, similar to the consideration in Sec. VB 3.
This certainly results in larger bias values, but provides clearer
evidence for the quality of measurements by preventing sys-
tematic errors for different realizations from canceling. The
variance in Eq. (62) is taken to be the sum of variances mea-
sured on every instance divided by the number of instances
squared, i.e., no sample-to-sample contributions are taken into
account, as we wish to solely consider this fixed set of realiza-
tions.

Regarding the results of employing 6 = 2 equilibration
sweeps to all instances shown in Fig. 13, it is evident that
systematic errors are the main source for deviations. This is
consistent with the fact that bias for the “hardest” instances is
usually larger than statistical fluctuations by a factor of 2 or
3 at these equilibration levels, i.e., it is not artificially created
through our definition of bias. Consequently, weighted esti-
mators outperform arithmetic averaging since the increased
statistical error is overcompensated by the bias reduction. On
the other hand, we again observe that the gain-to-work ratio
of weighted averaging with respect to M is not particularly
favorable, considering for instance the difference between
M =5and M = 25.

In summary, our numerical analysis shows that weighted
averages can reliably outperform arithmetic averages even
at poor equilibration levels, given that statistical errors are
not larger than systematic deviations. However, one should
keep in mind “memory effects” of the free-energy weights as
visible in Fig. 13 when studying phase transitions.
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FIG. 13. RMSD for different estimators of the free energy (top)
and heat capacity (bottom) in the L = 32 Ising SG. Arithmetic aver-
aging (dashed lines) is compared to weighted averaging (solid lines)
and only every fifth data point was drawn. At the present value
of & =2, PA simulations do not properly sample the equilibrium
distribution. A detailed description of the calculation of systematic
and statistical errors is given in the main text.

VI. CONCLUSIONS

We have provided an in-depth demonstration of the en-
hancement of population annealing measurements through
weighted averaging. Since it requires only data which are
already stored, namely, the measured observable and the as-
sociated potential, the overhead of the method is marginal.
Thus, just as population annealing itself, weighted averaging
is highly compatible with massive parallelism and distributed
systems.

From a theoretical perspective, we established a rigorous
mathematical foundation for weighted averaging and devel-
oped the notion of “configurational” estimators to emphasize
that not every estimator can be weighted in the same manner
to obtain asymptotically unbiased results. That is, not every
weighted estimator is a weighted average of the correspond-
ing estimators from individual PA simulations. Moreover, we
rigorously proved that the method applies to a large family of
target distributions in the setting of finite systems. For every
observable considered so far, the appropriate weighted estima-
tors could be derived by expressing the observable in terms
of quantities whose weighted estimators are known (such as
configurational estimators). This approach was demonstrated
for central moments while we strongly suspect it to work for
more involved quantities as well, e.g., the Binder parameter.
In practice, Eq. (60) might be helpful to predict the variance
of free-energy weights in small systems or large populations,
simultaneously allowing to probe log-normality of the weight
distribution.

Based on more than 107 individual population annealing
simulations of the two-dimensional Ising ferromagnet and

spin glass we infer the following key observations: (i) Bias
in energy, heat capacity, free energy, and susceptibility mea-
surements always decreased through appropriate weighted
averaging. (ii) The method also worked for the spin overlap if
population sizes were sufficiently large, but can even increase
bias otherwise. Thus, we strongly recommend to carefully
monitor the equilibration metrics discussed in Ref. [8,12,18]
when performing weighted spin-overlap measurements.
(iii) Our data are in agreement with the picture [8] that sys-
tematic errors of correctly applied weighted estimators are
roughly inversely proportional to the number of combined
runs M in well equilibrated settings. However, this depen-
dency worsened far from equilibrium, potentially showing
a closer resemblance to 1/+/M or 1/+/M. For reasonably
equilibrated simulations and not too dominant free-energy
weights, we even found that weighted averaging over M runs
can result in measurements practically indistinguishable from
scaling the population size by M, as suggested in Ref. [8].
(iv) We could not find any drawbacks in using the simpli-
fied free-energy weights from Eq. (32) when combining PA
simulations of the same target population size, suggesting
that prefactors related to the (fluctuating) population size
do not matter; this is consistent with the method used in
Refs. [8,12,17,19,21]. (v) The feared breakdown of weighted
averaging far from equilibrium was not observed, which is
due to systematic errors dominating when both Ising systems
are poorly equilibrated. Thus, even a mild bias reduction eas-
ily overcomes increasing statistical errors, thereby providing
better estimates than the arithmetic average. Nevertheless, we
expect this to change for very large systems or whenever
dominant free-energy weights occur at times when statisti-
cal errors are prevalent. The latter case may happen if a
regime of insufficient equilibration is followed by anneal-
ing steps where equilibration is easy, such as for the Ising
ferromagnet.

