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Abstract We consider the coupling from the past implementation of the random–cluster
heat-bath process, and study its random running time, or coupling time. We focus on hyper-
cubic lattices embedded on tori, in dimensions one to three, with cluster fugacity at least
one. We make a number of conjectures regarding the asymptotic behaviour of the coupling
time, motivated by rigorous results in one dimension and Monte Carlo simulations in dimen-
sions two and three. Amongst our findings, we observe that, for generic parameter values,
the distribution of the appropriately standardized coupling time converges to a Gumbel dis-
tribution, and that the standard deviation of the coupling time is asymptotic to an explicit
universal constant multiple of the relaxation time. Perhaps surprisingly, we observe these
results to hold both off criticality, where the coupling time closely mimics the coupon collec-
tor’s problem, and also at the critical point, provided the cluster fugacity is below the value
at which the transition becomes discontinuous. Finally, we consider analogous questions for
the single-spin Ising heat-bath process.
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1 Introduction

Since nontrivial models in statistical mechanics are rarely exactly solvable, Monte Carlo
simulations provide an important tool for obtaining information on phase diagrams and
critical exponents. The standardMarkov-chain Monte Carlo procedure involves constructing
a Markov chain with the desired stationary distribution, and then running the chain long
enough that the resulting samples are close to stationarity. The central obstacle to practical
applications of MCMC is that it is typically not known a priori how many steps are required
in order to reach (approximate) stationarity. In principle, the answer to this question can be
quantified by quantities such as the relaxation time or mixing time of the Markov chain (see
below). However, rigorously proving practically useful upper bounds on such quantities is a
very challenging task, as is their empirical estimation from simulations.

Coupling from the past (CFTP), introduced by Propp and Wilson [43], is a refinement
of the MCMC method, which automatically determines the required running time of the
Markov chain, and then outputs exact samples, rather than approximate ones. The price that
must be paid for these two significant benefits is that, unlike naive MCMC, the running time
of CFTP is random. The key question in determining the efficiency of the CFTP method for
a given application therefore becomes to understand the distribution of its random running
time, or coupling time. The name “coupling from the past” derives from two key features
of the method. Firstly, rather than running a single Markov chain, CFTP requires multiple
Markov chains be run simultaneously (coupling). Secondly, the chains are not run forward
from time 0, but are instead run from the past to time 0.

In this article, we present a detailed study of the coupling time for the heat-bath dynamics
of the Fortuin–Kasteleyn (FK) random–cluster model. This process is one of the examples
originally considered in [43], and has been the subject of several recent studies [10,15,16,
26,44]. As discussed in more detail below, when the cluster fugacity q ≥ 1, this process
possesses an important monotonicity property, which makes it an ideal candidate for an
efficient implementation of CFTP.

We consider the FK process on d-dimensional tori, Zd
L , for d = 1, 2, 3. Our methods are

a combination of rigorous proof for d = 1, and systematic Monte Carlo experiments for d =
2, 3. Based on our studies, we conjecture a number of results for the coupling time, which we
state precisely in Sect. 2.4.Among them,we conjecture that, for generic choices of parameters
(p, q), the distribution of the coupling time (appropriately standardized) tends to a Gumbel
distribution as L →∞. For the special case ofq = 1, the coupling time corresponds precisely
to the coupon collector’s problem, for which the Gumbel limit is a classical result [17]. The
surprising observation is that such a limit appears not only to remain universally valid for the
FK heat-bath process at any off-critical choice of (p, q) ∈ (0, 1) × [1,∞), but also at the
critical point, provided q is below the value at which the transition becomes discontinuous. In
particular, we conjecture that this limit law holds for all p ∈ (0, 1)when q ∈ [1, 4) and d = 2.

In addition, we find strong evidence that the standard deviation of the coupling time is
asymptotic, as L → ∞, to a universal constant times the relaxation time. Again, this is
conjectured to hold not only off criticality for arbitrary p �= pc and q ≥ 1, but also at
p = pc, provided q is below the value at which the transition becomes discontinuous. If
true, this result suggests an efficient empirical method for estimating the relaxation time
of the FK heat-bath process: simply generate a number of independent realizations of the
coupling time and compute the sample variance. We emphasize that this result would imply
that consideration of the coupling time can provide non-trivial information about the original
Markov chain, and so its significance extends beyond possible applications of the CFTP
method, to standard MCMC simulations of the FK heat-bath chain.
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For comparison, we also briefly study the single-spin-update heat-bath process for the
Ising model. Due to the slow mixing in the low temperature phase [5], our numerical results
focus on the critical and high temperature regimes. In the high temperature regime, we find
identical behaviour to that described above for the FK heat-bath process; in particular we
find the same Gumbel limit law for the coupling time, and the same relationship between the
relaxation time and the standard deviation of the coupling time. At criticality, however, the
situation changes somewhat. The relaxation time and coupling time standard deviation do still
appear to be asymptotically proportional, but now with a different proportionality constant.
Moreover, while the standardized coupling time again appears to have a non-degenerate limit
at criticality, the limit appears not to be of Gumbel type in this case.

1.1 Outline

Let us outline the remainder of this article. In Sect. 2 we define the FK heat-bath process,
and discuss some relevant recent literature. We also define the coupling time, and explain its
connection to CFTP. Section 2.4 summarizes our theorems and conjectures for the FK cou-
pling time. Sections 3 and 4 respectively consider themoments and limiting distributions, and
present numerical evidence to support the conjectures outlined in Sect. 2.4. Sections 5 and 6
provide proofs of Theorems 2.1 and 2.3, respectively. Section 7 summarizes the analogous
results for the single-spin-update Ising heat-bath process. Finally, Appendix A establishes
some relevant properties of autocorrelation functions of the FK heat-bath process, which we
make use of in Sect. 3, and Appendix B discusses some technical lemmas concerning the
coupon collector’s problem.

2 Fortuin–Kasteleyn Heat-Bath Process

2.1 Definitions

The Fortuin–Kasteleyn random–cluster model is a correlated bond percolation model, which
can be defined on an arbitrary finite graph G = (V, E)with parameters p ∈ [0, 1] and q > 0
via the measure

φ(A) = 1

ZG(p, q)
qk(A) p|A| (1− p)|Ac |, A ⊆ E (2.1)

where k(A) is the number of connected components (clusters) in the spanning subgraph
(V, A). The partition function, ZG(p, q) is closely related to the Tutte polynomial, and its
computation is known to be a #P-hard problem [30,49]. For q = 1, the FK model coincides
with standard bond percolation, while for integer q > 1 it is intimately related to the q-state
Potts model. Appropriate limits as q → 0 also coincide with spanning forests and uniform
spanning trees.

While our focus in the current article is on finite graphs, standard arguments (see e.g. [24])
allow random–cluster measures to be defined1 on the infinite lattice Zd . In this setting, it is
well known [24] that for given q ≥ 1 and d ≥ 2, there exists a critical probability pc ∈ (0, 1),
such that the origin belongs to an infinite cluster with zero probability when p < pc, and
with strictly positive probability when p > pc. The exact value of pc when d = 2 was
recently proved [3] to be pc = √q/(1 + √q). The corresponding phase transition is said

1 For concreteness, in the present discussion we refer to the measure corresponding to wired boundary con-
ditions [24, Sect. 4.2].
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to be continuous if there is zero probability that the origin belongs to an infinite cluster at
p = pc, and is discontinuous otherwise. It is known [33] that the transition is discontinuous
for sufficiently large q . It is conjectured [24, Conjecture 6.32] that for every d ≥ 2 there
exists q∗ such that the transition is continuous for q < q∗ and discontinuous for q > q∗. This
has recently been proved when d = 2, and moreover the exact value q∗ = 4 was established,
confirming a longstanding conjecture of Baxter [2]. More precisely, in the specific case of
d = 2, the phase transition is continuous [12] for 1 ≤ q ≤ 4, and discontinuous [11] for
q > 4. Although pc = pc(q, d) depends on d and q , and q∗ depends on d , for brevity, we
shall not explicitly write this dependence when the values of q, d are clear from the context.

To ease notation, for A ⊆ E and e ∈ E , let Ae := A \ e and Ae := A ∪ e. Note that
A = Ae iff e ∈ A, and A = Ae iff e /∈ A. An edge e ∈ A is said to be occupied in A. An
edge e ∈ E is said to be pivotal to the configuration A if k(Ae) �= k(Ae).

The FK heat-bath process has transition matrix P = 1

m

∑
e∈E Pe where

Pe(A, B) :=

⎧
⎪⎨

⎪⎩

p(A, e), B = Ae,

1− p(A, e), B = Ae,

0, otherwise,

p(A, e) := φ(Ae)

φ(Ae)+ φ(Ae)
=

{
p̃, e is pivotal to A,

p, otherwise,

p̃ := p

1+ (q − 1)(1− p)
. (2.2)

Note that, if q ≥ 1 and p ∈ (0, 1), we have p̃ ≤ p, with equality iff q = 1.
We now proceed to define the central quantity of interest in this article, the coupling time

of the FK heat-bath process. It should be emphasized that the coupling time, and the corre-
sponding CFTP algorithm, are not uniquely determined by the transition probabilities of the
process, but rather by the particular random mapping representation that is chosen. Random
mapping representations for Markov chains provide convenient methods for constructing
useful couplings, and also for constructing practical computational implementations [35].

We focus attention on the following random mapping representation for P . Define f :
2E × E × [0, 1] → 2E via

f (A, e, u) :=
{
Ae, u ≤ p(A, e),

Ae, u > p(A, e).
(2.3)

Let E andU be independent, with E uniform on E andU uniform on [0, 1]. By construction,
P( f (A, E ,U ) = B) = P(A, B), and so ( f, E ,U ) defines a randommapping representation
for P [35]. It is straightforward to verify that f is monotonic: for any fixed e ∈ E and
u ∈ [0, 1], if A ⊆ B, then f (A, e, u) ⊆ f (B, e, u). This random mapping representation
corresponds precisely to the manner in which a computational physicist would implement
the transition matrix P in practice.

Let (Et ,Ut )t∈N+ be an iid sequence2 of copies of (E ,U ). Define Tt by T0 = E and
Tt+1 = f (Tt , Et+1,Ut+1). We refer to Tt as the top chain. Likewise, the bottom chain is
defined by B0 = ∅ and Bt+1 = f (Bt , Et+1,Ut+1). By construction, both (Tt )t∈N and
(Bt )t∈N are Markov chains with transition matrix P . The coupled process (Bt ,Tt )t∈N is the
fundamental object of consideration in this article. For brevity, in what follows, we will refer
to the coupled process (Bt ,Tt )t∈N as “the FK heat-bath coupling”.

2 We adopt the convention that N := {0, 1, 2, . . .} and N+ := {1, 2, . . .}.
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We define the coupling time of the FK heat-bath process to be

T := min{t ∈ N : Tt = Bt }. (2.4)

Note that, strictly speaking, the coupling time is a property of the FK heat-bath coupling,
rather than of a single FK heat-bath process. Also note that, by monotonicity, a Markov chain
started at time 0 in any state A ⊆ E will have coalesced with Tt and Bt by time t = T , so
TT can be viewed as the state of the Markov chain at the first time in which the initial state
has been forgotten by the above coupling. As discussed further in Sect. 2.3, the coupling time
has the same distribution as the running time of the CFTP algorithm.

2.2 Previous Studies of FK Glauber Processes

A reversible Markov chain with stationary distribution (2.1), which is local in the sense that
at most one edge is updated per time step, is typically referred to as a Glauber process for
the FK model. The two most commonly studied Glauber processes for the FK model are the
heat-bath process, as studied here, and the Metropolis process, as first studied numerically
in [46].

As a consequence of general results concerning heat-bath chains [13], the transitionmatrix
of the FKheat-bath process, P , has non-negative eigenvalues. Ifλ2 denotes the second-largest
eigenvalue of P , the relaxation time [35] of P is

trel := 1

1− λ2
. (2.5)

A closely related quantity is the exponential autocorrelation time [36,45], defined by

texp := −1
ln(λ2)

= −1
ln(1− 1/trel)

. (2.6)

It is easily verified that
trel − 1 ≤ texp ≤ trel. (2.7)

Another quantity of importance is the mixing time [35], defined by

tmix(ε) := max
A⊆E

min
t∈N {‖P

t (A, ·)− φ‖TV ≤ ε}, (2.8)

where ‖ ·‖TV denotes total variation distance. Since tmix(ε) ≤ �log2 ε−1� tmix(1/4), one also
defines tmix := tmix(1/4) [35]. Combining [35, Theorem 12.3] and [35, Theorem 12.4] with
Lemma 5.1 implies that for the FK heat-bath process

trel − 1

2
≤ tmix ≤ ln

(
4q2

p(1− p)

)

m trel. (2.9)

The quantities trel, texp and tmix all quantify the rate at which a Markov chain approaches
stationarity, or mixes [35].

