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Applications that require substantial computational resources today
cannot avoid the use of heavily parallel machines. Embracing the oppor-
tunities of parallel computing and especially the possibilities provided
by a new generation of massively parallel accelerator devices such as
GPUs, Intel’s Xeon Phi or even FPGAs enables applications and studies
that are inaccessible to serial programs. Here we outline the opportu-
nities and challenges of massively parallel computing for Monte Carlo
simulations in statistical physics, with a focus on the simulation of sys-
tems exhibiting phase transitions and critical phenomena. This covers
a range of canonical ensemble Markov chain techniques as well as gen-
eralized ensembles such as multicanonical simulations and population
annealing. While the examples discussed are for simulations of spin sys-
tems, many of the methods are more general and moderate modifications
allow them to be applied to other lattice and off-lattice problems includ-
ing polymers and particle systems. We discuss important algorithmic
requirements for such highly parallel simulations, such as the challenges
of random-number generation for such cases, and outline a number of
general design principles for parallel Monte Carlo codes to perform well.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Parallel computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1. Performance and scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Parallel hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3. Algorithmic patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Canonical Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1. Checkerboard scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. Random-hit algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3. Cluster updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1



September 13, 2017 16:52 ws-rv9x6 Book Title main page 2

2 M. Weigel

3.4. Continuous spins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4. Random number generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5. Generalized ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.1. Parallel Tempering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2. Multicanonical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3. Wang-Landau update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.4. Population annealing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6. Disordered systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Index 71

1. Introduction

The explosive development of computer technology over the past 40 years

or so has not only led to pervasive changes of the industrial world and to

the way we communicate, learn, work, and entertain ourselves, but it has

also enabled an impressive success story of computational sciences.1 In

condensed matter and statistical physics, numerical methods such as clas-

sical and quantum molecular dynamics,2 density functional theory3 and

Monte Carlo simulations4 were initially developed in the late 1950s and

early 1960s when the first digital computers became available. Before that,

the tool set of theoretical physics was restricted to exact solutions for suffi-

ciently simplified systems, mean-field type theories neglecting fluctuations,

and perturbative methods such as the ε expansion and high-temperature

series. Due to the limited computational power available, numerical tech-

niques were not yet quite competitive, and some researchers considered

them as inferior crutches for people allegedly lacking the brilliance for ana-

lytical work. It is very rare indeed that one hears such opinions expressed

today, and simulations are now firmly established as an indispensable scien-

tific method, a third pillar supporting the building of science besides those

of experiment and analytical theory.4

This success is the result of two parallel developments: the enormous

increase of computational power by a factor of at least 107 since the first

digital computers appeared,5 but no less the development of ever more

sophisticated simulation and other computational methods enabling cal-

culations that were unfeasible with simpler techniques. For simulations in

statistical physics the focus of advanced methods has been the study of sys-

tems experiencing phase transitions and critical phenomena as well as other

effects of complexity such as exotic phases with slow relaxation. Here, one

should name cluster updates6,7 that are effective in beating critical slowing
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down close to continuous phase transitions, multicanonical simulations8,9

that allow to sample the suppressed co-existence region in systems under-

going first-order phase transitions, and exchange Monte Carlo10,11 that is

currently the workhorse for simulations of systems with complex free energy

landscapes such as spin glasses, but also methods of data analysis such as

histogram reweighting and advanced methods of error analysis.12,13 Only

combining both strengths, i.e., using advanced algorithms on sufficiently

powerful hardware enables computer simulation studies to achieve the level

of detail and precision required today.a

On the computational side, the high-performance computing (HPC)

setups available today are highly parallel in nature, and no further sig-

nificant increase of serial execution speeds of silicon based computing can

be expected.16 Some of the best performance results, especially in terms

of FLOPs per Watt, are now achieved by parallel accelerator devices such

as GPUs, Intel’s Xeon Phi and FPGAs. For computational scientists one

of the most pressing current challenges is hence the efficient implementa-

tion of existing algorithms on such massively parallel hardware, but also,

if possible, the design of new algorithms particularly well suited for highly

parallel computing. The purpose of the present chapter is to provide some

guidance for the practitioners of Monte Carlo methods particularly in sta-

tistical physics as we are moving further into the era of parallel computing.

The focus is on simulations of spin models on graphics processing units and

using a wide range of algorithms, but we will see that many of the general

concepts and design principles are also useful for simulations of different lat-

tice and continuum models and for different hardware such as MPI clusters

and Intel’s Xeon Phi family of co-processors.

The rest of the chapter is organized as follows: Section 2 discusses

the necessary background in parallel computing, including some standard

algorithmic patterns for efficient parallelism, as well as the relevant par-

allel hardware including, in particular, an outline of the most important

architectural features of graphics processing units. In Sec. 3 we discuss im-

plementations of standard local-update algorithms, such as the Metropolis

and heatbath updates for the example of discrete spin models. While these

can be realized rather straightforwardly using domain decompositions, we
aConsider, for instance, the problem of simulating the two-dimensional Ising model. The

Metropolis algorithm has a dynamical critical exponent of z = 2.17(1),14 while a recent
estimate for the exponent of the Swendsen-Wang algorithm is z = 0.14(1).15 Assuming
scaling amplitudes of approximately one in the law τ ∼ Lz of the autocorrelation times,

this results in an algorithmic speedup of 2 × 107 for a realistic system size L = 4096,
well comparable to the total increase in computational power in the past 40 years.
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next turn to non-local cluster algorithms that are more difficult to paral-

lelize efficiently as they operate on clusters that percolate at the critical

point. Finally, we discuss the specific problems of simulating systems with

continuous variables on GPU, that arise due to the performance penalty

paid for double precision floating point arithmetics on such devices. Sec-

tion 4 is devoted to a discussion of random-number generation in highly

parallel environments, where the availability of a large number of uncorre-

lated streams of random numbers is required. In Sec. 5 we turn to parallel

implementations of generalized-ensemble simulations, discussing the cases

of parallel tempering, multicanonical and Wang-Landau simulations, and

a variant of so-called sequential (non Markov-chain) Monte Carlo known

as population annealing17,18 that has recently attracted some attention.19

Section 6 is devoted to a discussion of the specific challenges and opportu-

nities that are held by parallel machines for the treatment of systems with

random disorder, where the necessary quenched average provides the possi-

bility for embarrassingly parallel implementations. Finally, Sec. 7 contains

our conclusions.

2. Parallel computing

Gordon Moore’s prediction from 1965 of a doubling of the number of tran-

sistors every two years has been a surprisingly accurate description of the

development of integrated circuits over the last four decades.5 Figure 1

(left) illustrates this for the case of Intel CPUs showing an increase by 7

orders of magnitude from about 1000 transistors in 1970 up to almost 1010

transistors today. Although there are clearly physical limits to this develop-

ment, these are not yet seen in processors today and hence the development

can be expected to continue unabated for a while. Another characteristic

of computer processors, however, the clock frequency, which for decades

showed an equally dynamic increase, started to settle down at around 3

GHz in 2003, see the data of historic CPU clock frequencies shown in the

right panel of Fig. 1. It turns out that an increase of clock frequencies be-

yond a few GHz is not practically feasible for commodity hardware, mostly

because the electrical power consumption increases dramatically with the

frequencyb and there is a natural limit to the maximal power density that

can be dissipated with conventional cooling methods. Due to the leveling

bThe dynamic power consumption is in fact given by P ∝ V 2f , where V is the operating

voltage and f the frequency.20 Since, however, the highest operating frequency f is itself
proportional to the voltage V , in total P ∝ f3.
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Fig. 1. Left: number of transistors on commodity processors as a function of their
release year. The line shows a pure exponential fit to the data, illustrating the validity of

Moore’s law.5 This fit implies a doubling about every 2.1 years. Right: clock frequencies
of the same CPUs, showing the leveling off of (approximately exponential) frequency

increases around 2003. The data are adapted from Ref. [20].

off of clock frequencies, but also through further effects including limita-

tions in exploiting instruction-level parallelism and the fact that speeds of

memory technologies have not developed as dynamically as those of pro-

cessing units, recently there has been hardly any relevant improvement in

the speed of serial programs on standard processors. For decades, scientific

and application programmers have been in the comfortable situation that

the same serial program could be run on a series of generations of processors

and its speed would improve exponentially according to Moore’s law, thus

allowing scientists to study ever larger system sizes and all users to process

bigger data sets with the same codes as time progressed. This development

has now come to an end.

The way that Moore’s law continues to hold while serial performance

has reached a limit is, of course, through the introduction of more and more

parallel cores. Typical CPUs are now multi-core with up to a few ten cores,

accelerator devices such as Intel’s MIC (Xeon Phi) architecture are many-

core with dozens to hundreds of cores and GPUs offer several thousand

cores in one device. In short, all computers are now parallel, from multi-

core processors in mobile phones up to the top machines in the TOP500 list

of supercomputers with millions of cores.21 Consequently, programs that

make efficient use of present-day machines must be parallel codes. While

modern compilers have some capabilities of automatic parallelization, these

are quite limited and they will typically not generate code that scales well on

machines with different numbers of cores. Apart from any shortcomings in

the compilers themselves, this is mainly a consequence of the serial nature
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of the prevalent programming languages themselves which produce what

could be called implicit serialism: if a task requires several different steps,

these must be written in sequence in a serial language, for example as a

list of function calls; a compiler cannot always decide whether such steps

are independent and hence could be performed in parallel, or whether some

of them have side effects that influence the other steps. Similarly, loop

constructs cannot be parallelized automatically when they contain pointer

arithmetic or possibilities for overlapping index ranges. Other examples

occur for sums or more general reductions involving floating-point numbers:

due to the limited accuracy such operations are not commutative, and a

reordering of the sum will lead to a (most often slightly) different result,

typically disabling automatic parallelization to ensure consistency, although

the ensuing rounding differences might be perfectly acceptable in a given

application. Programs in serial languages and the tools to process them

contain many such serial assumptions. As today programming is in fact

parallel programming, it is crucial to get rid of the implicit assumption of

seriality in thinking about algorithms and augment if not replace the well-

known serial algorithmic building blocks (such as iteration, recursion etc.)

by parallel ones (such as fork-join or scatter).20

A variety of parallel programming languages or language extensions have

been proposed to support this transition. MPI is the de facto standard for

distributed memory machines such as cluster computers.22 OpenMP is

very popular for shared memory machines such as single nodes with (one

or several) multi-core processors, especially for applications in HPC. Its

explicit representation of threads allows fine control in specific situations,

but a single code will typically not scale well across many different types

of hardware ranging from embedded systems to supercomputers. This goal

is more easily achieved using language extensions such as Threading Build-

ing Blocks (TBB), Array Building Blocks (ArBB), or Cilk Plus.20 Finally,

frameworks for accelerator devices, in particular GPUs, include the vendor-

specific Nvidia CUDA toolkit as well as OpenCL .23 A detailed discussion of

different programming models is clearly outside of the scope of the present

chapter and the interested reader is referred to the literature, for instance

the excellent Ref. [20]. Although there are many differences between these

approaches, a general goal of any such framework must be the creation of

scalable code that is able to run efficiently on any amount of parallel hard-

ware and in a performance portable manner, promising decent efficiency

also on the next generation of machines. Other desirable features are com-

posability , i.e., the possibility to use all language features together in the
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same code, as well as determinism, i.e., a guarantee that each invocation

of the program leads to identical results. The latter feature is very useful

for testing and debugging purposes and it is natural for serial codes, but in

some cases it might be difficult to achieve (and detrimental to performance)

in parallel programs where the scheduling of individual threads is typically

outside of the programmer’s control.

The two basic strategies for parallelization are data parallelism and

functional decomposition. While the latter can create a limited amount of

parallel work, it is clear that only data parallelism, for example in the form

of domain decomposition, creates a number of tasks that scales with the

size of the problem. This will also be most often the type of parallelism

encountered in simulation codes where different parts of the system are

assigned to different threads. Functional parallelism, on the other hand,

could occur in the present context for complex simulations on heteroge-

neous machines with accelerators, where only parts of the calculations (for

example force-field evaluations) are offloaded to the accelerators and the

remaining computations are run on the host machine.24 It is sometimes

also useful to distinguish regular and irregular parallelism, where the reg-

ular kind has predictable and regular dependencies such as for the case of

matrix multiplication, while irregular parallelism could occur in a parallel

evaluation of a search tree through a branch-and-bound strategy, such that

some branches and hence parallel tasks are terminated early through the

bounding step. As we will see below in Sec. 3.3, irregular parallelism oc-

curs in the tree-based methods for cluster updates of spin models. In terms

of mechanisms, parallel computation can be through threads or through

vector parallelism. Threads have a separate control flow, while vector cal-

culations apply the same instructions to a vector of data elements in par-

allel. Clearly, thread parallelism can emulate vector parallelism. As we

shall see below for the case of GPUs, vector parallelism can also emulate

thread parallelism through the masking out of operations for some of the

data elements (lanes) of the vector (Sec. 2.2). Such vector parallelism hence

creates pseudo-threads sometimes called fibers.

2.1. Performance and scaling

Ideal parallel programs will run efficiently on a wide range of hardware

with possibly very different numbers of cores. Code that achieves such per-

formance portability cannot explicitly depend on the features of particular

hardware, for example its specific memory hierarchy. This approach can
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Fig. 2. Example of the steps in a computation represented as an acyclic, directed graph
of task dependencies, assuming the same duration for each task. The total number

of tasks, 17 in the example, corresponds to the work in the computation, while the

longest path from start to end configuration, 6 in the present example, is the span of the
algorithm (hatched squares).

achieve good but generally not optimal performance. In HPC applications,

on the other hand, it is often admissible to be somewhat more specific to

a class of hardware and thus use a larger fraction of the available peak

performance. In most cases, however, taking the right general design deci-

sions will contribute significantly more to achieving good performance than

machine-specific optimizations.

The limiting factors for parallel performance are (data and control) de-

pendencies between tasks and the communication required between them.

A good framework for estimating performance is the work-span model :25

if one represents the necessary steps of a calculation in an acyclic, directed

graph of tasks with edges encoding the dependencies, the span is the time it

takes to perform the longest chain of instructions that cannot be parallelized

(possibly including the effects of synchronization and communication over-

heads). This is illustrated in Fig. 2. The span limits the possible parallel

speedup and, consequently, reducing the span is arguably the most impor-

tant step towards an efficient parallel program. This could be through the

removal of implicit serialism, i.e., getting rid of assumed dependencies that

are unnecessary, or through more profound reorganizations of calculations.

