
PHYSICAL REVIEW B 111, 214434 (2025)

Ordering transition of the three-dimensional four-state random-field Potts model
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Spin systems exposed to the influence of random magnetic fields are paradigmatic examples for studying
the effect of quenched disorder on condensed-matter systems. In this context, previous studies have almost
exclusively focused on systems with Ising or continuous symmetries, while the Potts symmetry, albeit being of
fundamental importance also for the description of realistic physical systems, has received very little attention. In
the present study, we use a recently developed quasiexact method for determining ground states in the random-
field Potts model to study the problem with four states. Extending the protocol applied for the three-state model,
we use extensive finite-size scaling analyses of the magnetization, Binder parameter, energy cumulant, specific
heat, and the connected as well as disconnected susceptibilities to study the magnetic ordering transition of
the model. In contrast to the system in the absence of disorder, we find compelling evidence for a continuous
transition, and we precisely determine the critical point as well as the critical exponents, which are found to
differ from the exponents of the three-state system as well as from those of the random-field Ising model.

DOI: 10.1103/fl4b-qgf1

I. INTRODUCTION

Random disorder is nearly unavoidable in laboratory sam-
ples of condensed-matter systems. Understanding the effect of
random doping, lattice defects, and similar impurities is hence
a problem of fundamental interest for a modern theory of
condensed-matter systems [1]. The most prominent simplified
models for such problems are systems with bond and site di-
lution, random-bond ferromagnets, random-field models and
spin glasses [2]. The random-field problem, in particular, has
received much attention in the past decades, and it exhibits
a rich phenomenology with a violation of hyperscaling [3]
and the curiosity of dimensional reduction [4,5] that is present
in dimensions d � 6 (or maybe d � dc ≈ 5, see Refs. [6,7]),
but broken in lower dimensions. Most effort in this direction
was spent on the random-field Ising model (RFIM), for which
there is now an overall good understanding of the phase di-
agram for continuous field distributions, see, e.g., Ref. [7].
For systems with continuous symmetries such as the O(n)
model, on the other hand, random fields destroy long-range
order in dimensions d < 4 [8,9]. An interesting and relevant
intermediate case are hence discrete spin systems with more
than two states, such as the Potts model [10].

The q-state Potts model occupies a special place in sta-
tistical physics due to its numerous physical realizations
[10,11], including soap froths, cellular tissues, grain growth,
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nucleation as well as static and dynamic recrystallization,
but also for being a generalization of several special cases
such as the Ising model and random percolation. Regarding
quenched disorder, the effects of bond and site dilution as
well as more general bond randomness have been relatively
well studied [12–16]. On the contrary, randomness coupling
to the order parameter, i.e., the random-field Potts model
(RFPM) that is particularly applicable to describing magnetic
grains, anisotropic orientational glasses, randomly diluted
molecular crystals [17,18], structural transitions in SrTiO3

crystals [19], and phase transitions in type I antiferromagnets
(such as NdSb, NdAs, CeAs) in a uniform field [20], has
hardly been considered. Until recently, there were only a few
studies of this system in the literature [21–26], where the
analytical approaches have generally used mean-field tech-
niques, while the computational studies are based on Monte
Carlo methods.

To illustrate the effect of the quenched random fields, con-
sider the behavior for the pure system. In two dimensions
(d = 2), it exhibits a continuous phase transition for q � 4
and a first-order one of q > 4 [10]. Hence, qc = 4 forms a
tricritical point there. For the case of three dimensions as
considered in the present paper, the transition is only continu-
ous for q = 2, while the three-state model already undergoes
a weak first-order transition [27]. The tricritical point has
been argued to take the noninteger value qc ≈ 2.35 there [28].
Subjecting this system to quenched disorder in the form of
random fields, there arises the possibility of a softening of
the transitions in the first-order regime to continuous ones.
As is rigorously known [9], in two dimensions this should
already occur for the smallest amount of disorder. On the
contrary, in three and higher dimensions a finite amount of
disorder is in general required [29]. Also, as the random
fields yield the critical behavior of an effectively reduced
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dimensionality [4,5], one would expect the tricritical point
qc(d ) above which the transition becomes discontinuous to
move to larger values when random fields are included.
Goldschmidt and Xu conducted a 1/q expansion and predict
first-order transitions for q � 3 [30], whereas Blankschtein
et al. argue that both q = 3 and q = 4 might still remain
continuous [21]. Numerically, on the other hand, early results
by Reed [26] were interpreted as indicative of a first-order
transition for q = 3, while later Eichhorn and Binder [23–25]
found some evidence for a continuous transition for this case
(however with a different distribution of random fields as
compared to our setup). Since these numerical studies were
not yet able to make use of advanced simulation techniques
to accelerate relaxation, the rough free-energy landscape ob-
served for the RFPM restricted such numerical studies to very
small system sizes with the resulting strong scaling correc-
tions. Overall the picture of the phase diagram of the RFPM
at this stage remained rather speculative.

