
Dynamic connectivity algorithms for Monte Carlo
simulations of the random-cluster model

Eren Metin Elçi and Martin Weigel
Applied Mathematics Research Centre, Coventry University, Coventry, CV1 5FB, United
Kingdom and
Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, D-55099
Mainz, Germany

E-mail: elcie@uni.coventry.ac.uk, Martin.Weigel@coventry.ac.uk

Abstract. We review Sweeny's algorithm for Monte Carlo simulations of the random cluster
model. Straightforward implementations su�er from the problem of computational critical
slowing down, where the computational e�ort per edge operation scales with a power of the
system size. By using a tailored dynamic connectivity algorithm we are able to perform all
operations with a poly-logarithmic computational e�ort. This approach is shown to be e�cient
in keeping online connectivity information and is of use for a number of applications also
beyond cluster-update simulations, for instance in monitoring droplet shape transitions. As
the handling of the relevant data structures is non-trivial, we provide a Python module with a
full implementation for future reference.

1. Introduction
The cluster-update algorithm introduced for simulations of the Potts model by Swendsen and
Wang in 1987 [1] has been a spectacular success, reducing the e�ect of critical slowing down
by many orders of magnitude for the system sizes typically considered in computer simulation
studies. A number of generalizations, including an algorithm for continuous-spin systems and
the single-cluster variant [2] as well as more general frameworks for cluster updates [3, 4], have
been suggested following the initial work of Ref. [1]. The single bond update introduced by
Sweeny [5] several years before Swendsen's and Wang's work is considerably less well known.
This is mostly due to di�culties in its e�cient implementation in a computer code, which is
signi�cantly more involved than for the Swendsen-Wang algorithm. In deciding about switching
the state of a given bond from inactive to active orvice versa, one must know the consequences of
the move for the connectivity properties of the ensemble of clusters, i.e., whether two previously
disjoint clusters will become connected or an existing cluster is broken up by the move or,
instead, the number of clusters will stay una�ected. If implemented naively, these connectivity
queries require a number of steps which is asymptotically close to proportional to the number of
spins, such that the resulting computational critical slowing down outweighs the bene�t of the
reduced autocorrelation times of the updating scheme. Even though it was recently shown that
the decorrelation e�ect of the single-bond approach is asymptoticallystronger than that of the
Swendsen-Wang approach [6, 7], this strength can only be played once the computational critical
slowing down is brought under control. Here, we use a poly-logarithmic dynamic connectivity
algorithm as recently suggested in the computer science literature [8, 9, 10] to perform bond

insertion and removal operations as well as connectivity checks in run-times only logarithmically
growing with system size, thus removing the problem of algorithmic slowing down. As the
mechanism as well as the underlying data structures for these methods are not widely known in
the statistical physics community, we here use the opportunity to present a detailed description
of the approach. For the convenience of the reader, we also provide a Python class implementing
these codes, which can be used for simulations of the random-cluster model or rather easily
adapted to di�erent problems where dynamic connectivity information is required.

2. The random-cluster model and Sweeny's algorithm
We consider the random-cluster model (RCM) [11] which is a generalization of the bond
percolation problem introducing a correlation between sites and bonds. It is linked to theq-
state Potts model through the Fortuin-Kasteleyn transformation [12, 13, 14], generalizing the
Potts model to arbitrary real q > 0. Special cases include regular, uncorrelated bond percolation
(q = 1) as well as the Ising model (q = 2). To de�ne the RCM, consider a graph G ≡ (V,E)
with vertex set V , (|V | ≡ N), and edge setE, (|E| ≡ M). We associate an occupation variable
ω(e) ∈ {0, 1} with every edgee ∈ E. We say that e is active if ω(e) = 1 and inactive otherwise.
The state spaceΩ of the RCM corresponds to the space of all (spanning1) sub-graphs,

Ω ≡ {A = (V,A)|A ⊆ E} = {0, 1}M . (1)