Numerical studies [10,21,48] of FK Glauber processes suggest that their mixing in the
neighbourhood of continuous phase transitions can be surprisingly efficient; comparable
to, and possibly faster than, non-local cluster algorithms such as the Swendsen-Wang and
Chayes-Machta processes [6,47]. In addition, it was observed numerically in [10] that, for
the FK Metropolis-Glauber process at criticality on the square and simple-cubic lattices,
certain observables apparently decorrelate asymptotically faster than a single sweep (i.e. in
time o(|E |)), suggesting FKGlauber processes could have significant advantages over cluster
algorithms.
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Significant progress has recently been made in rigorously bounding the mixing time of
FK Glauber processes. In [26], the mixing time of the q = 2 FKMetropolis-Glauber process
on a graph with m edges and n vertices was shown to be O(n4m3). In addition, precise
asymptotics were given in [44] for the case of q ≥ 1 on L × L boxes in Z

2, showing3

that tmix � L2 ln L , provided p �= pc. Even more recently, it has been shown in [20] that
tmix = O(L ln L) on two-dimensional tori Z2

L at p = pc.
An important practical issue when simulating FKGlauber processes is the need to identify

whether the edge to be updated is pivotal to the current edge configuration. Sweeny [46] pro-
posed an algorithm for performing the necessary connectivity checks, which was applicable
to planar graphs. In [14–16], it was demonstrated that this algorithmic problem can be effi-
ciently solved by utilizing, and adapting, dynamic connectivity algorithms and appropriate
data structures introduced in [29]. These latter methods are applicable to arbitrary graphs,
and can perform the required pivotality tests in time which is poly-logarithmic in the graph
size.

2.3 Coupling from the Past

For completeness, in this section we present a brief review of the CFTP method applied to
the FK heat-bath process. We note however that the material in this section, which follows
the discussion in [43], serves only as motivation for studying the coupling time (2.4), and
none of the concepts introduced in this section will be required outside of this section.

Let (Et ,Ut )t≥0 be an iid sequence of copies of (E ,U ), define random maps
f−t := f (·, Et ,Ut ), and for t ∈ N

+ form the compositions

F0−t := f0 ◦ f−1 ◦ . . . ◦ f−(t−1). (2.10)

We can then define the backward coupling time to be

T := min{t ∈ N
+ : F0−t (E) = F0−t (∅)}. (2.11)

As first shown in [43], the random state F0
−T(E) = F0

−T(∅) is an exact sample from the
FK distribution (2.1). Algorithmically, a single step of the above procedure corresponds to
starting chains in states E and ∅ at some point in the past, and running them until time 0.
This procedure is then applied iteratively, starting the chains at ever more distant times in the
past, and terminating the iteration at the first time that the chains started at E and ∅ agree at
time 0.

To appreciatewhy the resulting state F0
−T(E) is distributed according to (2.1),we canmake

the following observations. Firstly, by monotonicity, if F0−t (E) = F0−t (∅) then F0−t (A) =
F0−t (E) for every A ⊆ E . Secondly, if F0−t (E) = F0−t (∅) then F0−s(E) = F0−s(∅) for every
s ≥ t . Therefore, the state F0

−T(E) coincides with F0−s(A) for any s ≥ T and A ⊆ E . In this
sense, we can picture F0

−T(E) as the state, at time t = 0, of a Markov chain that started at
an arbitrary state in the infinite past.

For comparison, note that performing a standard Markov-chain Monte Carlo simulation
simply corresponds to composing the sequenceof randommaps in the opposite order to (2.10).
Specifically, to defining random maps ft := f (·, Et ,Ut ) and forming the compositions

Ft
0 := ft ◦ . . . ◦ f1.

3 The notation aL � bL means that there exist constants c,C > 0 such that cbL ≤ aL ≤ CbL for all
sufficiently large L .
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28 A. Collevecchio et al.

Even though, by monotonicity, we have FT
0 (E) = FT

0 (A) = FT
0 (∅) for all A ⊆ E , there is

no reason to suspect FT
0 (E) should have distribution (2.1).

Despite the significant differences between the forward and backward couplings, it can
be shown, quite generally, that forward and backward coupling times are identically dis-
tributed [43]. As a consequence, to study the behaviour of the random running time T of
CFTP, it suffices to consider only the forward coupling time T , defined in (2.4).

The CFTP algorithm described above is the simplest version, however a number of algo-
rithmic improvements have been devised. In particular, rather than choosing the restart times
to be−1,−2,−3, . . ., the restart times can be chosen to be−a1,−a2, . . . for any monotonic
natural sequence a1, a2, . . .. See the pedagogical discussions in [27,32,35] for more details
on CFTP algorithms.

2.4 Behaviour of the Coupling Time

We now summarize our main results for the coupling time. We begin with some general
results, holding on arbitrary finite connected graphs, which relate the coupling time (2.4) to
tmix and texp. Theorem 2.1 is a slight refinement, in the specific setting of the FK heat-bath
coupling, of the results presented in [43, Sect. 5]. Its proof is deferred until Sect. 5.

Theorem 2.1 Consider the FK heat-bath coupling with parameters p ∈ (0, 1) and q ≥ 1,

on a finite connected graph with m ≥ 1 edges, and let ψ := ψ(p, q) := q2

p(1− p)
. Then

e−t/texp
2

≤ P(T > t) ≤ e(ln(ψ)+2)m−t/texp , (2.12)

tmix − 1

4
≤ E(T ) ≤ min

{
12 log2(4m) tmix, 4(log2(ψ)+ 3)m texp

}
, (2.13)

√
var(T ) ≤ min

{
15 log2(4m) tmix, 5(log2(ψ)+ 3)m texp

}
. (2.14)

Remark 2.2 In the special case of L × L boxes in Z
2, with p �= pc, we can combine the

mixing time bound presented in [44] with Theorem 2.1 to conclude that both E(T ) and√
var(T ) are O(L2 ln2 L), and that E(T ) is Ω(L2 ln L). Likewise, the results in [20] imply

that, at p = pc, both E(T ) and var(T ) are LO(ln L) on Z
2
L .

As mentioned briefly in Sect. 1, the coupling time is related to the coupon collector’s
problem. We now make this connection more precise. Consider a finite connected graph
G = (V, E) with |E | = m and let

W := min{t ∈ N
+ : {E1, . . . , Et } = E}. (2.15)

The random variableW is the coupon collector’s time, for the edge process (Et )t∈N+ , and its
behaviour is well-understood [17,35]. It is elementary to show (see e.g. [42]) that

E(W ) = mHm ∼ m ln(m), (2.16)

var(W ) = m2H (2)
m − mHm ∼ π2

6
m2, (2.17)

as m →∞, where H (k)
m :=∑m

i=1 i−k is the generalized Harmonic number [22] of order k,

and Hm := H (1)
m . Moreover, as first shown in [17], for any x ∈ R we have

lim
m→∞P[W ≤ E(W )+ x

√
var(W )] = G(x), (2.18)
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where

G(x) := exp

(

− exp

(

− π√
6
x − γ

))

, x ∈ R, (2.19)

is the distribution function of the Gumbel distribution with zero mean and unit variance, and
γ is the Euler-Mascheroni constant.

Since the top and bottom chains cannot coalesce until every edge has been updated at least
once, we clearly have

T ≥ W. (2.20)

Moreover, if t ∈ N
+, then bymonotonicity,Bt andTt will disagree on the edge Et iff Et ∈ Tt

and Et /∈ Bt . In turn, this will occur iff: Et is pivotal to Bt−1 but not pivotal to Tt−1; and
p̃ < Ut ≤ p. If G is a tree, every edge is pivotal to every A ⊆ E , and the first condition
cannot occur. If q = 1, then p̃ = p and the second condition cannot occur. It follows that if
q = 1, or if G is a tree, then T = W identically.

Our main interest in this article is the case that G is Zd
L for some choice of L and d . In

this case, T is certainly not identically equal to W . For d = 1 however, Theorem 2.3 shows
that, for large L , the behaviour of T closely mimics that ofW . To emphasize the dependence
of T and W on L we append subscripts in the remainder of this section.

Theorem 2.3 Consider the FK heat-bath coupling on ZL with parameters p ∈ (0, 1) and
q ≥ 1. Then, as L →∞, we have:

(i) E(TL) ∼ E(WL ),
(ii) var(TL) ∼ var(WL),
(iii) P[TL ≤ E(TL)+ x

√
var(TL)] → G(x) for each x ∈ R,

(iv) trel � L.

Intuitively, one expects the behaviour of the model on ZL to be representative of the sub-
critical behaviour on Z

d
L for any d ≥ 1. This suggests that the sub-critical behaviour on Z

d
L

should again be governed by the coupon collector time. Conjectures 2.4 and 2.5 formalize
this intuition in the case of the mean and variance. These conjectures are consistent with the
rigorous bounds known in two dimensions, discussed in Remark 2.2.

To ease notation in what follows, we define μT (L) := E(TL) and σT (L) := √var(TL),
and likewise set μW (L) := E(WL ) and σW (L) := √var(WL ). For brevity, we omit explicit
mention of the dependence of μT and σT on p, q . In later sections, we shall also often omit
explicit mention of their L dependence.

Conjecture 2.4 (Off-critical mean). Consider the FK heat-bath coupling on Zd
L with d ≥ 2,

q ≥ 1 and p ∈ (0, 1) such that p �= pc. There exists Cμ(p, q, d) ≥ 1 such that as L →∞
μT (L) ∼ Cμ(p, q, d) μW (L).

Numerical evidence in support of Conjecture 2.4 is presented in Sect. 3.1.
We note that, if correct, Conjecture 2.4 combined with (2.16) and the recent mixing time

bound [44] implies that for d = 2 we have μT (L) � tmix(L) whenever p �= pc. It seems
natural to expect that this in fact holds in all dimensions. Given the difficulty of estimating
tmix numerically, however, we have no empirical evidence to directly support the claim
μT (L) � tmix(L), and we therefore do not state it formally as a conjecture.

Conjecture 2.5 (Off-critical variance). Consider the FK heat-bath coupling on Z
d
L with

d ≥ 2, q ≥ 1 and p ∈ (0, 1) such that p �= pc. There exists Cσ (p, q, d) ≥ 1 such that as
L →∞

σT (L) ∼ Cσ (p, q, d) σW (L).
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30 A. Collevecchio et al.

Numerical evidence in support of Conjecture 2.5 is presented in Sect. 3.1.
One consequence of Theorem 2.3 is that σT (L) � trel(L) when d = 1. While no pre-

cise asymptotics appear to be known for trel when d > 1, from a physical standpoint one
expects that trel(L) � Ld for p �= pc, in any dimension d . Under this additional hypothesis,
Conjecture 2.5 is equivalent to the conjecture that σT (L) � trel(L). We shall return to this
observation shortly.

Combining Conjectures 2.4 and 2.5 with (2.16) and (2.17) implies σT (L)/μT (L) goes to
zero as L →∞. It then follows from Chebyshev’s inequality that for any ε > 0

P[(1− ε)μT (L) < TL < (1+ ε)μT (L)] ≥ 1− o(1), L →∞.

While the moments of TL do not behave like the corresponding moments of WL at pc, our
numerical results do suggest that μT (L) remains the dominant time scale at criticality when
q < q∗.
Conjecture 2.6 Consider theFKheat-bath coupling onZd

L with d ≥ 2, q ≥ 1 and p ∈ (0, 1)
such that if q ≥ q∗ then p �= pc. Then σT (L)/μT (L)→ 0 as L →∞.

Numerical evidence in support of Conjecture 2.6 is presented in Sect. 3.2. Our numerical
results suggest that Conjecture 2.6 does not hold at p = pc when q ≥ q∗.

In light of Conjectures 2.4 and 2.5, one is tempted to conjecture further that Part (iii) of
Theorem 2.3, the Gumbel limit law, also extends to the case d > 1 in the off-critical regime.
Section 4.1 provides strong numerical evidence to support this claim. What is perhaps more
surprising, however, is that the numerical results of Sect. 4.2 strongly suggest that the Gumbel
limit law holds even at the critical point, provided q < q∗. This is despite the fact thatμT (L)

and σT (L) certainly do not behave like the analogous moments of WL at p = pc. In this
sense, it seems TL displays a “superuniversal” central limit theorem, independent of q , for
all q < q∗. Conjecture 2.7 formalizes this claim.

