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The Ising spin glass in two dimensions exhibits rich behavior with subtle differences in the scaling for different
coupling distributions. We use recently developed mappings to graph-theoretic problems together with highly
efficient implementations of combinatorial optimization algorithms to determine exact ground states for systems
on square lattices with up to 10 000 × 10 000 spins. While these mappings only work for planar graphs, for example
for systems with periodic boundary conditions in at most one direction, we suggest here an iterative windowing
technique that allows one to determine ground states for fully periodic samples up to sizes similar to those for
the open-periodic case. Based on these techniques, a large number of disorder samples are used together with a
careful finite-size scaling analysis to determine the stiffness exponents and domain-wall fractal dimensions with
unprecedented accuracy, our best estimates being θ = −0.2793(3) and df = 1.273 19(9) for Gaussian couplings.
For bimodal disorder, a new uniform sampling algorithm allows us to study the domain-wall fractal dimension,
finding df = 1.279(2). Additionally, we also investigate the distributions of ground-state energies, of domain-wall
energies, and domain-wall lengths.
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I. INTRODUCTION

The problem of an adequate description and understanding
of the behavior of spin systems with strong disorder has
been studied for around forty years by a large number of
scientists in statistical and condensed matter physics as well as,
increasingly, researchers in adjacent fields such as computer
science and mathematics [1]. It is a hard problem in that many
of the well-developed tools of the theory of critical phenomena,
such as the renormalization group, fail to satisfactorily describe
all important aspects of these models, and in that the standard
techniques of numerical simulations are faced with diminish-
ing efficiency in view of exploding relaxation times and the
massive computational demand of the average over quenched
disorder. However, it is also a good and fruitful problem in
that the questions it poses are deeply rooted in the foundations
of statistical mechanics [2] and the simplicity of the models
has led to applications ranging from the physics of structural
glasses to error correcting codes and neural networks [3].

While even fundamental questions such as the values of
the lower and upper critical dimensions of such models are
still under active debate [4–8], there is consensus that a spin-
glass phase appears at nonzero temperatures for short-ranged
systems of Ising spins in at least three dimensions, but no spin-
glass order occurs beyond ground states in two-dimensional
(2D) systems [9–11]. While such 2D geometries might hence
appear less useful for modeling experimentally realized spin-
glass phases, the physics of these systems is in fact rather
interesting in its own right. One intriguing aspect is that for
sufficiently asymmetric coupling distributions a long-range
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ferromagnetic phase can exist at nonzero temperatures, and
it is found that the phase boundary at low temperatures shows
re-entrance or inverse melting, that is, on further cooling a
system in the ferromagnetic phase, order is lost in favor of a
paramagnetic state [12,13]. Another facet is the question of
universality regarding the distribution of exchange couplings;
at zero temperature, the bimodal model has extensive ground-
state degeneracies leading to behavior rather different from the
case of continuous coupling distributions [14]. The resulting
entropy of volatile spin clusters was long believed to lead
to power-law correlations at zero temperature, but there is
now evidence of true long-range spin-glass order [15,16]. The
behavior of this model at low temperatures is determined by a
delicate interplay of the distinct fixed points of the universality
classes of discrete and continuous coupling distributions,
respectively [17–20], and there is still no complete consensus
about universality at finite temperatures [11,21]. It is the subtle
role played by entropic fluctuations, which makes this model
relevant to the finite-temperature transitions observed in three
dimensions [17].

Apart from such theoretical considerations, interest in the
2D models has been fueled by the relative ease in numeri-
cal tractability as compared to higher-dimensional systems.
This goes beyond the general advantage of systems in low
dimensions of providing larger linear system sizes at the
same number of sites: 2D systems in zero external field are
an exception to the NP hardness of ground-state problems
found in systems of higher dimensions [22]. Ground states
on planar graphs can be determined in polynomial time from
the mapping to a minimum-weight perfect matching problem
[23]. This allows to treat significantly larger lattice sizes than
those accessible to simulation methods. The restriction to
planar graphs, and hence periodic boundary conditions in at
most one direction, has been rather inconvenient for certain
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types of studies [24] and, in general, leads to relatively larger
finite-size corrections. Polynomial-time algorithms also exist
for the more general problem of determining the partition
function [25–27]. These methods, based on the evaluation of
Pfaffians, have the advantage of allowing for periodic boundary
conditions, but they are technically more demanding than
the ground-state computations and thus restricted to smaller
system sizes. Only recent advances have allowed to extend
these approaches to system sizes L � 100 [28]. In parallel,
exact sampling techniques for Ising spin glasses at nonzero
temperatures based on the application of “coupling-from-the-
past” [29] or sampling of dimer coverings [30] have recently
been suggested, that are either restricted to or only efficient in
2D [28,31].

A wide range of aspects of 2D spin glasses has been
found to be consistent with droplet theory [32–34]. Droplet
and domain-wall excitations can be directly inserted in zero-
temperature configurations. Domain-wall energies are found
to scale as a power law Edef ∼ LθDW for the Gaussian model
with θDW ≈ −0.28 [14]. Roughly consistent values are found
for the scaling of droplet energies if scaling corrections are
taken into account [35]. No power-law scaling of domain-wall
energies is found for bimodal couplings [14], but droplets in
this model show θ ≈ −0.29, possibly compatible with the
Gaussian case [36]. As the spin-glass phase is confined to
zero temperature for 2D models, ground-state calculations give
direct access to the critical behavior of the spin-glass transition.
In this case, the correlation length exponent is expected to
follow from ν = −1/θ [33]. As η = 0 at least for the Gaussian
model [11], this is the only relevant critical exponent (but see
Ref. [36] for the bimodal case). Domain walls and droplet
interfaces are found to be fractal curves with dimension
df < 2, i.e., not space filling [37]. At least for the Gaussian
case, these fractal curves appear to be compatible, under
certain conditions, with a description in terms of stochastic
Loewner evolution [38–40]. Such consistence together with
further assumptions would suggest a relation between stiffness
exponent and fractal dimension, df = 1 + 3/[4(3 + θ )] [38].
For the bimodal model, on the other hand, the fractal dimension
is possibly different [41–43], but calculations are complicated
by sampling problems since the ground-state algorithms do not
produce the degenerate ground states with the correct weights.
These subtle differences between results for different coupling
distributions and excitation types call for high-precision stud-
ies to distinguish random from systematic coincidences. Some
previous results for θ anddf in the Gaussian model are collected
in Table I.

Here we combine a formulation of the ground-state problem
on planar graphs in terms of Kasteleyn cities [44,45] with a re-
cently suggested efficient implementation of the Blossom algo-
rithm for minimum-weight perfect matching [46]. This allows
us to determine ground states for systems of up to 10 000 ×
10 000 spins on commodity hardware. To extend these results
to the case of periodic boundaries with the smaller scaling cor-
rections expected there, we introduce a hierarchical optimiza-
tion procedure using windows, alike to the patchwork dynam-
ics discussed in Ref. [47], which allows to determine ground
states of fully periodic samples with a constant relative increase
in computational effort as compared to the matching technique
for planar samples. To treat the case of bimodal couplings cor-

TABLE I. Previous estimates of the spin-stiffness exponent θ and
the fractal dimension df of the 2D Ising spin glass with Gaussian bond
distribution.

Ref. θ df max. system size

[48] − 0.281(5) — 8 × 8
[49] − 0.285(2) — 30 × 30
[50] − 0.294(9) — 12 × 12
[37] − 0.29(1) 1.26(3) 120 × 13
[51] − 0.281(2) 1.34(10) 30 × 30
[14] − 0.282(2) — 480 × 480
[52] — 1.25(1) 256 × 256
[42] − 0.284(4) 1.273(3) 256 × 256
[39] — 1.28(1) 720 × 360
[53] − 0.287(4) — 16 × 1024
[54] − 0.282(3) — 12 × 384
[55] − 0.281(7) — 64 × 64
[38] − 0.285(5) 1.27(1) 300 × 300
[41] − 0.287(4) 1.274(2) 320 × 320

This work − 0.2793(3) 1.27319(9) 10 000 × 10 000

rectly, we use a new approach based on an exact decomposition
of the ground-state manifold into rigid clusters that are then
sampled within a parallel tempering framework that guarantees
uniform sampling of ground states to high precision.

The rest of this paper is organized as follows. In Sec. II,
we outline the matching algorithm based on Kasteleyn cities,
introduce the windowing technique that allows to generalize
the method to systems with fully periodic boundaries, and
evaluate the performance of these algorithms. Section III is
devoted to the system with Gaussian coupling distribution,
and we report our results for the average ground-state and
defect energies, the domain-wall fractal dimension as well as
the probability distributions of these quantities for different
boundary conditions. In Sec. IV, we analyze these quantities
for the bimodal model, introducing a new uniform-sampling
technique for the degenerate ground states in this case that
allows us to provide an unbiased estimate of the domain-wall
fractal dimension. Finally, Sec. V discusses the compatibility
of our results with the conjecture df = 1 + 3/[4(3 + θ )] of
Ref. [38] and contains our conclusions.