A con�guration is thus represented as~ω ≡ [ω(e1), ω(e2), ..., ω(eM)] ∈ Ω and corresponds uniquely
to a sub-graphA(~ω) ≡ (V,A(~ω)) ⊆ G with

A(~ω) = {e ∈ E|ω(e) = 1} ⊆ E. (2)

The probability associated with a con�guration ~ω ∈ Ω is given by the RCM probability density
function (PDF)

µ(p, q, ~ω) ≡ 1

Z(p, q)

[∏
e∈E

pω(e)(1− p)1−ω(e)

]
qk(~ω), (3)

Z(p, q) ≡
∑
~ω∈Ω

[∏
e∈E

pω(e)(1− p)1−ω(e)

]
qk(~ω), (4)

where k(~ω) is the number of connected components (clusters) andZ(p, q) denotes the RCM
partition function. More generally, as a function of the parametersp ∈ [0, 1], the density of
active edges, andq ∈ (0,∞), the cluster number weight, these expressions de�ne a family of
PDFs. It is worthwhile to mention a number of limiting cases. For q → 1 Eq. (3) factorizes
and corresponds to independent bond percolation withZ(p) → 1. In the limit of q → 0 with
�xed ratio w = v/q, on the other hand, it corresponds to bond percolation with local probability
w/(1 + w) and the condition of cycle-free graphs. Takingw → ∞ or in the limit of q → 0 and
v/qσ constant for 0 < σ < 1 we obtain the ensemble of uniform spanning trees for connectedG.
Naturally, in the latter two limits every edge in a con�guration is a bridge.

Sweeny's algorithm [5] is a local bond updating algorithm directly implementing the
con�gurational weight (3). We �rst consider its formulation for the limiting case q → 1 of
independent bond percolation. For an update move, randomly choose an edgee ∈ E with
uniform probability and propose a �ip of its state from inactive to active or vice versa. Move
acceptance can be implemented with any scheme satisfying detailed balance, for instance the
Metropolis acceptance ratiomin (v∆w, 1) where v ≡ p/(1 − p) and ∆ω = ±1 for insertions and

1 A subgraph A ⊆ G is spanning if it contains all vertices of G.

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

2

deletions of edges, respectively. This dynamical process is described by the following master
equation:

P(~ω, t+ 1) = (1− r(~ω))P(~ω, t) +
∑
~ω′ 6=~ω

W (~ω′ → ~ω)P(~ω′, t), (5)

where r(~ω) =
∑

~ω′ 6=~ωW (~ω → ~ω′) ensures proper normalization ofP(~ω, t + 1), given the
normalization of P(~ω, t) . The Metropolis transition rates are then given by

W (~ω → ~ω′) ≡ 1

M

M∑
m=1

Wm(~ω → ~ω′), (6)

Wm(~ω → ~ω′) ≡ min (1, v∆w)
∏
l 6=m

[
δωl,ω

′
l

]
. (7)

Eq. (6) expresses the uniform random selection of an edge and the corresponding edge dependent
transition rate Wm is de�ned in Eq. (7). The product of Kronecker deltas ensures the single-bond
update mechanism, i.e., that only one edge per step is changed. From here, generalization to
arbitrary q ∈ (0,∞) is straightforward, leading to a modi�ed transition rate

Wm(~ω → ~ω′) ≡ min(1, q∆kv∆ω)
∏
l 6=m

[
δωl,ω

′
l

]
. (8)

We note that this Metropolis update is more e�cient than a heat-bath variant for any value of
q apart from q = 1, where both rules coincide. Clearly, forq 6= 1, to compute the acceptance
probability Wm of a given trial move one must �nd ∆k, the change in connected components
(clusters) induced by the move. This quantity, equivalent to the question of whether the edge
e is a bridge, is highly non-local. Determining it involves deciding whether there exists at least
one alternative path of active edges connecting the incident verticesx and y that does not cross
e = (x, y).