Conjecture 2.7 (Limiting Distribution). Consider the FK heat-bath coupling on Z
d
L with

d ≥ 2, q ≥ 1 and p ∈ (0, 1) such that if q ≥ q∗ then p �= pc. Then

lim
L→∞P[TL ≤ μT (L)+ xσT (L)] = G(x), for each x ∈ R.

Numerical evidence in support of Conjecture 2.7 is presented in Sect. 4. Our numerical
results suggest the Gumbel limit law does not hold at p = pc when q > q∗. The special case
(p, q) = (pc, q∗) appears to be rather subtle, and we are hesitant to make any predictions
concerning it.

If we assume that Conjecture 2.7 is correct, then combining it with Theorem 2.1 suggests
that σT (L) is asymptotic to texp(L) as L → ∞. Indeed, setting t = μL + x σL in (2.12)
implies

− ln(2)− μT

texp
− σT

texp
x ≤ lnP(TL > μT + x σT ) ≤ d(ln(ψ)+ 2) Ld − μT

texp
− σT

texp
x .

However, it is easily obtained from (2.19) that

ln[1− G(x)] ∼ −γ − π√
6
x, x →∞.

Combining these facts with Conjecture 2.7 then motivates the following conjecture.

Conjecture 2.8 (Variance). Consider the FK heat-bath coupling on Z
d
L with d ≥ 2, q ≥ 1

and p ∈ (0, 1) such that if q ≥ q∗ then p �= pc. Then

σT (L) ∼ π√
6
texp(L), L →∞.
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Numerical evidence in support of Conjecture 2.8 is presented in Sect. 3.3.

Remark 2.9 Recall that a sequence of chains has a cutoff [35] if, for all ε > 0, we have
tmix(L , ε)/tmix(L , 1− ε)→ 1 as L →∞. A necessary condition [35, Proposition 18.4] for
cut-off is that tmix(L)/trel(L)→∞ as L →∞. If one assumes the validity ofConjectures 2.6
and 2.8, and also assumes that tmix � μT (L), then this necessary condition will be satisfied
for the FK heat-bath process on Zd

L with d ≥ 1, q ≥ 1 and any p ∈ (0, 1) such that if q ≥ q∗
then p �= pc. It is therefore tempting to speculate that the FK heat-bath process exhibits
cutoff for all such parameter choices.

For comparison, in Sect. 7 we consider analogous questions for the single-spin Ising heat-
bath process. Above the critical temperature, our results suggest the behaviour is identical
to that conjectured above for the FK heat-bath process. Specifically, the mean and variance
of the coupling time are asymptotic to a constant C ≥ 1 multiple of their coupon collector
analogues, the standard deviation is asymptotic to (π/

√
6) texp, and the standardized quantity

(T − μT )/σT has limiting distribution G(x). At the critical temperature, however, the
behaviour is somewhat different. In that case, our evidence suggests σT /μT tends to a posi-
tive constant, rather than zero. Moreover, while we do still observe that (T − μT )/σT has a
non-degenerate limiting distribution, this distribution does not appear to be G(x). We have
not attempted to identify the form of the limiting distribution in this case. Finally, we again
find strong evidence that σT ∼ C texp, but now with C �= π/

√
6. We state our conjectured

behaviour for the Ising heat-bath process more formally in Conjecture 7.1, in Sect. 7.2.
The observation that σT /μT tends to zero for the critical FK heat-bath process, but not the

critical Ising heat-bath process, provides another perspective on the improved efficiency of the
former comparedwith the latter, over and above the empirical observation of critical speeding-
up and smaller relaxation time [10]. Moreover, if one postulates (admittedly, in the absence
of any significant evidence) that μT � tmix, and assumes the validity of Conjecture 2.8 and
its analogue for the Ising heat-bath process, then one concludes that tmix/trel diverges for
the critical FK heat-bath process, but not for the critical Ising heat-bath process. As noted in
Remark 2.9, this would immediately rule out cutoff in the Ising heat-bath process, but still
allow for its existence in the FK heat-bath process.

3 Moments

We now present numerical evidence in support of Conjectures 2.4, 2.5, 2.6 and 2.8. As
discussed in Sect. 2.1, for d = 2 the exact value of pc(q) is known, and it is known thatq∗ = 4.
Neither pc(q) nor q∗ are known when d = 3. However, numerical studies [21,28,50] of the
case q = 2.2 have provided convincing evidence that the transition at q = 2.2 is continuous,
suggesting q∗ > 2.2. In our simulations for d = 3 we relied on the following estimated
critical points: pc(1.5) = 0.31157497, pc(1.8) = 0.34096070, pc(2) = 0.35809124 and
pc(2.2) = 0.37361401. The values for q = 1.5, 1.8, 2.2 are taken from [50], while the value
for q = 2 is taken from [8].

3.1 Off Criticality

We begin by considering the off-critical mean. In order to test Conjecture 2.4, Fig. 1a plots
Monte Carlo estimates of μT , scaled by the exact form of μW from (2.16), on a linear-log
scale, for d = 2, 3, with a variety of q values, and off-critical p values. The agreement is
excellent. The data are clearly converging to a constant Cμ(p, q, d) ≥ 1. The solid black
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Fig. 1 (Color online) Monte Carlo estimates ofμT /μW (left) and σT /σW (right) for the off-critical random–
cluster model with d = 2, 3, with various cluster fugacities q and bond densities p. Error bars corresponding
to one standard error are shown

line in Fig. 1a corresponds to the case q = 1, for which Cμ(p, q, d) = 1 identically.
It is conceivable, from the data at hand, that Cμ(p, q, d) = 1 for all off-critical parameter
choices (p, q, d), however the current evidence does not seem strong enough for us to actually
conjecture that this is the case.

Analogously, in order to test Conjecture 2.5, Fig. 1b plotsMonteCarlo estimates ofσT /σW
for d = 2, 3, with a variety of q values, and off-critical p values, with σW given by (2.17).
The agreement is again excellent. The solid black line in Fig. 1b again corresponds to the
case q = 1, for which Cσ (p, q, d) = 1 identically. It is again conceivable, based on Fig. 1b,
that Cσ (p, q, d) = 1 for all off-critical parameter choices (p, q, d).

3.2 Criticality

In this section, we consider μT and σT at criticality when q ≤ q∗. We begin by providing
numerical evidence in support of Conjecture 2.6. Recall that for q = 1, we have from (2.16)
and (2.17) that μT /σT ∼ C ln(L) as L → ∞, with C > 0. It is therefore natural to ask
whether the ratio μT /σT continues to behave as a simple function of ln(L) when q > 1.
We therefore present in Fig. 2 a log-log plot of the ratio μT /σT vs ln(L), for various critical
random–cluster model instances in two and three dimensions. Except for q = q∗ = 4 in two
dimensions, we observe that μT /σT appears to become asymptotic to a straight line with
positive slope, on a log-log scale. It appears that the ratio approaches either a constant or
weakly increases with L at d = 2 and q = q∗ = 4. Similarly, in three dimensions, we observe
that μT /σT appears to increase more slowly in L as q approaches q∗. These observations
are consistent with the following possible scenario: μT /σT ∼ ln(L)w as L → ∞ with an
exponent w that equals 1 at q = 1 and which decreases monotonically with q before finally
vanishing at q = q∗. Regardless, we conclude thatμT /σT diverges with L at criticality when
q < q∗, which supports Conjecture 2.6.

We next consider σT /σW . Fig. 3 plots σT /σW for d = 2, 3 with various values of q ≤ q∗.
It is clear that σT /σW →∞, which strongly suggests that Conjecture 2.5 cannot be extended
to p = pc. As we discuss in more detail in Sect. 3.4, the ratio σT /σW appears to grow at
least as fast as ln(L). Combining this observation, together with (2.16) and (2.17), with the
above observation that μT /σT diverges, implies that μT /μW also diverges, which also rules
out the possibility that Conjecture 2.4 extends to p = pc. Direct numerical data for the ratio
μT /μW support this conclusion.
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Fig. 2 (Color online) Monte Carlo estimates of μT /σT for the critical random–cluster model with d = 2
(left) and d = 3 (right), with various cluster fugacities q ≤ q∗. Error bars corresponding to one standard error
are shown
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Fig. 3 (Color online) Monte Carlo estimates of σT /σW for the critical random–cluster model with d = 2
(left) and d = 3 (right), with various cluster fugacities q ≤ q∗. Error bars corresponding to one standard error
are shown

3.3 Variance and Relaxation Time

We now provide evidence in support of Conjecture 2.8, in both the critical and off-critical
cases. Let (Xt )t∈N be a stationaryFKheat-bath process, anddefine (Nt )t∈N viaNt = N (Xt ),
where N (A) = |A| is the number of occupied edges. Since N is a strictly increasing
function, Proposition A.1 in Appendix A implies that

ρN (t) := cov(N0,Nt )

var(N0)
∼ Ce−t/texp , t →∞, (3.1)

for some (parameter-dependent) constant C > 0. Assuming the validity of Conjecture 2.8,
it follows from (3.1) that

ln ρN (k σT ) ∼ − π√
6
k (3.2)

as k and L tend to infinity.
For a given time lag t , we estimated ρN (t) by performing around 100 independent

simulations, estimating ρN (t) from each simulation using the standard time series estimator
(see e.g. [45, Equation (3.9)]), and then calculating the sample mean over independent runs
to obtain our final estimate of ρN (t). Figure 4 plots the resulting estimates of ρN (k σT )

versus k, for a variety of values of q , p and L . The data collapse evident from the figure
clearly supports the expectation (3.2), and therefore provides direct evidence to support
Conjecture 2.8.
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Fig. 4 (Color online) Monte Carlo estimates of ln ρN (σT k) for the random–cluster model with d = 2, and
various values of q < q∗, p and L . The pairs (q, p) = (2, 0.1) and (q, p) = (3.5, 0.6) are off-critical. The
filled areas enclosing the curves correspond to one standard error
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Fig. 5 (Color online) Monte Carlo estimates of σT /texp for the random–cluster model with d = 2, and
various values of q < q∗, p and L . The pairs (q, p) = (2, 0.1) and (q, p) = (3.5, 0.6) are off-critical. The
solid black line corresponds to the horizontal line π/

√
6. Error bars corresponding to one standard error are

shown

To further test Conjecture 2.8, we used (3.1) to directly estimate texp, and then compared
these estimates with our estimates of σT . To estimate texp from an estimate of ρN (t), we
fitted a linear function a− t/b to the data for (t, ln ρN (t)), with appropriate cutoffs imposed
at both small t (to avoid the pre-asymptotic regime) and large t (to reduce statistical noise).
Using these estimates, Fig. 5 shows the L dependence of the ratio σT /texp for a variety of
critical and off-critical (p, q) pairs, with q < q∗. The solid black line corresponds to the
asymptote π/

√
6 predicted by Conjecture 2.8. The data collapse is clearly excellent, lending

further strong support to the conjecture.

3.4 Dynamic Critical Exponents

We now briefly discuss a practical application of Conjecture 2.8. Assuming the validity of
Conjectures 2.5 and 2.8, and combining them with (2.17), confirms the intuition mentioned
in Sect. 2.4 that texp ∼ Ld off criticality. Moreover, a closer inspection of the data in Fig. 3
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Table 1 Estimated critical
exponent zT for a variety of
values of d and q < q∗. If
Conjecture 2.8 holds, then
zT = zexp

d q α/ν zint,N zCMint,E ′ zT

2 1.75 −0.1093 – 0.06(1) 0(ln)

2 2 0(ln) 0(ln) 0.14(1) 0(ln)

2 2.5 0.2036 0.26(1) 0.31(1) 0.315(3)

2 3 0.4000 0.45(1) 0.49(1) 0.491(4)

2 3.5 0.6101 0.636(2) 0.69(1) 0.662(2)

3 1.5 −0.32(4) – 0.13(1) 0.090(6)

3 1.8 −0.15(5) – 0.29(1) 0.233(4)

3 2 0.174(1) 0.35(1) 0.46(3) 0.435(9)

3 2.2 0.50(4) – 0.76(1) 0.646(5)

suggests that, at least for sufficiently large q < q∗, we have σT /σW ∼ Lz for some expo-
nent z = z(q, d) > 0. Under the assumption of Conjecture 2.8, this is then equivalent to
texp ∼ Ld+z . This behaviour, which is precisely the phenomenon of critical slowing-down,
is expected on physical grounds [45] to occur generically at p = pc when q < q∗. The expo-
nent z, controlling the divergence of texp/Ld at continuous phase transitions, is an example
of a dynamic critical exponent. It is often denoted zexp in the literature [45]. While being
of considerable physical and practical significance, the precise estimation of zexp, even via
simulation, is a highly non-trivial task. However, if Conjecture 2.8 holds, then zexp for the FK
heat-bath process can be estimated efficiently and reliably by considering the more tractable
problem of the asymptotics of σT . For clarity, we denote the exponent governing the critical
asymptotics of σT /Ld by zT .