II. MODEL AND ALGORITHMS

A. The model

We consider the random-exchange, zero-field Ising model
with Hamiltonian

H = −
∑

〈i,j〉
Jij sisj . (1)

Here, 〈i,j 〉 denotes summation over pairs of nearest neighbors.
For the purposes of this study, the underlying lattice is chosen
to have square elementary plaquettes, but the techniques
described here are applicable mutatis mutandis to any regular
planar graph (see, for instance, Refs. [42,56]). The case of
nonplanar graphs is discussed in Sec. II C below.

The couplings Jij are quenched random variables. At zero
temperature, two distinct types of behavior are expected, one
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for discrete and commensurate allowed coupling values and a
second class for distributions with incommensurate or contin-
uous support [15,17–19,57]. We consider one representative of
each class, namely, the symmetric bimodal (±J ) distribution,

P (Jij ) = 1
2δ(Jij − J ) + 1

2δ(Jij + J ), (2)

for the commensurate class and the symmetric Gaussian,

Jij ∼ N (0,1), (3)

as example of the continuous class of distributions.

B. Matching with Kasteleyn cities

It was initially noted by Toulouse that the model (1)
could be dualized and the trivial up-down symmetry of the
states removed by considering the interactions around an
elementary plaquette [58]. Each plaquette with an odd number
of antiferromagnetic bonds is inherently frustrated, such that
in each spin configuration at least one of the elementary
interactions around the plaquette will be unsatisfied. The
energy of the ground state of such a system will hence be
elevated above the ground-state energy of a ferromagnet by an
amount proportional to the total weight of such broken bonds.
If edges of the dual lattice are used to indicate the broken
bonds, these link together to form defect lines on the dual
lattice, emanating and ending in frustrated plaquettes [23]. The
search for a ground state is thus (for a planar lattice) equivalent
to the determination of a minimum-weight perfect matching
(MWPM) on the complete graph of frustrated plaquettes,
where the edge weights correspond to the shortest paths (on
the dual lattice) between each pair of frustrated plaquettes.
For details see, e.g., Refs. [23,42]. As MWPM is a polynomial
problem which is solved efficiently using the so-called blossom
algorithm [59], it was first noted by Bieche et al. [23] that
this allows to calculate exact ground states for relatively large
systems.

In practice, however, the outlined mapping has certain
disadvantages. The weighted distance between each pair of
frustrated plaquettes needs to be determined before the match-
ing can proceed. Since each plaquette could be matched up
with any other, a solution is sought for the complete graph of
frustrated plaquettes. The average number of such plaquettes is
F = αN , where N is the number of spins and α is a disorder-
dependent constant that equals α = 1/2 for the symmetric
distributions considered here. The number of edges, however,
is F (F − 1)/2, increasing quadratically in the system volume.
The original implementation of the blossom algorithm has
complexity O(V 2E), where V is the number of vertices in
the auxiliary graph and E the number of edges [59]. For the
present problem, this corresponds to O(L8) scaling. Memory
requirements are O(L4). While a number of algorithms with
improved worst-case complexity have been proposed, not
all of them are fast and hence useful in practice. We use
here the currently fastest publicly available algorithm due to
Kolmogorov [46]. As it is unlikely that edges with a very large
weight are part of the minimum-weight matching, in practice
only edges up to a certain weight are retained [23]. One has to
proceed carefully here, however, to ensure high success rates
also for larger system sizes. Strictly speaking, the resulting
algorithm is merely quasiexact.

A polynomial-time solution to the Ising spin-glass ground-
state problem on planar graphs based on a somewhat different
mapping was proposed in Refs. [44,45]. This is a rather direct
implementation of the interpretation of the Ising ground-state
search as a maximum/minimum-cut problem. Splitting the
Hamiltonian (1) into three terms as follows,

−H = W+ + W− − W± = K − 2W±, (4)

where K = ∑
〈ij〉 Jij and

W+ =
∑

〈ij 〉
si=sj =+1

Jij , W− =
∑

〈ij 〉
si=sj =−1

Jij ,

W± =
∑

〈ij〉
si �=sj

Jij , (5)

it is clear that the energy is minimized for a configuration
that minimizes W±, which is the weight of the cut or, in
more physical terms the interface, separating up spins from
down spins. Note that the interface can consist of more than
one connected components. As it turns out, such cuts can be
related one-to-one to perfect matchings in an auxiliary graph.
To see this, consider the example shown in Fig. 1. The right
panel shows a configuration of up and down spins on a patch
of the square lattice with free boundaries together with the
corresponding cut of antialigned neighboring spins. The cut
forms a set of closed loops on the dual lattice (red lines). To
represent it as a matching, consider the auxiliary graph shown
on the left of Fig. 1 that replaces each plaquette of the original
lattice (i.e., each node of the dual lattice) by a complete graph of
four nodes, a “Kasteleyn city.” To create a regular lattice graph,
the single outer plaquette of the dual graph is replaced by 4L

individual plaquettes surrounding the original lattice. The cut
on the right can then be represented as a perfect matching on the
auxiliary graph as is shown in the middle panel of Fig. 1. Here,
vertices that do not have cut lines adjacent to them will have all
four vertices of the associated Kasteleyn city matched by the
internal edges, such that after contracting back the Kasteleyn
cities to regular vertices one ends up with the graph shown on
the right, which represents the cut in spin language. To ensure
that a MWPM corresponds to a minimum cut, we assign edge
weights in the auxiliary graph that are equal to the coupling
Jij of the bond in the original graph that is crossed by the bond
in the auxiliary graph. For bonds in the auxiliary graph that do
not correspond to edges in the original graph, in particular the
internal bonds of Kasteleyn cities as well as bonds between the
additional external plaquettes, the weight is set to zero. Finally,
a spin configuration consistent with the loops on the dual graph
found in this way is constructed by flipping the spin orientation
each time a loop line is crossed [44,45].

As the auxiliary graph used here has only 4(L + 1)2

vertices and 6(L + 1)2 + 2L(L − 1) = 8L2 + 10L + 6 edges
(for periodic-free boundaries) as compared to the O(L2)
vertices and O(L4) edges of Bieche’s approach [23], it is
significantly more efficient and, due to the smaller storage
requirements, this approach allows to treat much larger systems
sizes. In practice, we use the Blossom V implementation
introduced in Ref. [46] to perform the MWPM calculations.
The method can be easily generalized to other planar graphs,
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Jij

FIG. 1. Mapping of the Ising spin-glass ground-state problem to a minimum-weight perfect matching. An auxiliary graph is constructed
by expanding each plaquette of the dual lattice into a complete graph K4 of nodes (left). Additional rows and columns of K4 nodes are added
instead of the outer plaquette to make the auxiliary graph more regular. Edge weights on the auxiliary graph are Jij for each bond that crosses a
bond (i,j ) of the original graph and zero otherwise. Then, a minimum-weight perfect matching is determined on the auxiliary graph (middle).
By contracting the K4 vertices again, the matching reduces to a minimum cut on the spin lattice, i.e., a set of closed loops surrounding islands
of down spins in a sea of up spins or vice versa (right). Dashed bonds on the spin lattice correspond to antiferromagnetic couplings Jij < 0,
solid bonds to ferromagnetic ones, Jij > 0.

for instance L × L graphs with periodic boundaries in one
direction. In this case, the two additional lines of external
plaquettes in either the horizontal or vertical direction can be
removed, otherwise the algorithm proceeds in the same way. A
generalization to nonplanar graphs is not possible, however, as
then the one-to-one mapping between solutions of the MWPM
problem and ground states of the spin system breaks down [45]:
if the solution to the MWPM leads to loops that wrap around
the lattice it is possible to find an odd number of loop lines in a
given row or column of the lattice. In this case, it is not possible
to find a spin configuration that is consistent with the lines.

C. Windowing technique for toroidal systems

Such a configuration with an odd number of line segments
in a given row or column of an L × L system with fully
periodic boundaries can be repaired by changing the boundary
conditions in the corresponding direction from periodic to an-
tiperiodic, corresponding to an extra loop wrapping around the
lattice, thus resulting in an even number of lines again. In this
sense, as discussed in Ref. [45], the approach outlined above
finds an extended ground state for a system where the boundary
conditions are added to the dynamical degrees of freedom.
While this can be quite useful, it is not immediately applicable
to the calculation of defect energies and domain walls, where
specific, fixed boundary conditions need to be applied.