An additional approach to measure spin overlaps in single
population annealing simulations was suggested and com-
pared to ideas in Ref. [8]. Although it has larger statistical
errors, it is easier, faster, parallelizable and compatible with
the blocking analysis from Ref. [18], rendering it superior for
our use case.

In conclusion, the extensive study of weighted averag-
ing has proven once again the flexibility of population
annealing as well as its potential for distributed com-
puting. While parallelization allows trading hardware for
time, weighted averaging enables the converse exchange if
needed, such as compensating population sizes unachiev-
able due to memory restrictions. Paired with plenty of
room for different equilibration routines, annealing sched-
ule tweaks and low-level optimization [5,8,17,18], population
annealing develops into an astonishingly fruitful simula-
tion scheme suggesting that impressive applications lie
ahead.

ACKNOWLEDGMENTS

We thank Lev Barash for providing us with the PAising-
code and other program variants as well as Nico Heizmann
for helpful discussions. Most calculations were performed
using the Sulis Tier 2 HPC platform hosted by the

045303-17



EBERT, GESSERT, AND WEIGEL

PHYSICAL REVIEW E 106, 045303 (2022)

Scientific Computing Research Technology Platform at the
University of Warwick. Sulis is funded by EPSRC Grant No.
EP/T022108/1 and the HPC Midlands+ consortium. More-
over, we acknowledge the provision of computing time on
the parallel computer cluster Zeus of Coventry University.
The work of P.L.E. was supported by Gesellschaft der Freunde
der TU Chemnitz. D.G. acknowledges the support by the
Deutsch-Franzosische Hochschule (DFH-UFA) through the
Doctoral College “IL*” under Grant No. CDFA-02-07. D.G.
further acknowledges support by the Leipzig Graduate School
of Natural Sciences “BuildMoNa.”

APPENDIX A: FREE-ENERGY BIAS FOR
THE ISING FERROMAGNET

Consider the annealing schedule 0 = 8y < 8; < --- ap-
plied to the Ising ferromagnet on a lattice with (constant)
coordination number z and let AB; := B; — Bi_1. Then, we
have f \( —z/2 for § — oo. If this is regarded in

1 N
—Bifi = N InQ; — Bi—1fi-1, (Al)

J

E [ﬁ-(y)]‘[Qk

k=1

Po,...,P,-l} = EBi()I Po. ... Pl [ [ &
k=1

we obtain In Q; &~ (z/2)AB;N asymptotically. Inserting this
back into Eq. (A1), yields the asymptotic relation

fimfin 1 -
— @2+ fii). (A2)
ApB; Bi
This is the discrete version of the differential equation
/ 2/2+y
yx)=-— P (A3)

whose solutions are y = C/x — z/2. Hence, we obtain the
asymptotic relation

bias f; ~ fi +z/2 o B\ (A4)

APPENDIX B: CALCULATIONS FROM SEC.IVD

To shorten the notation, we omit the word “fixed” in the
conditional expectation and denote by J; () the set of indices
of all replicas in y at B;. Note that Ji(y) has cardinality
Rpi(y). Recall that we may assume v(y) > 0 for all k < i
as explained in the main text.

Deriving Eq. (44): Leti > 1 and recall that Q. is measured
at By_1, 1.e., if Py, ..., P;_ are fixed, Oy is a constant for all
k<i:

(Bla)
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Deriving Eq. (45): We denote the conditional probability of obtaining population P; from the ancestor population Pr_;

through resampling at the transition S;_; — B by P(Pi|Po, ..

fixed ancestor populations

TR = (P € TRIP(Pi| Py, ..

., Pr—1) and define the set of reachable populations at §; for

.y Pk—l) > 0}

Now, using the law of total expectation in the first and third equality one obtains
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Recursion based on Eq. (45): Using the law of total expectation, we can shorten the sequence of fixed populations,
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(B2c)

P;,zel*i’iz

vi—1(y)

(B20) vi(y) vH(J/)IE
vi—1(y) via(y)

Y P(PialPo ..., Pia)E [@(y)]’[Qk
U-( ) i—1

> P(PalPo.... Pra) Y E[@_l(y>ﬂgk
k=1

i—1
) g [@my)]"[Qk

(B3a)

Po,...,Pi_2:|

k=1

Po, ... 77[_2] (B3b)

vi—1(y)
Po, ..., 73;3:| (B3c)
k=1
i—2
[ﬁ-z(y)]"[Qk Pos .- Pis}, (B3d)
k=1

where the second invocation of (B2c) substitutes i by i — 1. Repeat this until Py is reached on the left-hand side.
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