3. The connectivity problem
The dynamic connectivity problem is the task of performing e�cient connectivity queries to
decide whether two verticesx and y are in the same (x↔ y) or di�erent (x = y) connected
components for a dynamically evolving graph, i.e., mixing connectivity queries with edge
deletions and insertions. For a static graph, such information can be acquired in asymptotically
constant time after a single decomposition, for instance using the Hoshen-Kopelman algorithm
[15]. Under a sequence of edge insertions (but no deletions), it is still possible to perform all
operations, insertions and connectivity queries, in practically constant time using a so-called
union-and-�nd (UF) data structure combined with path-compression and tree-balance heuristics
[16]. This fact has been used to implement a very e�cient algorithm for the (uncorrelated)
percolation problem [17]. An implementation of Sweeny's algorithm, however, requires insertions
as well as deletions to ensure balance. Hence, we need to be able to remove edges without the
need to rebuild the data structure from scratch.

This goal can be reached using a number of di�erent techniques. Building on the favorable
behavior of the UF method under edge insertions and connectivity queries, the data structure can
be updated under the removal of an external edge (bridge) by performing breadth-�rst searches
(BFSs) through the components connected to the two endsx and y of the edgee = (x, y).
Alternatively, one might try to do without any underlying data structure, answering each
connectivity query through a separate graph search in breadth-�rst manner. In both cases, the
process can be considerably sped up by replacing the BFSs byinterleaved traversals alternating
between vertices on the two sides of the initial edge and terminating the process as soon as one

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

3

Table 1: Asymptotic run-time scaling at criticality of the elementary operations of insertion or
deletion of internal or external edges, respectively, using sequential breadth-�rst search (SBFS),
interleaved BFS (IBFS), union-and-�nd (UF) or the fully dynamic connectivity algorithm (DC)
as a function of the linear system sizeL.

operation SBFS IBFS UF DC
internal insertion LdF−x2 LdF−x2 const. log2 L

external insertion Lγ/ν LdF−x2 const. log2 L
internal deletion LdF−x2 LdF−x2 LdF−x2 log2 L

external deletion Lγ/ν LdF−x2 Lγ/ν log2 L

dominant Lγ/ν LdF−x2 Lγ/ν log2 L

of the two searches comes to an end [18, 19, 7]. As, at criticality of the model, the sizes of
the two cluster fragments in case of a bridge bond turn out to be very uneven on average, this
seemingly innocent trick leads to dramatic run-time improvements [7]. The asymptotic run-time
behavior of insertion and deletion steps for internal and external edges and the algorithms based
on BFS or UF data structures is summarized in Table 1 for the case of simulations on the square
lattice of edge lengthL. We expect the same bounds with the corresponding exponents to hold
for general critical hypercubic lattices. Here,γ/ν denotes the �nite-size scaling exponent of the
susceptibility and dF − x2 is a geometric exponent related to the two-arm crossing behavior of
clusters [19]. We note thatdF − x2 < γ/ν for 0 < q ≤ 4 in two dimensions. Asymptotically,
it is the most expensive operation which dominates the run-time of the algorithm and, as a
consequence, it turns out that (for the square lattice) a simple BFS with interleaving is more
e�cient than the approach based on union-and-�nd, cf. Table 1.

In any case, the implementations discussed so far feature a computational e�ort for a sweep
of bond updates that scales faster than linearly with the system size, thus entailing some
computational critical slowing down. It is found in Ref. [7] that for most choices of q, this
e�ect appears to asymptotically destroy any advantage of a faster decorrelation of con�gurations
by the Sweeny algorithm as compared to the Swendsen-Wang method. An alternative technique
based on more complicated data structures allows to perform any mix of edge insertions, deletions
and connectivity queries in poly-logarithmic run-time per operation [8, 9, 10]. Poly-logarithmic
here denotes polynomials of powers of the logarithm of the independent variable, e.g., system
sizeL, of the form

f(L) =
K∑
k=0

αk logk L. (9)

Here the base of the logarithm is not important and changes only the coe�cients. In the following
all logarithms are with respect to base2. Given the observation of generally faster decorrelation of
con�gurations by the Sweeny algorithm in the sense of smaller dynamical critical exponents [6, 7],
the use of such (genuinely) dynamic connectivity algorithms (DC) allows for an asymptotically
more e�cient simulation of the critical random-cluster model [7]. In the following, we discuss
the basic ideas and some details of the algorithm employed here.