Nevertheless, a method for finding ground states for a fixed
choice of periodic boundary conditions can be constructed
from the MWPM approach outlined above, as we will now
show. To achieve this, we successively determine exact ground
states in square windows of size L′ × L′ (L′ < L) with free
boundary conditions, while the spin configuration outside
of the window remains unchanged. By moving this window
randomly over the full L × L lattice, the exact ground state
is typically found after a moderate number of iterations. The
sequence is started by initializing the system in a random spin
configuration {si}. The origin of the window is then chosen
randomly at one of the lattice sites, and the exact ground
state of the spins inside of the window is determined using

MWPM, subject to the additional constraint of a layer of fixed
spins surrounding it. These spins are fixed by placing very
strong bonds with couplingsJstrong between them that cannot be
broken in the solution of the MWPM, for instance by choosing
|Jstrong| >

∑
〈ij〉 |Jij |. We choose Jij = +|Jstrong| for parallel

spins along the boundary of the window and Jij = −|Jstrong|
for antiparallel ones to ensure that these spins do not change
their relative orientation as a result of the MWPM run. This
setup is illustrated in Fig. 2.

As the spins at window boundaries are fixed and the re-
sulting constraint optimization problem is solved exactly, each
iteration of the windowing method decreases the energy of the
total system or leaves it invariant. We observe convergence of
the method after a moderate numbernof iterations. The process
is illustrated in Fig. 3, where we display the overlap sis

0
i with

the exact ground state s0
i for an example disorder configuration

of linear size L = 200 with Gaussian couplings starting from
a random initial spin configuration. It is seen how even the
first optimization with a window of size L′ = L − 2 = 198
leaves only a single (large) cluster excitation over the ground
state. As is seen from the following panels, such excitations can
only be fully relaxed if the window does not intersect them.
Hence the time until convergence is a random variable. To
determine a good set of parameters we performed test runs
for different sizes L and L′ of the system and the window,
respectively, and with a varying number of iterations. The
results show that the necessary number of iterations depends
both on L′ and the initial spin configuration, such that larger
L′ needs smaller n, and if the initial spin configuration is
changed, n will also change. As is intuitively plausible, we
find best results for the largest windows, and so we fixed
the window size to its maximum L′ = L − 2 for all runs. To
decide whether a given run arrives in one of the ground states,
we compared against exact results for system sizes L � 100
produced by the branch-and-cut method implemented in the
spin-glass server [60]. For larger system sizes, we used the
lowest energy found in a sequence of independent runs as an
estimate of the ground-state energy and measured the success
probability Pn({Jij }) as the proportion of runs that ended in
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L

L

FIG. 2. Schematic representation of the windowing technique to
determine ground states for toroidal systems. The dashed square
shows the window and the blue diamonds represent the sites whose
spins will be updated next by the windowing technique, as they are
contained within the current window. Red squares indicate sites whose
spins are fixed in their current orientation with strong bonds, indicated
by the thick black lines. As a result, the MWPM problem will be
solved for the system of red and blue spins with using free boundary
conditions.

this lowest-energy state found or in the exact ground-state
for the system sizes treated by the spin-glass server. The
resulting success probability data, estimated from between
250 (L � 700) to 2000 (L � 150) runs for different initial

spin configurations for each disorder realization, is collected in
Table II. As is clearly seen, the success probabilities are rather
high such that for n = 20, for instance, they are consistently
above 70%. There is almost no size dependence of the average
success probability P n, so the hardness of finding ground states
for the fully periodic torus lattices with the proposed method
does not increase with system size.

Still, from the data presented in Table II, it is clear that not
every run of the windowing method converges to the ground
state. To further increase the success probability of the method,
we use repeated runs and pick the lowest energy found there
[61]. If the success probability for a given sample in runs of
n iterations is Pn({Jij }), then the probability of finding the
ground state at least once in m independent runs is

Ps({Jij }) = 1 − [1 − Pn({Jij })]m, (6)

and this can be tuned arbitrarily close to unity by increasing
m. If we set a desired success probability of, say, Ps = 0.999,
we can use Eq. (6) to determine the required number m of
repetitions. For each realization we hence find

m({Jij }) = ln[1 − Ps]/ ln[1 − Pn({Jij })].
In Table III, we show the values of m averaged over 100
disorder realizations as a function of L and n. Clearly, the
dependence on system size is weak. The total computational
effort of such repeated runs is proportional to m × n. From
the values of n tested in Table III, this effort is found to be
minimal for n = 10, and we use m = 8 repetitions independent
of system size to find the exact ground state in approximately
99.9% of the samples. As an additional protection against
potential outliers we demand that the lowest-energy state found
in these m = 8 runs must have occurred at least three out of
these eight times. If this is not the case, another eight runs are
performed etc. This adds only a tiny fraction of extra average

FIG. 3. Application of the windowing method to find a ground state of a sample with toroidal boundaries. Spins on white lattice sites
are consistent with the ground-state orientation s0

i , i.e., sis
0
i = +1, black spins are oppositely oriented, i.e., sis

0
i = −1. In a random initial

configuration, the spins have sis
0
i = ±1 uniformly at random (top left). Exact ground states are found in windows of size (L − 2) × (L − 2)

placed at a random location (red dotted lines), with the remaining spins acting as fixed boundaries. After a few iterations, all spins have the
ground-state orientation (bottom right).
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TABLE II. The average probability P n of finding the ground state
(success probability) for 20 � L � 1000, and for different numbers
n of iterations. Results are averaged over 100 disorder realizations.

L\n 5 10 15 20 25 30

20 0.276 0.561 0.671 0.728 0.762 0.782
50 0.317 0.603 0.705 0.756 0.790 0.805
80 0.315 0.592 0.700 0.752 0.783 0.806
100 0.315 0.594 0.700 0.745 0.779 0.789
150 0.326 0.611 0.714 0.768 0.797 0.821
200 0.323 0.610 0.712 0.765 0.792 0.814
350 0.340 0.628 0.729 0.789 0.822 0.833
500 0.317 0.589 0.683 0.740 0.771 0.801
700 0.329 0.612 0.723 0.770 0.782 0.818
1000 0.322 0.609 0.713 0.764 0.779 0.807

runtime, but it will be able to catch a few of the 0.01% of
samples where the ground state would otherwise not be found.
As a test, we applied this combined technique to the samples
for L � 100 where the exact ground-state energy is known and
it arrived in a ground state in all cases.

D. Performance of the algorithm

It is interesting to see how the matching based on Kasteleyn
cities for planar instances as well as the windowing method out-
lined above for toroidal graphs fare in computational efficiency
as compared to the more general approaches implemented
in the spin-glass server [60]. The run times in seconds on
standard hardware are shown for periodic-free boundary con-
ditions (PFBC) and for periodic-periodic (toroidal) boundaries
(PPBC) as compared to the corresponding results of the spin-
glass server for system sizes L � 100 in Table IV. For PFBC,
the matching approach is always much faster than the method
used by the spin-glass server, which is based on a modified
exact numeration technique known as branch-and-cut. For
PPBC, the windowing technique introduces a certain overhead,
such that a crossover is observed with branch-and-cut being
faster for L � 20 and the windowing method winning out for
L � 20.

TABLE III. The average number m of repetitions required ac-
cording to Eq. (6) for runs of the windowing technique with n

random placements of the window per run to ensure an overall success
probably of Ps = 0.999.

L\n 5 10 15 20 25 30

20 23.5 9.3 6.9 5.8 5.3 4.9
50 19.7 8.2 6.2 5.3 4.7 4.5
80 20.2 8.6 6.4 5.4 4.9 4.4
100 20.0 8.5 6.4 5.6 4.9 4.5
150 19.2 8.1 6.0 5.0 4.5 4.0
200 19.2 8.3 6.1 5.3 4.7 3.6
350 18.4 7.4 5.8 4.8 3.9 3.8
500 21.2 8.5 7.0 6.0 5.0 4.6
700 20.3 7.9 6.3 5.8 4.6 5.0
1000 20.0 8.5 6.4 5.1 5.0 4.5

TABLE IV. Average run time (in seconds) for determining a
ground state of samples with periodic-free boundaries (PFBC)
and periodic-periodic boundaries (PPBC), respectively, using the
minimum-weight perfect matching (MWPM) approach based on
Kasteleyn cities for PFBC and the windowing technique (WT) for
PPBC as compared to the times reported by the spin-glass server
(SGS) on the same samples.