So motivated, we considered a number of d and q < q∗ values, and fitted σT /Ld to both
power-law and logarithmic finite-size scaling ansätze, aLz + b and a ln(L)+ b, both with b
free and fixed to zero. For a given ansatz, the quality of the fit was studied as we varied the
lower cutoff on the L values included in the fits. Table 1 summarises our best estimates for
zT , chosen to be the estimate resulting from the ansatz that yielded the highest confidence
level, and stable estimates with respect to a variation of the lower cutoff.

For comparison, we also present corresponding values of α/ν, since a Li-Sokal type
bound [10] implies4 that zexp ≥ α/ν. Here α and ν are the standard static critical exponents
governing the specific heat and correlation length, respectively. For d = 2, conjectured exact
expressions forα and ν follow from the hyperscaling relation dν = 2−α, the identification of
1/ν with the renormalization group thermal exponent, and [40, Equation (3.37)]. For d = 3,
the reported values of α/ν correspond to the estimates presented in [9]. Also for comparison,
we present estimates of the scaling exponent zint,N of the integrated autocorrelation time [45]
of the number of occupied edges, N , taken from [10]. Integrated autocorrelation times are
often used in practice as surrogates for texp, and their scaling exponents are then used as
estimates of zexp. We emphasize, however, that all that is known in general (via the spectral
representation for reversible Markov chains [45]) is that integrated autocorrelation times are
bounded above by trel, meaning that a priori, estimates of zint,N only provide lower bounds
on zexp. Under the assumption that Conjecture 2.8 holds, Table 1 would appear to suggest
that in fact zint,N may be strictly smaller than zexp.

Finally, to compare the performance of the heat-bath process for the random–cluster
model with the Chayes-Machta cluster algorithm [6], we include estimates [9] of the scaling
exponent zCMint,E ′ of the integrated autocorrelation time, with respect to the Chayes-Machta

4 Assuming the relevant exponents exist.

123



36 A. Collevecchio et al.

−2 −1 0 1 2 3 4 5 6
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6
p
( s
)

q = 8
p = 0.3
L = 128, d = 2

−2 −1 0 1 2 3 4 5 6
s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

p
(s
)

q = 1.5
p = 0.2
L = 64, d = 3

Fig. 6 (Color online) Histograms of off-critical S, with parameters as specified in the figure. The histograms
are based on 19,000 independent samples for d = 2 and 11,000 for d = 3. Here p(s) denotes the probability
density function of S. For comparison, the solid green line shows the probability density function corresponding
to (2.19)

process, of the observable E ′, defined as the number of edges whose end points belong to
the same connected component. For d = 3, we observe that zCMint,E ′ > zexp appears to hold,
which would imply that the heat-bath process has a strictly smaller value of zexp than the
Chayes-Machta process.

4 Limiting Distribution

We now turn our attention to the limiting distribution of the coupling time, and provide
numerical evidence in support of Conjecture 2.7. To ease notation, in this sectionwe introduce
the standardized variable

S := (T − μT )/σT . (4.1)

4.1 Off Criticality

In this section we present evidence supporting Conjecture 2.7 in the off-critical case. We
defer discussion of the critical case until Sect. 4.2.

Figure 6 compares histograms of S with the probability density function corresponding
to (2.19). The left panel corresponds to d = 2 and q = 8 at p = 0.3 < pc(8, 2). The right
panel corresponds to d = 3 and q = 1.5 at p = 0.2; for reference, it is estimated [50] that
pc(1.5, 3) = 0.31157497(59). The agreement is clearly excellent, providing strong support
for Conjecture 2.7.

We emphasize that the theoretical curve shown in Fig. 6 does not correspond to a fit to
the data; the distribution G(x) does not possess any free parameters. In order to obtain a
quantitative measure of how well the limiting distribution of S is described by G(x), we
therefore considered the three-parameter family of distributions known as the Generalized
Extreme Value distribution (GEV), defined by the distribution function

FGEV
(
x; ξ, η, θ

) :=
⎧
⎨

⎩

e−e−(x−η)/θ
ξ = 0,

e−
(
1+ξ(x−η)/θ

)−1/ξ
ξ �= 0,

(4.2)

where ξ, η ∈ R and θ > 0. The support of FGEV isR for ξ = 0, [η− θ/ξ,∞) for ξ > 0, and
(−∞, η−θ/ξ ] for ξ < 0. The case ξ = 0 corresponds to the Gumbel family of distributions,
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and the specific values

ξ = 0, η = −γ
√
6

π
= −0.45005320754 . . . , θ =

√
6

π
= 0.77969780123 . . . (4.3)

correspond to G(x) as given in (2.19).
Our consideration of FGEV can be motivated as follows. Consider an iid sequence of

random variables X1, X2, . . . and let Mn := max{X1, . . . , Xn}. The extremal types theorem
(see e.g. [34, Theorem 1.4.2]) states that if the sequenceMn , appropriately standardized,5 has
a non-degenerate limit, then the limit must be a GEV distribution. To relate this observation
to the coupling time, we can envision coarse-graining the lattice into regions of size much
larger than the spatial correlation length, which is finite off criticality. To each such region we
can assign a local coupling time, defined to be the last time before T that the state (occupied
or unoccupied) of each edge in that region is the same in the top and bottom chains. Since
the correlations between regions are weak, as a first approximation one can envision the
local coupling times as independent. Moreover, the coupling time of the system, T , is the
maximum of these local coupling times. It is therefore natural to expect that if an appropriate
standardization of T converges to a non-degenerate limit as L → ∞, then the limit should
be of the form (4.2).

We therefore fitted the ansatz (4.2) to our data for S, and computed maximum likelihood-
estimates of the parameters ξ, η, θ . For d = 2, q = 8, p = 0.3 and L = 128, (left panel of
Fig. 6) we obtain

ξ = 0.01(1) η = −0.45(1) θ = 0.77(1), (4.4)

based on 19000 independent samples, and with error bars are computed via bootstrap
re-sampling [51]. These estimates are in perfect agreement with the parameter values corre-
sponding to G(x). Similarly, for d = 3, q = 1.5, p = 0.2 and L = 64 (right panel in Fig. 6),
we obtain

ξ = 0.01(1) η = −0.45(2) θ = 0.78(1) (4.5)

based on 11000 samples. Finally, we also considered d = 3, q = 2.2 and p = 0.6, which is
expected to be in the supercritical regime [50], and obtained

ξ = 0.00(1) η = −0.45(2) θ = 0.79(1), (4.6)

based on 11000 samples. In each case, the estimates of the GEV parameters are entirely
consistent with the parameter values in (4.3) corresponding to G(x), as predicted in Conjec-
ture 2.7.

4.2 Criticality

Althoughwe have observed thatμT and σT display non-trivial L dependencies when p = pc,
we now present evidence that Conjecture 2.7 is valid at p = pc when q < q∗.

Figure 7 compares histograms of S with the probability density function corresponding
to (2.19). The left panel corresponds to d = 2 and q = 3.5, while the right panel corresponds
to d = 3 and q = 1.5. The agreement is clearly excellent, providing strong support for
Conjecture 2.7.

Analogous to our discussion of the off-critical case in Sect. 4.1, we can obtain a more
quantitative test of the agreement between the limiting distribution of S and (2.19) by fitting
the GEV distribution, (4.2). We considered a number of values of q < q∗ with d = 2, 3, and

5 I.e. Mn �→ (Mn − bn)/an for some deterministic sequences an > 0 and bn .
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Fig. 7 (Color online) Histograms of S at criticality, with parameters as specified in the figure. The histograms
are based on 15, 000 independent samples for d = 2 and 10, 000 for d = 3. Here p(s) denotes the probability
density function of S. For comparison, the solid green line shows the probability density function corresponding
to (2.19)

Table 2 Parameter estimates
obtained by fitting the GEV
distribution (4.2) to the empirical
distribution for S at p = pc, for
various choices of q < q∗. Here
Ns denotes the number of
samples. Error bars correspond to
one standard error

d q L η θ ξ Ns

2 1.75 1024 −0.45(3) 0.80(2) −0.02(2) 3360

2 1.75 512 −0.45(2) 0.79(1) −0.01(2) 9800

2 2.00 512 −0.45(2) 0.78(1) 0.00(1) 9000

2 2.00 800 −0.45(2) 0.80(1) −0.02(1) 9000

2 2.50 512 −0.45(2) 0.79(2) −0.01(1) 9000

2 3.00 512 −0.45(2) 0.78(1) 0.01(1) 9000

2 3.50 512 −0.46(2) 0.77(1) 0.02(2) 8990

2 3.50 800 −0.46(1) 0.77(1) 0.01(1) 15,730

3 1.5 64 −0.45(1) 0.78(1) 0.01(2) 10,000

3 1.8 64 −0.44(1) 0.81(1) 0.03(1) 10,000

3 2.0 64 −0.45(2) 0.80(3) 0.03(3) 700

3 2.2 64 −0.44(1) 0.80(1) 0.03(1) 10,000

our results are summarized in Table 2. The estimates of the GEV parameters η, θ, ξ are in
good agreement with the parameter values (4.3) corresponding to G(x). The combination of
these numerical results strongly support the validity of Conjecture 2.7.

We conclude this section with some comments on the case of p = pc and q ≥ q∗, which
is excluded from our statement of Conjecture 2.7. Because of the slow mixing inherent at
discontinuous phase transitions, it is muchmore difficult to obtain accurate simulation results
at p = pc when q > q∗. We did however perform a simulation study for d = 2 at pc for
q = 5 > q∗. While it does appear that the standardized variable S again converges to a
non-degenerate limit, it appears that this limit is not G(x). To illustrate this, we generated
10,000 samples of T with L = 256, and obtained the following GEV parameter estimates:
ξ = 0.19(2), η = −0.49(2), θ = 0.62(1). The deviation of ξ away from the Gumbel value
ξ = 0 seems to provide strong evidence that Conjecture 2.7 cannot be extended to the case
of p = pc when q > q∗.

The case q = q∗ is more subtle. In this case, it is not slow mixing that constitutes an
impediment, but rather the notorious issue of multiplicative logarithms arising in finite-size
scaling ansätze. We simulated the case d = 2 and q = q∗ = 4 at p = pc, at a variety of
different L values. We again observe that the distribution of S appears to converge to a non-
degenerate limit. The GEV distribution was fitted to the data for S, and the corresponding
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Table 3 Parameter estimates obtained by fitting the GEV distribution (4.2) to the empirical distribution for
S at (p, q) = (pc, q∗) and d = 2, for various choices of L . Here Ns denotes the number of samples. Error
bars correspond to one standard error

L η θ ξ Ns

128 −0.46(2) 0.73(1) 0.05(2) 8990

256 −0.47(2) 0.71(1) 0.08(2) 9000

512 −0.47(1) 0.73(1) 0.06(1) 18940

800 −0.47(1) 0.72(1) 0.07(1) 20000

1024 −0.47(2) 0.72(1) 0.07(1) 9850

estimates for η, θ, ξ are reported in Table 3. The resulting estimates of θ and ξ are not
consistent with the values corresponding to G(x). In particular, the estimates suggest ξ

is strictly positive, which would rule out a Gumbel limit law. Therefore, based on these
estimates, there does not appear to be any evidence suggestingConjecture 2.7 can be extended
to the case of (p, q) = (pc, q∗). However, the discrepancies of these parameter estimates
with the values corresponding to G(x) are relatively small. Therefore, we also believe that
there is insufficient evidence to conclude that the distribution of S at (p, q) = (pc, q∗) is
actually different to G(x). Determining the limiting distribution of S at (p, q) = (pc, q∗)
therefore remains an open problem.

5 Arbitrary Graphs

In this section, we consider the FK heat-bath process on arbitrary graphs, and prove Theo-
rem 2.1.

Proof of Theorem 2.1 Consider the FK heat-bath coupling on a finite connected graph G =
(V, E) with |E | = m ≥ 1, and let

d(t) := max
A⊆E

‖Pt (A, ·)− φ‖TV. (5.1)

It follows from [43, Theorem 5] and [35, Equation (4.24)] that

d(t) ≤ P(T > t) ≤ 2 (m + 1) d(t), (5.2)

for any t ∈ N. Combining the lower bound in (5.2) with [35, Equation (12.13)] yields the
stated lower bound for the tail distribution:

P(T > t) ≥ d(t) ≥ e−t/texp
2

.

Similarly, combining (5.2) with Markov’s inequality implies

E(T ) ≥ (tmix − 1)P(T > tmix − 1) ≥ (tmix − 1)d(tmix − 1) ≥ (tmix − 1)

4
.