Apart from the goal of reducing an algorithm’s span, the two most profound

considerations when performance optimizing a parallel application are data

locality and parallel slack:20,23
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• Data locality: memory accesses that are closer together in time

and space are cheaper. Fetching close-by memory locations to-

gether makes the best use of bus bandwidth, reusing close-by data

makes the best use of caches. As a general rule, memories that

are further remote from the compute units have slower connections

and higher latencies, so memory transactions should be restricted

to local memories as much as possible. This might involve choosing

chunk sizes that fit into cache, the reorganization of the memory

layout to ensure that subsequent accesses are to nearby locations,

or padding to achieve the required memory alignment. As memory

transactions are so expensive, it is important to ensure sufficient

arithmetic intensity of computations — sometimes it is cheaper to

recompute intermediate results than to read them from memory.

• Parallel slack: providing more parallel tasks than cores are avail-

able improves efficiency. It might be tempting to break a prob-

lem into exactly as many threads as can be run in parallel on the

available hardware, but this is typically not optimal. Having more

threads than cores allows the scheduler to hide memory latencies by

putting thread groups waiting for memory accesses into a dormant

state while reactivating other thread groups that have received or

written their data. In general, it is best to break the calculation into

the smallest units that can still amortize the overhead of scheduling

a thread.

The main aspects of computational performance concern latency , i.e.,

the total time it takes to finish a single calculation, as well as throughput ,

i.e., the rate at which a sequence of calculations can be performed. In-

creasingly, also the power consumption of a calculation is considered as a

separate performance metric.26 Depending on the application, the reduc-

tion of latency or the improvement of throughput might be the main goal

of optimization. The most common metric is the speedup in latency ,

Sp =
T1Wp

W1Tp
,

where T1 (Tp) is the latency and W1 (Wp) denotes the workload of the

problem with one worker (p workers). The speedup per worker, Sp/p, is

known as parallel efficiency which indicates the return on adding an addi-

tional worker. Clearly, the ideal efficiency is 100% corresponding to linear

speedup, although in some unusual circumstances one finds Sp/p > 1 due,

for example, to cache effects. In determining parallel speedup, one should
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compare to the best serial program available, even if it uses a different al-

gorithm. The corresponding absolute speedup arguably provides a fairer

comparison than the relative speedup of running the parallel code with just

one thread. In a similar way one can also define and analyze the speedup

in throughput. An essential aspect of parallel performance theory relates

to the scaling of performance with p. Two important limits relate to the

cases of a fixed amount of work W performed with a variable number p

of processors, corresponding to strong scaling , and the situation where the

problem size and hence the amount of work are scaled proportional to p,

known as weak scaling . In the strong scaling scenario with work W , the

latency of the serial program is proportional to W , T1 = tW . If we as-

sume that the work decomposes into parallelizable and intrinsically serial

parts, W = Wpar + Wser, the latency for the parallel execution satisfies

Tp ≥ t(Wser + Wpar/p) and hence the maximal parallel speedup is limited

by

Sp =
T1W

TpW
≤ Wser +Wpar

Wser +Wpar/p
.

If the serial part makes up a constant fraction f of the work, Wser = fW

and Wpar = (1− f)W , we have

Sp ≤
1

f + (1− f)/p
(1)

and hence the speedup is limited by S∞ ≤ 1/f such that, for example, an

algorithm that has 10% intrinsically serial calculations cannot be sped up

beyond a factor of ten, no matter how many cores are available. Eq. (1) is

known as Amdahl’s law.27

In practice, problem sizes are often scaled with the number of available

cores, and so the assumption of constant work might not be appropriate.

If, instead, the parallel work increases proportional to p, i.e.,

Wp = Wser + pWpar = fW1 + p(1− f)W1,

where it was again assumed that the not-parallelizable work makes up a

fraction f of W1, and we consider the work done in a fixed time budget T ,

the speedup in latency becomes

Sp =
TWp

TW1
= f + (1− f)p, (2)

which is asymptotically proportional to p as p→∞. The relation of Eq. (2)

is referred to as Gustafson-Barsis law for weak scaling.28
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A more fine grained analysis of parallel performance of algorithms is

possible in the work-span model outlined above. There, the time for one

worker, T1 = tW , is called the work, choosing units such that t = 1 for

simplicity. The time T∞ for an infinite number of workers is called the

span. It corresponds to the length of the longest chain in the execution

graph for an infinite number of workers. We easily see that Sp ≤ p, so

super-linear speedup is impossible in this model. On the ideal machine

with greedy scheduling, adding a processor can never slow down the code,

such that

Sp =
T1

Tp
≤ T1

T∞
,

so the speedup is limited by the ratio of work and span. If the work consists

of perfectly parallelizable and imperfectly parallelizable parts, the latter will

take time T∞, irrespective of p. The former then takes time T1− T∞ when

using one worker and, as it is perfectly sped up by additional cores, time

(T1−T∞)/p with p workers. As at least one worker needs to be dealing with

the imperfectly parallelizable part, this provides an upper bound known as

Brent’s lemma,20

Tp ≤ (T1 − T∞)/p+ T∞,

which provides a lower bound on the parallel speedup. From this, a good

practical estimate for Tp can be derived noting that for problems suitable

for parallelization we must have T1 � T∞ and hence

Tp ≈ T1/p+ T∞.

Hence it is clear that the span is the fundamental limit to parallel scaling.

From Brent’s lemma one derives that if for S∞ = T1/T∞ � p, i.e., if

the theoretical maximal speedup is much larger that the actually available

parallelism, the speedup is approximately linear, Sp ≈ p. Hence it is good

to have sufficient parallel slack , a standard recommendation is S∞/p ≥ 8.

This is called over-decomposition.

2.2. Parallel hardware

While a number of general design principles, most notably the concepts of

data locality and parallel slack outlined above, will contribute to good per-

formance of parallel programs independent of the hardware, a substantial

fraction of the peak performance can typically only be achieved with some

tailoring to the hardware to be used.
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A common classification of parallel processing paradigms relates to the

way that control flow and data are combined:29 single instruction, single

data (SISD) setups correspond to standard serial processing; single instruc-

tion, multiple data (SIMD) approaches imply vector processing with an ar-

ray of functional units performing identical calculations on different data

elements; multiple instruction, multiple data (MIMD) corresponds to sep-

arate instruction streams, each applied to their own data sets — this is

implemented in a cluster computer. Another classification concerns mem-

ory organization: in shared memory machines each compute element can

access all data, whereas in distributed memory setups this is not possible.

Cluster machines are examples of the latter type, where data between dif-

ferent nodes can only be accessed after explicitly communicating it between

them. Each node, on the other hand, will typically feature several cores

that operate a shared memory setup between them.

Parallelism occurs in current hardware at many different levels. At the

scope of a single CPU core there is instruction-level parallelism in the form

of superscalar execution of serial instructions, through hardware multi-

threading and vector instructions in extensions such as SSE and AVX.

These features are generally hard to configure explicitly unless programs

are written in assembly language, and they will often only be activated

through certain compiler optimizations. Modern CPUs come with multi-

ple cores and hence can run multiple, and possibly many, threads. Such

parallelism is typically only accessible to programs that are explicitly par-

allel, using multi-threading language extensions such as OpenMP, TBB,

ArBB or Cilk Plus. To ensure good performance, data locality needs to

be respected, and it is hence important to understand the memory hierar-

chy of multi-core CPU systems: the functional units are equipped with a

moderate number of very fast registers, and a cascade of cache memories

(typically L1, L2 and L3) translates accesses down to the main memory of

the machine. In general, bandwidths decrease and latencies increase as the

hierarchical (and thus the physical) distance of memory locations to the

compute units increases. Caches are typically organized in lines of 64 or

128 bytes, and each access to main memory fetches a full cache line, thereby

accelerating accesses to nearby memory locations. Only coherent accesses

therefore allow to achieve transfer rates close to the theoretical memory

bandwidths. Finally, there is also a virtual memory system underneath the

actual physical memory, swapping pages of unused memory out to disk as

required, and a lack of memory locality will lead to frequent page faults

that are immensely expensive on the timescale of the CPU clock.
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A relatively recent addition to the arsenal of parallel hardware are ac-

celerator devices such as GPUs, Intel’s MIC (many integrated core) pro-

cessors, and field-programmable gate arrays (FPGAs). GPUs and MIC

devices provide a large number of relatively simple compute cores packaged

on a separate device which is used to offload expensive calculations that are

well suited for parallel execution. While GPUs use specific programming

models (see below), the Intel MIC architecture appears to the user like a

standard multi-core system with particularly many cores (currently around

60), supporting most of the standard development tool-chain. FPGAs, on

the other hand, are integrated circuits that can be reconfigured on demand

to implement an algorithm in hardware. While traditionally, this could only

be achieved by experts in circuit development using a hardware description

language, it is now possible to use general-purpose programming languages

(with suitable extensions) to configure FPGAs, for example OpenCL.30 For

particular parallel applications, FPGAs can provide higher performance at

a lower power consumption than any other parallel hardware.

GPUs operate at a sweet spot of parallel computing in that they pro-

vide very substantial parallelism with the availability of several thousand

parallel hardware threads, but without requiring an expensive distributed

memory machine such as a cluster computer. As most of the implementa-

tions presented in the application part of this chapter have been realized for

GPUs, we discuss their architecture in somewhat more detail here. Clearly,

GPUs have been designed for the efficient rendering of (mostly 3D) com-

puter graphics, a task that involves the parallel manipulation of many 3D

objects, the mapping of textures, and the simultaneous projection of a scene

onto the millions of pixels in an image frame. Driven by the large sums

of money available through the gaming industry, GPUs are hence highly

optimized to perform well for these massively parallel and very predictable

tasks. For a number of generations, their peak performances have substan-

tially exceeded those of CPUs released at the same time, with the recently

announced Volta generation V100 Nvidia GPU promising a single-precision

floating point performance of up to 15 TFLOPs per device. The main rea-

son for this lead in performance is a difference in design goals: current

CPUs are optimized to deliver the best possible serial performance under

an unpredictable, interactive load. To achieve this, a large proportion of the

available die space is devoted to pipelining, branch prediction, and similar

control logic that helps to improve single-thread performance, as well as a

hierarchy of relatively large cache memories that are required since locality

of memory accesses under a mixed interactive load cannot be ensured. GPU



September 13, 2017 16:52 ws-rv9x6 Book Title main page 14

14 M. Weigel

Device (GPU)
Multiprocessor n

Multiprocessor 2

Multiprocessor 1

R
EG

Processor
1

R
EG

Processor
2

R
EG

Processor
m

Instruction
Unit...

Shared memory

Constant memory

Texture memory

Device memory
(Global memory)

H
ost m

em
ory

...

Fig. 3. Schematic of the architecture of GPU devices, using the terminology of Nvidia

CUDA.

dies of the same complexity, on the other hand, feature a much larger num-

ber of actual compute units, much lighter control logic and smaller cache

memories. In an interactive load situation they would not perform well, but

for repetitive and highly parallel calculations they can deliver exceptional

performance. This makes them ideal vehicles for general-purpose scientific

calculations (GPGPU).31

The two main players in the high-end GPU market are Nvidia and AMD.

Although the actual performances of corresponding boards from both ven-

dors are about similar, Nvidia GPUs are much more firmly established as

accelerator devices in HPC. This is, in part, due to a rather well developed

eco-system of development tools, and supporting application libraries. The

standard model for programming Nvidia GPUs is through the proprietary

CUDA framework,32 providing a C/C++ language extension with the asso-

ciated compiler, performance analysis tools and application libraries. Less

machine specific frameworks such as OpenCL and OpenACC are also avail-

able, and can also be used for programming AMD GPUs. Due to limita-

tions in the accessible features and a lack of fine-grained control they are

somewhat less popular for Nvidia GPUs applied in HPC, but they provide

portable code that can run on GPUs of different vendors and even multi-core

CPU systems. Figure 3 shows a schematic of the general layout of a GPU

device. It consists of a number of multi-core processors (known as “stream-

ing multiprocessors” for Nvidia devices) with the associated local, shared

memory and a common global memory per device. The number of cores per
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Fig. 4. Execution configuration of device code in the form of a grid of thread blocks.

multiprocessor is between 32 and 192 in Nvidia cards ranging through the

Fermi, Kepler, Maxwell, and Pascal series, and each GPU card comes with

a few tens of multiprocessors, thus totaling in several thousand cores for

the larger cards. The associated compute model features elements of SIMD

and MIMD systems which sometimes is called single instruction, multiple

threads (SIMT). It corresponds to a tiled SIMD architecture, where each

multiprocessor has SIMD semantics, but the vector lanes are promoted to

fibers with the possibility of divergent control flow through the masking

out of lanes for branches that they do not take. These threads are very

lightweight and the overhead for their scheduling is minimal. As groups

of 32 threads (a warp) are scheduled together on a single SIMD processor,

it is important to minimize thread divergence using masking as it severely

impedes performance.23

The main control flow of programs in CUDA (and similarly for OpenCL)

is executed on CPU, and it contains particularly labeled device functions

(known as kernels) that offload specific calculations to the GPU device.

The particular arrangement of threads to be used for a kernel invocation

is known as the execution configuration, and it describes a grid of thread

blocks. This is illustrated in Fig. 4. Each block is scheduled to execute

on a single SIMD processor. Its threads can communicate (and synchro-

nize) via the shared memory area local to it. Threads in different blocks

cannot directly communicate, and synchronization of all threads in a grid
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can only happen through returning to CPU code.c More recent cards and

driver versions also allow for dynamic parallelism, where additional threads

can be spawned from within kernel code.33 The most important available

memories are illustrated in Fig. 3. Moving from registers through shared

memory to global memory, the latencies for accesses increase dramatically

and the bandwidths decrease correspondingly. Additionally, Nvidia cards

feature L1 and L2 caches also. While these have the usual associative cache

line behavior, shared memory is allocated and managed explicitly by the

threads in a block. It is fast but very small, at most 48 KB per block, so

must be used wisely. GPU devices can only be run as accelerators attached

to a CPU node. They are connected through the PCI-e bus and any data

that is required as input or output must be transferred from the CPU to the

GPU main memory explicitly. This is of particular importance for hybrid

codes that perform part of the calculations on CPU and for multi-GPU pro-

grams. Such transfers can be interleaved with calculations, however, and in

some cases this allows to completely hide these memory transfer latencies.

As an extension, it is also possible to enable a unified virtual address space,

such that the same pointers can be used across CPU and GPU memories,

and data are automatically transferred across the PCI bus as required by

the access patterns.