L PFBC PPBC

SGS MWPM SGS WT

8 0.00228 0.000203 0.00560 0.02468
10 0.01330 0.000424 0.01950 0.04462
20 0.18330 0.002361 0.22820 0.19119
50 3.38740 0.024184 3.93040 2.18788
80 31.0738 0.069104 35.7004 6.42005
100 150.218 0.115761 189.501 9.81247

The scaling of run times with system size is illustrated in
Fig. 4. The algorithm of the spin-glass server utilized here is
based on branch-and-cut [62], which corresponds to a combi-
nation of a cutting plane technique with the iterative removal
of branches of the search tree that cannot contain a solution.
While this approach is quite efficient, and outperforms other
exact methods for hard problems, its run-time still scales expo-
nentially with system size. The super-polynomial behavior is
clearly seen in the doubly logarithmic representation of Fig. 4.
For the matching approach for PFBC, the implementation used
here has O(L6) worst-case scaling [46]. As the straight line
indicates, we indeed see clear power-law behavior, but the
average run times probed here increase much more gently with
system size. A power-law fit of the form

t(L) = AtL
κ (7)

to the data yields κ = 2.22(2), so the scaling is only slightly
worse than linear in the volume in the considered range of
system sizes.
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FIG. 4. Average time t per sample to determine ground states of
systems with PFBC and PPBC forL × L samples using the minimum-
weight perfect matching (MWPM) method for periodic-free sam-
ples (PFBC), the windowing technique (WT) for periodic-periodic
samples (PPBC), and the spin-glass server (SGS), respectively. The
straight lines are fits of the form (7) to the data, whereas the lines for
the SGS data are just interpolations to guide the eye.
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Finally, for the windowing technique built on top of MWPM
for the PPBC samples, we find an overhead that is to a very
good approximation independent of system size, such that
calculations for PPBC are by a factor of 80 more expensive
that those for samples with PFBC for the chosen confidence
level of Ps = 0.999, corresponding to the n = 10 iterations
and m = 8 repetitions. A fit of the form (7) to the data for
PPBC yields κ = 2.20(2), perfectly consistent with the results
for PFBC. The ratio of amplitudes At is estimated as At =
83 ± 12, consistent with the expected value of slightly above
80 resulting from the additional requirement of a threefold
occurrence of the ground state.

III. RESULTS FOR GAUSSIAN COUPLINGS

For the Gaussian distribution (3) the set of couplings for
which exact degeneracies occur is expected to be of zero mea-
sure. The present techniques based on matching hence directly
yield the correct distribution of states at zero temperature.

A. Ground-state energies

The average ground-state energy per spin, 〈e(L)〉J , depends
on the coupling distribution. Additionally, we expect finite-size
corrections which in turn are sensitive to the boundary condi-
tions employed [55,63,64]. Following Ref. [55], one expects a
Wegner correction exponent ω(d) = (6 − d) + · · · to leading
order, whereas numerically one finds [9] ω ≈ 1.0 for Ising
spin glasses in d = 3 and ω ≈ 0.75 for d = 2 [11]. As then
−(d − θ ) + ω ≈ −3.03 in two dimensions, this implies that
nonanalytic corrections are substantially suppressed against
the leading analytic ones in this quantity. We hence assume the
following general form for the size dependence of the average
ground-state energy:

〈e(L)〉J = e∞ + AEL−(d−θ) + CEL−1

+DEL−2 + EEL−3 + . . . . (8)

The presence of a term proportional to L−(d−θ) follows from
standard arguments about the scaling of the correlation length
and the free-energy density [65], taking additionally into
account that for a T = 0 critical point the 1/β2 prefactor in the
relation e = (−1/β2)d(βf )/dT is critical, as well as making
use of the relation ν = −1/θ [55]. Although this derivation
should apply for any T = 0 critical point, for the spin glass
it is tempting to attribute the occurrence of the Ld−θ term to
the presence of domain-wall defects that are trapped in the
system due to periodic boundary conditions. In Ref. [55], it is
suggested to reduce the number of parameters in Eq. (8) by
considering the energy ê(L) per bond instead of the energy
e(L) per site. If one assumes that depending on the boundary
conditions this quantity has a 1/L correction for any free edge
and a 1/L2 correction for any corner, for the square lattice with
its two bonds per site we expect

2〈ê(L)〉J = e∞ + ÂEL−(d−θ) + ĈEL−1 + D̂EL−2

up to higher-order corrections. For free-free boundaries, one
has E(L) = L2e(L) = (2L2 − 2L)ê(L) and hence

〈e(L)〉J = e∞ + ÂEL−(d−θ) + (ĈE − e∞)L−1

+ (D̂E − ĈE)L−2 − D̂EL−3, (9)

where a term of order L−(d−θ)−1, which for θ < 0 is
asymptotically smaller than 1/L3 has been neglected.
This is of the form of Eq. (8), but with the 1/L3 term
merely being produced by the 1/L2 correction in ê(L), such
that there are only five fit parameters in (9) as compared
to six parameters in Eq. (8). For periodic-free boundaries
there is a free edge but no corners, such that D̂E = 0 and
E(L) = (2L2 − L)ê(L) = L2e(L), and we find

〈e(L)〉J = e∞ + ÂEL−(d−θ) + (ĈE − e∞/2)L−1

− (ĈE/2)L−2, (10)

where again a term proportional to L−(d−θ)−1 was omitted. For
periodic-periodic boundaries, on the other hand, one should
have ĈE = 0 = D̂E , and hence only a correction proportional
to L−(d−θ). We will test the validity of these assumptions for
our data below.

Beyond the mean ground-state energy, it is interesting
to study the shape of the energy distribution over different
disorder samples. It has been shown in Ref. [63], based
on results of Wehr and Aizenman [66], that the width of
this distribution scales as L
f with 
f = −d/2. Below, we
investigate the distribution shape by direct inspection and by
analyzing the scaling of its kurtosis defined by

Kurt[e] = 〈(e − 〈e〉J )4〉J
[〈(e − 〈e〉J )2〉J ]2

(11)

with system size, where Kurt[·] = 3 for a Gaussian distribu-
tion.

B. Domain-wall calculations

The analysis of defect energies provides a convenient way
of studying the stability of the ordered phase. In the most
common approach, one inserts system-spanning domain walls
into the system by a suitable change of boundary conditions
[67]. The energy of such excitations scales as a power of their
linear size [50],

Edef ∝ Lθ, (12)

where the spin-stiffness exponent θ depends on the symmetries
of the model as well as the lattice dimension d. In a simple
generalization of Peierls’ argument for the stability of the
ferromagnetic phase, one concludes that a spin-glass phase is
stable against thermal fluctuations up to some Tc > 0 if θ > 0
and unstable for θ < 0, with θ = 0 denoting the marginal case.
The conceptually most direct way of inserting a domain-wall
excitation is to compute a ground-state for free boundaries in,
say, the x direction as a reference and to then fix the boundary
spins along the x boundary in opposite relative orientations as
compared to this state for a second ground-state calculation.
The excess energy in the second run corresponds to the energy
contained in the domain wall. This setup is sometimes referred
to as domain-wall boundary condition [14,54]. An alternative
proposed initially by Banavar [67] uses the difference between
the ground-state energies for periodic and for antiperiodic
boundaries in x direction. The resulting value of �E = EP −
EAP is potentially the difference of energies of two configura-
tions with such domain walls as the periodicity of both P and
AP boundaries can force a domain wall into the system [68,69],
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but this difference is found to nevertheless scale with the same
stiffness exponent as for domain-wall boundaries [54].

For calculations based on MWPM alone one needs to apply
free boundaries in y direction in order to ensure planarity of
the lattice. With the help of the windowing technique it is
also possible to implement this procedure for samples with
periodic-periodic boundaries, however. In general we expect
the leading scaling to be accompanied by scaling corrections
of the form [64]

〈|�E(L)|〉J (L) = AθL
θ (1 + BθL

−ω) + Cθ

L
+ Dθ

L2
+ · · · ,

(13)

where ω denotes the leading corrections-to-scaling exponent,
and 1/L and 1/L2 are analytic corrections [65]. For the setup
with domain-wall boundary conditions significantly stronger,
corrections have been observed than for the P-AP situation [54]
and we hence concentrate on the latter approach here.