This establishes the stated lower bounds.
We now consider the upper bounds. Let M ∈ (1,∞) be such that

P(T > l M) ≤ 2−l , for all l ∈ N. (5.3)
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Then for k ∈ {0, 1} we have
∞∑

t=0
tk P(T > t) ≤

∞∑

l=0

(l+1)�M�−1∑

t=l�M�
tk P(T > l M)

≤
∞∑

l=0

(l+1)�M�−1∑

t=l�M�
tk 2−l

= (k + 2)�M�k+1 − k �M�.
The k = 0 case then immediately yields an upper bound for E(T ), via

E(T ) =
∞∑

t=0
P(T > t) ≤ 2 �M� ≤ 4M. (5.4)

Similarly, standard manipulations of probability generating functions (see e.g. [18, Chapter
XI]) show that

E [T (T − 1)] = 2
∞∑

t=0
t P(T > t), (5.5)

and so the k = 1 case yields

var(T ) ≤ E[T (T − 1)] + E(T ) ≤ 6�M�2, (5.6)

which implies √
var(T ) ≤ √6(M + 1) ≤ 2

√
6M ≤ 5M. (5.7)

We now determine suitable choices of M for which (5.3) holds. Since the bound is trivial
for l = 0, we assume l ≥ 1. We begin by considering bounds in terms of texp. Letting
φmin := min{φ(A) : A ⊆ E}, and combining [35, Lemma 6.13] and [35, Equation (12.11)]
with (5.2) yields

P(T > t) ≤ 2(m + 1) d(t) ≤ 2(m + 1)

φmin
e−t/texp ≤ 2 (m + 1) ψm e−t/texp , (5.8)

where in the last step we applied Lemma 5.1. Since ln[2(m + 1)] ≤ 2m, this immediately
yields the stated upper bound for P(T > t). Likewise, since log2[2(m + 1)]) ≤ 2m, if we
set M = [log2(ψ)+ 3]m texp then it follows from (5.8) that

log2 P(T > l M) ≤ [log2(ψ)+ 2]m − l[log2(ψ)+ 3]m
= −(l − 1)[2+ log2(ψ)]m − m l

≤ −m l

≤ −l,
and so (5.3) holds. Inserting this choice of M into (5.5) and (5.7) then yields the stated upper
bounds for E(T ) and

√
var(T ) in terms of texp.

Finally, we consider bounds in terms of tmix. Combining (5.2) with [35, Equation (4.35)]
we obtain

P(T > t) ≤ 2(m + 1) d(t) ≤ 4m d(t) ≤ 2log2(4m)−�t/tmix�.

Setting M = 3 log2(4m) tmix, it follows that

log2 P(T > l M) ≤ log2(4m)− 3 log2(4m)l + 1
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= [1− (2l − 1) log2(4m)] − log2(4m) l

≤ − log2(4m) l

≤ −l,
which implies that (5.3) holds. Inserting this choice of M into (5.5) and (5.7) then yields the
stated upper bounds for E(T ) and

√
var(T ) in terms of tmix. ��

Lemma 5.1 Consider the FK model with q ≥ 1 and p ∈ (0, 1), on a finite connected graph
G = (V, E) with m edges, and let φmin := min{φ(A) : A ⊆ E}. Then

φmin ≥
(
p(1− p)

q2

)m

.

Proof Since
∑

A⊆E

p|A|(1− p)m−|A|qk(A) ≤ qn
∑

A⊆E

p|A|(1− p)m−|A| = qn,

for any A ⊆ E we have

φ(A) ≥ p|A|(1− p)m−|A|qk(A)−n ≥ pm(1− p)mq−n .

The stated result then follows since G being connected implies n ≤ m + 1 ≤ 2m. ��

6 The Cycle

In this section, we consider the FK heat-bath coupling, with parameters p ∈ (0, 1) and q ≥ 1,
on the graph ZL , and prove Theorem 2.3. We begin, in Sect. 6.1, by showing that T equals
W with high probability, as L →∞. This observation is then used in Sect. 6.2 to prove Parts
(i) and (ii), of Theorem 2.3, and again in Sect. 6.3 to prove Part (iii). Finally, in Sect. 6.4, we
prove Part (iv).

6.1 Asymptotic Coupon Collector Behaviour

For each e ∈ E , define

H(e) = sup{t ≤ W : Et = e}.
We refer to the time H(e) as the last visit to e. Let (Hi )

m
i=1 denote the sequence of the H(e),

arranged in increasing order. In particular, H1 is the first time that a last visit occurs. And
likewise, Hi is the time that the i th last visit occurs.

Proposition 6.1 Consider the FK heat-bath coupling on ZL with p ∈ (0, 1) and q ≥ 1.
There exists ε > 0 such that P(T = W ) = 1− O(L−ε).

Proof Fix p ∈ (0, 1) and q ≥ 1, and let aL := �ln L�. LetP j be the event that the edge EHj

is pivotal in the top process at time Hj − 1. By monotonicity, whenever an edge is pivotal
to the top chain, it is also pivotal to the bottom chain. Lemma 6.2 implies that there exists
ω > 0 such that

P(T > W ) = P

⎛

⎝T > W

∣
∣
∣
∣

aL⋂

j=1
P j

⎞

⎠+ O(L−ω). (6.1)
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Now suppose ∩aLj=1P j occurs, and let 1 ≤ i ≤ aL . If UHi ≤ p̃, then EHi ∈ Bt and
EHi ∈ Tt for all t ∈ [Hi ,W ], while if UHi > p̃ then EHi /∈ Bt and EHi /∈ Tt for all
t ∈ [Hi ,W ]. Consequently, on ZL , if UHi > p̃, then every edge e �= EHi is pivotal to
Tt and Bt , for all t ∈ (Hi ,W ], so that after any update of such an edge in this time
window, its state (occupied or unoccupied) in the top and bottom chain will agree. Since
each e ∈ E \ {EH1 , . . . , EHi } must be updated in (Hi ,W ], this implies that the top and
bottom chains agree at time W , and so T ≤ W . It follows that T > W can occur only if
UHi ≤ p̃ for each 1 ≤ i ≤ aL , and so

P

⎛

⎝T > W

∣
∣
∣
∣

aL⋂

j=1
P j

⎞

⎠ ≤ p̃aL ≤ L ln p̃

p̃
. (6.2)

Since p ∈ (0, 1), we have p̃ ∈ (0, 1), and so ln( p̃) < 0. Choosing ε = min{ω,− ln p̃}, and
combining (6.1) and (6.2), we therefore obtain

P(T > W ) = O(L−ε).

Combining this observation with (2.20) yields the stated result. ��
Lemma 6.2 Consider the top process on ZL , with fixed p ∈ (0, 1) and q ≥ 1. Let P j be
the event that the edge EHj is pivotal at time Hj − 1, and let aL = �ln L�. Then there exists
ω > 0 such that

P

⎛

⎝
aL⋃

j=1
Pc

j

⎞

⎠ = O(L−ω), L →∞.

Proof Let Rt := {e ∈ E : Es = e for some s ≤ t}, the set of distinct edges visited up to time
t . Let D = {|RH1 | > aL } be the event that more than aL distinct edges have been visited by
time H1. If D holds, then it also holds that more than aL distinct edges have been visited by
time Hj , for any j ≥ 1. Fix 1 ≤ j ≤ L and p, ξ ∈ (0, 1), and define A j to be the event that
at least ξ(1− p)aL edges are unoccupied at time Hj −1. For any choice of ξ, p ∈ (0, 1), we
have ξ(1− p)aL ≥ 2 for all sufficiently large L; let L be so chosen in what follows. Then,
if A j occurs, there are at least 2 unoccupied edges at time Hj − 1, which in turn means that
all edges are pivotal at time Hj − 1. Therefore, A j ⊆P j .

Let W denote the set of the first aL distinct edges visited by (Et )t∈N+ . On D , the edges
in W are all visited prior to Hj . Denote the times of last visit to the edges in W , prior to Hj ,
by M1 < M2 < . . . < MaL , and let 1 ≤ i ≤ aL . Since p ≥ p̃, if UMi > p, then regardless
of the structure of TMi−1, we have EMi /∈ TMi . It follows that if Xi = 1(UMi > p), then
P(EMi /∈ TMi ) ≥ P(Xi = 1) = (1 − p). Therefore, Chernoff’s bound [38, Equation (4.5)]
implies

P

(
Pc

j |D
)
≤ P

(
A c

j |D
)
≤ P

( aL∑

i=1
Xi < ξ(1− p)aL

)

≤ e−γ aL

with γ = (1− ξ)2(1− p)/2 > 0.
Combining this with the union bound gives

P

⎛

⎝
aL⋃

j=1
Pc

j

∣
∣
∣
∣D

⎞

⎠ ≤
aL∑

j=1
P(Pc

j |D)
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≤ aLe
−γ aL

≤ eγ ln(L) L−γ .

It follows that for any 0 < δ < γ we have

P

⎛

⎝
aL⋃

j=1
Pc

j

∣
∣
∣
∣D

⎞

⎠ = O(L−δ).

Finally, Lemma B.1 in Appendix B implies that there exists ϕ > 0 such that

P(Dc) = O(L−ϕ).

Choosing ω = min{δ, ϕ} then implies

P

⎛

⎝
aL⋃

j=1
Pc

j

⎞

⎠ = O(L−ω).

Since ω > 0, the stated result follows. ��
6.2 Mean and Variance

Define the sequence of random times Wj such that W0 = 0 and for j ∈ N
+

Wj := min{t > Wj−1 : {EWj−1+1, . . . , Et } = E}.
We define new processes (T̃t )t∈N and (B̃t )t∈N as follows, which proceed analogously to the
top and bottom chains, except that they are restarted at times Wj < T . More precisely, let
T̃0 = E , and for t ∈ N set

T̃t+1 =
{
f (E, Et+1,Ut+1), t = Wj and T > Wj ,

f (T̃t , Et+1,Ut+1), otherwise.
(6.3)

Similarly, B̃0 = ∅, and for t ∈ N we set

B̃t+1 =
{
f (∅, Et+1,Ut+1), t = Wj and T > Wj ,

f (B̃t , Et+1,Ut+1), otherwise.
(6.4)

By monotonicity, it is clear that for all t ∈ N we have

B̃t ≤ Bt ≤ Tt ≤ T̃t . (6.5)

We can now consider the coupling time corresponding to T̃t and B̃t ,

T̃ := min{t ∈ N : T̃t = B̃t }. (6.6)

It follows from (6.5) that T ≤ T̃ . Combining this with (2.20) implies

W ≤ T ≤ T̃ . (6.7)

Proof of Theorem 2.3, Parts (i) and (ii) Combining (6.7) andLemma6.3 immediately yields
E(T ) ∼ E(W ), which establishes Part (i).

To establish Part (ii) we note that (6.7) implies

E(W 2)− (ET̃ )2 ≤ var(T ) ≤ E(T̃ 2)− (EW )2,
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and rearranging, we obtain

1− (EW )2

var(W )

⎡

⎣

(
ET̃

EW

)2

− 1

⎤

⎦ ≤ var(T )

var(W )
≤ var(T̃ )

var(W )
+ (EW )2

var(W )

⎡

⎣

(
ET̃

EW

)2

− 1

⎤

⎦ . (6.8)

Lemma 6.3 implies ⎡

⎣

(
ET̃

EW

)2

− 1

⎤

⎦ = O(L−ε), (6.9)

while (2.16) and (2.17) imply
(EW )2

var(W )
= O(ln2(L)), (6.10)

and so (6.8) yields

1 ≤ lim inf
L→∞

var(T )

var(W )
≤ lim sup

L→∞
var(T )

var(W )
≤ lim sup

L→∞
var(T̃ )

var(W )
.

Combining this with Part (ii) of Lemma 6.3 then implies that var(T ) ∼ var(W ). ��
Lemma 6.3 Let T̃ be as defined in (6.6). Then:

(i) E(T̃ ) = E(W )[1+ O(L−ε)].
(ii) lim supL→∞ var(T̃ )/ var(W ) ≤ 1.

