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Abstract. The concept of conformal field theory provides a general classification of statis-
tical systems on two-dimensional geometries at the point of a continuous phase transition.
Considering the finite-size scaling of certain special observables, one thus obtains not only
the critical exponents but even the corresponding amplitudes of the divergences analytically.
A first numerical analysis brought up the question whether analogous results can be obtained
for those systems on three-dimensional manifolds.
Using Monte Carlo simulations based on the Wolff single-cluster update algorithm we inves-
tigate the scaling properties of O(n) symmetric classical spin models on a three-dimensional,
hyper-cylindrical geometry with a toroidal cross-section considering both periodic and an-
tiperiodic boundary conditions. Studying the correlation lengths of the Ising, the XY, and
the Heisenberg model, we find strong evidence for a scaling relation analogous to the two-
dimensional case, but in contrast here for the systems with antiperiodic boundary conditions.
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1 Introduction

Statistical mechanical systems at a critical point are essentially characterized by a
loss of length scales: as the correlation length diverges, the system becomes a self-
similar random fractal. Augmenting this symmetry with translational and rotational
invariance in the continuum limit establishes the so-called conformal invariance of the
system. As the 2D conformal group is of infinite dimension, exploiting this feature
allows a complete classification of models of statistical mechanics according to their
operator content in two dimensions [1, 2]. This includes a special class of formally
model independent relations, like finite-size scaling (FSS) laws; in particular, for the
2D strip geometry S1 × IR with periodic boundary conditions Cardy [3] has shown,
that for any primary, i.e. conformally covariant, operator of a model showing critical
behavior the corresponding correlation length scales as:

ξi =
A

xi

L, (1)

where L denotes the circumference of the cylinder, xi is the scaling dimension of the
considered operator, a combination of the classical critical exponents, and A = 1/2π
in the 2D case.
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For 3D systems, however, the situation is different. First, the concept of a primary
operator becomes at least problematic (it might possibly be established in terms of
the operator product expansion (OPE) [4]). Secondly, numerically feasible and more
widely applicable geometries like that of a column S1 × S1 × IR are not conformally
related to flat spaces like in the above mentioned 2D case, which is a essential ingre-
dient of the derivation of relation (1). A transfer matrix calculation by Henkel [5, 6]
for the S = 1

2
Ising model on the column geometry gave for the ratio of the corre-

lation lengths of the magnetization and energy densities the values ξσ/ξǫ = 3.62(7)
and 2.76(4) for periodic and antiperiodic boundary conditions, respectively. Compar-
ing this with the ratio of scaling dimensions of xǫ/xσ = 2.7326(16) [7] results in the
astonishing, theoretically obscure, conjecture that a relation of the form (1) can be
re-established in the 3D case, when applying antiperiodic (apbc) instead of periodic
(pbc) boundary conditions along the torus directions, which later on could be affirmed
by a Metropolis Monte Carlo (MC) simulation by Weston [8].
If this result could be established analytically, it would be one of the rare rigorous
statements for non-trivial 3D systems. As simulational data were available up to this
point only for the single special case of the Ising model, we thought it rewarding to
analyze some further models, so possibly establishing this conjecture at an empirical
level, which should constitute a motivation and basis for further analytical studies.

2 Models

In generalization to the Ising case we restrict ourselves to the class of O(n) symmetric
classical spin models with Hamiltonian

H = −J
∑

<ij>

si · sj , si ∈ Sn−1, (2)

assuming nearest-neighbor, ferromagnetic (J > 0) interactions. The simulations were
done for a discrete sc lattice with dimensions (Lx, Ly, Lz), choosing Lx = Ly and
ξ/Lz ≪ 1, therewith approximately modelling the column geometry S1 × S1 × IR.

3 Simulation and data analysis

The MC simulations were done using the Wolff single-cluster updating scheme [9],
as it is known to be more efficient than the Swendsen-Wang [10] update in three
dimensions [11]. In order to be able to perform simulations for both, periodic and
antiperiodic boundary conditions, the Wolff update had to be adapted to the latter
case: this was achieved by exploiting the fact that antiperiodic bc are equivalent to
the insertion of a seam of anti-ferromagnetic bonds along the boundary in the case of
nearest-neighbor interactions.
To test for a relation according to (1) we had to measure at least two different correla-
tion lengths of the systems under consideration. Following Henkel and in an analogy
to the 2D Ising case, where the only non-trivial primary operators are the densi-
ties of magnetization and energy, we recorded the correlation functions of these two
operators:

Gc
σ(x1,x2) = 〈s(x1) · s(x2)〉 − 〈s〉〈s〉,

Gc
ǫ(x1,x2) = 〈ǫ(x1) ǫ(x2)〉 − 〈ǫ〉〈ǫ〉.