Apart from the energy density of domain walls or droplet
boundaries another contentious question is that of the geo-
metric nature of excitations in spin glasses. While it is not
ultimately clear whether droplets or domain walls are the
fundamental objects in this system or rather some more esoteric
form of excitations such as sponges exist [70–72], it is inter-
esting to see whether domain walls are stochastically fractal
objects and if the corresponding fractal dimension df < d or
rather domain walls can be space filling [73]. We determined
the domain wall as the set D of all dual bonds for which

[Jij sisj ](P)[Jij sisj ](AP) < 0. (14)

The inclusion of the couplings Jij in the product takes care
of the fact that across the edge where the boundary condition
is changed from P to AP the spins will be in different relative
orientation before and after the change, but this is merely a
consequence of the flip Jij → −Jij of the couplings there
and should not be counted as a part of the induced domain
wall. We denote by � the number of (dual) edges in the set D.
Following the usual box-counting argument, scaling according
to 〈�〉J ∼ Ldf defines the domain-wall fractal dimension df .
As for the defect energies we anticipate the presence of
corrections, leading to the scaling form

〈�〉J (L) = A�L
df (1 + B�L

−ω) + C�

L
+ D�

L2
+ · · · . (15)

C. Periodic-free boundaries

For the periodic-free setup (PFBC) we used the MWPM
approach for periodic and antiperiodic boundaries in x

direction and system sizes ranging from L = 8 up to
L = 10 000. For L � 350 we generated 106 disorder
configurations, while for larger systems the number of replicas
is gradually reduced down to about 300 for L = 10 000, see
the details collected in Table V. We used the MIXMAX random
number generator [74,75], which has provably good statistical
properties and also passes all of the tests in the suite TESTU01
[76]. As an additional check in view of the high-precision
nature of the present study, part of our calculations were
repeated with Mersenne twister [77]. All results were found
to be perfectly consistent within error bars.

TABLE V. The number of disorder realizations for different
boundary conditions, coupling distributions and system sizes.

L PFBC Gaussian PPBC Gaussian PFBC bimodal

8 1 × 106 1 × 105 1 × 105

10 1 × 106 1 × 105 1 × 105

20 1 × 106 1 × 105 1 × 105

30 1 × 106 1 × 105 1 × 105

40 1 × 106 1 × 105 1 × 105

50 1 × 106 1 × 105 1 × 105

80 1 × 106 8 × 104 1 × 105

100 1 × 106 8 × 104 1 × 105

150 1 × 106 1 × 105 1 × 105

200 1 × 106 5 × 104 8 × 104

350 5 × 105 5 × 104 8 × 104

500 5 × 105 3 × 104 5 × 104

700 5 × 105 1 × 104 3 × 104

1000 3 × 105 1 × 104 1 × 104

1500 1 × 105 7 × 103 5 × 103

2000 5 × 104 1 × 103 3 × 103

3000 3 × 104 640 1505
4000 2 × 104

5000 3 × 103

7000 400
8000 455
10000 265

We start by considering the ground-state energies. Here, we
use the results for both P and AP boundary conditions. They
differ from each other, on average, by far less than the statistical
errors would suggest, but this is due to the fact that for each
sample both energies are highly correlated. For studying the
average ground-state energy, we hence calculated the average
Ē = (EP + EAP)/2 and estimated statistical errors for 〈Ē〉J
through the variation over disorder samples. As the data in
panel (a) of Fig. 5 show, the finite-size corrections to scaling are
relatively small, with the result for L = 10 only being about 4%
above the asymptotic value. Due to the large range of system
sizes and high statistics in disorder samples we get a stable
result for the full nonlinear five parameter fit of the form (10)
to the data with a quality of fit1 of Q = 0.81. For the asymptotic
ground-state energy, we find

e∞ = −1.314 787 6(7),

while the spin-stiffness exponent θ = −0.273(65) from this
fit.2 If we fix θ at the value θ = −0.2793 found below from
the defect energy calculations for the PFBC boundaries, the

1Q is the probability that a χ 2 as poor as the one observed could
have occurred by chance, i.e., through random fluctuations, although
the model is correct [92].

2Note that hence the form (10) is found to describe the data perfectly
well, in contrast to the corresponding form used in Ref. [55], cf.
Eq. (22) there, which is not consistent with the equation derived here.
We also attempted a more general fit with unrestricted amplitudes for
the 1/L and 1/L2 terms and found the resulting estimate of e∞ as
well as the amplitudes to be consistent with the fit discussed in the
main text.
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FIG. 5. (a) Disorder-averaged ground-state energy per site 〈e〉J =
〈Ē/L2〉J for PFBC and Gaussian couplings together with a fit of
the form (10) to the data in the range L = 10, . . . ,10 000. (b)
Average defect energies 〈|�E|〉J for the same system as calculated
from the difference in ground-state energies between periodic and
antiperiodic boundary conditions in the x direction. The points show
our data for 8 � L � 10 000 and the solid line represents a fit of
the form 〈|�E|〉J (L) = AθL

θ + Cθ/L
2 to the data. The inset shows

the correction 〈|�E|〉J (L) − AθL
θ plotted against 1/L2 illustrating

that this single term describes the corrections very well. (c) Average
length � of the domain-wall in the overlap of ground states for periodic
and antiperiodic boundaries in x direction and free boundaries in y

direction (PFBC boundaries). The line shows a fit of the functional
form 〈�〉J = A�L

df to the data for L � Lmin = 40. The inset shows a
blow-up of the deviations for small L.

FIG. 6. Overlap configuration of the ground states for P and
AP boundaries for a L = 10 000 disorder realization of the PFBC
Gaussian system. The red line demarcates the domain wall which
traverses � = 233 141 dual links.

asymptotic ground-state estimate e∞ is unaltered from the
above value up to the given number of digits. On gradually
increasing Lmin we find statistically consistent fits that, how-
ever, become less and less stable as the number of degrees of
freedom is reduced. The resulting estimate of e∞ is unaltered
within statistical errors.

Our data for the defect energies are shown in Fig. 5(b).
We find scaling corrections to be small and a pure power-law
fit without corrections yields a quality of fit Q = 0.37 for
L � Lmin = 50. The corresponding estimate of the stiffness
exponent is θ = −0.2798(4). Corrections can hence only be
clearly resolved for L � 50. There, we find that the data are
very well described by a single correction term proportional to
1/L2, cf. the inset of Fig. 5(b), where we show the residual
contribution 〈|�E|〉J − AθL

θ plotted against 1/L2. Our θ

estimate from this fit is

θ = −0.2793(3)

with Q = 0.16 when including all lattice sizes. Gradually
increasing Lmin does not reveal any discernible drift in the
estimate for θ . Since we have one free boundary one might have
expected the presence of a 1/L correction, which is clearly
present in the ground-state energy itself according to the fit
following Eq. (10). In the energy difference �E, however, this
contribution cancels out since the couplings along the free edge
are absent in both samples. If we nevertheless include such a
term in the fit, its amplitude is found to be consistent with zero.
We are not able to clearly resolve a Wegner correction ∝L−ω,
which is not surprising since, as discussed above, we expect it
to be clearly weaker than 1/L2.

We finally turn to the domain-wall length. Figure 6
shows a sample configuration with L = 10 000 illustrating the
meandering nature of the domain wall. For the average
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domain-wall length, we find very clean scaling for PFBC
as is seen from our data depicted in Fig. 5(c). A fit of the
pure power-law form 〈�〉J = A�L

df yields a fit quality of
Q = 0.56 for Lmin = 40. The corresponding estimate of the
fractal dimension is

df = 1.273 19(9).

The deviations from a pure power law visible for system sizes
L < 20 are rather small and not well described by a single
correction term. We hence prefer to take them into account
by simply omitting data from the small-L side instead of
performing corrected fits. On systematically varying Lmin in
these fits, we find a drift only for Lmin � 30 and mutually
consistent results for larger Lmin.

D. Periodic-periodic boundaries

For fully periodic or toroidal boundaries (PPBC), we use
the windowing technique discussed above in Sec. II C to find
exact ground states in more than 99.9% of the cases. Due to the
increase in effort by the constant factor of 80 resulting from
the windowing technique, we reduced the maximum system
size a bit and considered lattices in the range 8 � L � 3000.
Additionally, the number of disorder realizations considered
was reduced correspondingly, the exact numbers are shown in
Table V.

Our data for the ground-state energies for PPBC are shown
in Fig. 7(a), illustrating that finite-size corrections in this case
are tiny, even much weaker than for the PFBC case. According
to the discussion above, for the ground-state energies we do
not expect the presence of analytic corrections for PPBC, and
so we assume a scaling form

〈e〉J = e∞ + AEL−(2−θ). (16)

Fits of this form work very well and yield fit qualities of Q >

0.4 for all Lmin � 10. For Lmin = 16, we find

e∞ = −1.314 788(3)

as well as θ = −0.35(14) and A = 1.51(65) with a good Q =
0.60. This fit is shown together with the data in panel (a) of
Fig. 7.

For the defect energies, the data again show clear power-law
scaling with L, see Fig. 7(b). For L � Lmin = 50, we get an
excellent fit (Q = 0.74) for the pure power-law 〈|�E|〉J =
ALLθ with θ = −0.2778(14). Regarding scaling corrections,
it turns out that the size range where they are visible is rather
small. As the inset of Fig. 7(b) shows, corrections are well
described by a single 1/L2 term, consistent with the findings
for the PFBC case. A corresponding fit for Lmin = 10 yields
high quality with Q = 0.92 and

θ = −0.2778(11).

A systematic trend on successively increasing Lmin is not
visible.

