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Abstract
We analyse the zero-temperature behaviour of the XY Edwards–Anderson spin
glass model on a square lattice. A newly developed algorithm combining exact
ground-state computations for Ising variables embedded into the planar spins
with a specially tailored evolutionary method, resulting in the genetic embedded
matching (GEM) approach, allows for the computation of numerically
exact ground states for relatively large systems. This enables a thorough
reinvestigation of the long-standing questions of (i) extensive degeneracy of the
ground state and (ii) a possible decoupling of spin and chiral degrees of freedom
in such systems. The new algorithm together with appropriate choices for the
considered sets of boundary conditions and finite-size scaling techniques allows
for a consistent determination of the spin and chiral stiffness scaling exponents.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

With their rich behaviour at low temperatures, spin glasses take a prominent role in the large
class of magnetic systems with frustration. The most commonly considered Hamiltonian is that
of the Edwards–Anderson (EA) model [1],

H = −
∑

〈i j〉
Ji j Si · S j (1)

with O(n) spins Si and random nearest-neighbour couplings Ji j . The wealth of behaviour
of these systems is attributed to the random disorder augmenting the frustration effects.
Unfortunately, it is precisely this quenched disorder that provides an exceptional challenge
for the application of the various analytical approximation methods well known from the
treatment of homogeneous systems. Owing to these difficulties, most of the advances in
the understanding of spin-glass systems beyond the celebrated mean-field theory of the
Sherrington–Kirkpatrick model [2] have been on account of ever more sophisticated numerical
simulation and optimization techniques [1]. For two-dimensional (2D) systems, where for
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short-range interactions spin glass order is restricted to zero temperature, the investigation
of ground states is of prominent interest. In general, finding (exact) ground states of spin
glass models is a computationally hard problem, in which the amount of computer time
grows exponentially with the size of the system [3]. Here, we explore a new avenue to
advance methods for the so far much less investigated case of systems with continuous spins:
we introduce a novel approximate optimization algorithm which, for the 2D XY spin glass
discussed here, allows us to find numerically exact ground states with good confidence for
systems of up to about 30 × 30 spins [4, 5].

Generalizing Peierls’ argument for the stability of the ordered phase in homogeneous
systems to situations with quenched disorder, a droplet scaling theory for spin glasses has
been formulated [6]. Therein, the role of the droplet surface (free) energy is taken on by the
width J (L) of the distribution of random couplings for a real-space renormalization group
decimation at length scale L. In the course of renormalization, J (L) scales as J (L) ∼ Lθs ,
defining the spin stiffness exponent θs. If the system scales to weak coupling, θs < 0, spin-glass
order is unstable at finite temperature and the system is below its lower critical dimension.
This is the situation for the EA model in two dimensions [1], in which θs then describes
the properties of the critical point at temperature T = 0, relating the correlation length
exponent ν = −1/θs [6]. Numerically, the domain-wall free energy might be determined
from the energy difference between ground states of systems with different types of boundary
conditions (BCs) chosen such as to induce a relative domain wall [6]. For the n = 1 Ising
spin glass, the ground-state problem on planar graphs is an exception to the rule, being
polynomial computationally [3]. Hence, large systems can be treated, leading to reliable
estimates of θs = −0.282(2) (Gaussian Ji j ), resp. θs = 0 (bimodal Ji j ) [1, 7]. Due to the
presence of strong finite-size corrections, relatively large system sizes and/or elaborate finite-
size scaling techniques appeared mandatory for consistent estimates of θs [7, 8]. However,
for the case n > 1 of continuous spins, which is more relevant to real materials, the lack of
effective and efficient algorithms for finding exact ground states and the necessary restriction
to small systems with L � 12 have led to rather less consistent estimates, moving in the range
θs ∈ [−1,−0.75] [9–11].

Moreover, the increased symmetry of the order parameter in the continuous spin case has
led to speculations about a decoupling of spin and chiral variables [12]: since the pattern of
frozen spins in the glassy phase has internal degrees of freedom, there is a factual difference
between proper and improper rotations expressed in the decomposition O(n) = SO(n) ×
Z2 [13]. The additional Ising-like chirality variables might order independently of the spins
(for systems above their lower critical dimension) or, at least, show a different stiffness against
fluctuations, resulting in a scaling exponent θc possibly distinct from θs. Indeed, measurements
of the chiral stiffness for small systems yielded θc ≈ −0.38 [10, 11], different from θs

above. More recently, however, Kosterlitz and Akino [14] argued that the choice of BCs in
previous studies was flawed and they suggest a possibly more appropriate approach leading
to θs ≈ −0.38 ≈ θc, again for sizes L � 10. The hardly compatible previous results for
this system hence raise several methodological questions: (i) have numerically exact ground
states been found? (ii) are the apparent strong finite-size effects under control? (iii) have the
considered sets of BCs been chosen such as to properly select the intended excitations? and
(iv) what is the role of scaling corrections explicitly depending on these BCs?