3.1. Trees, Forests and Euler tours
The DC algorithm is based on the observation that for a given sub-graphA it is possible to
construct a spanning forestF(A) which is de�ned by the following properties:

• x↔ y in F(A) if and only if x↔ y in A
• there exists exactly one path for every pairx, y with x↔ y

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

4

(a) Level 0. (b) Level 1.

Figure 1: A sub-graphA of a 8 × 8 square lattice. The solid (red) lines correspond to edges in
one spanning forestF(A) and the dashed (blue) lines are additional edges not in the current
spanning forest. Note that the graph has periodic boundary conditions and hence there are
edges wrapping around the lattice horizontally and vertically. For the sake of clarity these are
not shown.

In other words a spanning forest of a graph associates a spanning tree to every component, an
example is given in Fig. 1a (solid lines only). One advantage ofF(A) is that it has fewer edges
than A, but represents the same connectivity information. For the sub-graphA, the distinction
of tree edgese ∈ F(A) and non-tree edgese ∈ A\F(A) allows for a cheap determination of∆k.
For the case of deleting an edge ine /∈ F(A) we know that there is an alternative path connecting
the adjacent vertices, namely the path inF(A), so this edge was part of a cycle and we conclude
∆k = 0. If we insert an edge whose adjacent vertices are already connected inF(A) then we
come to the same conclusion.

If, on the other hand, we want to insert a tree edge, i.e., an edge with adjacent verticesx, y
not yet connected, we observe that becausex and y belong to separate spanning trees before the
insertion of e, the new spanning subgraph obtained by linkingx and y via e is still a spanning
tree. Hence the only modi�cation on the spanning forest for the insertion of a tree edge is the
amalgamation of two trees. This can be done inO(logL) steps by using the following idea of
Ref. [20] which also supports the deletion of bridges. For a given componentC in A we transform
the corresponding treeT (C) in F(A) into a directed circuit by replacing every edge(x, y) by
two directed edges (arcs)[x, y] and [y, x] and every vertex by a loop[x, x]. Figure 2 illustrates
how to translate edge insertions or deletions into/from the spanning forest to modi�cations on
the directed circuits. Deleting an edge from a tree splits it into two trees. The directed circuit
therefore splits into two circuits corresponding to the two trees. When inserting a tree edge, i.e.,
merging two trees, we join the circuit by the two arcs, corresponding toe, at the vertices incident
to e.

By storing the directed circuits for every component in so called Euler tour sequences (ETS),
[8], all necessary manipulations on the directed circuits can be done inO(logL) operations if we
store each ETS in a separate balanced search tree such as, for instance, a red-black, AVL, or B
tree [21]. Alternatively one can use self-adjusting binary search trees, so called splay trees [22]. In
this case the bound is amortized, i.e., averaged over the complete sequence of operations. Due to
a somewhat simpler implementation and the fact that a Monte Carlo simulation usually consists
of millions of operations in random order naturally leading to amortization, we concentrated on

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

5

1 2

43

7→ 1 2 4 3

Figure 2: Mapping of a component to a directed circuit with loops. The dashed line is an edge
to be deleted. The dashed arrows will be removed to update the directed circuit.

the splay-tree approach. Based on the ETS representation we can translate connectivity queries
into checking the underlying search tree roots for equivalence. An in-depth discussion of the
exact manipulations on the representing ETS is beyond the scope of this article and we refer the
interested reader to the literature [8]. Here we restrict ourselves to considering the deletion of
a bridge as an example. The initial graph is the one illustrated in the left panel of Fig. 2. One
corresponding ETS sequence of the linearized directed cycle in the right panel of Fig. 2 is the
following:

E = [1, 1]→ [1, 2]→ [2, 2]→ [2, 4]→ [4, 4]→ [4, 3]→ [3, 3]→ [3, 4]→ [4, 2]→ [2, 1]. (10)

Suppose now that we delete edge(2, 4) from the tree (cf. the dashed line in Fig. 2). This will
result in a split of the component C ≡ {1, 2, 3, 4} into two parts C1 ≡ {1, 2} and C2 ≡ {3, 4}. In
this case the deletion of edge(2, 4) translates into a cut of the original sequenceE at the two
arcs [2, 4] and [4, 2]. The sequenceE2 of arcs between these two edges corresponds toC2 and the
concatenation of the remaining sequences without the two arcs corresponding to(2, 4) results in
E1 representingC1:

E1 = [1, 1]→ [1, 2]→ [2, 2]→ [2, 1], (11)

E2 = [4, 4]→ [4, 3]→ [3, 3]→ [3, 4]. (12)

In summary, we see that by mapping every component inA to a tree in F(A) and every such tree
to a directed circuit which we store in an ETS we are able to perform edge insertions/deletions
into/from F(A) as well as connectivity queries with an amortisedO(logL) computational e�ort.

3.2. Edge hierarchy
The remaining operation not implemented e�ciently by the provisions discussed so far is the
deletion of edges fromF(A) which are not bridges, i.e., for which a replacement edge exists
outside of the spanning forest. The DC algorithm �rst executes the tree splitting as in the case
of a bridge deletion. Additionally, however, it checks for a reconnecting edge in the set of non-tree
edges. If such an edge is found, it concludes∆k = 0 and merges the two temporary trees as
indicated above by using the located non-tree edge, which hence now becomes a tree edge. If, on
the other hand, no re-connecting edge is found, no additional work is necessary as the initially
considered edge is a bridge. To speed up the search for replacement edges, we limit it to the
smaller of the two parts C1 and C2 as all potential replacement edges must be incident to both
components. To allow for e�cient searches for non-tree edges incident to a given component
using the ETS representation, the search-tree data structures are augmented such that the loop
arc for every vertex stores an adjacency list of non-tree edges (vertices) incident to it. Further,
every node in the underlying search tree representing the ETS carries a �ag indicating if any
non-tree edge is available in the sub-tree [which is a sub-tree of the search tree and not ofF(A)].

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

6

This allows for a search of replacement edges using the Euler tour and ensures that any non-tree
edge can be accessed inO(logL) time.

It turns out that exploiting this observation is, in general, bene�cial but not su�cient to ensure
the amortized time complexity bound indicated for the DC algorithm in general. Suppose that
the graph consists of a giant homogeneous component withM = αN and 0 < α ≤ 1 and the
edge deletion results, temporarily setting aside the question of possible replacement edges, in
two trees with α1N and (α − α1)N incident edges, respectively, where0 < α1 ≤ α/2. Then
the computational e�ort caused by scanning all possible non-tree edges is clearlyO(N). In
amortizing onto the insertions performed to build up this component, every such non-tree edge
carries a weight ofO(logL). If this case occurs su�ciently frequently, it will be impossible to
bound the amortized cost per operation. This problem is ultimately solved in the DC algorithm
by the introduction of an edge hierarchy. The intuitive idea is to use the expense of a replacement
edge search following a deletion to reduce the cost of future operations on this edge. This is done
in such a way as to separate dense from sparse clusters and more central edges from those in
the periphery of clusters. By amortizing the cost of non-tree edge scans and level increases
over edge insertions it follows that one can reduce the run-time for graph manipulations to an
amortized O(log2 L) and O(logL) for connectivity queries [9]. Each time an incident non-tree
edge is checked and found unsuitable for reconnecting the previously split cluster we promote
it to be in a higher level. If we do this many times for a dense component we will be able to
�nd incident non-tree edges very quickly in a higher level. These ideas are achieved in the DC
algorithm by associating a level function to eache ∈ E,