It is not possible in the framework of the present chapter to provide a

comprehensive discussion of programming models for GPUs and, in par-

ticular, give an introduction to the CUDA or OpenCL language exten-

sions. A number of good books and online resources fill this gap, see, e.g.,

Refs. [23,33–35]. It will suffice for the present purposes to provide a list

of issues to consider in order to achieve good performance, roughly in the

order of their relevance:

• Memory coalescence: each cached access to global memory

fetches or writes a full cache line of 128 bytes. If only a single

4-byte word of this data is actually used, the efficiency of bus us-

age is extremely poor. In ideal access patterns, the 32 threads of

a warp access memory locations in the same 128 byte cache line,

leading to 100 % efficiency of memory accesses. The actual perfor-

mance penalty for misalignment depends on whether accesses are

cached in L1 (128 byte cache lines) or in L2 only (32 byte segments).

cNote that there are some advanced features allowing for limited communication between

different blocks from within a kernel, including atomic operations as well as memory fence
functions. For details see the CUDA C Programming Guide.33
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Improving memory coalescence implies good data locality and will

typically involve rearranging multi-dimensional arrays in memory

such that the fastest-changing index corresponds to neighboring

threads in a block.

• Parallel slack: accesses to shared memory typically take tens of

clock cycles, accesses to global memory at least hundreds of cycles.

These memory latencies can be hidden away by the scheduler if

there is enough parallel slack. Once a warp issues a high-latency

memory transaction, it is taken off the compute units into a dor-

mant state and another warp with completed memory transaction

is activated instead. As a rule of thumb, optimal performance is

achieved with a parallel slack of at least 8–10 times the number of

available cores, implying several ten thousand threads per grid on

high-end GPUs.

• Occupancy: There are limits to the total number of resident

threads (2048 on recent Nvidia cards) and the total number of

blocks (16–32) per SIMD processor. Additionally, the number of

registers per thread requested by a given kernel can further limit

the total number of threads and blocks that can be assigned to a

multiprocessor at any given time. To the extent that a limitation

in register usage does not impede performance, maximum through-

put is typically achieved by maximizing the occupancy of threads

on each SIMD processor.d Also, it is generally best to choose the

total number of blocks to be a multiple of the number of SIMD

processors of the device used.

• Shared memory: explicit caching of data in shared memory can

lead to massive performance improvements compared to direct ac-

cesses to global memory. Advantages will be larger the more often

data loaded into shared memory are reused. A common pattern is

to load a tile of the system into shared memory, update it there

and then write the result back to global memory. For best per-

formance, the different threads in a warp need to access shared

memory locations in different banks to avoid bank conflicts.34

• Arithmetic density and data compression: as the arithmetic

peak performance of GPU devices is enormous, many codes are

limited by the practically achieved bandwidth of memory trans-

fers, i.e., moving the data to and from the compute units. If this is

dThe CUDA toolkit provides an occupancy calculator spreadsheet to help determine the
right parameters.32
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the case, the optimization strategy must be a combination of im-

proving memory throughput and reducing the amount of data that

needs to be transferred. Throughput can be mainly improved by

ensuring coalescence of memory accesses. A reduction of memory

transfers results from a good use of shared memory and caches,

but also from the most compact storage of data. If, for instance,

a dynamic degree of freedom is an Ising spin corresponding to one

bit of information, it is wasteful on memory bandwidth to store it

in a 32-bit word. Instead, it should be stored in an 8-bit variable or

several spins should be packed as individual bits into a longer word.

In a situation where performance is memory bound, it should be

attempted to increase the arithmetic intensity of the relevant ker-

nel. For instance, it can be beneficial to recalculate intermediate

results instead of re-reading them from (or even storing them in)

main memory.

• Floating-point calculations: Floating-point operations in dou-

ble precision are significantly more expensive on GPUs than single-

precision calculations. The typical performance penalty for using

double precision ranges between two and eight on recent Nvidia

cards, where the best double precision performance is only avail-

able on the much more expensive Tesla series of GPGPU cards,

but not on the otherwise very similar gaming and consumer cards.

On CPUs such effects are typically not as pronounced. In prac-

tice the speed of many programs will not be only determined by

floating-point performance, such that the overhead for using double

precision might be less dramatic than indicated above. In general

sticking to single precision or some form of mixed precision cal-

culations, where some intermediate results are stored in single (or

even half) precision and only sums over large numbers of elements

use double (or higher) precision, can be useful strategies. Another

aspect of floating-point performance on GPUs is the availability of

hardware units for the evaluation of certain special functions such

as square roots, exponentials, logarithms and trigonometric func-

tions in single precision.23 These have somewhat reduced precision

but much higher performance than the software versions.36

• Thread divergence: The individual SIMD processors emulate

threads by masking out vector lanes to which a certain code branch

does not apply. For a conditional, this means that all branches are

evaluated serially with all threads to which the current branch does



September 13, 2017 16:52 ws-rv9x6 Book Title main page 19

Monte Carlo methods for massively parallel computers 19

not apply masked out. Having n branches with the same computa-

tional effort hence increases the worst-case total runtime (at least)

by a factor of n. Since scheduling happens on the level of warps

(of 32 threads on Nvidia cards), it will improve performance if it

can be ensured that all threads of a warp take the same execution

branch as otherwise the different paths will be serialized. In partic-

ular, one should avoid the use of block-wide thread synchronization

in divergent code as it will slow down the execution of all warps.

As we shall see for some of the examples below, taking the above optimiza-

tion considerations into account can turn a very moderate GPU speedup

against serial code which is comparable to that achievable by paralleliz-

ing the CPU code into a several hundredfold speedup against the serial

program.

2.3. Algorithmic patterns

It is not possible within the scope of the present chapter to discuss in de-

tail general parallel algorithms and their implementation with the help of

the available language extensions such as MPI, Cilk Plus, or CUDA. To

help avoid running into the ubiquitous serial traps, i.e., unnecessary as-

sumptions in coding deriving from the general serial execution assumption

commonplace until recently, and to ease the transition from a serial to a

parallel mindset required now for practitioners developing computer sim-

ulation codes, it appears useful, however, to provide an overview of the

most pertinent general algorithmic patterns or algorithm skeletons.37 To

this end we follow closely the excellent exposition in Ref. [20].

The most basic pattern, which applies to serial and parallel programs

alike, is the ability to stack patterns, i.e., to replace a certain task in an

algorithmic pattern by another pattern and to do so hierarchically up to

an essentially arbitrary recursion depth. This ability, which is equivalent

to the composability of functions in mathematics, is called nesting . In

serial computing, nesting is mostly straightforward: the body of a loop,

for example, can contain another loop or a conditional statement etc. In

parallel algorithms problems can arise when the nesting is allowed to be

dynamic, i.e., it grows with the size of the problem. This can create an

unbounded number of parallel threads as the input size increases, such

that efficient implementations need to decouple the potential parallelism

resulting from the nested algorithm from the actually available hardware

parallelism.
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2.3.1. Control flow

A natural distinction arises between control flow patterns and data manage-

ment patterns. Regarding control flow, serial patterns are rather straight-

forward and mostly correspond to the elementary features available in most

(procedural) languages. The sequence pattern expresses the sequential ex-

ecution of several tasks. Although there might not actually be any de-

pendence between the elements of a sequence, a serial program will always

execute them in the given order. Optimization phases of compilers and

even the control logic of modern processors (“out-of-order-execution”) in

some cases will change the order of execution in a sequence, however, if

their analysis allows to ascertain that the results will be unchanged. The

selection pattern corresponds to conditional execution, usually expressed

in an if statement. Iteration is the main serial pattern for accommodat-

ing variably-sized inputs. A common strategy for parallel computing is

the (possibly automatic) parallelization of loops, but in many cases the

simplest approaches fail due to data dependencies between the iterations.

Finally, the recursion pattern (which is absent in some languages such as

Fortran 77), can often (but not always) be expressed by iteration also,

but sometimes allows for much simpler code. It is the natural match for

divide-and-conquer strategies.

Parallel control flow patterns are not quite as universally well known.

The basic examples generalize the serial patterns discussed above. If a se-

quence of tasks is actually independent, fork-join can be used to run them

in parallel. After their completion execution returns to a single thread.

Typically, such independence is only relative, however, and the results of

a task are needed at some point later on in the program, such that some

communication of forked threads is required. Typically this is through

synchronization points (barriers), where all threads of a certain fork point

need to have completed a certain part (or all) of their task. Other paral-

lel control patterns are mostly generalizations of the iteration mechanism.

The most important is map, where a function is applied to each element

of an index set. This corresponds to a serial loop where each iteration is

independent of the others, which is the case that is also handled well by

compiler-level parallelization. If the strict independence of elemental op-

erations is relaxed, and each application of the function has access also to

certain neighboring elements in the input vector, one speaks of a stencil .

Here, decomposition of the vector into independent sub-sets (such as for

the checkerboard decomposition discussed below in Sec. 3.1) and tiling are
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important optimization strategies. The stencil pattern is the work horse

of most simulation codes, ranging from lattice systems to computational

fluid dynamics. In a reduction, the results of applying a function to each

element in a set are combined together. The most common combiner func-

tions used here are addition, multiplication, and maximum. Whether the

combiner function is associative and/or commutative decides to which de-

gree the result depends on the actual schedule of parallel operations. A

typical parallel implementation leads to a tree structure, where partial re-

ductions are formed at each level and passed down to the next level for

further reduction. A combination of map and reduction is given by the

scan operation, where for each position in the output a partial reduction

of the input up to that point is needed. To parallelize it, often additional

intermediate calculations are required, thus increasing the total work and

possibly limiting the scaling properties of the whole code. Finally, a recur-

rence is a generalization of map and stencil where each iteration can read

and write neighboring elements in the vector.

2.3.2. Data management

The allocation mechanism used for automatic variables and also for local

variables in function calls is stack allocation. Since it follows strict last

in, first out (LIFO) logic, allocation and deallocation are achieved sim-

ply through the stepping of a pointer and all stack data is contiguous in

memory. For dynamic or heap allocation, on the other hand, there is no

prescribed order of allocation and deallocation operations and, as a con-

sequence, the locations of consecutive allocations can be become scattered

over distant parts of the actual physical memory, thus limiting performance

where it depends on memory locality. In languages that allow it, memory

accesses are often through direct read and write accesses using pointers.

These can make (in particular automatic) vectorization and parallelization

difficult as it typically cannot be ascertained at compile time whether two

different pointers refer to the same location in memory or not (a problem

known as aliasing).

In parallel codes, data locality is particularly important. In a distributed

memory setup, clearly accesses to local memory will be substantially more

efficient than requesting data from a different MPI node. An even more fun-

damental problem is the concurrency of accesses, in particular to avoid race

conditions resulting from uncontrolled interleaved read and write accesses

to the same locations. In general, it is important to understand whether
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a given data element is shared between different workers and when it is

not and, as a result, to place it into a memory with the appropriate scope.

Some parallel data patterns include pack , where a subset of an input vector

selected by another, Boolean selection vector of zeros and ones is placed

next to each other in a contiguous fashion; pipelines, where different stages

in a sequence of operations run independently as separate threads each of

which delivers partially processed data to the next stage; the geometric

decomposition mentioned above in the context of the stencil pattern that

uses tiles, strips, checkerboards or other suitable geometric domains to be

worked on in parallel; and the gather and scatter pair of operations that

use a data vector and a set of indices and either reads (gather) or writes

(scatter) in the data vector at the locations given in the index vector.

More advanced patterns such as superscalar sequences or branch-and-

bound are beyond the scope of the present introduction. They are described

in detail in Refs. [20,38].

2.3.3. Pitfalls

Before discussing the actual applications of massively parallel computing

in computer simulations in statistical physics, it is perhaps useful to sum-

marize again the most common pitfalls of parallel algorithms and the basic

approaches for avoiding them.

Race conditions are among the most common and difficult to debug

problems in parallel codes. If, for example, two threads try to increment

a shared variable, one of the updates can be lost if the read of the sec-

ond thread occurs after the read of the first thread but before the write

operation of the first thread. As the results depend on the typically un-

predictable order of execution of individual threads, these problems are

often intermittent in nature. If at all possible, the potential for such races

should be avoided by choosing suitable algorithms. If this is not possible,

races can be tamed by the use of memory fences and locks, which essen-

tially guarantee one set of operations to be finished before the other set

starts. Operations on locks must occur atomically, such that they appear

instantaneous to other tasks.

Deadlock occurs when two or more tasks are waiting for each other to

complete certain tasks and each cannot resume until the other task finishes.

This can be the case, for example, if several locks need to be acquired by

more than one task, each task acquires one of the locks and waits for the

other one to become available. It can be avoided if locks are always acquired
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by all tasks in the same order, but the problem serves to show that locks

are best avoided. Locks also create serial bottlenecks in the code as all

operations on a single lock must occur in sequential order. This effect will

impede the scaling of an algorithm, but whether this is practically relevant

depends on the frequency of use of the lock and the actual number of threads

employed.

The other main pitfall in parallel code is a lack of locality . Most hard-

ware is built on the assumption that for each memory transaction each

core is likely to either use the same or a nearby memory location again in

the nearby future (temporal and spatial locality). To avoid problems in

this respect, parallel code needs to use a suitable layout of data in memory

and make good use of cache memories where they are available. On GPUs

this includes the issues of coalescence of memory transactions, the use of

shared memory and an appropriate cache configuration as discussed above

in Sec. 2.2.

Depending on the parallelization strategy and the nature of the prob-

lem, another source of inefficiency arises from load imbalance between par-

allel threads. Apart from suitably changing the parallelization strategy, a

fine-grained decomposition of work can help to mitigate the effects of load

imbalance. Also, adaptive schemes of idle threads acquiring new work via

a scheduler can lead to improvements here. If, on the other hand, the over-

decomposition of work is pushed too far, there is a danger of the parallel

overhead for thread initialization, copying of data etc. to outweigh the scal-

ing gain, especially if the arithmetic intensity of individual threads becomes

too low.

3. Canonical Monte Carlo

There is by now a very wide range of Monte Carlo methods that are used for

simulations of systems in (classical) statistical physics.4,39 While there are

a few exceptions (and we will discuss one below in Sec. 5.4), the overwhelm-

ing majority of methods are based on Markov chain Monte Carlo (MCMC)

that allows to implement importance sampling and also simulations in gen-

eralized ensembles.40 In this scheme, configurations are modified in each

step according to transition probabilities that only depend on the current

configuration. The resulting Markov chain of configurations,

{si} → {s′i} → {s′′i } → . . .

where the si denote the configurational variables, converges to a stationary

distribution π({si}) if the chosen move set is ergodic (i.e., loosely speaking,
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it allows to connect all pairs of states within a finite number of steps) and

the transition probabilities T ({si} → {s′i}) satisfy the balance equation∑
{s′i}

π({si})T ({si} → {s′i}) =
∑
{s′i}

π({s′i})T ({s′i} → {si}). (3)

The simplest way of fulfilling Eq. (3) is to demand equality term by term

under the sums,

π({si})T ({si} → {s′i}) = π({s′i})T ({s′i} → {si}). (4)

This is known as detailed balance condition. Together with ergodicity it is

sufficient, but in contrast to balance, Eq. (3), it is not necessary to ensure

convergence.