2. Genetic embedded matching approach

The treatment of large samples for the 2D Ising case is enabled by a transformation to an
equivalent problem on the complete graph of frustrated plaquettes: following their definition,
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for each spin configuration frustrated plaquettes have an odd number of broken bonds around
their perimeter, whereas unfrustrated plaquettes have an even number of broken bonds. Thus,
drawing ‘energy strings’ dual to the broken bonds, these connect pairs of frustrated plaquettes,
and the total energy of (1) is (up to a constant) given by the total length of energy strings,
such that the ground state corresponds to a minimum-weight perfect matching of frustrated
plaquettes [3]. The matching problem can be solved in polynomial time using Edmonds’
algorithm [15], and for the case of planar graphs its solution is guaranteed to transform back to
a valid spin configuration [16]. This does not directly apply to the continuous spins considered
here. We suggest, however, to embed Ising variables into the planar spins by decomposing
Si = S

‖
i +S⊥

i = (Si ·r)r +S⊥
i relative to a random direction r in spin space. With respect to

reflections of spins along the direction r, the Hamiltonian (1) can be written as H = Hr,‖+Hr,⊥
with Hr,‖ = − ∑

〈i, j〉 J̃ r
i j εr

i ε
r
j , and

J̃ r
i j = Ji j |Si · r||S j · r|, εr

i = sign(Si · r). (2)

Hence, for any fixed r and restricting the movement of spins to reflections along r, the
Hamiltonian (1) for arbitrary n > 1 takes on the form of an Ising model. Consequently,
Edmonds’ algorithm can be applied to find (one of) the ground state(s) of the embedded Ising
model. It is obvious that this can never increase the energy of the full Hamiltonian (1), but the
state found depends on the choice of random direction r. To statistically recover the full O(n)
symmetry of the Hamiltonian, a series of subsequent minimizations is performed with respect
to successive random choices of r, thus gradually decreasing the total energy via non-local
moves. We refer to this approach as the embedded matching technique.

It can be shown that, although when the full Hamiltonian (1) is in a ground state, all
embedded Ising Hamiltonians Hr,‖ must be in one of their respective ground states as well,
successive minimizations with respect to random directions r are not guaranteed to drive
the system towards its absolute energy minimum. In other words, the non-local embedded
matching ‘dynamics’ has metastable states, but many less than the simple local spin quench
dynamics used before [9, 11]. To converge to ground states with high probability, we insert
the embedded matching technique as a minimization component (‘subroutine’) in a genetic
algorithm [17]: we consider a whole population of candidate ground-state configurations
and simulate an evolutionary development by recombining (or crossing over) neighbouring
pairs of parent configurations followed by minimization runs for the resulting offspring and
replacement of the parents in case of lower energy of the offspring. In analogy with the
approach of [17], the crossover is performed in a ‘triadic’ fashion, comparing the overlaps with
a third, reference configuration. This layout is complemented by intermittent random mutation
steps and performance-guided halving of the population at certain stages to find an optimum
balance between ‘genetic’ diversity and efficiency of optimization [17]. The choice of operation
for the crossover of configurations is found to be crucial for the efficiency of the approach: it
turns out that a random exchange of suitably defined rigid spin clusters is far more efficient
than an exchange of single spins. These clusters denote regions which are highly optimized
in their interior for all configurations of the population (i.e., low-lying metastable states), but
which have to undergo a series of independent rigid O(n) transformations to make up a true
ground state of the system. Here, clusters are defined dynamically within the algorithm by
considering the differences in the energies carried by the bonds with respect to the reference
configuration: bonds with very similar energies for both configurations belong to the highly
optimized interior of a rigid cluster, whereas bonds with rather different energies make up the
boundaries between clusters where local rearrangements of spins occur. Introducing a cut-off
bond-energy scale, in this way a cluster decomposition of the configurations can be achieved.
Careful choice of the parameters of the resulting genetic embedded matching (GEM) algorithm
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Figure 1. Local rotation matrices between the ground states for a single 20×20 disorder realization
with open boundaries relative to domain-wall BCs for spin (left) and chiral (right) excitations.

and application of various statistical tests ensure that indeed independent runs for a single
given realization of the disorder variables Ji j always converge to a state of the same energy, up
to unprecedented machine precision, which in this way can be guaranteed to be a ground state
with high reliability [4, 5].