Regarding the domain-wall length, we again find only tiny
scaling corrections, which cannot be resolved for any L > 20.
To avoid any risk from spurious remnant corrections, we take
Lmin = 40 for the uncorrected fit 〈�〉J = A�L

df and arrive at

df = 1.2732(5),
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FIG. 7. (a) Average ground-state energies for PPBC and Gaussian
couplings together with a fit of the form (16) to the data in the range
L � Lmin = 16. (b) Scaling of defect energies for the Gaussian model
with fully periodic boundary conditions. The solid line shows a fit of
the form 〈|�E|〉J (L) = AθL

θ + Cθ/L
2 to the data. The inset shows

the correction 〈|�E|〉J (L) − AθL
θ plotted against 1/L2 illustrating

that this single term describes the corrections very well. (c) Scaling
of the length of the domain wall between P and AP ground states
for the Gaussian PPBC case. The solid line shows a fit of the form
〈�〉J = A�L

df to the data with Lmin = 40. The inset shows a detail of
the main plot for small L.

which yields Q = 0.73. This fit is shown together with the data
in Fig. 7(c). Comparing the results for θ and df between the
PFBC and PPBC cases we see that they are in perfect agreement
with each other, indicating that the results truly probe the
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asymptotic regime and acting as an ex post verification of the
correctness of the windowing technique for the PPBC case.

E. Probability distributions

When investigating the ground-state and defect energies as
well as the domain-wall lengths, besides looking at the average
values reported above it is also instructive to study the full
distributions of these quantities over disorder samples. The
width 〈(e − 〈e〉J )2〉J of the distribution of ground-state ener-
gies per spin shows power-law scaling according to L
f , where
we find 
f = −0.9995(3) for PFBC and 
f = −1.002(1)
for PPBC, consistent with the theoretical expectation [63]

f = −d/2. The latter follows from a standard argument
of decomposition of the system into effectively uncorrelated
subsystems, such that the total energy is a sum of independent
contributions. As a result, in the thermodynamic limit the
distribution narrows to a delta peak, consistent with the fact that
the ground-state energy is self-averaging [78]. To investigate
the shape of the distribution, we studied its kurtosis defined
in Eq. (11). Kurt[e] is shown in Fig. 8(a) for the PFBC
case, where it is found to be consistent with 3 to within
statistical errors for all lattice sizes L � 20, indicating that the
distribution of ground-state energies is in fact Gaussian [79].
This is in contrast to systems with long-range interactions such
as the Sherrington-Kirkpatrick model, where non-Gaussian
distributions are found [63].

For symmetric coupling distributions the histogram of
defect energies for P and AP boundaries is also symmetric
and so has zero mean. It is expected that the standard deviation
σ (E) has the same asymptotic scaling behavior as the modulus
|�E|, and this is consistent with our observations. Considering
the data for σ (�E) for PFBC, we use a pure power-law
fit with L � Lmin = 30 to find θ = −0.2793(3) (Q = 0.55).
For PPBC, on the other hand, the same analysis yields θ =
−0.279(2) and Q = 0.81 for the same range. In Fig. 8(b),
we show the defect energy distribution for PFBC systems
for a number of different lattice sizes, rescaled by the factor
Lθ with θ = −0.2793 describing the decay in width. As the
Gaussian distribution with the same mean and width shows,
the defect energy distribution is clearly not normal, but instead
has much heavier tails.3 This is confirmed by an inspection
of the distribution kurtosis, Kurt[�E], which is found to
be consistent with Kurt[�E] = 4.70(2) for systems of size
L � Lmin = 20.

The standard deviation of the distribution of domain-wall
lengths is found to have the same scaling as the mean, i.e., it is
asymptotically proportional to Ldf , suggesting a complemen-
tary way of determining the fractal dimension. This approach
yields estimates of df = 1.2740(3) for PFBC (Lmin = 40,Q =
0.34) and df = 1.276(2) for PPBC (Lmin = 50,Q = 0.61),
respectively. The result for PFBC is slightly high as compared
to the result from the mean, but still statistically consistent:
the deviation is 2.6 times the combined error bar, but this
does not take into account that the two error estimates are

3We note that there might be a relation between the behavior of the
defect-energy distribution at vanishing energies and the question of a
multiplicity of states in spin glasses [93].
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FIG. 8. (a) Scaling of the kurtosis Kurt[e] of the distribution of
ground-state energies per spin for the Gaussian model with PFBC
as a function of system size. For L � 20, it is consistent with
the value Kurt[e] = 3 of a normal distribution. (b) Distribution of
defect energies |�E| for the same model, rescaled with the expected
asymptotic behavior ∝Lθ with θ = 0.2793. The solid line shows a
Gaussian distribution of the same mean and variance. (c) Distribution
of domain-wall lengths � for the PFBC Gaussian case, rescaled
according to the limiting form ∝Ldf with df = 1.273 19. The solid
line represents a lognormal distribution fitted to the empirical data.

correlated and so the combined fluctuation is likely higher than
the naive estimate [80,81]. The two PPBC estimates are fully
consistent. The distribution of domain wall lengths is found
to be clearly non-Gaussian, with a kurtosis that is consistent
with Kurt[�] = 3.656(4) for systems of size L � Lmin = 20.
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It was suggested in Ref. [41] that the distribution might be in
fact lognormal. Our data for the distribution of � for PFBC
are shown in Fig. 8(c), together with a fit to a lognormal
distribution. As is apparent, it describes the data reasonably
well close to the mode, but there are significant deviations in
the tails.

IV. RESULTS FOR BIMODAL COUPLINGS

For bimodal couplings there is a huge ground-state degen-
eracy. As has been demonstrated with numerical calculations
[25,26] and also shown rigorously [82], this model even has
a finite ground-state entropy, indicating that the number of
ground states grows exponentially with system size. It turns
out to be a challenge to fulfill the equilibrium requirement of
ensuring that all such states are sampled with equal probability.

A. Uniform sampling of ground states

For the case of systems with ground-state degeneracies,
the solution to the matching problem described in Sec. II C
is not unique. There are several, possibly many solutions to
the matching problem that have the same minimal weight. In
practice, the implementation of the matching algorithm used
will return an arbitrary solution out of this set, where the
state chosen depends on the specific implementation of the
algorithm used (for instance on the order in which nodes and
edges are examined) and the state returned might or might
not be reproducible between runs.4 Clearly, this setup is not
suitable for sampling such states with a prescribed probability
weight.

One way of solving this problem and ensuring uniform
sampling of states might be to break the degeneracy in a way
such that each ground state is preferred the same number of
times by a chosen procedure. If one examines a pair of ground
states, one will find that they differ by the overturning of a
set of disjoint, but singly connected clusters of spins. As, by
definition, this procedure does not change the overall energy,
this corresponds to a set of “free” spins [83]. The degeneracy
can be lifted by adding some small perturbation to the bonds,
i.e.,

Jij (κ) = Jij + κεij , (17)

with a continuous, symmetric distribution of the random
variables εij , a natural choice being the standard normal
distribution, εij ∼ N (0,1). As the spectrum of states for the
bimodal model is gapped [26], if κ is chosen sufficiently small
the ground state of the system with couplings Jij (κ) will also be
a ground state of the system with κ = 0. Considering a cluster
of free spins for a symmetric distribution of εij , the sum of the
noise terms εij along the bonds on the cluster boundary will
have either sign with the same probability of 1/2. Hence one
half of the realizations of εij should lead to this cluster being
in one orientation and the other half to it being in the reversed
orientation, implying uniform sampling of degenerate ground
states. A similar approach was used in Refs. [43,84]. As we

4The energy of the state returned, on the other hand, is of course
always the same.

discuss elsewhere [83], however, clusters that touch each other
are not independent and hence the procedure leads to a strongly
nonuniform distribution of sampled states.

Uniform sampling is achieved via a new technique based on
a combination of combinatorial optimization in the form of the
MWPM algorithm and Markov chain Monte Carlo [83]. We
use MWPM to exactly determine the set of rigid clusters in
the ground-state manifold, i.e., the set of connected regions
such that the spins inside of them have the same relative
orientation in all ground states. In a second step, we then
perform a parallel tempering simulation [85] with updates that
are a combination of flipping individual rigid clusters and a
nonlocal cluster-update move [86]. Details of the procedure as
well as benchmarks will be presented elsewhere [83].