There is some further freedom in implementing Eq. (4). The best known

approach is the Metropolis algorithm41 where

T ({si} → {s′i}) = min

[
1,
π({s′i})
π({si})

]
. (5)

In the simplest method, the proposed configuration {si}′ only differs from

the current one {si} in a single degree of freedom, for example the orienta-

tion of a spin or the position of a particle. While the scheme is also valid

for any other modification rule, any sufficiently non-local update — unless

ingeniously crafted6 — will result in largely different probabilities π({si})
and π({s′i}) and hence very small move acceptance rates. For the actual

implementation it is often useful to decompose the transition probability

as T ({si} → {s′i}) = C({s′i}|{si}) pacc({s′i}|{si}), where C is the proposal

probability for a certain move {si} → {s′i} and pacc is a move acceptance

probability evaluated according to Eq. (5). The proposal probability C

determines the order in which individual degrees of freedom are tried, the

most common approaches being, respectively, a uniformly random spin se-

lection and a sequential selection of spins in successive steps, traversing the

lattice in a regular fashion.

Another standard approach for satisfying the detailed balance condition

(4) is the heatbath method for the update of a single variable sk, where its

new value is directly chosen from the equilibrium distribution π conditioned

on the given values of the remaining degrees of freedom sj , j 6= k:

T ({si} → {s′i}) =
π(s′k|{sj 6=k})∑
sk
π(s′k|{sj 6=k})

. (6)

If s′k only takes values from a finite set of options, sampling from the above

distribution is straightforward by using geometric sampling from the cu-

mulative distribution42
∑smax

s′k=smin
π or by using more advanced techniques
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such as Walker’s method of alias.43,44 For continuous degrees of freedom

the method can be implemented if there is an analytical inversion of the cu-

mulative distribution function corresponding to Eq. (6)45 or by using tables

to approximate this expression.43

For the examples in this section we will focus on simulations in the

canonical ensemble with

π({si}) =
1

Zβ
exp[−βH({si})],

where H({si}) is the Hamiltonian and β denotes inverse temperature. Note

that the partition function Zβ , that is in general unknown, drops out of the

expressions (5) and (6) for the transition probabilities. Other ensembles,

such as NpT or µV T for particle systems, can be realized in a similar way,

and we discuss generalized-ensemble simulations in Sec. 5 below.

For definiteness, we first focus on the nearest-neighbor Ising model with

Hamiltonian

H = −
∑
〈i,j〉

Jijsisj −
∑
i

hisi. (7)

Here, Jij are the exchange couplings between nearest-neighbor spins and hi
denotes an external magnetic field acting on the spin si. We initially con-

centrate on the ferromagnetic model with uniform couplings Jij = J = 1

and in the absence of magnetic fields, hi = 0, and come back to the case

of disordered systems in Sec. 6. For the purposes of the present chapter,

we will always apply periodic boundary conditions as is typically recom-

mended to minimize finite-size effects, but other boundary conditions can

be implemented quite easily as well, and the optimizations mentioned here

are essentially independent of this choice. Generalizations to models with

different finite interaction ranges are rather straightforward and only lead

to different decompositions of the lattices into interpenetrating sub-lattices

of non-interacting sites. Systems with truly long-range interactions require

different methods which are outside of the scope of the present discus-

sion.46,47

3.1. Checkerboard scheme

Following the algorithm outlined above, a single spin-flip simulation of the

Ising model (7) with the Metropolis algorithm comprises the following steps:

(1) Initialize the system, possibly with a uniformly random spin configura-

tion.
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(2) Choose the lattice site k to update, according to the scheme used, either

randomly, sequentially or in a checkerboard fashion.

(3) Calculate the energy change incurred by flipping spin k,

∆Ek = 2sk
∑
j nn k

sj .

Draw a random number r uniformly in [0, 1). Accept the flip if ∆Ek ≤ 0

or

r < exp(−β∆Ek), (8)

otherwise reject and maintain the current configuration as the new

state.

(4) Repeat from step 2 until the prescribed number of updates has been

completed.

In a serial implementation, typically random or sequential site selection

would be used. Sequential updates lead to somewhat faster relaxation of

the chain,48 which can be understood qualitatively from the possibility to

transmit information about spin updates ballistically through the lattice in

the direction of sequential progression. Additionally, a sequential update is

cheaper computationally than visiting sites in random order as it features

good memory locality and it also does not require an additional random

number for site selection. Note that sequential updates do not satisfy de-

tailed balance (while still satisfying balance),40 which needs to be taken

into account for studies of dynamical properties.

For parallel updates, on the other hand, a suitable domain decomposi-

tion of the lattice is required. For bipartite lattices and nearest-neighbor

interactions this results in a checkerboard (or generalized checkerboard in

three and higher dimensions) labeling of the lattice, which allows different

spins on the same sub-lattice to be updated in parallel, independent of each

other. This is illustrated for the square lattice in the left panel of Fig. 5.

For different lattice types and/or models with different (finite) interaction

ranges, similar decompositions can always be found, the only difference be-

ing that they in general require more than two sub-lattices. A full sweep

of spin updates in this scheme then corresponds to a parallel update of all

spins on the even sub-lattice followed by a synchronization of all threads

and a parallel update of all spins of the odd sub-lattice. In the maximally

parallelized version each spin of one of the sub-lattices is updated by a sep-

arate thread, leading to a total of N/2 parallel threads, where N = Ld is

the total number of spins. For a GPU implementation, the restriction in
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Fig. 5. Left: checkerboard decomposition of the square lattice. Right: double checker-

board decomposition of the square lattice. The tiles of 8× 8 sites are assigned to thread
blocks, and red (darker) and blue (lighter) tiles are updated in an alternating fashion.

Within each tile, the threads of a block update spins of one sub-lattice, synchronize, and
then update the other sub-lattice. The shaded tile and halo indicate the subset of spins

that are cooperatively loaded into shared memory by the threads of a block.

the number of parallel threads in a block (1024 for recent Nvidia GPUs)

makes it necessary for all but the smallest systems to decompose the lattice

using tiles, for which one possibility in 2D is a square shape with T × T
spins each as shown in the right panel of Fig. 5. Other shapes such as strips

can also be used,49 and the optimal shape depends on the arrangement of

spins in memory and the caching mechanisms employed.50

The resulting GPU simulation code is very simple as is apparent from

the CUDA implementation of the simulation kernel shown in Fig. 6. The

random numbers required for implementing the Metropolis criterion are

created via inline instances of generators, one per thread, hidden behind

the macro RAN(x). As an evaluation of the exponential function in Eq. (8)

is relatively expensive computationally, it is common practice for systems

with a small number of states per spin to tabulate the possible values of

exp(−β∆Ek), and this was also done here with the result stored in the array

boltzD. The sub-lattice is selected using the offset variable that should

be either 0 or 1, such that the kernel needs to be called twice to achieve a

full update, once for each sub-lattice. In this case thread synchronization

is achieved through a return of the control to the CPU code in between

kernel calls (which are in the same stream), ensuring that all calculations

of the first call have completed before the second call is executed.

The parallel speedup observed for this code run on a Tesla C1060 card

with 240 cores over a serial code run on a CPU of the same period (Intel
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__global__ void metro_checker(int *s, int *ranvec , int offset)
{

int y = blockIdx.y*BLOCKL+threadIdx.y;
int x = blockIdx.x*BLOCKL +(( threadIdx.y+offset)%2)+2* threadIdx.x;
int xm = (x == 0) ? L-1 : x-1, xp = (x == L-1) ? 0 : x+1;
int ym = (y == 0) ? L-1 : y-1, yp = (y == L-1) ? 0 : y+1;
int n = (blockIdx.y*blockDim.y+threadIdx.y)*(L/2)+

blockIdx.x*blockDim.x+threadIdx.x;

int ide = s(x,y)*(s(xp,y)+s(xm,y)+s(x,yp)+s(x,ym));
if(ide <= 0 || fabs(RAN(ranvec[n]) *4.656612e-10f) < boltzD[ide])

s(x,y) = -s(x,y);
}

Fig. 6. The simplest, still poorly optimized CUDA kernel for a GPU simulation of the

2D Ising model with the single spin-flip Metropolis update.

Q9650) is about 10-fold. This rather moderate improvement is typical for

many of the simplest implementations that do not take many specifics of

the architecture into account. In view of the general performance guidelines

sketched in Sec. 2.2 a number of improvements come to mind:

• The locality of memory accesses and hence coalescence is not very good

in the setup of metro checker(). Successive threads in a block update

spins that are at least two memory locations apart (for spins in the

same row) or even potentially arbitrarily far apart for spins in different

rows of the same tile. Also, when calculating the sum over nearest

neighbor spins in the variable ide accesses are not coalesced and each

spin is read twice as the right neighbor of a spin on the even sub-lattice

(say) is the left neighbor of the next spin on the same sub-lattice etc. If

the second reads are not served from a cache, they will be as expensive

as the first ones. A natural improvement increasing the coalescence of

operations on spins to be updated is to store the even and odd sub-

lattices separate from each other, potentially arranging them tile by

tile to avoid problems with non-locality of memory accesses in moving

from row to row. A further improvement can be achieved by re-shuffling

the spins in each sub-lattice in a way such that as many neighbors as

possible of a spin on one sub-lattice appear as consecutive elements in

the array for the other sub-lattice. A scheme dubbed “crinkling” that

ensures that three out of four neighbors are next to each other for the

square lattice was proposed in Ref. [51]. A similar, but more general

scheme of “slicing” for hypercubic lattices in any dimension is used in

Ref. [50]. A “shuffled”52 or “interlaced”53 memory layout combines the
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separate storage of odd and even sub-lattices for two realizations to

further improve coalescence. To reduce the arithmetic load incurred by

the required index calculations for spin accesses, one might also bind

the arrays for each sub-lattice to a texture.e

• The Boltzmann factors are already tabulated in the array boltzD to

avoid the expensive evaluation of the exponential function. This part

can be further sped up by using a texture for storing the array since

textures are well optimized for read accesses of different threads of a

warp to different locations (which will be the case since the energy

changes ∆Ek will differ between spins).

• The use of int variables of 32 or 64 bits is wasteful for the storage of the

one-bit information si and causes unnecessary data transfer over the

bus that can slow down the code. It is straightforward to replace the

ints by only 8-bit wide chars which already provides for a noticeable

speedup. An additional improvement can be achieved by the use of

multi-spin coding (MSC), typically implemented with int variables of

32 or 64 bits, to ensure that each spin only occupies one bit of storage.

For the simulation of a single ferromagnetic system, this means that

spins located at different lattice sites need to be coded together, and

it is typically most efficient to unpack them on GPU for the actual

spin update. Some of the details are discussed in Ref. [54]. To achieve

results of high statistical quality, it is important in this setup to use

independent random numbers for updating each of the spin coded in

the same word. A related issue for a simulation method involving a

population of configurations is discussed below in Sec. 5.4 in the context

of the implementation of the population annealing algorithm.

• It is possible to explicitly disable the use of L1 cache for reads.f As a

result a cache miss fetches a 32 byte segment and stores it in L2, whereas

otherwise an L1 cache line of 128 bytes would be loaded. For the

“crinkled” memory setup this tends to increase memory bus efficiency

for the neighbor that is not sequentially aligned.

• On some cards it can be advantageous to remove thread divergence

and ensure write coalescence by updating the spin variable irrespec-

tive of whether the flip was accepted and only deciding about the new

orientation in a local variable in the Metropolis condition.

eTextures are handled in a separate memory hierarchy equipped with additional hard-

ware units for indexing.32

fThe relevant nvcc compiler switch is -Xptxas -dlcm=cg.
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Storing the two sub-lattices separately, using the crinkling transformation,

binding the Boltzmann factors to a texture, using chars to store spins,

disabling L1 cache and using coalesced writes increases the speedup factor

on the Tesla C10560 to about 60. Further improvements can be achieved by

using textures for the spin arrays and further optimizations of the memory

arrangements and access patterns as described in detail in Ref. [50]. We

note that more recent cards are somewhat less sensitive to data locality

issues due to improved automatic caching. On the Maxwell card GTX Titan

Black, for example, we find spin-flip times of about 0.2 ns for the initial

version of the code, corresponding to an about 30-fold speedup compared to

an Intel Xeon E5-2620 v3 CPU, whereas the optimizations mentioned above

boost this performance to an about 100-fold speedup with tflip = 0.06 ns

(L = 4096).

An alternative optimization strategy lies in the use of shared memory

by loading tiles of the configurations into this fast cache:

• Storing the spin configuration of the tile that is currently being up-

dated in shared memory allows to avoid problems with non-coalescence

of global memory accesses as well as the double reads of neighboring

spin orientations. To allow for parallel updates of the configuration in

several tiles, these in turn need to be also arranged in a checkerboard

fashion, leading to the two-level “double checkerboard” decomposition

shown in the right panel of Fig. 5.36,55 In this setup, one requires

(L/T )2/2 thread blocks and each of them collectively updates one tile

of the red shaded (coarse) sub-lattice shown in Fig. 5. After this kernel

call has completed, a second call requests the same blocks to update

the other coarse sub-lattice of tiles, thus completing a full sweep. Each

block consists of T 2/2 threads that collectively load the configuration

of the tile from global memory into shared memory, with some of the

threads additionally loading the one spin wide halo around the tile

required to update the boundary spins correctly. After the load, all

threads of the block are synchronized and then update the spins in

shared memory in a checkerboard fashion as in the version without

shared memory. Note that the two sub-lattices of a single tile are now

updated from within the same kernel call.

• The full potential of this approach is only released if each tile, once

loaded to shared memory, is subjected to several rounds of spin updates.

If k rounds of updates are performed, the resulting “multi-hit” code is

particularly economic on memory transfers and hence is able to fully
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Fig. 7. Spin-flip times in ns of the double-checkerboard 2D Ising model GPU simulation

code as a function of linear system size L and for tiles of size T ×T spins. The last data

set is for runs on the GTX Titan Black GPU (Maxwell generation), whereas all other
data is for the C1060 GPU (Tesla generation).

load the available computational units. This approach does not satisfy

detailed balance, but the same applies to any checkerboard or sequential

update, so this is no particular drawback of the method, but it needs to

be taken into account when studying dynamical properties. It is clear,

however, that very close to the critical point, the multi-hit approach

will have slightly larger autocorrelation times than a single-hit variant

as information can only be transmitted between tiles after each full

update of the lattice. The resulting optimal choice of k was studied in

some detail in Ref. [56] and found to be around k = 10 near criticality.