0 ≤ `(e) ≤ `max ≡ blogNc. (13)

Based on this level function, one then constructs sub-graphsAi ⊆ A with the property

Ai ≡ {e ∈ A|l(e) ≥ i}. (14)

This induces a hierarchy of sub-graphs:

A`max ⊆ · · · ⊆ A1 ⊆ A0 ≡ A. (15)

As described above, for every sub-graph we construct a spanning forestFi ≡ F(Ai). Clearly the
same hierarchy holds for the family of spanning forests. In other words the edges in leveli − 1
connect components/trees of leveli. If an edge has to be inserted intoA, then it is associated
to a level l(e) = 0 and hence it is inA0. To achieve an e�cient search for replacement edges,
the algorithm adapts the level of edges after deletions of tree edges in a way which preserves the
following two invariants [9]:

(i) The maximal number of vertices in a component in leveli is bN/2ic.
(ii) Any possible replacement edge for a previously deleted edgee with level l has level≤ l.

Trivially, both invariants are ful�lled when all edges have level 0. We now have to specify how
exactly the idea of keeping important edges at low levels and unimportant ones at higher levels
is implemented. To do this, suppose we deleted an edge fromFi, i.e., at level i, and temporarily
have T → T1 + T2 where (say)T1 is the smaller of the two, i.e., it has less vertices. Because of
invariant (i) it follows that we are allowed to move the tree T1 (which is now at most half the
size ofT) to level i+ 1 by increasing the level of all tree edges ofT1 by one. After that we start
to search for a replacement edge in the set of non-tree edges stored in the ETS ofT1 in level i
where it also remains because of the fact thatFi+1 ⊆ Fi. For every scanned non-tree edge we
have two options:

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

7

0 500 1000 1500 2000
L

0

10

20

30

40

50

60

70

80

t̄
in
µ
s

q = 0.0005
q = 2
q = 4

Figure 3: Average run-time for Sweeny's algorithm for the RCM for di�erent values ofq at the
critical point vc =

√
q on the 2D square lattice with periodic boundary conditions.

• It does not reconnectT1 and T2 and has therefore both ends incident toT1. In this case, we
increase the level of this edgei → i + 1. This implements the idea of moving unimportant
edges in �dense� components to higher levels.

• It does reconnect and hence we re-insert it at level0.

If we have not found a replacement edge at leveli we continue at leveli−1. The search terminates
after unsuccessfully completing the search at level0 or when a replacement edge was found. In
the �rst case it follows C → C1 + C2 whereas in the second caseC remains unchanged.

Implementing this replacement-edge search following any tree-edge deletion introduces an
upward �ow of edges in the hierarchy of graphs and the level of an edge in the current graph
never decreases. Focusing on a single edge, we see that it is sequentially moved into levels of
smaller cluster size and hence the cost of future operations on this edge is reduced. Taking this
into account it follows that the insertion of an edge has a cost ofO(logL) for inserting at level
0 plus it also �carries� the cost of all possibleO(logL) level increases with cost ofO(logL) each
resulting in O(log2 L) amortized per insertion. Deletions on the other hand imply a split of
cost O(logL) in O(logL) levels. In case of an existing replacement edge another contribution
of O(logL) caused by an insertion at level 0 is added. The contribution of moving tree edges
to higher levels and searching for replacement edges (moving non-tree edges up) is already paid
for by the sequence of previous insertions (amortization). The only missing contribution is the
O(logL) e�ort for obtaining the next replacement edge in an ETS. In total, deletions hence have
an amortized computational cost ofO(log2 L).