B. Ground-state and defect energies

For the ground-state energy the presence of degeneracies
and sampling bias is not relevant. We hence used the regular
MWPM procedure to determine ground-state energies for pairs
of samples with periodic and antiperiodic boundaries and the
resulting defect energies. For these quantities we restricted our
calculations to the case of PFBC as this allows for treating
larger system sizes, but studies of PPBC would also be possible
using the windowing technique. The range of system sizes and
number of realizations for each size are summarized in the
fourth column of Table V. The average ground-state energy
per spin is shown in Fig. 9(a). Inspecting the general scaling
ansatz (10) and taking into account that we expect θ = 0 for this
model (see below), we should only have analytical corrections
proportional to 1/L and 1/L2 up to O(L−3), and indeed we
find a good fit (Q = 0.18) of this functional form for the range
L � Lmin = 20, yielding

e∞ = −1.401 922(3).

This fit is shown together with the data in Fig. 9(a). No drift of
e∞ is visible on further increasing Lmin.

The defect energies resulting from this procedure are shown
in Fig. 9(b), indicating that for this model 〈|�E|〉J converges to
a finite value instead of decaying away to zero. This is consis-
tent with previous findings [14,57]. If we assume a power-law
decay as prescribed by Eq. (13) and ignore the correction terms,
i.e., we use a pure power-law form 〈|�E|〉J = AθL

θ , a good fit
is achieved for L � Lmin = 150, resulting in θ = −0.012(4),
marginally compatible with θ = 0. Additionally, the modulus
of θ systematically drops as Lmin is increased. The defect
energy in this case hence does not decay to zero, but attains a
nonzero value in the thermodynamic limit. We therefore make
the scaling ansatz

〈|�E|〉J = �E∞ + BθL
−ω. (18)

We find an excellent fit with Q = 0.99 already for Lmin = 10,
resulting in

�E∞ = 0.960(5)

and ω = 0.67(4). An alternative fit form including analytic
corrections proportional to 1/L and 1/L2 but omitting the L−ω

term is found to be of significantly lower quality.
Studying the distributions of both ground-state and defect

energies, we again find a Gaussian shape for the ground-state
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FIG. 9. (a) Average ground-state energies for bimodal couplings
and PFBC boundaries, together with a fit of the functional form (10)
with θ = 0 to the data for the range L = 20, . . . ,3000. (b) Defect
energies for systems with bimodal couplings and PFBC boundaries.
Clearly, 〈|�E|〉J converges to a nonzero value as L → ∞, indicating
that θ = 0. The line shows a fit of the form 〈|�E|〉J = �E∞ +
BθL

−ω to the data with L � Lmin = 10 yielding �E∞ = 0.960(5).
(c) Probability distribution over disorder of the defect energies for
the PFBC ±J model and different system sizes. For L → ∞ the
distribution approaches a limiting shape close to the L = 1000 case
shown here.

energies, the kurtosis being compatible with that of a normal
distribution for all system sizes studied. The standard deviation
of the defect energy shows analogous behavior to 〈|�E|〉J ,
settling down at a finite value as L → ∞. A fit of the form (18)
yields an asymptotic σ∞(�E) = 1.1564(4) (Lmin = 16, Q =

FIG. 10. (Left) Schematic representation of the set of dual bonds
satisfying the condition (14) for the case of bimodal couplings.
Besides the domain wall, it contains isolated loops enclosing free
clusters of spins as well as bubbles of free spins attached to the
domain wall. Removing the isolated free loops one arrives at the
set Dlong, which we denote as the “long” domain wall. (Right) After
the additional removal of bubbles one arrives at the set Dshort of dual
bonds comprising the “short” domain wall of the configuration.

0.41). The disorder distribution of defect energies is shown in
Fig. 9(c), illustrating that it approaches a limiting shape as L →
∞ in which about 57% of domain walls have zero energy, 38%
have �E = 2, 4% have �E = 4, and higher defect energies
occur in less than 1% of the cases.

C. Domain walls

The presence of free clusters of spins in the manifold
of degenerate ground states complicates the identification of
domain walls for the bimodal model [43]. A possible difference
in configuration between the ground state for a disorder
configuration with P boundaries and a ground state for the
same realization with AP boundary conditions is schematically
depicted in the left panel of Fig. 10. We see that in this case
the set of domain-wall bonds satisfying condition (14), i.e.,
different relative orientations of spins at both ends for the P and
AP configurations, does not only contain the actual domain
wall but also a set of closed loops detached from the wall.
These correspond to free clusters that can be overturned at
zero energy cost and so happen to be in one orientation in
the P ground state, but in the opposite orientation in the AP
configuration. Conceptually, these bonds do not belong to the
domain wall. We remove them by only counting the system
spanning part of the set D. We refer to the corresponding set,
denoted as Dlong, as the “long” domain wall and its length as
�long = |Dlong|. Additionally, however, it is possible for such
free clusters to be attached to the domain wall as is also
depicted in the example of Fig. 10. Such “bubbles” attached
to corners of the wall are somewhat arbitrary additions and
removing them by only considering the shortest path in the
set D connecting opposite ends of the system defines the
reduced set Dshort with �short = |Dshort|. Clearly, we have that
Dshort ⊆ Dlong ⊆ D. Note that even after these removals the
set Dshort is not unique for a given bond configuration, and the
additional degeneracy is connected to zero-energy loops that
share (at least) one bond with the domain wall (instead of only
sharing a corner) and hence can be interpreted as diversions of
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the wall. In order to probe the equilibrium properties, we must
sample from such walls with equal probability.

Regarding the sampling of domain-wall lengths for the
bimodal model we have produced data from three different
algorithms.

(1) Our implementation of the MWPM algorithm calculates
a ground-state for each sample with both P and AP boundary
conditions, and comparing these we can determine the lengths
�short and �long of the related domain walls. It is clear that this
does not correspond to a fair sampling of ground states, but the
nature of the bias depends on internal details of the MWPM
implementation [46] and is not clear on a physical level. This
technique allows to treat large system sizes and we applied it
to the data set of sizes 8 � L � 3000 described in the third
column of Table V. In the following, we denote this as the
“matching” algorithm.

(2) The Gaussian noise technique described in Sec. IV A
is designed to break the degeneracy in a systematic way.
For each realization it only requires an additional run of the
MWPM algorithm per boundary condition, and we hence
applied it to the same set of samples with 8 � L � 3000.
As discussed in Sec. IV A it also does not provide uniform
samples, however. This technique is referred to as “Gaussian
noise” in the following.

(3) The new algorithm based on a cluster decomposition
and parallel tempering outlined in Ref. [83] provides uniform
samples, but it is much more demanding computationally,
such that only smaller system sizes can be treated reliably.
We have studied systems of edge lengths L = 10, 16, 20, 24,
28, 32, 48, 64, 80, 100, and 128 for this method, using 1000
samples per size and producing ten independent ground-state
configurations per sample. Data from this algorithm are labeled
“uniform sampling.”

Figure 11(a) shows the three data sets for the scaling of the
lengths of short domain walls. On the scale of the domain-
wall lengths themselves, all data appear to fall on top of each
other, but a closer inspection reveals that this is in fact not the
case. The data from uniform sampling show very clean scaling
behavior and a pure power law 〈�〉J = A�L

df describes the
data for L � Lmin = 16 well. No drift of the exponent value is
observed on omitting further values on the small-L side. The
fractal dimension is estimated from this fit as

df = 1.279(2)

with Q = 0.33. As the inset of Fig. 11(a) shows, there are
statistically significant deviations of the data from the other two
sampling techniques from this result. The samples generated
by the Gaussian noise technique show clean scaling as well,
but with a significantly larger exponent df = 1.323(3) (Lmin =
16,Q = 0.86). The data from the matching approach alone,
on the other hand, show somewhat inconsistent behavior for
successive system sizes, and they are compatible with a pure
power law only for L � Lmin = 80, yielding df = 1.2802(5)
(Q = 0.18). This slightly unsteady statistical behavior is prob-
ably connected to the fact that the matching method does not
use a stochastic sampling technique, and due to internal design
decisions the behavior of the algorithm might change dis-
continuously at certain system sizes. Somewhat surprisingly,
however, the results for the pure matching technique are closer
to the correct result represented by uniform sampling than
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FIG. 11. (a) Average length 〈�short〉J of the short domain wall for
the bimodal model as a function of linear system size L for the three
different algorithms employed. The inset shows the deviation of each
data set from the fit of the power law 〈�〉J = A�L

df to the uniform
sampling data for L � Lmin = 16, which results in df = 1.279(2)
(Q = 0.33). (b) Average length 〈�long〉J of the long domain walls
for the different algorithms. The inset shows the deviation of each
data set from the fit of a pure power law to the uniform data, yielding
df = 1.281(3) for Lmin = 16 (Q = 0.97). (c) Ratio of the average
lengths of long and short domain walls as estimated from the different
algorithms. In all cases, the ratio approaches a constant, in line with
the identical estimates of fractal dimension for �short and �long.

the samples produced by Gaussian noise, see also the inset
of Fig. 11(a).