Proof By construction of the processes B̃t and T̃t , we have T̃ ∈ {W1,W2,W3, . . .}. Defining
the random index J via

J := inf{ j ∈ N : B̃Wj = T̃Wj },
we therefore have T̃ = WJ . It follows that

T̃ =
J∑

j=1
Y j ,

where Y j := (Wj − Wj−1) form an iid sequence of copies of W1 = W . Moreover, J is
geometrically distributed, with success probability P(T = W ). From Proposition 6.1 we
therefore obtain

E(J ) = 1+ O(L−ε),

var(J ) = O(L−ε). (6.11)

Let Ft := σ(E1,U1, . . . , Et ,Ut ) denote the natural filtration of the auxiliary noise. For
each j ∈ N

+, the time Wj is a stopping time with respect to Ft , and we can define the σ -
algebra G j := FWj . SinceWj−1 < Wj , the sequence (G j ) j∈N+ is a filtration, and moreover,
(Y j ) j∈N+ is adapted to it. It is easily verified that σ(Y j ) and G j−1 are independent, for each
j ∈ N

+. Furthermore, J is a stopping time with respect to (G j ) j∈N+ . It therefore follows
from Wald’s first equation [7, Theorem 5.3.1] that

E(T̃ ) = E(J )E(W ). (6.12)

Combining (6.11) with (6.12) yields statement (i).
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We now turn to statement (ii). Consider the random variable T̃ − E(W ) J . We clearly
have

T̃ − E(W ) J =
J∑

j=1
[Y j − E(W )],

and it follows from (6.12) that T̃ − E(W ) J has mean zero. Wald’s second equation [7,
Theorem 5.3.3] therefore yields

E[(T̃ − E(W ) J )2] = E(J ) var(Y1 − E(W )) = E(J ) var(W ). (6.13)

We can upper-bound var(T̃ ) using (6.13) as follows. Fix a parameter a > 1. Jensen’s
inequality implies that for any b, c ∈ R we have

(b + c)2 =
(
1

a
ba + a − 1

a

ca

(a − 1)

)2

≤ b2a + c2
a

(a − 1)
. (6.14)

From (6.12) and (6.14) it follows that, for any a > 1,

var(T̃ ) = E

([
T̃ − E(W )E(J )

]2
)

= E

([
(T̃ − E(W ) J )+ E(W )(J − E(J ))

]2
)

≤ a E

[(
T̃ − E(W ) J

)2
]

+ a

(a − 1)
(EW )2 var(J )

= a E(J ) var(W )+ a

a − 1
(EW )2 var(J ), (6.15)

where the last step follows from (6.13). From (6.10) and (6.11) we therefore obtain that, for
any a > 1,

var(T̃ )

var(W )
≤ a

[
1+ O(L−ε)

]+ a

1− a

(EW )2

var(W )
O(L−ε) ≤ a + o(1),

and we conclude that

lim sup
L→∞

var(T̃ )

var(W )
≤ a. (6.16)

Finally, since (6.16) holds for all a > 1, we in fact have

lim sup
L→∞

var(T̃ )

var(W )
≤ 1,

as claimed. ��
6.3 Distribution

By combining Proposition 6.1 with Parts (i) and (ii) of Theorem 2.3, we can now prove Part
(iii).

Proof of Theorem 2.3, Part (iii) Fix q ≥ 1 and p ∈ (0, 1), and let PL denote the correspond-
ing measure for the FK heat-bath coupling on ZL , with analogous notation for expectation
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and variance. Define the sequences gL := EL(T ), γL := EL(W ), hL := √varL(T ) and
ηL := √varL(W ). Proposition 6.1 implies that for any fixed x ∈ R, we have

PL [T ≤ gL + x hL ] = PL [W ≤ gL + x hL |T = W ] + O(L−ε)

= PL [W ≤ gL + x hL ] + O(L−ε). (6.17)

Since Parts (i) and (ii) of Theorem 2.3 imply, respectively, that γL ∼ gL and ηL ∼ hL , the
stated result follows from (6.17) via the Convergence of Types theorem [4, Theorem 14.2].

��
6.4 Relaxation Time

Proof of Theorem 2.3, Part (iv) Let P denote the transition matrix of the FK process on
ZL with parameters (p, q), and let φ denote the corresponding stationary distribution. For
g, h : 2E → R, let 〈g, h〉φ := ∑

A⊆E g(A) h(A) φ(A) denote the inner product on l2(φ).
The Dirichlet form E corresponding to P and φ is defined by E (g, h) := 〈(I − P)g, h〉φ . It
is well-known (see e.g. [35, Lemma 13.11]) that

E (g) := E (g, g) = 1

2

∑

A,B⊆E

∇g(A, B) Q(A, B), (6.18)

where

∇g(A, B) := [g(A)− g(B)]2 = ∇g(B, A),

Q(A, B) := φ(A) P(A, B) = Q(B, A). (6.19)

We denote the spectral gap of P by γ := 1 − λ2. The Rayleigh-Ritz characterization [35,
Remark 13.13] of the spectral gap implies that

γ = min
g:2E→R

varφ(g)�=0

E (g)

varφ(g)
. (6.20)

We can bound the spectral gap of P via a comparison with percolation with edge proba-
bility p̃. In what follows, the quantities P̃ , Q̃, Ẽ , γ̃ , φ̃ are defined analogously to P , Q, E ,
γ , φ, but with parameters ( p̃, 1) rather than (p, q).

Replacing the number of components k(A) in (2.1) with the cyclomatic number c(A) =
L − |A| + k(A), and using the fact that c(A) = 1 iff A = E , and c(A) = 0 otherwise, we
find

φ(A) = rL q
1(A=E) φ̃(A),

rL := 1

1+ (q − 1) p̃L
. (6.21)

If A and B are both different from E , then P(A, B) = P̃(A, B) and so

Q(A, B) = rL Q̃(A, B).

By contrast, for any e ∈ E ,

Q(E, Ee) = rL
p

p̃
Q̃(E, Ee) = rL Q̃(E, Ee)+ c

p̃L

L
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where c > 0 depends only on p and q . It follows that

E (g) = rL Ẽ (g)+ c rL
p̃L

L

∑

e∈E
∇g(E, Ee). (6.22)

Due to the product form of P̃ , an explicit diagonalization can be easily obtained. A
discussion of the case p̃ = 1/2 can be found in [35, Example 12.15], which can be extended
to any p̃ ∈ (0, 1), to show that the eigenvalues of P̃ have the form 1− k/L for 0 ≤ k ≤ L ,
and to obtain explicit forms for the corresponding eigenfunctions. In particular, this shows
that the second-largest eigenvalue is λ̃2 = 1− 1/L , and so γ̃ = 1/L .

Fix an edge e ∈ E , and let Je := {A ⊆ E : A � e}, the event that e is occupied. It can be
easily verified directly that the function Ψ : 2E → R defined by

Ψ (A) = 1Je (A)− p̃

is an eigenfunction of P̃ with eigenvalue λ̃2. It follows that

Ẽ (Ψ ) = 〈(I − P̃)Ψ,Ψ 〉φ̃ = γ̃ varφ̃ (Ψ ) = p̃(1− p̃)

L
. (6.23)

Since φ(J ce ) = rL φ̃(J ce ), we have

varφ(Ψ ) = r2L p̃(1− p̃)
(
1+ (q − 1) p̃L−1

)
. (6.24)

Combining (6.20), (6.22), (6.23) and (6.24) we see that, as L →∞,

γ ≤ E (Ψ )

varφ(Ψ )
= 1

L

[
1+ O

(
p̃L

)]
.

This establishes the stated lower bound for trel.
To establish the upper bound, first note that (6.22) implies E (g) ≥ rL Ẽ (g) for all g :

2E → R. Similarly, for any g : 2E → R we have

varφ(g) = 1

2

∑

A,B⊆E

∇g(A, B) φ(A) φ(B)

≤ qr2L varφ̃ (g),

where the inequality follows by inserting (6.21) and noting that ∇g(E, E) = 0. It follows
that, for any non-constant g : 2E → R, we have

E (g)

varφ(g)
≥ 1

q rL

Ẽ (g)

varφ̃ (g)
,

and so

γ ≥ γ̃

q rL
= 1

q L

[
1+ O( p̃L)

]
.

��
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7 Single-Spin Ising Heat-Bath Process

In this section,we present a brief discussion of the coupling time for the single-spin Ising heat-
bath process. Since the process has exponentially slowmixing below the critical temperature,
we focus on temperatures at and above criticality. At temperatures above criticality, we find
that the coupling time again displays the same coupon-collector-like behaviour observed for
the FK heat-bath process. As we shall see, however, at the critical temperature the behaviour
is somewhat different.

We define the Ising heat-bath process precisely in Sect. 7.1, and in Sect. 7.2 we summarise
our conjectures for the behaviour of its coupling time. Sections 7.3 to 7.5 then outline the
numerical evidence in support of these conjectures.

7.1 Definition of the Process

The zero-field ferromagnetic Ising model on finite graph G = (V, E) at inverse temperature
β ≥ 0 is defined by the Gibbs measure

π(ω) ∝ exp

⎛

⎝β
∑

i j∈E
ωiω j

⎞

⎠ , ω ∈ {−1, 1}V . (7.1)

It is intimately related to the q = 2 Fortuin-Kasteleyn random–cluster model. The correlated
percolation transition displayed by the FK model on Z

d , when d ≥ 2, manifests itself as an
order-disorder transition in the Isingmodel at a critical 0 < βc <∞. This transition is known
to be continuous [1]. The two-dimensional model is particularly well-understood [37], where

it is known that βc = ln
√
1+√2.

The single-spin Ising heat-bath process is aMarkov chainwith stationary distribution (7.1),
which can be defined by the following random mapping representation. Let V and U be
independent random variables, with V uniform on V andU uniform on [0, 1]. For v ∈ V and
ω ∈ {−1, 1}V , let Sv(ω) = ∑

w∼v ωw denote the local magnetization at v in configuration
ω, where the notation w ∼ v denotes adjacency between vertices w and v. Then define
f : {−1, 1}V × V × [0, 1] → {−1, 1}V so that f (ω, v, u) = ω′ where, for each w ∈ V ,

ω′w :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ωw, w �= v,

+1, w = v and u ≤ eβSv(ω)

eβSv(ω) + e−βSv(ω)
,

−1, w = v and u >
eβSv(ω)

eβSv(ω) + e−βSv(ω)
.

(7.2)

The set {−1, 1}V has a natural partial order such that ω ≤ ω′ iff ωv ≤ ω′v for all v ∈ V . It
is straightforward to verify that f is monotonic with respect to this partial order; i.e. for any
fixed v ∈ V and u ∈ [0, 1], if ω ≤ ω′, then f (ω, v, u) ≤ f (ω′, v, u).

Let (Vt ,Ut )t∈N+ be an iid sequence of copies of (V ,U ). Analogous to the FK heat-bath
process, we define top and bottom chains corresponding to the random mapping represen-
tation (7.2). Specifically, we define the top chain (Tt )t∈N so that T0 = (+1, . . . ,+1) and
Tt+1 = f (Tt ,Vt+1,Ut+1), and the bottom chain (Bt )t∈N so that B0 = (−1, . . . ,−1) and
Bt+1 = f (Bt ,Vt+1,Ut+1). We refer to the coupled process (Bt ,Tt )t∈N+ as “the Ising
heat-bath coupling”. With these definitions for the top and bottom chains, the coupling time
of the Ising heat-bath process is again defined by (2.4).
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Fig. 8 (Color online) Monte Carlo estimates of μT /μW (left) and σT /σW (right) for the Ising heat-bath
process with d = 2 and β < βc values as specified in the figure. Error bars corresponding to one standard
error are shown

7.2 Behaviour of the Coupling Time for the Ising Heat-Bath Process

We now summarise our expectations for the behaviour of the coupling time for the Ising
heat-bath process. Numerical evidence in support of these conjectures will be presented in
the following sections.

Conjecture 7.1 Consider the Ising heat-bath process on Zd
L with d ≥ 1. As L →∞:

(i) μT ∼ C1(β, d) μW and σT ∼ C2(β, d) σW when β < βc with C1(β, d),C2(β, d) > 0
(ii) μT /σT → C3(d) at β = βc, with C3(d) > 0
(iii) σT ∼ C4(β, d) trel for all β ≤ βc, with C4(β, d) > 0. Moreover, C4(β, d) = π/

√
6 for

all β < βc and all d.
(iv) If β ≤ βc

lim
L→∞P[TL ≤ E(TL)+ x

√
var(TL)] = F(x), for each x ∈ R

for some non-degenerate distribution function F. Moreover, F(x) = G(x) for all
β < βc, where G(x) is the Gumbel distribution defined by (2.19).

The numerical results presented in Sect. 7.5 strongly suggest that the limit law conjectured
in Part (iv) is not a Gumbel distribution when β = βc. We offer no conjecture on the form of
the limiting distribution in this case; it appears to be an interesting open question. Similarly,
we offer no conjecture for the exact form of C4(β, d) at β = βc.

Preliminary results, for very small L values with d = 2, suggest that (T − μT )/σT also
converges to a non-degenerate limit law as L → ∞ when β > βc, which again appears
not to be G(x). Furthermore, it also seems plausible that σT � texp remains true when
β > βc. However, given the computational difficulties in simulating this regime, we have
not attempted to test these predictions for β > βc in a detailed manner, and we therefore do
not include their statements in Conjecture 7.1.