While for k = 1, the double checkerboard version of the code is slightly

slower than the optimized variant not relying on shared memory (tflip =

0.081 ns on the Titan Black, reducing the speedup compared to the scalar

CPU code to 75), for k > 1 one finds significantly improved performance

yielding, for instance, tflip = 0.020 ns for k = 100 (again for L = 4096).

This is comparable to the results achievable with multi-spin coding.50 We

note that the tiling introduces as an additional parameter the tile size T

which is limited by the maximum allowed number of threads per block

(1024 on current devices, 512 for the Tesla C1060). The dependence of

spin-flip times on tile size is illustrated for the C1060 GPU in Fig. 7. For

more recent devices one finds the same trend. In general it is preferable

to have larger blocks as this helps to maximize the number of resident
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threads per multiprocessor (occupancy) which, in turn, generally improves

the efficiency of the latency hiding mechanism. The strong dependence of

spin-flip times on the lattice size L visible in Fig. 7 shows that for this type

of problem optimal performance is only achieved for rather large lattices.

For more recent GPUs which feature roughly 10 times more cores than the

C1060, this effect is even more pronounced as is illustrated by the additional

data for the GTX Titan Black GPU also shown in Fig. 7. The simulation

of a single, small lattice system just does not provide enough parallelism

to saturate the available parallel compute units — observations of this

type led Gustafson to introduce the weak-scaling scenario as discussed in

Sec. 2.1. As we shall see below, GPU codes for disordered systems or

using generalized-ensemble simulation methods such as multicanonical or

population annealing simulations do not have this problem and are able to

fully load GPUs already for the smallest system sizes.

3.2. Random-hit algorithms

While the checkerboard update discussed in the previous section has

the same stationary distribution as the random-site or sequential-update

schemes, the dynamics of the different algorithms are not the same. Ideally,

one would thus like to implement the physically most plausible random-site

selection algorithm, but parallelizing it is a challenge as each single step typ-

ically is quite light computationally and so does not provide enough work

for parallelization. If quantitative details of the dynamics are not of in-

terest and the focus is on universal properties, for example in studies of

domain growth,57 it can be sufficient to concentrate on the checkerboard

(or stochastic cellular automaton58) dynamics, which is typically closer to

the behavior of the random-site algorithm than the sequential approach. If

this is not sufficient or a time resolution of less than a full sweep is required,

updates based on the standard checkerboard scheme are not suitable and,

instead, a number of strategies for parallelizing the random-site selection

update can be employed:

• Single-site updates are independent of each other, and can hence be

implemented in parallel, if they occur further apart than the range of

interactions. In a domain decomposition of the lattice (tiling), this can

be guaranteed by excluding the sites at the boundary of each tile from

update attempts (dead border scheme).59 To allow these border sites

to be updated as well and thus make the algorithm ergodic, the ori-

gin of the tiling is randomly shifted to a different location in periodic
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intervals. The freezing of boundaries for certain time periods leads to

weak dynamical artifacts that reduce as the size of tiles is increased

and also as times in between synchronization are decreased.60 Another

approach uses a sub-division of each tile into patches that touch only

two of the neighboring tiles (for example by dividing a square tile into

four equal sub-tiles). The sub-tiles are then updated in a random order

which is the same for all tiles, such that updates never interfere with

active sub-tiles in other tiles. For a surface growth problem, this double

tiling approach was found to show weaker artifacts as compared to the

scalar random-site update than the dead-border schemes.60 The ran-

dom site selection in different tiles can only be implemented without

massive penalties from non-coalesced memory transactions if the tiles

are buffered in shared memory which, as for the multi-hit checkerboard

scheme discussed above, is most efficient if the tiles receive several up-

dates before synchronization.

• At low temperatures, event driven simulations such as the n-fold way61

and the waiting time method62 promise significant speedups as com-

pared to standard Metropolis or heatbath methods, which produce

many rejections for large β due to the form of the probabilities in

Eqs. (5) and (6). If these are applied in parallel using a domain de-

composition, the synchronization problem shows up in asynchronous

clocks in different domains. To avoid parallelization bias a flip attempt

on the boundary of a given tile can only proceed if the local time of

the tile is not ahead of that of any neighboring tile.63 Depending on

the model, the profile of local times of the tiles can show roughening,

thus destroying the scaling properties of the parallel implementation as

more and more tiles need to idle until the times of their neighbors have

advanced sufficiently.64 Possible remedies can be the introduction of

long-range interactions65 or other approaches,66 but we will not discuss

these further here.

• Another strategy for parallelizing the random-site update that com-

pletely avoids approximations from domain decompositions is in sim-

ulating several copies of the system in parallel. If one is interested in

the relaxation to equilibrium (for example for studying coarsening and

domain growth57), this approach is well suited. If one wants to sample

the dynamics in equilibrium, it has the downside of multiplying the

total work spent on equilibration by the number of copies simulated in

parallel. Depending on the system sizes and time scales of interest, it

might be useful to choose a hybrid approach, where some parallelism is
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used to simulate different copies and some is used to speed up the up-

dating of each copy using domain decompositions and the approaches

discussed above.67 An important consideration of simulating several

systems in parallel with random-site updates is memory locality: if

each system independently chooses the next site to update at random,

memory accesses will be scattered, leading to poor performance. Much

better performance is achieved if using the same sequence of random

numbers for site selection in all copies and storing the configurations

such that spins at the same lattice site but in different copies appear

next to each other in memory. This is not a problem for updates that

involve additional randomness at the site-updating step, as is the case

for the Metropolis and heatbath updates of the Ising model, but would

lead to identical trajectories for cases where the site selection is the

only random step.60

Using a combination of the above techniques, excellent GPU performance

comparable to that of the checkerboard approach can be achieved also for

simulations with random-site updates

3.3. Cluster updates

While local spin updates of the Metropolis or heatbath type in general work

well and, as shown above, can be efficiently parallelized, it is well known

that in the vicinity of continuous phase transitions they are affected by an

increased correlation between successive configurations known as critical

slowing down.4 It is intuitively understood by the build-up of correlations

near criticality, with the ensuing increase in correlation length ξ resulting

in a corresponding increase in the number of steps τ required to decorre-

late configurations. The assumption that decorrelation for local updates

is based on the diffusive propagation of information through the configu-

rations leads one to expect a relation τ ∼ ξz with z ≈ 2.68 An effective

antidote against critical slowing down consists of cluster algorithms con-

structed in such a way that they update typical clusters of size ξ in one

step. The identification of such objects is difficult in general, and it has

only been achieved in the full sense for a number of spin models. For

the Potts model, the relevant clusters are those described by the Fortuin-

Kasteleyn representation.69 The corresponding update is implemented in

the Swendsen-Wang cluster algorithm6 and its single-cluster variant pro-

posed by Wolff in Ref. [7], where he also introduced a generalization to

continuous-spin models. A number of further generalizations, including
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algorithms for particle systems, have been proposed.46,70

For the Ising model (7), the Swendsen-Wang update involves the fol-

lowing steps:

(1) For a given spin configuration define bond variables nij . For antiparallel

spins, si 6= sj , set nij = 0. For parallel spins, si = sj , draw a random

number r uniformly in [0, 1) and set

nij =

{
1, if r < p = 1− exp(−2β),

0, otherwise.

(2) Identify the connected components (clusters) of the lattice induced by

the bond variables nij .

(3) Flip each cluster of spins independently with probability 1/2.

Parallel implementations of steps (1) and (3) are quite straightforward as

they are completely local procedures, but the cluster identification in step

(2) needs to deal with structures that potentially span the whole system as

the Fortuin-Kasteleyn clusters used here undergo a percolation transition

right at the thermal critical point of the model.69 An number of paral-

lelization strategies for this step were previously discussed for instance in

Refs. [71–73]. Note that connected-component identification is of relevance

in computer vision such that significant effort is still being devoted to the

development of ever more efficient (serial and parallel) implementations of

this algorithm.74

The bond activation step is straightforwardly parallelized by assigning

one thread to each spin (or, possibly, one thread to a small tile of a few

spins) and letting each thread decide about the values of the two bond

variables nij connecting a spin to neighbors with larger site indices (gener-

alizations to other lattices are straightforward, and each thread then deals

with z/2 bonds, where z is the coordination number). The nij represent one

bit of information, and in the interest of saving bus bandwidth, it makes

sense to store them in the narrowest native variables available (typically

8-bit wide integers) or possibly to use “multi-bond coding” to merge the

states of several bonds into one word. It is again advisable to use inline

random-number generators, one per thread, for deciding about nij in case

of parallel spins. The tiles covered by each thread block are best chosen in

the form of long strips as this increases the proportion of coalesced memory

transactions.75

The cluster-identification step is somewhat more intricate to parallelize.

A number of parallel cluster labeling techniques is discussed and compared
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Fig. 8. Left: Tree-based union-and-find algorithm applied to the connected component

labeling. The edge between sites 30 and 41 is inserted, leading to an attachment of the

smaller cluster tree to the root of the larger cluster. Right: Cluster identification by the
self-labeling algorithm, using one thread for a tile of 2× 2 spins.

in Ref. [75]. The strategy taken there is to use a domain decomposition

(tiling) to create a correct cluster labeling in the tiles, i.e., ignoring cou-

plings that cross the tile boundaries, to then, in a second phase of the algo-

rithm, consolidate cluster labels across tile boundaries. Most of the avail-

able labeling algorithms are variants of the following three approaches:74,75

(1) Breadth-first or depth first searches, sometimes called “ants in the

labyrinth” or label propagation, proceed from a seed site for each clus-

ter and iteratively add neighbors of already discovered cluster sites to

the cluster, thus “growing” it until no more connected unlabeled sites

are found. The breadth-first strategy leads to an onion-shell structure,

where the time step at which a given site is discovered is given by the

chemical distance (shortest path) of the site to the seed. While these

approaches are very intuitive and also efficient for serial implementa-

tions, they are not very suitable for parallel computing. Parallel work

arises in the breadth-first variant in the wave front of growth sites (the

current onion layer during growth). However, this parallelism is rather

moderate and also irregular in that the number of wave-front sites fluc-

tuates strongly. The total work of these algorithms scales linearly with

the number of sites.

(2) Union-and-find or label equivalence algorithms provide solutions for the

general problem of finding equivalence classes of nodes (i.e., connected

components) under the sequential insertion of edges. A special case

is the Hoshen-Kopelman algorithm well known for percolation appli-
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cations.76 A classical tree-based approach due to Tarjan77 represents

clusters as trees with a unique root site. The find operation for a given

site corresponds to an upward tree traversal to find the root site that

holds the cluster label. On the insertion of an external edge that merges

two trees (union step), the smaller tree is attached to the root of the

larger one. This prescription, called balancing , is chosen to result in

flatter average tree heights and hence quicker find operations revealing

the roots.78 If additionally each find step redirects the pointers of in-

termediate visited sites directly to the root (path compression), it can

be shown that the algorithm performs both operations, union and find,

in effectively constant time, such that the total computational effort is

again linear in the number of lattice sites.77–79 The basic procedure is

illustrated in the left panel of Fig. 8. In this full version, the approach is

not well parallelizable as the tree manipulations need to occur in a well

defined order and avoiding races in order not to result in corruption of

the forest data structure.

(3) A much more regular, iterative approach, sometimes called self-

labeling,72,75 is illustrated in the right panel of Fig. 8. Here the labels

of the neighbors of each site are inspected and all of them are set to the

minimum of the labels encountered. To result in a correct labeling on

the whole tile, this procedure must be repeated until no label is changed

during a full iteration. The number of iterations required is related to

the length of the shortest paths connecting any two points on the same

cluster. For a critical spin model on a tile of edge length T , this is

known to scale as T dmin , where 1 < dmin < d denotes the shortest-path

fractal dimension of the model.80 Hence the total work to achieve a full

labeling with this approach scales as T d+dmin as compared to the scal-

ing proportional to T d for the label propagation and label equivalence

methods. While it is hence asymptotically more expensive, the advan-

tage of the self-labeling approach lies in the efficient parallelization as

the label minimization in neighborhoods can be performed for all spins

in parallel. This clearly leads to race conditions between threads in

reading and writing the updated labels. These could be resolved using

atomic operations,g but since the stopping condition is connected to an

iteration without writes, the full sequence will converge faster to the

same final label set without atomic operations.

gAtomic operations on GPU are intrinsic instructions provided by CUDA that read,

modify and write back memory locations with the guarantee that no other thread can
perform a write after the read and before the write of the current thread.32
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1 2 3
Fig. 9. Left: Label consolidation between tiles using a relaxation mechanism. Neigh-

boring tiles exchange the information about root sites (circles) for sites connected by
bonds crossing tile boundaries (squares) and attach the smaller cluster to the larger one

as in the balanced union-and-find approach. Right: Hierarchical sewing of tiles, where

the missing edges are inserted at levels of increasing length scales leading to a combina-
tion of 2× 2 tiles of each level. In the example, there are 64 level-1 tiles, 16 level-2 tiles

and 4 level-3 tiles.

Once a labeling in tiles has been achieved, the effect of the boundary

bonds needs to be taken into account. These link clusters in different tiles

and hence the corresponding cluster labels need to be identified. Since

clusters might span several tiles (especially close to the critical point where

percolation first occurs), this process might lead to a relabeling of a signif-

icant fraction of lattice sites. Two possible algorithms to achieve this label

consolidation are as follows:

(1) In label relaxation, in a first step for each tile the information about root

nodes for all boundary sites with active edges crossing the boundary

is collected in an array. Then this information is exchanged with the

neighboring tile and both root labels are set to the minimum of the

two labels, thus merging the two clusters. Relaxation steps need to

be repeated for the whole lattice until no further label updates occur.

The corresponding setup is shown in the left panel of Fig. 9. From

a shortest-path argument similar to the one presented above for the

self-labeling approach it is clear that at criticality the number of such

iterations scales proportional to `dmin , where ` = L/T is the lattice size

in units of tiles. For the 2D Ising model dmin = 1.08(1).81

(2) The alternative hierarchical sewing method consists of adding the bonds

that cross tile boundaries first only between sets of 2×2 tiles, reducing

the total number of tiles by a factor of four (level 1), then inserting
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the bonds between 2× 2 of the resulting larger tiles (level 2) etc., until

all of the boundary bonds have been inserted. This is illustrated in

the right panel of Fig. 9. The approach corresponds to a divide-and-

conquer strategy and the required number of steps is logarithmic in the

effective lattice size `. The load of the device decreases at each level,

and at some point some of the compute units will be idling, but this

effect is found not to be very severe for the achievable system sizes.