We here concentrate on the symmetric, bimodal ±J distribution. For this case we find
that the ground states computed in independent runs for a single disorder realization are always
identical to each other up to a global O(n) transformation, indicating the lack of accidental
degeneracies in contrast to what is found for the bimodal Ising case [1]. Hence, after averaging
over disorder, the ground state is ordered and the ground-state spin correlation function is
constant, implying η = 0. To determine the asymptotic ground-state energy per spin e∞,
ground states were computed for L × L square-lattice systems with L = 6, 8, 10, 12, 16,
20, 24, and 28 for open and open-periodic BCs and 5000 disorder replica per size. Finite-
size corrections are expected to be purely analytic for the case of open BCs [18], and a fit to
the ansatz e(L) = e∞ + a/L + b/L2 + c/L3 yields e∞ = −1.5520(14) with quality-of-fit
Q = 0.35. For the open-periodic case, an additional non-analytic term ∝ L−(d−θs) is expected
to occur [18], and a fit of the corresponding data to the form e(L) = e∞ + a/L + b/L2−θs

gives e∞ = −1.5525(13), θs = −0.49(69), Q = 0.35, perfectly consistent with the open-
boundary result for e∞ and, due to the large statistical error, only in qualitative agreement with
the expected value for the spin-stiffness exponent θs. As will be seen below, a measurement of
defect energies directly induced by a change of boundary conditions yields much more precise
results. The resulting e∞ is about 10% lower than the value e∞ = −1.402 of the bimodal Ising
spin glass [18], despite the ability of the XY spins to continuously reorient and presumably
adapt better to the random frustration.

3. Spin and chiral stiffness exponents

Conventionally, domain-wall energies have been measured by comparing ground states
for periodic and antiperiodic (P/AP) BCs [9–11]. In [14] it was argued, however, that
the periodicity in both types of BCs forces domain walls into the system, such that the
corresponding energy difference might not properly capture the energy of a single domain wall.
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Figure 2. Aspect-ratio scaling of the stiffness exponents θs and θc for aspect ratios R = 1, 2 and 6
as a function of 1/R.

There, an improvement is suggested by optimizing over an additional global twist variable
along the boundary under consideration. Here, to start with the cleanest possible setup, in
addition to the conventional P/AP BC set, we consider open and domain-wall (O/DW) BCs,
where for the latter the relative orientations of spins linked across the boundary are either tilted
by an angle π for spin domain walls or reflected along an arbitrary but fixed axis for chiral
domain walls by the introduction of very strong bonds [5, 7]. In figure 1 we show snapshots of
spin and chiral excitations forced into the system by the O/DW BCs. For this representation, we
computed a locally averaged O(2) rotation matrix relating the configurations with O and DW
BCs and translated it back into a rotation angle (the arrows) and the sign of the determinant
(−1 for the blue squares). In both cases, the structure of rather rigid clusters mentioned above
in connection with the GEM crossover operation is quite apparent. It also appears, however,
that in contrast to the discrete Ising case the spin domain walls are somewhat smeared out due
to the continuous rotation of the spins. To a certain extent, the system seems to relax the spin
excitation also through the chiral mode if it is found to be softer locally (and vice versa for the
chiral excitation).

From the scaling of the domain-wall energies, [|�E |]J ∼ Lθ , we find a strong crossover
for the P/AP data from θs = −0.724(21) for L � 12 to θs = −0.433(26) for L � 16,
indicating large finite-size effects and a movement from the value found for small P/AP
computations in previous works [9–11] towards the ‘optimum twist’ value of [14]. The O/DW
BCs, on the other hand, yield θs = −0.207(12) for spin excitations, resp. θc = −0.090(23) for
the chiral domain walls. Hence, although it is already clear that the true stiffness exponents are
much less negative than estimated before, there is still a sizable difference between the P/AP
and O/DW results for θs, indicating incomplete control over finite-size effects. To improve on
this, we take into account that, due to the independence of BCs for systems in one dimension,
corrections depending on BCs should disappear as more and more elongated systems are being
considered [8]. Thus, we additionally performed computations for L × M systems (the change
of BCs happening along the edges of length L) with aspect ratios R ≡ M/L = 2 and
6 with the same statistics. The results are presented in figure 2 for the case of P/AP and
O/DW BCs, respectively. Guided by the experience from the Ising case, we expect corrections
depending on BCs to disappear as θ(R) = θ(R = ∞) + AR/R for large R, and indeed the
P/AP and O/DW spin data seem to converge for large R, a fit to the given form yielding
θs(R = ∞) = −0.338(20) for P/AP BCs and θs(R = ∞) = −0.308(30) for O/DW BCs.
The O/DW chiral data, on the other hand, give θc(R = ∞) = −0.114(16), clearly distinct
from θs.
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4. Conclusions

Employing a novel ‘genetic embedded matching algorithm’, we computed numerically exact
ground states for the 2D XY EA spin glass with ±J couplings and up to 28 × 28 spins. No
accidental degeneracies seem to occur, implying η = 0. Analyses of the domain-wall energies
are hampered by strong finite-size effects which, however, can be controlled using the aspect-
ratio scaling technique. We find consistent estimates of θs = −0.308(30) from different sets
of BCs, clearly smaller in modulus than previous estimates [9–11, 14], and rather close to
θs = −0.28 found for the Gaussian 2D Ising case [7]. The chiral exponent θc = −0.114(16),
on the other hand, is found to be clearly different from θs and closer to value θs = 0 of the
bimodal 2D Ising spin glass. Note also that our results are rather far from θs = −1/νs = −1.0,
resp. θc = −1/νc = −0.5, estimated by finite-temperature Monte Carlo simulations [19],
which probably is due to equilibration problems at low temperatures.
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