7.3 Moments

We begin by considering the high-temperature regime. Figure 8 plots the L dependence of
μT /μW and σT /σW with d = 2 and β = 0.4 < βc. The data clearly support Part (i) of
Conjecture 7.1. We note that C1(β, d) and C2(β, d) seem to be strictly larger than 1, and
strongly β dependent.
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Fig. 9 (Color online) Monte Carlo estimates of μT /Ld and σT /Ld for the critical Ising heat-bath process
with d = 2. The solid black line shows the curve ALz , with the estimated values of A and z = 2.166. The
inset shows the ratio σT /μT . The solid line within the inset corresponds to the estimated asymptotic limit of
σT /μT → 0.895(8). Error bars corresponding to one standard error are shown

Turning to the critical case, Fig. 9 shows the L dependence of μT and σT for d = 2. The
figure clearly suggests that both μT /Ld and σT /Ld diverge like a power law in L , with the
same exponent. A least squares analysis for μT produces a power-law exponent 2.168(4),
while an analogous analysis for σT produces an exponent

zT = 2.166(9). (7.3)

The combination of the figure and the fits lends strong support to Part (ii) of Conjecture 7.1,
that μT /σT approaches a constant as L →∞.

7.4 Variance and Relaxation Time

We now turn attention to Part (iii) of Conjecture 7.1. We first consider the case d = 1, where
the relaxation time can be calculated explicitly. It was shown in [39, Lemma 4] that if the
transition matrix, P , of the Ising heat-bath process (on any graph) has a strictly increasing
eigenfunction, then its eigenvalue is the second-largest eigenvalue, λ2. The total magnetiza-
tion M = ∑L

i=1 ωi is clearly strictly increasing. Moreover, on ZL it is known (see e.g. the
proof of Theorem 15.4 in [35]) that M is an eigenfunction of P with eigenvalue

λ(β) = 1− 1− tanh (2β)

L
. (7.4)

This immediately yields the following closed-form expression for the relaxation time on ZL

trel(L) = L

1− tanh(2β)
. (7.5)

Figure 10 compares Monte Carlo estimates of σT on ZL with the exact expression for trel
given in (7.5). The agreement is clearly excellent, over the entire range of β considered, thus
lending strong support to Part (iii) of Conjecture 7.1 in the case d = 1.

We now consider the case d > 1, using analogous arguments to those presented in Sect. 3.3
in the FK setting. Let (Xt )t∈N be a stationary Ising heat-bath process, and define (Mt )t∈N
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Fig. 10 (Color online) Monte Carlo estimates of σT /L for the Ising heat-bath process on ZL with L = 104.
The blue curve corresponds to the exact expression for trel/L given in (7.5). Error bars corresponding to one
standard error are shown

via Mt = M (Xt ). Although Proposition A.1 is stated in the specific context of the FK
heat-bath process, the positive association of the Ising measure (7.1) (see e.g. [19, Theorem
3.31]) implies that the proof of Lemma A.2, and then also the proof of Proposition A.1,
immediately extend to the Ising heat-bath process. It follows that, since the magnetization is
strictly increasing, we have

ρM (t) ∼ Ce−t/texp , t →∞ (7.6)

for some (parameter dependent) constant C > 0. Assuming the validity of Part (iii) of
Conjecture 7.1, it follows from (7.6) that

ln ρM (k σT ) ∼ −C4(β, d) k (7.7)

as k and L tend to infinity, with C4(β, d) > 0, and with C4(β, d) = π/
√
6 for all β < βc.

For a given time lag t , we estimated ρM (t) using the procedure described in Sect. 3.3
for the estimation of ρN (t) for the FK model. Figure 11 shows the resulting estimates of
ρM (k σT ) versus k for d = 2, in the high-temperature regime (left panel) and at criticality
(right panel), for a variety of L values. In both cases, the data collapse evident in the figure
clearly supports the expectation (7.7), and therefore provides direct evidence to support the
conjecture that σT ∼ C4(β, d) trel. Moreover, in the high-temperature case, the collapse of
the curves arising from distinct temperature values onto a single curve corresponding to
exp(−kπ/

√
6), supports the claim that C4(β, d) = π/

√
6 when β < βc.

In the critical case, we have no explicit conjecture for the value of C4(β, d). However,
using the critical d = 2 values of texp reported in [41], we computed the ratios σT /texp, which
are reported in Table 4. The first observation to make is that, for the L values considered,
there appears to be extremely weak L dependence; in fact, the size of any L dependence
appears to be smaller than our statistical errors. In particular, this gives direct, independent,
support to the conjectured asymptotic proportionality of σT and texp. Furthermore, it suggests
that we haveC4(βc, 2) ≈ 0.895. It is interesting to note that this constant agrees, within error
bars, with the constant of proportionality relating σT to μT , reported in Fig. 9, suggesting
the possibility that μT ∼ texp at criticality, at least when d = 2.

Finally, as yet further evidence to support Part (iii) of Conjecture 7.1 in the critical case,
we note that the estimated value of the exponent (7.3), governing σT at criticality for d = 2,

123



52 A. Collevecchio et al.

1 2 3 4 5 6 7
k

10−4

10−3

10−2

10−1

100
ρ
M
(k

σ
T
)

e−kπ/
√

6

β=0.2, L=96
β=0.2, L=128
β=0.2, L=256

β=0.1, L=96
β=0.1, L=128
β=0.1, L=256

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
k

10−2

10−1

ρ
M
(k

σ
T
)

L = 4
L = 8
L = 12

Fig. 11 (Color online) Monte Carlo estimates of ln ρM (σT k) for the Ising heat-bath process with d = 2 in
high temperature (left) and at criticality (right). The enclosing filled regions correspond to one standard error

Table 4 Ratios of estimated σT
values to the estimated values of
texp from [41], for the critical
Ising heat-bath process when
d = 2. Error bars corresponding
to one standard error are shown

L σT /texp

4 0.895(1)

5 0.894(3)

6 0.901(3)

7 0.897(3)

8 0.889(3)

9 0.898(4)

10 0.890(3)

11 0.893(3)

12 0.904(3)

13 0.893(3)

14 0.896(4)

15 0.894(3)

agrees, within error bars, with Grassberger’s [23] estimate for the dynamic exponent zexp =
2.172(6).

7.5 Limit Law

Figure 12a plots the empirical distribution of the standardized coupling time
S := (T−μT )/σT for a high-temperature Ising heat-bath process with d = 2 and L = 1024.
The agreementwith theGumbel distribution (2.19) clearly supports Part (iv) ofConjecture 7.1
in the case β < βc. Figure 12b shows the critical case, again with d = 2. The data collapse of
the L = 128 and L = 256 curves strongly supports the claim that S converges in distribution
to a non-degenerate limit, thus supporting Part (iv) of Conjecture 7.1 in the case β = βc.
However, it is clear that this limiting distribution is not G(x).
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Fig. 12 (Color online) Histogram of S at high temperature (left) and criticality (right), with parameters as
specified in the figure. Here p(s) denotes the probability density function of S. For comparison, the solid green
line shows the probability density function corresponding to (2.19)
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Appendix A: Autocorrelation Functions of Strictly Increasing Observables

Let P denote the transition matrix of the FK heat-bath process on a finite graph G = (V, E)

with parameters p ∈ (0, 1) and q ≥ 1, and let k = 2|E |. To avoid trivialities, we assume
|E | > 1. We regard elements of Rk as functions from 2E to R, and we endow R

k with the
inner product 〈·, ·〉 defined by

〈g, h〉 :=
∑

A⊆E

g(A) h(A) φ(A).

Denote the eigenvalues of P by 1 = λ1 > λ2 ≥ . . . ≥ λk . As mentioned in Sect. 2.2,
general results for heat-bath chains [13] imply that all λi are non-negative. Let {ψi }ki=1 be
an orthonormal basis for Rk such that ψi is an eigenfunction of P corresponding to λi . The
Perron-Frobenius theorem implies that the eigenspace of λ1 is one-dimensional, and that we
can take ψ1(A) = 1 for all A ⊆ E . Let W denote the eigenspace of λ2. For g ∈ R

k , we let
gW denote its projection onto W .

We say g ∈ R
k is increasing if A ⊂ B implies g(A) ≤ g(B), and strictly increasing if

A ⊂ B implies g(A) < g(B).

Proposition A.1 Let (Xt )t∈N be a stationary FK heat-bath process, and for g ∈ R
k define

(gt )t∈N via gt := g(Xt ). If g is strictly increasing, then its autocorrelation function satisfies

ρg(t) := cov(g0, gt )

var(g0)
∼ Ce−t/texp , t →∞,

for constant C > 0.
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Proof Let Π denote the projection matrix onto the space of constant functions. General
arguments (see e.g. [45] or [36, Chap. 9]) imply

cov(g0, gt ) = 〈g, (Pt −Π)g〉 =
k∑

l=2
〈g, ψl〉2λtl = ‖gW ‖2λt2 +

k∑

l=dim(W )+2
〈g, ψl〉2λtl .

Since g is strictly increasing, Lemma A.2 implies that ‖gW ‖2 > 0, and therefore

cov(g0, gt ) ∼ ‖gW ‖2e−t/texp , t →∞.

It follows that

ρg(t) ∼ ‖gW ‖2
var(g)

e−t/texp , t →∞.

��
Lemma A.2 If g is strictly increasing, then its projection onto W is non-zero.

Proof Lemma A.3 implies there exists ψ ∈ W which is non-zero and increasing. Positive
association (see e.g. [24, Theorem 3.8 (b)]) then implies that for any other increasing g we
have

〈g, ψ〉 ≥ E(g)E(ψ) = 0, (A.1)

since E(ψ) = 〈ψ1, ψ〉 = 0. In particular, suppose that g is strictly increasing. Choosing
α > 0 so that

g(B)− g(A) > α[ψ(B)− ψ(A)], for all A ⊂ B ⊆ E,

implies that g − αψ is also strictly increasing. Applying (A.1) to g − αψ then yields

〈g − αψ,ψ〉 ≥ 0.

Rearranging, and using the fact that ψ is non-zero then implies

〈g, ψ〉 ≥ α〈ψ,ψ〉 > 0.

Therefore, g has a non-zero projection onto ψ ∈ W , and the stated result follows. ��
The following lemma is the natural analogue, in the FK setting, of the result [39, Lemma

3] established for the Ising heat-bath process.

Lemma A.3 There exists ψ ∈ W which is non-zero and increasing.

Proof Let g = ψ2 + C(N − E(N )), where N ∈ R
k is defined so that N (A) = |A| for

each A ⊆ E , and C > 0 is a constant. We have

g = [1+ C〈N , ψ2〉]ψ2 + C
k∑

j=3
〈N , ψ j 〉ψ j .

If 〈N , ψ2〉 = 0, then g has a non-zero projection onto ψ2, for any choice of C > 0. If
〈N , ψ2〉 �= 0, then choosing C > |〈N , ψ2〉|−1 suffices to guarantee that g again has a
non-zero projection onto ψ2. In either case, assume C is so chosen. It follows that gW is
non-zero.
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If A ⊂ B, then

g(B)− g(A) = ψ2(B)− ψ2(A)+ C[N (B)−N (A)] ≥ min
A⊂B⊆E

[ψ2(B)− ψ2(A)] + C.

Therefore, by choosing C >

∣
∣
∣
∣ min
A⊂B⊆E

[ψ2(B)− ψ2(A)]
∣
∣
∣
∣ we guarantee that g is increasing.

LemmaA.4 then implies that gW is increasing. Therefore,ψ = gW is an increasing, non-zero
element of W . ��
Lemma A.4 If g is increasing and has zero-mean, then its projection onto W is also increas-
ing.

Proof Let g ∈ R
k be any increasing observable with mean zero, and let t ∈ N

+. Since
Lemma A.6 implies λ2 > 0, we can write

Pt g

λt2
= gW +

k∑

l=dim(W )+2
〈g, ψl〉ψl

(
λl

λ2

)t

.

It follows that

lim
t→∞

Pt g

λt2
= gW . (A.2)

Now, for any given t ≥ 1, Lemma A.5 implies that Pt g(A) is an increasing function of
A, and so λ−t2 Pt g(A) is also an increasing function of A. It then follows, as an elementary
consequence of (A.2), that gW is also increasing. We have therefore established that if g is
an increasing zero-mean function, then its projection gW is also increasing. ��
Lemma A.5 If g ∈ R

k is increasing, then Pt g is also increasing, for every t ≥ 1.

