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Motivated by the results of two-dimensional conformal field theory (CFT) we investigate the finite-size scaling 
of the mass spectrum of an Ising model on three-dimensional lattices with a spherical cross section. Using a 
cluster-update Monte Carlo technique we find a linear relation between the masses and the corresponding scaling 
dimensions, in complete analogy to the situation in two dimensions. Amplitude ratios as well as the amplitudes 
themselves appear to be universal in this case. 

1. I N T R O D U C T I O N  

Divergent correlation lengths of a statist ical  
system approaching a critical point establish the 
symmet ry  of scale invariance on which finite-size 
scaling theory is based. In a continuum critical 
theory, however, there are additional symmetr ies  
present, namely translational,  rotat ional  and in- 
version invariance. The implications of the group 
of these symmetries ,  as explored in conformal 
field theory [1,2], go far beyond simple scaling 
theory, especially for two-dimensional systems, 
where the whole content of scaling operators  as 
well as for example higher correlation functions 
can be generically extracted from this symmetry.  

As for a prominent  result, conformal invariance 
suffices to determine the critical two-point func- 
tion in the plane. Using a conformal (logarithmic) 
t ransformat ion tha t  wraps the plane around an 
infinite-length cylinder one thus arrives a t  an ex- 
pression for the correlation function of a p r imary  
(conformally covariant) operator  on the cylinder 
[3], a geometry one generically considers in trans-  
fer matr ix  calculations. The fact tha t  this tran.q- 
formation does only affect the radial but  not the 
angular par t  of the coordinates led Cardy [4] to a 
generalization for the higher-dimensional geome- 
tries S d-1 x lR. Thus, exactly as in two dimen- 
sions, the large distance exponential  decay of cor- 
relations is determined by a correlation length 
tha t  is given by the inverse of the scaling dimen- 

sion x of the operator  under consideration, 

R 
= --, (1) 

x 

where R is the radius of S d-I. It has to be noted, 
however, that the memaing of a primary operator 
is a priori not well defined in three dimensions 1 so 
tha t  this result has to be considered a conjecture 
and a numerical analysis is more than  an exercise 
in this case. 

A first a t t empt  to establish such evidence using 
the Hamil tonian formulation of the Ising model 
and Platonic solids as discretization of the sphere 
S 2 was inconclusive due to the restricted num- 
ber and size of regular polyhedra [6]. Using ap- 
proximate quadrangulat ions we are able to check 
Cardy 's  conjecture for systems sufficiently large 
to carry out a proper  finite-size scaling (FSS) 
analysis. 

2. L A T T I C E  D I S C R E T I Z A T I O N  

There are several straightforward choices for 
model lattices with spherical topology [7]; the 
more natural  are variants of a rectangular mesh 
on a cube. Different refinements can be applied to 
reduce the concentration of the curvature around 
the corners of the cube such as filling in triangles 
instead of the cube comers  or projecting the cube 
on the sphere by varying the link lengths, i.e., ap- 
plying an appropriate  si te-dependent weight func- 

lFor an ansatz for its definition see [5] and references 
therein. 
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tion to the action. For those cube-like lattices, 
however, differences in the scaling behavior of 
bulk quantities are found to be quite small [7]. 
As for our observables, there is some evidence to 
believe that ratios of correlation lengths of pri- 
mary operators are universal [8-10], so that we 
can expect good agreement regardless of the lat- 
tice used if Cardy's conjecture holds. For the 
amplitudes themselves one might find effects of 
the non-uniformity of the lattice, but would not 
expect them to become visible until a very high 
level of precision is reached. We thus here use the 
simple cubic approximation to the sphere by six 
L × L square lattices with suitably chosen bound- 
ary conditions; effects of the discretization will be 
considered elsewhere [11]. 

Having chosen a lattice approximation to the 
sphere one has to fix a definition of the radius R 
of the sphere the cube with edge length L should 
correspond to. As is easily checked the three pos- 
sibilities of assigning a unit area to each lattice 
site, each pair of bonds, or each lattice square, 
respectively, lead to total lattice areas of 

6L(L - 2) + 8 "sites", 
A = 6L(L 2) -{- 6 "bonds", "squares", (2) 

and generate via the relation R -- V/~41r two 
different sorts of pseudo radii, which only differ by 
a constant shift, thus leading to slightly different 
approaches to the leading FSS amplitude. 