The required number of operations and parallel performance of this step

can be explicitly understood from simple calculations, and the numerical

findings are consistent with these considerations, for details see Ref. [75]. It

turns out that the hierarchical approach performs better than the relaxation

mechanism for large system sizes, but for intermediate sizes the relaxation

approach (leading to a better resource utilization) is the better choice.

Finally, the cluster flipping step is again quite straightforward to par-

allelize. New spin orientations are drawn for all sites first and then each

site finds its root and sets its own orientation to that of the root site. The

total speedups achievable with this approach for simulations of the 2D Ising

model are somewhat less impressive than for the single-spin flip updates,

but comparing the Fermi card GTX480 to an Intel Q6700 CPU a system

of size L = 8192 can still achieve about a 30-fold speedup.75 A variant

of the methods outlined here provides comparable performance for larger

systems, but better results for small sizes and somewhat simpler code:82 it

uses self-labeling, but after each single iteration a step of path compression

(or label propagation) in the spirit of the union-and-find approaches is per-

formed first before moving on to the next phase of self-labeling. Further

improvements have been suggested, in particular related to using atomic

functions to perform the label consolidation in full parallelism.83,84

3.4. Continuous spins

The considerations to this point have concentrated on systems with discrete

degrees of freedom, such that floating-point performance was not an issue.

This changes for systems with continuous spins such as the O(n) model

with Hamiltonian

H = −J
∑
〈i,j〉

si · sj , |si| = 1,

where the si are n-component vectors of units length. A particular feature

of GPU devices is that they are designed for single-precision arithmetics
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— the excess precision provided by double precision variables is mostly

irrelevant for the graphics calculations that are the initial target of GPUs.

While early generations did not provide double precision arithmetics at all

and even single-precision calculations were not fully compliant with the

IEEE-754 floating-point standard, more recent cards are IEEE compliant

and a double precision mode is now available. It remains true, however, that

double-precision calculations are significantly slower than single-precision

ones, in particular on consumer cards which feature 4–5 times less double-

precision floating-point performance than the Tesla boards.h It is hence

reasonable to carefully consider which level of precision is required for a

particular calculation. For the task of simulating continuous-spin models,

the following considerations should be taken into account:

• As an implementation of a stochastic process, numerical stability and

accuracy are not as much of an issue for Monte Carlo simulations than

for, say, molecular dynamics. Round-off error is not expected to ac-

cumulate and lead to systematic errors in calculations. It hence will

often be acceptable to use single-precision floating-point variables to

represent the spins and only use double precision for aggregate quanti-

ties such as energies, magnetizations and other measured observables.

Numerical tests confirm that stability is not an issue.36 When using

a Cartesian representation of the spins si and if updating the spins

by adding modification vectors, it might be necessary to periodically

renormalize the spin lengths to unity, similar to what is done on CPU

also.

• To the extent that calculations are memory bound, the use of narrower

variables such as single-precision floats instead of doubles will also help

reduce memory bandwidth pressure and hence additionally improve

throughput over the mere increase in actual arithmetic performance.

From this perspective, it can also be advantageous to use a polar rep-

resentation of the spins, trading off memory bandwidth (and storage

if that is a concern) against the typically higher arithmetic load in a

spherical representation for performing calculations such as computing

the interaction energy.85

• A further heritage from the 3D graphics world are special-function

units allowing to perform some of the most common evaluations of

hThe most recent Pascal generation of Nvidia GPUs also has native support for half-

precision (16 bit) floating-point calculations which are also much slower on the consumer
cards than on the GPGPU boards.
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Table 1. Times per spin flip in ns for various implementations of sin-

gle-spin flip simulations of the 2D Heisenberg model and speedup fac-

tors as compared to the CPU reference implementation. All data
are for multi-hit updates with k = 100 and system size L = 4096.

device mode tflip [ns] speedup

CPU (Intel Xeon E5-2620 v3) float 98.6 1

double 186.5 1
Tesla C1060 float 0.74 133

float, fast math 0.30 329

double 4.66 40
Tesla K20m float 0.177 557

float, fast math 0.149 662
double 0.408 457

GTX Titan Black float 0.152 649

float, fast math 0.105 939
double 0.323 578

transcendental functions, including sine, cosine, exponential and loga-

rithm functions, in hardware. These provide particularly high perfor-

mance, but at the expense of slightly reduced precision as compared

to the IEEE-754 standard (typically a few units in the least-significant

digit).24 Replacing evaluations of exponential functions, for example

in the Metropolis criterion, of the logarithms occurring, for instance,

in the Box-Muller algorithm for generating Gaussian random numbers,

as well as of trigonometric functions for instance in scalar products

by calls to the special function units available in GPU hardware can

lead to significant speedups. While the small reduction in precision as

compared to the library implementations is typically not a problem,

one side effect is that such GPU codes will no longer fully agree in all

bits of output with the corresponding CPU codes. Small differences in

the value of the exponential in the Metropolis criterion, in particular,

can lead to a divergence of Monte Carlo trajectories.86 To the extent

that the output also depends on the order of operations for evaluating

sums, updating spins etc., full identity of outputs between GPU and

CPU codes cannot be expected anyway, however.

For simulations of the Heisenberg model on the square lattice, one finds

quite significant performance differences, see the data collected in Table

1. For the reference CPU implementation we find about a factor of two

difference between the single-precision and double-precision variants of the

code. We note that this is probably mostly a cache effect, however, since



September 13, 2017 16:52 ws-rv9x6 Book Title main page 42

42 M. Weigel

for smaller system sizes, when the configuration fully fits into the cache,

the difference in performance between single and double precision is negli-

gible (and it corresponds to the 98 ns performance shown in the table for

single precision). For the first-generation Tesla C1060 card, the difference

between single and double precision performance was dramatic, even taking

into account the cache effect seen on CPU. For the more recent cards, the

performance in single and double precision is much more comparable, and

in fact some very large speedup factors are observed there. Usage of the fast

special function intrinsics provides an additional 15-30% improvement on

these cards. We note that although the Titan Black is a consumer card, it

has significantly higher double-precision performance than other consumer

cards, so we do not see the possibly expected performance degradation here

as compared to the K20m.

4. Random number generation

Although stochastic algorithms formally depend on the input of a stream of

random bits to model the noise, such as the random acceptance of spin flips

in the Metropolis algorithm, it is normally not feasible to use a true source

of randomness (such as, e.g., a quantum mechanical system) for this pur-

pose — the rate at which random numbers are consumed by Monte Carlo

simulations of systems with simple energy functions, 106 to 109 per second

on current computers, is too large to make this feasible.i Instead, simula-

tions normally rely on the use of pseudo-random number generators that are

based on deterministic arithmetic relations.88 Such schemes need to bal-

ance desirable implementation properties such as efficiency, reproducability,

portability etc. with the most fundamental need of delivering high-quality

random numbers. While the output of a deterministic algorithm can never

pass as a truly random sequence since the algorithm itself allows to predict

the next number with certainty, a number of general statistical tests such as

the equi-distribution of n-tuples of numbers in n dimensions are routinely

used to assess the quality of a given generator. The current de facto stan-

dard in this respect is the test battery “TestU01” developed by L’Ecuyer

and co-workers.89 It is good practice to ensure that generators used for

production runs and, in particular, high-precision studies pass the tests in

such suites. Even for generators passing such tests, however, it is possible

iNote, however, that recently optical methods allow to generate true random numbers

at rates of several hundred MBit/s,87 such that the use of such physical randomness in
simulations might become feasible in the near future.
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that subtle correlations in pseudo-random sequences interact with partic-

ular properties of a model of statistical physics and the algorithm used to

simulate it in such as way as to produce large biases.90 It is hence often ad-

visable to compare the results from simulations using identical algorithms

and implementations, but random sequences from different generators to

exclude such problems.

Random number generators (RNGs) for massively parallel simulations

need to satisfy additional demands that are not (so) relevant in serial calcu-

lations. There is a large number of threads consuming random numbers in

simulations of the type discussed here, so in order to avoid a bottleneck in

parallel scaling one needs the same or at least a similar number of threads

for generating these random numbers. This can be in a separate kernel such

that the produced numbers are stored in an array that is later on consumed

by individual threads in the simulation kernel, or through an in-lining of

individual RNG instances in the simulation kernel itself.91,92 We have typi-

cally found the latter approach to be advantageous as it is more flexible and

reduces the memory requirements. In both cases, it is crucial to ensure that

the sub-sequences of random numbers finally used by individual threads are

sufficiently uncorrelated. This might be achieved (a) through a seeding or

parameter choice of individual generator instances that ensure such a lack

of correlation, (b) through a partitioning of the same global sequence be-

tween the individual threads that lead to uncorrelated sub-sequences, or (c)

through the use of generators with extremely large periods such that a ran-

dom choice of sub-sequences has a sufficiently small probability of overlap

with other sequences. If skipping is used to ensure that non-overlapping

sub-sequences are assigned to different threads, the fact that the random

numbers are used in a different than the sequential order in which they are

usually fed into the test suites can lead to quite different quality results.

A second important consideration concerns the memory footprint of the

state of the generator. As the states need to be transferred to and from

the compute units for every (possibly multi-hit) update, the corresponding

transfers can easily turn into performance limiting factors for generators

with larger states. Also, to achieve good performance for the calculations

required for generating random numbers one might want to store the states

in shared memory which often means that only a few bytes per thread are

available.

In the following, we summarize the properties and suitability of some

of the most common generators for GPU calculations. More details can be

found in Ref. [91 (see also Ref. 93]). Each generator was implemented on
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Table 2. Properties of some random-number generators implemented on GPU. All ran-

dom-number sequences were fed through the tests of the TestU01 suite89 which is divided

into the “SmallCrush”, “Crush” and “BigCrush” sections of increasing stringency. If at a
given stage too many failures occurred, the more advanced tests were not attempted. The

performance column shows the peak number of 32-bit uniform floating-point random numbers

produced per second on a fully loaded GTX 480 device. Note that the Philox generators,
albeit occupying local memory of 4 × 32 bits for number generation, do not require to transfer

a “state” from and to global memory as long as the generator keys are deduced from intrinsic

variables such as particle numbers etc.

generator bits/thread failures in TestU01 Ising test perf.

SmallCrush Crush BigCrush ×109/s

LCG32 32 12 — — passed 58
LCG32, random 32 3 14 — passed 58

LCG64 64 None 6 — failed 46

LCG64, random 64 None 2 8 passed 46
MWC 64 + 32 1 29 — passed 44

Fibonacci, r = 521 ≥ 80 None 2 — failed 23

Fibonacci, r = 1279 ≥ 80 None (1) 2 passed 23
XORWOW (cuRAND) 192 None None 1/3 failed 19

MTGP (cuRAND) ≥ 44 None 2 2 — 18

XORShift/Weyl 32 None None None passed 18
Philox4x32 7 (128) None None None passed 41

Philox4x32 10 (128) None None None passed 30

GPU and fed through the TestU01 battery of tests as well as in an appli-

cation test in simulating the 2D square-lattice Ising ferromagnet using the

Metropolis algorithm, where the results were compared against the exact

expressions for the finite-lattice energy and specific heat.94 Performance

results were collected for the bare random-number generation as well as for

the Ising simulation test. The corresponding data are summarized in Table

2.

• Linear congruential generators (LCGs). This most basic class of

generators follows the linear recursion

xn+1 = axn + c (mod m),

where a and c are integer constants and the modulus m defines the total

range of the numbers and hence the number of random bits generated

in one call. As in most other generators the recursion is implemented

in integer arithmetic, and the typically required floating-point numbers

uniformly distributed in [0, 1) are generated via a suitable output func-

tion, here un = xn/m. For good choices of a and c the period of the

LCG is p = m, and if a native type is used for xn one is restricted to
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m < 264, leading to rather modest period lengths, especially if taking

into account that typically no more than
√
p numbers should be used.95

It is straightforward to skip ahead in the sequence by an arbitrary num-

ber of steps with no additional computational effort,88 such that it is

possible to concurrently generate non-overlapping sub-sequences by dif-

ferent threads in a simulation code. This, however, reduces the available

period per thread even further. In the statistical and Ising application

tests these methods, implemented for m = 232 and m = 264 with suit-

able constants a and c,91 yield poor results with the 32-bit version even

failing SmallCrush, see the data collected in Table 2. Somewhat better

results are found if initializing each parallel generator instance with a

random seed produced by a different LCG, thus introducing some addi-

tional randomness at the expense of no longer being able to guarantee

non-overlapping sub-sequences. These generators are mostly useful due

to their extremely simple and arithmetically light implementation and

the very small state of 32 or 64 bits per threads, respectively, leading

to the highest peak performances of generators discussed here (cf. Ta-

ble 2) and for testing purposes. The randomized 64-bit variant might

be acceptable in some simple or lower precision applications as it passes

the application test and most of the tests in the Crush battery.

• Multiply with carry (MWC). A generalization of the LCG ap-

proach due to Marsaglia96 is given by the recursion

xn+1 = axn + cn (mod m),

cn+1 = b(axn + cn)/mc.
In other words, the additive term cn in the (n + 1)st step is the carry

from the previous iteration, hence the name multiply-with-carry. If

again using 32 bits for the state vector, xn and cn together occupy 64

bits. It is possible to generate a large number of “good” multipliers

c such that generator instances used by different threads use different

values of c. MWC can be efficiently implemented on GPU.51 The sta-

tistical quality of this generator turns out to be only marginally better

than that for the pure 32-bit LCG, see the data in Table 2, while the

storage requirement is 64 bit for the state and an additional 32 bits

for the multiplier c, such that the additional effort as compared to the

LCGs does not seem to be worthwhile.

• Lagged Fibonacci generators. In the simplest case, these are based

on a two-term lagged Fibonacci sequence with recursion

xn = asxn−s ⊗ arxn−r (mod m),
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where the operator ⊗ typically denotes one of the four operations ad-

dition +, subtraction −, multiplication ∗ and bitwise XOR ⊕, respec-

tively. For 32-bit variables xn, the state size is 32r bits, and it is

then convenient to choose m = 232. For ⊕ = + the maximal period

is 231(2r − 1), which becomes very large for typical values of r. The

generator can be conveniently implemented directly in floating-point

arithmetic. For good quality one needs r & 100, leading to relatively

large storage requirements, but here the generation of s random num-

bers can be vectorized by the n threads of a block. Hence, the ring

buffer of length r + s 32-bit words is shared among the threads of a

block, leading to a state size of (r+s)/n words per thread. If s is chosen

to be close to the number of threads in a block the total state is only

a few words per thread.36 Using the combinations r = 521, s = 353

and r = 1279, s = 861, respectively, and using random initial seeds per

thread that should be safe thanks to the large overall period, we find

reasonably good statistical results at least for the generator with larger

r and good performance, while the generator with r = 521 leads to a

failed Ising application test, see the data in Table 2.