3.3. Performance and optimizations
We tested the performance of the current DC implementation in the context of Sweeny's
algorithm in comparison to the simpler approaches based on breadth-�rst search and union-
and-�nd strategies. While the algorithm discussed here allows all operations to be performed
in poly-logarithmic time, due to the complicated data structures the constants are relatively
large. Our results show consistency with the poly-logarithmic run-time bounds derived. It
appears, however, that very large system sizes are required to clearly see the superior asymptotic
performance of the DC algorithm as compared to the BFS and UF implementations. For details
see the more elaborate discussion in Ref. [7]. As an example, Fig. 3 shows the average run-time
per edge operation as a function of the system size for three di�erent choices of parameters.

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

8

Apart from run-time considerations, the implementation has a rather signi�cant space
complexity. Since we maintain O(logL) overlapping forests over theL2 vertices, the space
complexity is O(L2 logL). A heuristic suggested in Ref. [10] to decrease memory consumption
is a truncation of higher edge levels as these are, for the inputs or graphs considered in our
application, sparsely populated. We checked the impact on our implementation by comparing
run-times and memory consumptions for a truncation `max → `max/2. We did not see any
signi�cant change in the run-time. On the other hand we observed a reduction of almost a factor
of two in the memory consumption. This conforms to our observation that during the course of
a simulation almost no edges reached levels beyond≈ 10 for system sizesL . 1024 where the
actual maximal level according to Eq. (13) is`max = 20.

Likewise, a number of further optimizations or heuristics are conceivable to improve the typical
run-time behavior. This includes a sampling of nearby edges when looking for a replacement
edge before actually descending into the edge level hierarchy [10]. A number of such heuristics
and experimental comparisons of fully and partially dynamics connectivity algorithms has been
discussed in the recent literature, see Refs. [23, 24, 25]. A full exploration of these possibilities
towards an optimal implementation of the DC class of algorithms for the purpose of the Sweeny
update is beyond the scope of the current article and forms a promising direction for future
extensions of the present work.

4. Sweeny Python class
We provide a Python class [26] encompassing four di�erent implementations of Sweeny's
algorithm based on:

• sequential breadth-�rst searches (SBFS)
• interleaved breadth-�rst searches (IBFS)
• union-and-�nd with interleaved breadth-�rst searches (UF)
• poly-logarithmic dynamic connectivities as discussed here (DC)

The package is built on top of a C library and it is therefore possible to use the library in a
stand-alone compiled binary. The necessary source code is also provided. For more details see
the related project documentation [26]. The source code is published under the MIT license [27].
Here we give a basic usage example, which simulates the RCM withq = 2 (the Ising model) at
vc =

√
2, using an equilibration time of 1000 sweeps, a simulation length of10000 sweeps, and

random number seed1234567 using the DC implementation:

Listing 1: Example usage of Sweeny class.

from sweeny import Sweeny
sy = Sweeny (q=2. , l =64, beta=np . log (1 . + np . sq r t (2 .)) , coupl =1. ,
c u t o f f =1000 , t s l e n g t h =10000 , rngseed =1234567 , impl= ' dc ')
sy . s imu la te ()

In order to extract an estimate, say, of the Binder cumulantR = 〈S4〉/〈S2
2 〉 we need to retrieve

the time series forS4 and S2,

Listing 2: Retrieving time series.

sec_cs_moment= sy . ts_sec_cs_moment
four_cs_moment = sy . ts_four_cs_moment
sec_cs_moment ∗= sec_cs_moment
binder_cummulant = four_cs_moment . mean () / sec_cs_moment . mean ()

Once an instance of the Sweeny class is created, it is easy to switch the algorithm and parameters
as follows:

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

9

Listing 3: Switching algorithm and parameters.

sy . in i t_s im (q=1.3 , l =64, beta=np . log (1.+np . sq r t (1 . 3 .)) , coupl =1. ,
c u t o f f =5000 , t s l e n g t h =50000 , rngseed =7434 , impl= ' i b f s ')

5. Conclusions
We have shown how to implement Sweeny's algorithm using a poly-logarithmic dynamic
connectivity method and we described the related algorithmic aspects in some detail. We hope
that the availability of the source code and detailed explanations help to bridge the gap between
the computer science literature on the topic of dynamic connectivity problems and the physics
literature related to MC simulations of the RCM, speci�cally in the regime q < 1.