Proof Let ( f, E ,U ) be the randommapping representation for P given in Sect. 2.1; see (2.3).
Let A1 ⊂ A2 ⊆ E , and let Bi = f (Ai , E ,U ) for i = 1, 2. Clearly, (B1, B2) is a coupling
of the distributions P(A1, ·) and P(A2, ·), and the monotonicity of f implies B1 ⊆ B2.
Strassen’s theorem (see e.g. [25, Theorem 4.2]) then implies that

EP(A1,·)(g) ≤ EP(A2,·)(g)

for any increasing g ∈ R
k . It follows that

(Pg)(A1) =
∑

B⊆E

P(A1, B)g(B) = EP(A1,·)(g)

≤ EP(A2,·)(g) =
∑

B⊆E

P(A2, B)g(B) = (Pg)(A2).

Since this holds for any A1 ⊂ A2 ⊆ E , it follows that Pg is increasing. It then follows by a
simple induction that Pt g is increasing for any t ≥ 1. ��
Lemma A.6 The second-largest eigenvalue of P is positive.

Proof Since P is reversible and irreducible we have the spectral decomposition (see e.g. [35,
Lemma 12.2])

P(A, B)

φ(B)
= 1+

k∑

j=2
ψi (A)ψi (B)λi .
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Since λ2 ≥ λ j ≥ 0 for all j > 2, it follows that if λ2 = 0, then P(A, B) = φ(B) for all
A, B ⊆ E . But since, by assumption, we have |E | > 1, we can choose A, B ⊆ E with
|A"B| > 1, where " denotes symmetric difference, and (2.2) then implies

P(A, B) = 0 �= φ(B).

We have therefore reached a contradiction, and we conclude that λ2 > 0. ��

Appendix B: Coupon Collecting

Let n ∈ N
+, and let C1,C2, . . . be an iid sequence of uniformly random elements of [n] :=

{1, 2, . . . , n}. For t ∈ N
+, we think of Ct as the coupon collected at time t . For i ∈ [n], let

Di ∈ [n] denote the i th distinct type of coupon collected; i.e. the i th distinct element of the
sequenceC1,C2, . . .. Let Si (t) := #{s ≤ t : Cs = Di }, the number of copies of Di collected
by time t . Define Rt := {c ∈ [n] : Cs = c for some s ≤ t}, the set of distinct coupon types
collected up to time t . For any 1 ≤ k ≤ n, letWk = inf{t ∈ N

+ : |Rt | = k}, and note thatWk

is simply the hitting time of Dk . The coupon collector’s time is then defined as W := Wn .
For each c ∈ [n], define

H(c) = sup{t ≤ W : Ct = c}.
We refer to the time H(c) as the last visit to c. Let (Hi )

n
i=1 denote the sequence of the H(c),

arranged in increasing order. In particular, H1 is the first time that a last visit occurs.

Lemma B.1 There exists ϕ > 0 such that P(|RH1 | ≤ �ln n�) = O(n−ϕ).

Proof Inserting an = �ln(n)� and cn = �ln(n)/4� into Lemma B.2 and applying the union
bound, implies

P

( an⋃

i=1
{Si (W ) ≤ cn}

)

≤ ln(n) exp

(

−1

2
ln(n − an)+ ln(n)

4
+ 1

)

= e ln(n) exp

(

−1

4
ln(n)− 1

2
ln

(
1− an

n

))

= e√
1− �ln(n)�/n ln(n) n−1/4.

Therefore, for any 0 < ρ < 1/4, we have

P

( an⋃

i=1
{Si (W ) ≤ cn}

)

= O(n−ρ), n →∞.

It follows that,

P(|RH1 | ≤ an) = P

(

|RH1 | ≤ an,
an⋂

i=1
{Si (W ) > cn}

)

+ O(n−ρ) (B.1)

Let I := inf{t ∈ N
+ : Si (t) = cn for some i ∈ [n]}, the first time that there exists a

coupon type for which exactly cn copies have been collected, and define the random variable
K ∈ [n] via CH1 = DK . If |RH1 | ≤ an , then 1 ≤ K ≤ an . Therefore, observing that
SK (W ) = SK (H1), we find
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P

(

|RH1 | ≤ an,
an⋂

i=1
{Si (W ) > cn}

)

≤ P(|RH1 | ≤ an, SK (W ) > cn)

= P(|RH1 | ≤ an, SK (H1) > cn)

≤ P(|RI | ≤ an) (B.2)

since if |RH1 | ≤ an and SK (H1) > cn then |RI | ≤ an . Combining (B.1) and (B.2) then
implies

P(|RH1 | ≤ an) ≤ P(|RI | ≤ an)+ O(n−ρ).

However, Lemma B.3 implies that there exists δ > 0 such that P(|RI | ≤ an) = O(n−δ). We
therefore conclude that, if ϕ = min{ρ, δ}, then

P(|RH1 | ≤ �ln n�) = O(n−ϕ).

��

Lemma B.2 Let (an)n∈N+ and (cn)n∈N+ be any two sequences of natural numbers. For
n ∈ N

+, if an < n then for each 1 ≤ i ≤ an we have

P (Si (W ) ≤ cn) ≤ exp
(− ln(

√
n − an)+ cn + 1

)
.

Proof Fix n ∈ N
+ and 1 ≤ i ≤ an , and assume an < n. Adopting the convention W0 = 0,

for 0 ≤ k ≤ n − 1 we define

Yi (k) :=
Wk+1−1∑

j=Wk+1
1{C j=Di }.

Since Yi (k) = 0 for all k < i , and CWk = Di iff k = i , we then have

Si (W ) = 1+
n−1∑

k=i
Yi (k).

And since the random variables Yi (k) are independent, for any θ < 0, we have

P (Si (W ) ≤ cn) ≤ P

⎛

⎝
n−1∑

k=an
Yi (k) ≤ cn

⎞

⎠

= P

⎛

⎝exp

⎡

⎣θ

n−1∑

k=an
Yi (k)

⎤

⎦ ≥ eθcn

⎞

⎠

≤ exp

⎛

⎝−θcn +
n−1∑

k=an
lnE[eθYi (k)]

⎞

⎠ , (B.3)

where the final step follows from Markov’s inequality.
The moment generating function of Yi (k) can be calculated explicitly. Let i ≤ k ≤ n− 1.

GivenWk andWk+1, the random variable Yi (k) has binomial distributionwithWk+1−Wk−1
trials and success probability 1/k, which implies
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E(eθYi (k)) = E(E[eθYi (k)|Wk,Wk+1])

= E

[(
eθ

k
+ 1− 1

k

)Wk+1−Wk−1]
.

But since Wk+1 −Wk has geometric distribution with parameter 1− k/n, this becomes

E(eθYi (k)) = n − k

n − k + 1− eθ
.

Therefore, setting λ = 1− eθ and bn = n − an , it follows from the fact that ln(1+ λ/k) is
a decreasing function of k that

−
n−1∑

k=an
lnE(eθYi (k)) =

bn∑

k=1
ln

(

1+ λ

k

)

≥
∫ bn

1
ln

(

1+ λ

x

)

d x

= λ ln(bn)+ (bn + λ) ln(1+ λ/bn)− (1+ λ) ln(1+ λ)

≥ λ ln(bn)+ λ− (1+ λ) ln(1+ λ)

≥ λ ln(bn)− 1 (B.4)

where, in the penultimate step, we used the fact that ln(1 + x) ≥ x/(1 + x) holds for all
x > −1, and in the last step we used the fact that (1 + λ) − (1 + λ) ln(1 + λ) > 0 for any
λ ∈ (0, 1). Combining (B.3) and (B.4), we conclude that for all λ ∈ (0, 1) we have

P (Si (W ) ≤ cn) ≤ exp [−λ ln(n − an)− ln(1− λ)cn + 1)] .

Choosing λ = 1/2 yields the stated result. ��
Lemma B.3 Fix c ∈ (0, 1), and define sequences (an)n∈N+ and (cn)n∈N+ such that an =
�ln(n)� and cn = �c ln(n)�. Let

I := inf{t ∈ N
+ : Si (t) = cn for some i ∈ [n]},

the first time that there exists a coupon type for which exactly cn copies have been collected.
Then there exists δ > 0 such that

P(|RI | ≤ an) = O(n−δ), n →∞.

Proof We assume, in all that follows, that n is sufficiently large that cn > 1. For k ∈ [n], let
Ik = inf{t ∈ N

+ : Sk(t) = cn}
be the first time that cn copies of coupon type Dk have been collected. For any sequence of
natural numbers (bn)n∈N+ , we have

P(|RIk | ≤ an) = P(|RIk | ≤ an, Ik ≤ bn)+ P(|RIk | ≤ an, Ik > bn)

≤ P(Ik ≤ bn)+ P(|RIk | ≤ an, Ik > bn)

≤ P(Ik ≤ bn)+ P(Wan+1 > bn), (B.5)

where the last inequality follows by observing that if |RIk | ≤ an and Ik > bn , thenWan+1 >

bn .
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To find an upper bound for P(Ik ≤ bn), note that, for any s ≥ 1, the random time between
the sth and (s + 1)th arrival of coupon type Dk is a geometric random variable with success
probability 1/n. It follows that Δk := Ik − Wk is a sum of cn − 1 independent geometric
random variables,6 each with success probability 1/n. Lemma B.4 therefore implies that for
any 0 < λ < 1,

P(Δk ≤ λn(cn − 1)) ≤ e− f (λ)cn+ f (λ)

where f (λ) > 0. But from the trivial lower bound Wk ≥ 1, it follows that Δk ≤ Ik − 1.
Therefore, for any bn ≤ λn(cn − 1)+ 1, we have

P(Ik ≤ bn) ≤ P(Ik ≤ λn(cn − 1)+ 1) ≤ P(Δk ≤ λn(cn − 1)) ≤ e− f (λ)cn+ f (λ). (B.6)

To find an upper bound for P(Wan+1 > bn), we begin with the observation that, with the
convention W0 = 0, we have

Wan+1 =
an∑

i=0
(Wi+1 −Wi ).

For 0 ≤ i ≤ an , the random variablesWi+1−Wi are independent, and distributed according
to a geometric distribution with success probability 1− i/n. Therefore, Lemma B.4 implies
that for any ζ > 1

P(Wan+1 ≥ ζ E[Wan+1]) ≤ e− f (ζ )(1−an/n)E(Wan+1)

with f (ζ ) > 0. But explicit calculation shows that

E(Wan+1) = n(Hn − Hn−an−1) ∼ an, n →∞,

where Hi is the i th harmonic number, and the asymptotic result follows from Hn ∼ ln(n) and
the fact that an = o(n). It follows that for any choice of bn ≥ ζ E(Wan+1) and α ∈ (0, f (ζ )),
for sufficiently large n, we have

P(Wan+1 ≥ bn) ≤ e−α an . (B.7)

Any choice of bn satisfying ζ E(Wan+1) ≤ bn ≤ λn(cn − 1)+ 1, for sufficiently large n,
suffices to ensure (B.6) and (B.7) hold simultaneously. It therefore suffices to set bn = n. For
simplicity, λ ∈ (0, 1) and ζ > 1 can be chosen so that f (λ) = 1 = f (ζ ). Combining (B.5),
(B.6) and (B.7) then implies that for any α < 1 we have

P(|RIk | ≤ an) ≤ e−cn+1 + e−α an

for sufficiently large n.
Finally, since |RI | ≤ an implies |RIk | ≤ an for some 1 ≤ k ≤ an , it follows from the

union bound that, for sufficiently large n,

P(|RI | ≤ an) ≤ P

( an⋃

k=1
{|RIk | ≤ an}

)

≤
an∑

k=1
P(|RIk | ≤ an) ≤ an e

−cn+1 + an e
−α an

≤ e2 ln(n) n−c + eα ln(n) n−α.

Since c, α>0, we can choose 0<δ < min{c, α}, and we obtain P(|RI | ≤ an)=O(n−δ). ��
6 Since the timeWk of the first arrival of Dk is not geometrically distributed, Ik is not itself a sum of geometric
random variables.
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Lemma B.4 Let X1, X2, . . . , Xn be independent random variables, such that Xi has geo-
metric distribution with success probability pi , and let X =∑n

i=1 Xi . Then

P(X ≤ λμ) ≤ e−p∗μ f (λ), ∀ λ ≤ 1,

P(X ≥ ζμ) ≤ e−p∗μ f (ζ ), ∀ ζ ≥ 1,

where μ = E(X) =∑n
i=1 1/pi , p∗ = mini∈[n] pi and f (x) = x − 1− ln(x).

Proof These results can be established, in the standard way, by applyingMarkov’s inequality
to E(et X ), and using the explicit form for E(et Xi ); see e.g. [31]. ��
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