3. S I M U L A T I O N A L  DETAILS 

We consider a classical, ferromagnetic, nearest- 
neighbor Ising model with Hamiltonian 

7t = - J  E slsj, si ---- ± l  (3) 
(i,i) 

on lattices compound of the above described cu- 
bic discretizations of the sphere times a linear di- 
rection of length L=, modelling the ]R-direction. 
In order to minimize the effect of a finite Lz it 
was (self-consistently) chosen so that Lz/~ ~ 15 
and periodic boundary conditions in z-direction 
were applied. Simulations were done using the 
Wolff singie-cluster update algorithm at an in- 
verse temperature ~ = 0.221 6544(3) [12], check- 
ing for the influence of a temperature shift off the 

critical point by reweighting. To enable a proper 
FSS analysis system sizes ranging from L = 4 to 
L = 12 were used, corresponding to radii from 
about 2 to 8 and overall lattice volumes of 6 000 
to 300 000 spins. 

Since the densities of energy and magnetiza- 
tion are (the only) primary operators in the two- 
dimensional Ising model and the lowest lying 
states of the two sectors, we here consider the am- 
plitudes of the corresponding (exponential) cor- 
relation lengths Aa/~ = ¢a/~/R and their ra- 
tio. Simulational measurements were done for the 
(connected) correlation functions GO(z) of these 
operators using a zero mode projection. Estima- 
tors for the correlation lengths that eliminate ad- 
ditive and multiplicative constants in the expo- 
nential decay are then given by 

G ¢ ( z ) _ a c ( z _ A ) ] _ x  
= 1 .  , ( 4 )  

with A = 1, 2, 3 , . . . ,  from which overall estimates 
~(R) are formed by averaging. A jackknife tech- 
nique was used to reduce estimator bias and for 
the error analysis; for details see [10,13]. 

4. N U M E R I C A L  RESULTS 

Using the above described procedures one ends 
up with scaling plots for the correlation lengths 
as shown in Fig. l(a) for the magnetization den- 
sity that show an almost perfect linear behav- 
ior and invisible differences between the different 
radii definitions according to Eq. (2). Plotting the 
amplitudes ~/R (Fig. l(b)), however, reveals the 
presence of corrections to scaling that enforce the 
use of nonlinear fits of the form 

~(R) = AR + BR ~, (5) 

with a free parameter a that introduces a sys- 
tematic error to the final amplitudes Aa/~ due to 
higher order corrections. A combination of the 
fits for the two sorts of radii gives the amplitudes 

A~ = 1.996(20), 
A, = 0.710(38), (6) 

which agree well with the conjectured amplitudes 

A¢Oaj = 1/za = 1.9324(19), ~r 

__~A c°nj = 1 /x .  --- 0.70711(35), (7) 



M. WeigeL W. Janke /Nuclear Physics B (Proc. Suppl.) 83-84 (2000) 721-723 723 

15 

, , /  • • sites vo lume 
• betide, squares vo lume 

10 

2 

2.0 

4 6 8 
R 

n- 

1.9 

1.8 

1.7 

(b) 

0 , sites vo lume 

~ bonds, squares vo{ume 

4 6 8 
R 

Figure 1. (a) FSS plot for the spin correlation 
length ~a (R). (b) Scaling of the amplitudes ~a/R. 
The horizontal line indicates the conjectured am- 
plitude according to Eq. (7). 

taking into account the systematic error due to 
the different radii definitions that is of the same 
order of magnitude as the statistical error. The 
amplitude ratios compare as: 

A~,/A~ = 2.81(15), 
Ac°nJ/Ac°nJ = x ~ / z a  = 2.7326(16). (8) 

5. C O N C L U S I O N S  

The presumably universal ratio of the ampli- 
tudes of the spin and energy correlation lengths of 
the Ising model on a cubic model of S 2 × ~t agrees 
with the inverse ratio of the scaling dimensions 
as conjectured by Cardy for the continuum case. 
Moreover, corrections to scaling due to the non- 

uniform distribution of curvature over the lattice 
that might influence the amplitudes themselves 
seem not to be very important at the given level 
of accuracy; only the slightly shifted result for 
the spin amplitude A¢ might indicate the onset 
of such effects. In connection wi th  the results 
for systems with toroidal cross section [10,13] this 
seems to indicate a deeper analogy between the 
2D and 3D situations. In this latter case, how- 
ever, the system is not conformally related to a 
flat space which renders impossible an analytical 
treatment of Cardy's kind. In the spherical case, 
on the other hand, conformal flatness is fulflled, 
but the algebraic meaning of the primarity of an 
operator remains unclear. Thus our result shows 
that spin and energy densities of the 3D Ising 
model are primary operators, taking Eq. (1) as a 
definition of primarity in three dimensions. 
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