We move on to considering the results for the long domain
walls. The data are summarized in Fig. 11(b). While for each
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FIG. 12. Distribution of the lengths �long of the long domain walls
for ±J couplings and PFBC boundaries as resulting from the uniform
sampling approach. The rescaling of the axes is with respect to the
fractal dimension df = 1.281(3) estimated from the data in Fig. 11.

data set, the values of 〈�long〉J are somewhat larger than those
of 〈�short〉J the relative behavior of the three data sets for the
long domain walls is very similar to that found for the short
walls. From the uniform sampling data, a pure power-law
fit for Lmin = 16 yields df = 1.281(3) (Q = 0.97), which is
statistically consistent with the result from the short domain
walls. For comparison, matching and Gaussian noise yield
df = 1.2797(5) and df = 1.325(3), respectively, for the same
ranges that were used for the short walls. It hence appears
that for the scaling of domain-wall length with system size,
there is no difference between the short and long definitions
of domain walls. This impression is corroborated by the data
shown in Fig. 11(c) of the ratios of long and short lengths of
domain walls, averaged over disorder, for the three different
techniques. It is clear that this ratio settles down to a finite value
as L → ∞, and a fit of the functional form 〈�long/�short〉J =
κ + AκL

−ω to the uniform sampling data yields κ = 1.021(6)
and ω = 0.85(16) with Q = 0.18 (Lmin = 10).

It is worthwhile to compare these estimates of the fractal
dimension to those found previously: Melchert and Hartmann
[41] used combinatorial optimization methods to find minimal
and maximal domain walls in the manifold of degenerate
ground-state pairs, yielding lower and upper bounds for df ,
namely 1.095(2) � df � 1.395(3). Our estimates are clearly
compatible with these, and it is interesting to note that the actual
value is much closer to the upper than to the lower limit, which
corresponds to almost flat walls. Risau-Gusman and Romá [43]
estimate df = 1.323(3) using nonuniform sampling resulting
from employing the bare MWPM algorithm; this is compatible
with our “matching” results, but too large compared to the
unbiased estimate from uniform sampling. Studying domain
walls in a hexagonal lattice, Weigel and Johnston [42] find df =
1.283(11), but again not using unbiased sampling. Analyzing
the behavior of the ground-state entropy, Fisch [87] estimates
df = 1.22(1), which is strongly incompatible with our results,
which could be a sign of the relation df = 2θS on which Fisch’s
estimate is based, where θS is the scaling exponent of the
ground-state entropy, not being valid in two dimensions.

We finally tend to the distribution of domain-wall lengths for
this case. As is illustrated in Fig. 12 for the long domain walls,
these follow the scaling form P (�) = Ldf P̂ (�L−df ) already
observed for the case with Gaussian couplings, cf. Fig. 8(c),
where now df = 1.281(3). The fit to a log-normal distribution
also shown in Fig. 12 works quite well over the full range of
the distribution, in contrast to the case of Gaussian couplings,
where deviations could be seen in the right tail, cf. Fig. 8(c).
Very similar results are obtained for the distribution of short
domain walls also (not shown).

V. CONCLUSIONS

We used an exact algorithm based on minimum-weight
perfect matching to calculate ground states for the square-
lattice Ising spin glass with Gaussian and bimodal couplings
and lattice sizes of up to 10 000 × 10 000 (108) spins, em-
ploying periodic boundary conditions in one direction and
free boundaries in the other. For systems with fully periodic
boundaries, we developed a quasi-exact algorithm that can
find true ground states with arbitrarily high probability and
a computational effort that is a constant time larger than
for the planar graphs, and we used it to study systems of
up to 3 000 × 3 000 spins. Our estimates of the ground-state
energies e∞ = −1.314 787 6(7) (Gaussian model) and e∞ =
−1.401 922(3) (bimodal model) are compatible with, but up to
100 times more precise than the estimates in the careful study
of Ref. [55] using exact ground-state methods and the recent
work Ref. [88] using Monte Carlo. For Gaussian couplings,
we also determined the spin-stiffness exponent and the fractal
dimension of domain walls with unprecedented precision,
yielding θ = −0.2793(3) and df = 1.273 19(9). These esti-
mates are one to two orders of magnitude more precise than
previous results, see the data collected in Table I. We note that
this value is also consistent with the most recent estimate of
1/ν = −θ = 0.283(6) in Ref. [11], but the zero-temperature
result has tenfold increased precision. For bimodal couplings,
we find θ = 0, in agreement with previous studies. Due to the
large degeneracy of the ground state for bimodal couplings,
methods based on matching do not allow to sample states with
the proper statistical weight, and as a result unbiased estimates
of the domain-wall fractal dimension have not been possible
previously. Using a newly developed algorithm [83] allowed us
to sample exact ground states for this case uniformly, here up
to system size L = 128. The resulting estimates of the fractal
dimension, df = 1.279(2) and df = 1.281(3) for “short” and
“long” domain walls, respectively, are marginally consistent
with df for the Gaussian couplings, the deviation being 3 and
4 standard deviations, respectively.

In 2006, Amoruso et al. [38] used results from stochastic
Loewner evolution (SLE) to conjecture that the 2D spin
glass with Gaussian couplings is described by a nonunitary
conformal field theory with central charge c < −1, related
to the SLE parameter κ as [89] c = (6 − κ)(3κ − 8)/κ , and
they numerically determined a value κ ≈ 2.1. Further, it was
assumed that the scaling dimension xt = d − yt = d − 1/ν =
d + θ = 2 + θ of the energy operator should be represented
in the corresponding Kac table [90], and a numerically close
value was found in tentatively identifying xt = 2�1,2 = (6 −
κ)/κ . Together with the relation df = 1 + κ/8 for the fractal

064410-15



HAMID KHOSHBAKHT AND MARTIN WEIGEL PHYSICAL REVIEW B 97, 064410 (2018)

dimension, this yields the equation [38]

df = 1 + 3

4(3 + θ )
. (19)

We note that additional to the assumption of a CFT represen-
tation, the identification of conformal weights with items in
the Kac table is only supposed to work for rational values of
κ , which does not appear to be the case here. Equation (19)
was found to be consistent with previous estimates of θ and
df [38]. Our most accurate results are for PFBC boundaries.
The corresponding estimate df = 1.273 19(9) would imply via
Eq. (19) that θ = −0.2546(9) which does not seem consistent
with the estimate θ = −0.2793(3) from the defect energies.
More systematically, if (19) is to hold, the difference

df − 1 − 3

4(3 + θ )
= −0.00247(9)

must be consistent with zero. Here, we used the estimates for
df and θ from PFBC and standard error propagation [91].
The difference from zero corresponds to about 27 standard
deviations, so based on the usual confidence limits one would
need to reject the hypothesis that our data are consistent with
(19). This neglects the fact, however, that our estimates for
df and θ are correlated as they are derived from the same
set of disorder realizations [81]. To correct for this effect, we
divided the disorder samples for PFBC such that one half is
used to estimate θ = −0.2795(3) (Q = 0.47) and the other
half is used to estimate df = 1.273 22(12) (Q = 0.32) using
the same fit functions and ranges as for the full data set. With
these estimates, we find

df − 1 − 3

4(3 + θ )
= −0.00246(12),

where the deviation from zero is still about 20 standard
deviations, corresponding to the expected reduction by halving
the statistics, so the correlation effect appears to be weak.
As an alternative analysis, we also attempted to perform

a simultaneous fit of power laws to the scaling of |�E|
and � while enforcing the relation (19) between the scaling
exponents. Independent of whether we use the full or the split
data set, a fit quality Q > 0.01 is only achieved for Lmin �
1000, which is way above the range of lattice sizes where
scaling corrections are visible above the statistical errors (recall
that both the defect energies and domain-wall lengths are fully
consistent statistically with pure power-laws for L > Lmin =
40). The conclusions from considering the independent data set
for PPBC are similar, with the deviation from Eq. (19) being
−0.00231(47), corresponding to five standard deviations. The
values for the deviations for PFBC and PPBC are statistically
consistent, the appearance of better consistency for PPBC is
due to the smaller statistics there. While it is always difficult
to reject or confirm an exact (but nonrigorous) relation based
on numerics, it appears safe to say that our data do not appear
to be consistent with Eq. (19).5 It is worthwhile to note that,
on the other hand, our values for θ and df are fully consistent
with previous estimates, cf. the data compiled in Table I, and it
is only due to the increased accuracy resulting from the bigger
systems and larger numbers of disorder samples considered
here that the inconsistency with Eq. (19) arises. Our results
for the fractal dimension of the bimodal model are marginally
consistent with those for the Gaussian model, and it remains
an interesting question for further studies whether universality
between the two models holds in this respect.
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5While we tried to take careful account of scaling corrections by
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completely exclude the possibility of spurious systematic corrections
leading to the observed deviations from Eq. (19).
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