(3)

Variance-reduction of the estimators for these observables can be achieved in a first
step by the trivial average over values with (x1 − x2) ‖ êz and i ≡ |x1 − x2| = const;
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Fig. 1: FSS plot for the spin correlation length ξσ(Lx) of the 3D Ising model
with antiperiodic boundary conditions. The solid line represents a least-square
fit according to Eq. (5).

they can be further improved by applying a zero momentum mode projection, i.e.,
by summing up the values for the densities in the layers z = const before correlating
them [12].
For extracting the correlation lengths from (3) one can cancel out deviations that arise
from inaccuracies in the determination of the disconnected parts of the correlation
functions and eliminate the need for a correct normalization of the estimates by
considering the following set of estimators:

ξ̂i = ∆

[

ln
Ĝc,‖(i) − Ĝc,‖(i − ∆)

Ĝc,‖(i + ∆) − Ĝc,‖(i)

]−1

, (4)

where ∆ ≥ 1 should usually be chosen so that a constant drop of G(i) between the

pairs of considered points is guaranteed. Variances and cross-correlations of the ξ̂(i)
were estimated using a combined binning [13] and jackknifing [14] technique. In a
process of statistical optimization, resulting in the leaving out of the corrupt estimates
ξ̂(i) for distances in the regions i < ∆ and i > Lz/2, one ends up with a final value
for the correlation lengths ξσ and ξǫ of the considered system.
All simulations were done at inverse temperatures, which were either highly precise
single estimates of the inverse critical temperature of the bulk model or weighted
means of several such estimates [15, 16], the influence of uncertainties in these values
being checked via a temperature reweighting technique.

4 Results

The cumulated estimates for the correlation lengths ξ̂(Lx) for the different system
sizes exhibit an almost perfect linear scaling behavior as shown in Fig. 1 for the Ising
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Fig. 2: Scaling of the amplitudes ξσ/Lx of the 3D Ising model with antiperiodic
boundary conditions.

model and antiperiodic bc. For all models we analyzed system sizes between Lx = 4
and 30 and volumes up to about 3 ·105 spins. The plot of the amplitudes ξ̂/Lx in Fig.
2, however, reveals a clear resolution of corrections to scaling, however. Therefore fits
to a law including corrections of the form

ξ(Lx) = ALx + BLα
x (5)

were done to arrive at estimates for the leading order scaling amplitudes Aσ and Aǫ.
The final results for these leading amplitudes are summarized in Table 1. The values
for the scaling dimensions shown for comparison are once again weighted literature
means [7].

5 Conclusions

The clear conclusion of these results for all three models under consideration is that,
while for the generic case of periodic bc the ratios of the amplitudes and the scal-
ing dimensions differ by at least about thirty sigma, in the case of antiperiodic bc
both ratios agree to a very high level of precision, thus giving the conjecture of a law
equivalent to (1) for 3D models enough backing to think seriously about a theoretical
justification. So, for the n = 1, 2, 3 representatives of the class of O(n) spin models
one can state that the finite-size scaling amplitude ratios of the the correlation lengths
of the magnetization and energy densities is determined by the corresponding scal-
ing dimensions and thus universal; in connection with additional results for the case
n = 10 [16] and an analytical results for the spherical model [17], it seems reasonable
to assume that such a relation holds for the whole class of O(n) spin models. Note,
however, that the amplitude A in Eq. (1), which was 1/2π = const in the 2D case,
does now depend on the model under consideration, i.e., the dimension n of the order
parameter [15].

4



Table 1: Finite-size scaling amplitudes of the correlation lengths of the Ising, XY,
and Heisenberg models on the T 2 × IR geometry.

model pbc apbc
Aσ 0.8183(32) 0.23694(80)
Aǫ 0.2232(16) 0.08661(31)

Ising Aσ/Aǫ 3.666(30) 2.736(13)
xǫ/xσ 2.7326(16)
Aσ 0.75409(59) 0.24113(57)
Aǫ 0.1899(15) 0.0823(13)

XY Aσ/Aǫ 3.971(32) 2.930(47)
xǫ/xσ 2.923(7)
Aσ 0.72068(34) 0.24462(51)
Aǫ 0.16966(36) 0.0793(20)

Heisenberg Aσ/Aǫ 4.2478(92) 3.085(78)
xǫ/xσ 3.091(8)
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