The availability of an e�cient dynamic connectivity algorithm opens up a number of
opportunities for further research. This includes studies of the tricritical value qc(d) where
the phase transition of the random-cluster model becomes discontinuous for dimensionsd > 2
[28, 18] as well as the nature of the ferromagnetic-paramagnetic transition forq → 0 and d > 2
[29].

Acknowledgments
E.M.E. would like to thank P. Mac Carron for carefully reading the manuscript.

References
[1] Swendsen R H and Wang J S 1987Phys. Rev. Lett. 58 86�88
[2] Wol� U 1989 Phys. Rev. Lett. 62 361�364
[3] Edwards R G and Sokal A D 1988 Phys. Rev. D 38 2009
[4] Kandel D and Domany E 1991 Phys. Rev. B 43 8539�8548
[5] Sweeny M 1983Phys. Rev. B 27 4445
[6] Deng Y, Garoni T M and Sokal A D 2007 Phys. Rev. Lett. 98 230602
[7] Elçi E M and Weigel M 2013 Phys. Rev. E 88 033303
[8] Henzinger M R and King V 1999 J. ACM 46 502�516
[9] Holm J, de Lichtenberg K and Thorup M 2001 J. ACM 48 723�760

[10] Iyer R, Karger D, Rahul H and Thorup M 2001 J. Exp. Algorithmics 6 4
[11] Grimmett G 2006 The random-cluster model (Berlin: Springer)
[12] Fortuin C M and Kasteleyn P W 1972 Physica 57 536�564
[13] Fortuin C M 1972 Physica 58 393�418
[14] Fortuin C M 1972 Physica 59 545�570
[15] Hoshen J and Kopelman R 1976Phys. Rev. B 14 3438�3445
[16] Cormen T H, Leiserson C E, Rivest R L and Stein C 2009 Introduction to Algorithms 3rd ed (Cambridge,

MA: MIT Press)
[17] Newman M E J and Zi� R M 2001 Phys. Rev. E 64 016706
[18] Weigel M 2010 Physics Procedia 3 1499�1513
[19] Deng Y, Zhang W, Garoni T M, Sokal A D and Sportiello A 2010 Phys. Rev. E 81 020102
[20] Tarjan R E 1997 Math. Program. 78
[21] Knuth D E 1998 The Art of Computer Programming: Sorting and Searching v. 3: The Classic Work Newly

Updated and Revised 2nd ed (Addison Wesley)
[22] Sleator D D and Tarjan R E 1985 J. ACM 32 652�686
[23] Zaroliagis C D 2002 Experimental Algorithmics (Lecture Notes in Computer Science vol 2547) ed Fleischer

R, Moret B and Schmidt E (Springer Berlin Heidelberg) pp 229�278
[24] Demetrescu C and Italiano G F 2006 ACM Trans. Algorithms 2 578�601
[25] Demetrescu C, Eppstein D, Galil Z and Italiano G F 2010 ed Atallah M J and Blanton M (Chapman &

Hall/CRC), chapter Dynamic graph algorithms, p 9
[26] Elçi E M Sweeny Python module at Github, https://github.com/ernmeel/sweeny
[27] MIT License, http://opensource.org/licenses/MIT
[28] Hartmann A K 2005 Phys. Rev. Lett. 94 050601
[29] Deng Y, Garoni T M and Sokal A D 2007 Phys. Rev. Lett. 98 030602

25th IUPAP Conference on Computational Physics (CCP2013) IOP Publishing
Journal of Physics: Conference Series 510 (2014) 012013 doi:10.1088/1742-6596/510/1/012013

10

https://github.com/ernmeel/sweeny
http://opensource.org/licenses/MIT