• Mersenne twister. This very popular generator in serial applications

is also based on a generalized two-term lagged Fibonacci sequence,97

where the larger lag N is derived from a Mersenne prime 2k − 1 as

N = dk/32e, hence the name. To improve the equidistribution proper-

ties, the resulting sequence xn is additionally subjected to a tempering

transformation, for details see Ref. [97]. The maximal achievable pe-

riod is 2k − 1 which for the most popular choice k = 19937 amounts

to approximately 4× 106001. Similar to the case of the more standard

lagged Fibonacci generators, Mersenne twister can only efficiently be

used on GPU if the state is shared between different threads as other-

wise the storage requirements are too large. A variant of the generator

adapted for GPU was proposed in Ref. [98] under the name MTGP. It

uses k = 11213 and 256 threads to generate N−M numbers in parallel,

where M < 95 is the smaller lag. Since N = d11213/32e = 351, the

storage requirements per thread are 351/256 < 2 words. An imple-

mentation of this algorithm is now part of the CURAND library that

comes with Nvidia’s CUDA distribution.92 Independent sequences can

be generated from 200 parameter sets resulting from number theoretic

calculations98 that are provided with the implementation. This yields

a rather limited number of independent sequences, however, so that in

practice possibly correlated sub-sequences from different initial seeds
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would need to be used. The fixed number of 256 threads required for

MTGP also restricts the in-line use of this generator in the simulation

kernel, and it is more suitable for pre-generating random numbers in

a separate kernel to be stored in an array. As the data in Table 2

demonstrate, the statistical quality of the generator is good, but it fails

some tests based on F2 linearity. The generator speed is good, but not

outstanding.

• XORShift generators. Another class of generators proposed by

Marsaglia is based on the exclusive-or or bitwise sum operation ap-

plied to a state and a bit-shifted copy, known as XORShift.99 The

relevant recursion is given by

xn = xn−1(I ⊕ La)(I ⊕Rb)(I ⊕ Lc) =: xn−1M, (9)

where L denotes a left-shift by one bit, R the corresponding right shift,

and I is the identity bit-matrix. For an appropriate choice of a, b and c,

the period is 2w−1, where w is the word size. While the generators pro-

posed in Ref. [99] used w between 32 and 192 with relatively moderate

properties, in Ref. [91] a generator with w = 1024 was proposed that is

specifically optimized for GPU applications. There, the 32 threads of

a warp share the 1024-bit state by contributing one 32-bit word each.

The shifts and XORs are cooperatively implemented by the threads of

a warp, while the state is stored as an array in shared memory. Since

the threads in a warp operate in lockstep, no explicit synchronization is

necessary. An additional tempering of the output sequence is achieved

by combining the output of the XORShift with a Weyl sequence of the

form yn = (yn−1 + c) (mod 2w) with an odd constant c.100 Full expla-

nations and the source code of the CUDA implementation are provided

in Ref. [91]. Independent sub-sequences can be determined by using

skip-ahead via the application of a precomputed power of the recursion

matrix, and the provided implementation uses sub-sequences of length

w137 ≈ 2 × 1041, which are safe from being exhausted on currently

available hardware. On testing this generator it is found that all tests

of the suite TestU01 and also the Ising application test are passed, no

matter whether the sequence is used in single-thread or warp order.

The performance of the initial implementation using shared memory is

good, see Table 2; further improvements should be possible from using

the thread shuffle32 instructions that allow to exchange data between

the threads in a warp directly.

• Counter-based generators. A class of generators that are not de-

rived from a recursion, but instead loosely based on secret-key crypto-
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graphic transformations was proposed in Ref. [101]. Here, the idea is

to generate the nth number in the sequence directly by applying some

function f to the index (or counter) n,

xn = fk(n),

such that knowledge of xn is not required to compute xn+1. Suitable

functions of this type can be derived from cryptographic codes such as

DES and AES.102 If n corresponds to the plaintext, it is clear that the

ciphertext fk(n) must be statistically indistinguishable from a random

sequence of bits for the code to be cryptographically secure. Standard

codes ensuring this, such as DES and AES, are typically to slow, how-

ever, to serve as drop-in replacements for usual RNGs. Instead, Salmon

et al.101 suggest to consider a simplified, “mock” version of AES with

transformations based on integer division and its remainder,

mulhi(a, b) = b(a× b)/2wc,
mullo(a, b) = (a× b) mod 2w,

such that the main iteration picks two consecutive words (L,R) out of

a block of N words of w bits each and computes

L′ = mullo(R,M),

R′ = mulhi(R,M)⊕ k ⊕ L.

The generator applies r rounds of such transformations with different

multipliers M , interspersed with additional permutations of the ele-

ments. This results in the generators dubbed Philox-Nxw r, where it

is expected that a larger number of iterations r improves the quality

of the output, and r ≥ 7 is suggested for good quality of the generated

random numbers.101 This class of generators has two main advantages:

(a) The state of N × w bits, where N = 4 and w = 32 for one of

the standard generators tested in Refs. [91,101], can be arbitrarily split

between the space of keys k and the counter n of random numbers in

a given sequence. It is therefore straightforward to generate a large

number of independent sub-sequences and, in particular, it might be

advantageous to tie the sequence numbers to some intrinsic variables

of the calculations such as the particle or spin number, the system size,

the disorder realization etc., such that exactly the same random num-

bers are used independent of the actual distribution of work over the

available compute units. (b) Since these generators are not based on a

recursion, it is in fact not necessary to store and transfer state variables
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for generator instances used by individual threads. If the sub-sequences

to be used are derived in a natural way from intrinsic variables such as

the particle number etc., it suffices to pass an iteration number common

to all threads into an updating kernel to have each thread generate the

next number in the sequence. In addition to passing all tests of the

suite TestU01 and the Ising application test, the Philox generators as

implemented in Refs. [92,101] show excellent performance, see the data

in Table 2.

A number of further generators are made available in the program library

of Ref. [93]. The significant number of different generators might appear

confusing to the novice, and it is not in general necessary to make oneself

familiar with the details of all of them. Good general purpose generators

with excellent statistical properties and high performance are given by the

XORShift generator91 and the counter-based Philox.101 The latter has

the additional advantage of being available as part of Nvidia’s CURAND

library.92

5. Generalized ensembles

While standard local-update Markov-chain algorithms such as the Metropo-

lis and heatbath methods discussed in Sec. 3 are extremely general and often

also quite efficient, and cluster updates can be used for some systems in the

vicinity of critical points, there are a range of situations where these meth-

ods fail to equilibrate the systems or do not give access to the quantities

required in certain contexts. This affects systems with rugged free-energy

landscapes including but not limited to systems with quenched disorder and

certain biomolecular systems such as protein models.103 For such problems

a range of generalized-ensemble simulation methods have become available

that allow to accelerate convergence by avoiding or overcoming barriers in

phase space. Also, the sampling of rare events in systems with first-order

phase transitions and methods giving access to the free energy and micro-

canonical density-of-states call of special techniques, whose suitability for

massively parallel implementations will be discussed next.

5.1. Parallel Tempering

In parallel tempering or replica-exchange Monte Carlo a number nT of

copies (replicas) of the system are simulated in parallel, and each replica

is held at a different inverse temperature βi.
10,11 The replicas are labeled
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in order of increasing inverse temperatures, i.e., ensuring that βi < βj for

i < j. At periodic intervals, an exchange of the configurations i and j is

proposed and accepted with the Metropolis probability

pacc(i, j) = min
[
1, e(βi−βj)(Ei−Ej)

]
, (10)

where Ei and Ej are the configurational energies of the affected replicas. It

is easy to see that this just satisfies the detailed balance condition (4) with

respect to the joint Boltzmann distribution of all replicas. In practice, one

normally only considers neighboring replicas, i.e., j = i + 1, and attempts

an exchange of each pair of neighboring configurations. This scheme can

greatly improve relaxation as it allows replicas that are trapped in local

minima at low temperatures to escape to high temperatures where they

can relax freely and later on return to low temperatures, possibly occupy-

ing a different minimum. Ideally, copies hence perform a random walk in

temperature space. It is clear that non-negligible acceptance of such ex-

change moves can only be expected if the typical energies of neighboring

replicas are comparable, that is if the energy histograms at temperatures βi
and βj have sufficient overlap.42 Too few temperatures will hence preclude

the intended temperature random walks, but also too many temperatures

are not ideal as in a random walk the number of steps required to traverse

the full temperature range will grow as the square of the number of temper-

ature points. One hence expects an optimum number and distribution of

temperature points, and possible schemes for determining the optimum pa-

rameter set for parallel tempering simulations have received a fair amount

of attention.104–106

Replica-exchange Monte Carlo appears to be an ideal match for parallel

computing as most of the time of a simulation will be spent on updating

the replicas with some conventional Monte Carlo algorithm (for example

single spin flips), and the occasional exchange of configurations according to

Eq. (10) is very cheap computationally, but also in terms of communications

as no actual copying of configurations is required. In a shared memory

system, it is typically simplest to exchange pointers to the configurations

between neighboring replicas, whereas on a distributed memory machine it

is fastest to exchange the inverse temperatures βi and βj . In both cases,

only a single integer or floating-point variable needs to be communicated.j

jNote that in order to implement the latter efficiently, it is typically necessary to main-

tain two arrays, one mapping from replica indices to (inverse) temperatures and one
mapping from (inverse) temperatures to replica indices as otherwise it is not possible to

easily identify the replicas belonging to two neighboring temperatures for proposing an

exchange move.
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Parallel tempering has been implemented on GPU for a range of sys-

tems, including spin models,36 polymers,107 as well as spin glasses50,52,108

and random field systems.109 In terms of the work distribution, the actual

replica-exchange step is so light that it is typically irrelevant whether it is

implemented on CPU or in a GPU kernel. Note, however, that it requires

up-to-date values for the configurational energies Ei. The necessary cal-

culations should either be done on-the-fly in the local-updating kernel by

adding the energy change incurred by the update of a degree of freedom

to the current value of the total energy (an approach that is particularly

feasible if the energy is an integer value such as for a discrete spin model),

or distributed over the GPU(s) via a dedicated energy-calculation kernel.

We note that the typical number of replicas, which is of the order of 10–100

for most applications, does not provide enough parallelism to fully load a

current GPU device. It is therefore necessary to combine the parallelism

provided by the replica-exchange algorithm with further techniques such

as a domain decomposition,36 the trivial parallelism provided in studying

several realizations of random disorder in spin glasses or random-field sys-

tems,50,52,108,109 or by parallelizing the energy calculation in a system with

long-range interactions,107 for example. If such additional parallelism is

exploited, parallel tempering simulations on GPU show excellent perfor-

mance. Due to the almost embarrassingly parallel nature of the algorithm,

the scaling with the number of replicas is found to be almost ideal.107 For

systems with only a few states such as the Ising model, it is also possible to

code several of the parallel tempering replicas in one machine word yielding

additional speedups. This will be discussed further in Sec. 6.

5.2. Multicanonical simulations

While in parallel tempering barriers in the energy landscape are overcome

by escaping to high temperatures, in multicanonical simulations such re-

gions of low probability are artificially enhanced in an attempt to avoid a

trapping of the system in metastable states.8 To this end, one replaces the

Boltzmann weight proportional to exp(−βE) by a general weight function

W (E). As a result, while the canonical energy distribution is

Pβ(E) =
1

Zβ
Ω(E)e−βE ,

where Ω(E) is the density-of-states, and Zβ denotes the canonical partition

function, the energy distribution in this modified ensemble then is

Pmuca(E) =
1

Zmuca
Ω(E)W (E), (11)
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where Zmuca is the corresponding multicanonical partition function. As is

clear from Eq. (11), a flat distribution in energy is achieved for W (E) ∝
Ω−1(E). Such weights can be determined iteratively by estimating the

density-of-states Ω(E) from a given simulation and adapting the weight

function accordingly, i.e.,

W (n+1)(E) ≡ Ω̂−1,(n)(E) = W (n)(E)/H(n)(E), (12)

where H(n)(E) denotes the energy histogram in the simulation with weight

function W (n)(E). More elaborate weight iteration schemes that use the

accumulated information from all previous iterations can be devised,110,111

but we will not discuss these here. After the weights are sufficiently con-

verged to yield an approximately flat energy histogram, a production run

in the fixed ensemble with weights W (∗)(E) is used to estimate the ob-

servables of interest. As one of the paradigmatic applications, this scheme

allows one to study the strongly suppressed coexistence region for a first-

order transition and determine the interface tension between the phases.112

Generalizations to reaction coordinates other than the energy, for example

to magnetizations113 or bond and cluster numbers114,115 are also possible.

Although the problem of simulations with the general weights W (E) ap-

pears to be very similar to the special case W (E) = exp(−βE) of the canon-

ical ensemble, and hence the methods of parallelization outlined in Sec. 3

should be applicable, there is an important difference: while in the canon-

ical case the ratio W (E′)/W (E) = exp(−β∆E) entering the Metropolis

acceptance criterion (and similar expressions for the heatbath method) de-

pends on energy only through the difference ∆E = E′ − E incurred by

the present move, the dependence in the generalized-ensemble case is on E′

and E individually. As a result, the acceptance probability for each move

depends directly on the total value of E, and it becomes impossible to use

a domain decomposition to flip spins in different regions of the lattice in

parallel. All transitions in the Markov chain hence must occur in sequence.

To still make use of parallel resources for simulations of this kind, two

complementary strategies have been proposed. The first approach relies

on a sub-division of the reaction-coordinate space (i.e., the energy for the

simplest case) into possibly overlapping intervals such that separate simula-

tions run in parallel can be used to cover all windows. The second strategy

consists of setting up independent Markov chains each of which covers all

of the reaction-coordinate space, but that communicate weight updates at

certain intervals.

The windowing method was used in Ref. [116]. In this approach, the

full energy range [Emin, Emax] is divided into p windows [Ei,min, Ei,max]
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and p independent simulations with a weight function W (n)(E) are used to

simulate the system each with energies in the corresponding window. For

the individual simulations, it is crucial that the current state is counted

again if an attempted move leading the system outside the energy win-

dow was rejected.117 As the initial choice W (0)(E) = const. can be used.

Some scheme needs to be devised to create appropriate initial configura-

tions with energies inside the corresponding window. The results of all

simulations are then used to determine an estimate of the density-of-states

and hence an updated weight function W (n+1)(E) according to Eq. (12).

Since the normalizations of the energy distributions (11) are different in

each energy window, one needs to match neighboring histograms at one or

several common energy values at the window boundary. Hence the method

only works if the windows overlap by at least one energy state. A GPU

implementation for the Ising model was discussed in Ref. [116], where it

was demonstrated that the density-of-states for, e.g., a 64× 64 system can

reliably be estimated from energy windows as small as ∆E = 16 without

systematic biases and with speed-up factors exceeding 100 as compared to

the corresponding scalar CPU implementation.

The second approach for parallel multicanonical simulations was pro-

posed in Ref. [118] and uses p parallel walkers that are unrestricted in en-

ergy (or another reaction coordinate if that is chosen for the scheme) and

work with the same weight function W (n)(E). At the end of an iteration,

the histograms of individual runs are added up,

H(n)(E) =

p∑
i=1

H
(n)
i (E),

and the total histogram is used to determine the updated weight function

W (n+1)(E) according to Eq. (12). This is then again distributed to the

p walkers to perform runs of the next iteration.118 The final production

run can be performed in the same way, pooling the final results from p

simulations to improve statistics. A GPU implementation of this method

was recently introduced in Ref. [119]. It parallelizes only over independent

walkers, thus resulting in particularly simple and easily adaptable code. In

the example implementation for the 2D Ising model, it uses random-site

selection for the individual spin updates, mainly in order to be able to scale

the number of updates in units of individual spin flips instead of in units

of sweeps. In order to achieve good coalescence of memory accesses, the

same random-number sequence is used to select the spins in all replicas, but

different, uncorrelated sequences are used to decide about the acceptance of
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Fig. 10. Estimated speedup, i.e., reduction in wall-clock time required until conver-

gence, for the parallel multicanonical method applied to the 2D Ising model on different
GPUs (Tesla K20m, Titan Black) as a function of the number of walkers. The speedup is

obtained compared to reference times from simulations on one CPU node equipped with

two Intel E5-2640 6-core CPUs, using a total of 24 hyper-threads. Data points mark the
median speedup and the shaded areas indicate the confidence interval covering 2/3 of

the data.

spin flips. Instead of collecting individual histograms H
(n)
i (E) to be added

up at the end of each iteration, it turns out to be more efficient for each

thread to add events to a unique histogram H(n)(E) kept in global memory

using atomic operations for the increments. Since the number of possible

energy values typically grows faster than the number p of walkers, this leads

to excellent performance as collisions in accessing histogram entries are rare.

For the total times per spin-flip, including the time spent on histogram and

weight updates, we arrive at peak performances of 0.22 ns and 0.16 ns for the

Tesla K20m and GTX Titan Black cards, respectively, which corresponds to

a 15–21 times speedup as compared to the performance of an MPI code on

a full dual-CPU node with a total of 12 cores (24 hyper-threads) with Intel

Xeon E5-2640 CPUs.119 This optimal performance is found for fully loading

the GPUs with threads, i.e., for the maximum occupancy, corresponding to

30 720 threads for the Titan Black and 26 624 threads for K20m. The total

speedup of the parallel implementation also depends on the effect of the

parallel calculation on the number of required iterations until divergence,
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which is found to be slowly decreasing with p,119 at least if a number of

equilibration updates in between iterations ensures that the walkers are

thermalized with respect to the updated weights before collecting statistics

for the next iteration. The total speedup in the time-to-solution for the

parallel multicanonical code on GPU as a function of p is shown in Fig. 10.

The characteristic shape of these curves is related to occupancy effects of

the devices with the vertical lines indicating the optimal number of threads

mentioned above. The optimal speedups in the time-to-solution are about

20 for the Tesla K20m and about 25 for the Titan Black, so even a bit larger

than the hardware speedups. This effect is attributed to the fact that the

histograms collected by independent walkers are somewhat less correlated

than those sampled by a single simulation for the same total number of

hits. The observed scaling properties are quite good, although it is clear

that the necessary equilibration steps will asymptotically destroy parallel

scaling as the total parallel work is of the form W = W0 + pT , where W0

denotes the sampling sweeps and T the equilibration steps, such that the

work W/p per walker approaches a constant as p→∞.k

5.3. Wang-Landau update

The Wang-Landau method9,120 can be seen as a different technique for

determining the optimal weights in a multicanonical simulation or, alter-

natively, as a method for directly estimating the density-of-states. It is

not a traditional Markov-chain method as it changes the ensemble at each

step, but a variant has been classified as a stochastic approximation algo-

rithm.121 The algorithm continuously modifies a working estimate g(E)

(initialized as g(E) = 1 ∀E) for the density-of-states Ω(E) by multiplying

it for the currently visited energy bin by a modification factor f , initially

chosen to be f = e. Spin flips for the transition E → E′ are accepted with

probability

pacc = min[1, g(E)/g(E′)].

If an energy histogram H(E) recorded during the updating procedure is

“sufficiently flat”,9 the modification factor is reduced as f →
√
f and H(E)

is reset to zero. In practice, flatness is often declared if the minimum

histogram bin has at least 80% of the average number of hits. The algorithm

terminates once f has reached a certain accuracy threshold, for instance
kWe note that the number W0 of samples until convergence will itself (weakly) depend

on p,119 but this does not affect the argument for a diminishing scaling efficiency as
p→∞.
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10−8. While the method appears to converge well in general, it has been

noted that the accuracy cannot be arbitrarily increased with the given

schedule of reducing f and there is actually a residual error that does

not diminish for longer simulations.122 A number of schemes have been

suggested to correct this, in particular a 1/t decay of the modification

factor after an initial exploration phase123 and a class of methods dubbed

stochastic approximation Monte Carlo.121,124

Parallelization of the algorithm proceeds along similar lines as for the

multicanonical method. The energy range can be divided into windowsl

that are sampled by individual walkers.120 Window overlaps are then re-

quired to allow for a matching together of the pieces of the density-of-states.

A GPU implementation of this scheme was discussed in Ref. [116]. Some

inefficiencies often occur in such schemes due to the random nature of the

run-time of the algorithm for the different windows, and additional load

balancing would be required to alleviate this effect. An alternative ap-

proach is somewhat similar in spirit to the parallel multicanonical method

of Ref. [118] in that it employs a large number of parallel walkers.126 As the

continuous weight modification after each flip would serialize all updates,

however, this condition is relaxed and the walkers work with separate es-

timates gp(E) that are only synchronized at certain intervals. A more

flexible approach combines aspects of parallel tempering with the Wang-

Landau method,127 such that Wang-Landau simulations are performed in

overlapping energy windows, and replica-exchange moves are attempted be-

tween walkers in neighboring windows. Several independent walkers can be

employed in each window, for which the flatness of histograms is assessed

separately; their estimates are averaged before changing the modification

factor and moving to the next iteration. Improved load balancing is at-

tempted by choosing energy windows of uneven size, such that the expected

convergence time between intervals stays the same.127

5.4. Population annealing

A more recent addition to the arsenal of generalized-ensemble simulations

is not drawn from the class of Markov chain Monte Carlo algorithms, but

instead hails from the kingdom of sequential Monte Carlo methods.128 Pop-

lNote that the original proposal in Ref. [120] contained a mistake in that after the
rejection of a move that would have led the system outside of the energy window the

current configuration was not counted again. This was later on corrected in Refs. [117,

125].
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ulation annealing was first suggested in Refs. [17,18] and more recently

rediscovered and improved in Ref. [19]. In this approach, a large popu-

lation of replicas of the system are simulated at the same temperature.

At periodic intervals, the temperature is lowered and configurations are

resampled according to their relative Boltzmann weight at the lower tem-

perature. This process is continued until a pre-defined target temperature

has been reached. Measurements of observables are then taken as popula-

tion averages at a given temperature. The algorithm can be summarized

as follows:

(1) Set up an equilibrium ensemble of R0 = R independent replicas of the

system at inverse temperature β0 = 0.

(2) To create an approximately equilibrated population at βi > βi−1, re-

sample configurations j = 1, . . . , Ri−1 with their relative Boltzmann

weight τi(Ej) = exp[−(βi − βi−1)Ej ]/Qi, where

Qi ≡ Q(βi−1, βi) =
1

Ri−1

Ri−1∑
j=1

exp[−(βi − βi−1)Ej ]. (13)

(3) Update each replica by θ sweeps of a Markov chain Monte Carlo

(MCMC) algorithm at inverse temperature βi.

(4) Calculate estimates for observable quantities O as population averages∑Ri

j=1Oj/Ri.
(5) If the the target temperature βf has not been reached, goto step (ii).

The approach is similar in spirit to parallel tempering, but it is intrinsically

much more suitable for parallel computing due to the large populations

required (typically at least 104 replicas, often also129,130 106 or 107). Also,

it allows access to certain population-related quantities such as the free

energy, which are more difficult to measure in parallel tempering (but see

Ref. [131]). A number of improvements, such as adaptive temperature

steps, time steps and population sizes have been proposed.86,132 Also, it is

possible to use a multi-histogram analysis to improve the statistical quality

of data and provide results for any temperature point86 as well as weighted

averages of simulations with smaller population sizes to reduce population-

size related bias.19,129 As it stands, the approach is not directly efficient

for simulating first-order transitions.133

An implementation of population annealing for GPU was discussed in

Ref. [86], using as the example application a 2D Ising model. The paral-

lelization of the spin updates can rely on the same approaches as for the

canonical simulations discussed in Sec. 3. Replica-level parallelism, where
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the threads of a block update the same locations in different replica, is the

inherent parallelism of the method and it ensures that population annealing

can be efficiently implemented on GPU independent of the model. For the

application of the method to the Ising model, this approach is combined

with spin-level parallelism, using tiling and a checkerboard update as in the

implementation discussed in Sec. 3.1 above. The Philox generator is used

for the Metropolis update, cf. Sec. 4. The resampling is implemented by

calculating the weight functions Qi of Eq. (13) in parallel and implementing

the scan pattern (cf. Sec. 2.3) to determine the new position of copies of

replicas in the resampled population. Measurements as averages over the

population are computed using parallel reductions, using atomic operations

to combine the partial results from different thread blocks. In total, this

approach yields excellent speedups as compared to a serial implementation,

the peak performance on a Tesla K80 GPU being around 230 times faster

than the serial code on an Intel Xeon E5-2683 v4 CPU. The overhead for

resampling is found to be rather small for typical values θ of the number

of rounds of spin flips performed in between resampling steps, coming in at

less than 15% of the runtime for θ ≥ 10.86 Multi-spin coding can be used

to increase the peak performance to less than 10 ps per spin flip on the

K80, resulting in speedups of a factor of 2400 against the serial CPU code.

In this setup, the compression of 32 or 64 spins into a single word leads to

a significant relief of bandwidth pressure for memory transfers, such that

calculations are then typically limited by their arithmetic density. The cost

of generating random numbers therefore turns into an important consid-

eration. If the underlying, high-quality RNG (in this case Philox101) is

used for generating the random numbers for all multi-spin coded copies,

the overall performance benefit of multi-spin coding is very moderate.86

As an alternative, a combination with a cheap linear-congruential genera-

tor dealing with the copies coded together that is re-seeded for each sweep

by Philox provides good statistical quality and the excellent performance

results quoted above.86

6. Disordered systems

Simulations of systems with quenched disorder, in particular spin glasses

and random-field systems,134 are extremely demanding computationally.

The reason is twofold: firstly the rugged free-energy landscape of such

systems results in extremely slow relaxation, and secondly the necessary

disorder average means that all calculations need to be repeated for many
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thousand disorder realizations. The relaxation can be sped up with the help

of the generalized-ensemble methods discussed above, but they only provide

a moderate improvement as still typically the relaxation times increase

very steeply with system size. Parallel tempering is the technique most

commonly used for Monte Carlo simulations of such problems,135,136 but

also multicanonical and Wang-Landau methods are employed137,138 and,

more recently, population annealing simulations.130,139

This situation turns such systems into ideal targets for massively paral-

lel simulation methods. While the required generalized-ensemble simulation

techniques are more or less well suitable for parallel computing as outlined

in Sec. 5, the average over disorder provides an additional dimension along

which simulations are trivially parallel, and so ideal scaling can be expected.

For spin glasses a number of independent initiatives have provided imple-

mentations of simulation codes for massively parallel hardware. The main

focus has been on systems with discrete spins such as Ising and Potts spin

glasses, where the Ising case corresponds to the Hamiltonian (7) with cou-

plings Jij typically drawn from a Gaussian or a bimodal distribution. A

number of different implementations on GPU each use some mixture of the

same general ingredients:36,50,52 parallel tempering, checkerboard updates

and tiling, multi-spin coding across different disorder realizations,m care-

fully tailored setups for random-number generation. Some attention has

also been paid to systems with continuous degrees of freedom, in particular

the Heisenberg spin glass, where the exceptional floating-point performance

of current GPUs can be brought to the fore, in particular if single-precision

variables are used for the spins and the special-function units can be em-

ployed.85,108 A different architecture has been used by the JANUS initiative

that has constructed special-purpose machines for simulations of discrete-

spin glass models based on field-programmable gate arrays (FPGAs).141,142

Comparing these to GPU implementations, the overall throughput is simi-

lar, but the FPGA machines allow to simulate single realizations at higher

spin-flip rates than the GPU codes can.50,52 Massively parallel implemen-

tations of codes for random-field systems have also focused on the Ising

case, corresponding to the Hamiltonian (7) with local random fields hi but

uniform couplings Jij = J . There has been significantly less work on such

problems using massively parallel machines, but efficient implementations

mWe note that for spin-glass systems often the same random number is used to decide
about the flipping of all spins coded together as it is argued that the randomness in

disorder realizations together with the properties of bond chaos140 lead to a sufficient

decorrelation of individual trajectories.50
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can be achieved using techniques almost identical to those for the spin

glasses, a recent example is provided in Ref. [109].

7. Summary

The aim of this chapter was to give a general introduction to aspects of

(massively) parallel computing relevant for practitioners in the field of com-

puter simulations in statistical physics. We provided some general back-

ground including the scaling theory of parallel performance, an overview of

the available parallel hardware with a focus on graphics processing units,

and an outline of the most important algorithmic skeletons or patterns

in parallel computing. In the application part we went on to discuss the

parallelization of canonical Monte Carlo algorithms such as single-spin flip

simulations of lattice models, but also the cluster updates that allow to

tackle the slowing down of dynamics close to critical points. After giv-

ing an outline of the specific problems of random-number generation for

massively parallel applications and their solution, we went on to discuss

the challenges posed by parallel implementations of generalized-ensemble

simulation algorithms used for simulating systems with complex free-energy

landscapes, including parallel tempering, multicanonical and Wang-Landau

simulations as well as the population annealing method. Most of the tricks

of this trade come together in the simulation of disordered systems with

massively parallel resources, an application which seems to be an ideal fit

for devices such as GPUs, FPGAs and Xeon Phi.
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