Inspired by the substantial progress achieved for the RFIM
through the use of combinatorial optimization methods to find
exact ground states [31–34], we recently developed an algo-
rithmic approach suitable for finding quasiexact ground states
of samples of the RFPM for useful system sizes [35]. For
the random-field problem, the renormalization-group fixed
point is located at T = 0, such that the relevant critical be-
havior can be studied via the ground states. In contrast to
the RFIM, however, the ground-state problem for the RFPM
with q > 2 is nondeterministic polynomial (NP) hard [31,36].
Hence, an efficient exact algorithm is very unlikely to exist. To
compensate for this, we explored in Ref. [37] how repeated
runs of the method for n different initial conditions can be
used to systematically extrapolate the approximate results in
the quasiexact limit for n → ∞. In [38], we conducted an
in-depth study of the three-state RFPM in three dimensions
using the quasiexact estimates to determine its critical behav-
ior, finding a very clearly continuous transition with critical
exponents that are very similar to, but likely different from
those of the three-dimensional RFIM. In the present work, we
extend this line of study to the case of the q = 4 RFPM. We
run the ground-state method for n = 100 initial conditions and
extrapolate all of the disorder-averaged physical quantities to
the limit of an infinite number of initial conditions, n → ∞,
where the approach becomes exact. The corresponding critical
exponents are calculated using finite-size scaling techniques.

The remainder of this paper is organized as follows.
Section II describes the model and the numerical details of
our simulations. In Sec. III, we present detailed numerical
results of our study and investigate the critical behavior of
the four-state RFPM from the approximate ground states.
Finally, in Sec. IV, we conclude this paper with a summary
and discussion.

II. MODEL AND METHODS

A. Random field Potts model

Depending on how the random fields couple to the spins,
the Hamiltonian for the q-state RFPM can take a variety
of forms [21,23–25,30]. We consider a model where one
employs a symmetric coupling of continuous fields to each of

the possible orientations of the Potts spins [21], as follows:

H = −J
∑
〈i j〉

δsi,s j −
∑

i

q−1∑
α=0

hα
i δsi,α. (1)

Here, δx,y is the Kronecker delta function, and each spin si

takes one of q orientations, viz. si = {0, 1, ...., q − 1}. The
sum across 〈i, j〉 is over nearest neighbors i and j on the cho-
sen lattice, which is taken to be simple cubic for the present
work. Periodic boundary conditions are applied. The variables
{hα

i } denote quenched, q-component random fields at site i,
each drawn from a symmetric normal distribution, i.e.,

P
(
hα

i

) = 1√
2π�

exp

[
−

(
hα

i

)2

2�2

]
. (2)

The width � of the distribution is a measure of the disorder
strength in this system. For the special case q = 2, it can
be easily seen that the Hamiltonian Eq. (1) corresponds to
the RFIM at coupling J/2 and field strength �/

√
2 (plus an

irrelevant constant shift) [35].
An alternative model Hamiltonian for the RFPM with dis-

crete distribution of the disorder was used in Refs. [23,30],

H = −J
∑
〈i j〉

δsi,s j − �
∑

i

δsi,hi , (3)

where the quenched random variables hi are chosen uniformly
from the set {0, 1, . . . , q − 1}. In this model variant, � no
longer corresponds to the width of a Gaussian distribution,
but it still represents the effective disorder strength. At zero
temperature, one has a unique ground state for the continuous
system (1) [39], while the alternative (3) might admit (ex-
tensive) degeneracies. For the RFIM, some differences in the
behavior are observed for discrete and continuous field distri-
butions [40] and the same might be expected here. In order to
avoid the possible subtleties associated with the existence of
degeneracies, we will focus on the form (1) of the interactions
for the purpose of the present work.

B. Quasi-exact ground-state calculations

Our study is focused on the four-state (q = 4) RFPM in
d = 3, using simple cubic lattices of L3 sites. In order to
approximate the ground states of the considered random-field
configurations, we resort to a recently developed quasiexact
ground-state scheme for the RFPM [35,37]. The basic ingre-
dient is a technique originally developed in computer vision
for the purpose of segmenting an image with q colors [36].
Based on the observation that multilabel problems of this type
are NP hard and hence cannot be solved for large instances
while two-color labeling can be performed efficiently using
graph-cut (or, equivalently, maximum-flow) techniques [31],
the full q-color labeling is approached by randomly picking
one color, and then proposing exchanges from all other colors
to the selected one and vice versa, thus effectively embedding
a solvable two-label problem into the hard q-color one. This
approach, known as α-expansion [36], usually yields low-
lying metastable states. Another approach is the α-β swap,
which involves randomly selecting any two distinct colors,
say α and β, and then proposing a swap between them while
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TABLE I. Minimum number Nsamp of disorder samples used per
lattice size. In the critical regime, approximately 50% more samples
were employed. The third row shows the values H (L) of the nonzero
uniform field for each system size L that is used for explicitly break-
ing the symmetry for the calculation of the susceptibility as discussed
in Sec. III F.

L 16 20 24 32 40 48 64 80 96

Nsamp/103 50 40 35 30 20 10 8 5 3
H (L) × 102 8 5.72 4.36 2.83 2.02 1.54 1 0.72 0.54

freezing all other colors, thus again effectively reducing the
q-label problem to a two-label one. Both approaches iterate
until a local or global minimum is reached. However, a full
cycle of the α-β swap takes about q2 steps, whereas an α-
expansion cycle requires only q steps. Therefore, we adopt the
α-expansion technique and combine it with a systematic use
of repeated runs from random initial states in order to enable
an extrapolation of the calculation to the exact ground state
[37]. We provide the code for computing and analyzing RFPM
ground states via α-expansion in a public repository [41]. For
more details regarding this algorithm we refer the reader to
Refs. [35–38].

C. Analysis

We performed simulations for various systems of linear
size L and many disorder realizations, the exact specifications
are summarized in Table I. For each disorder configuration,
we conduct simulations for n = 100 different random initial
conditions and pick the run resulting in the lowest energy
as the ground-state estimate. For each disorder sample, we
determine two basic observables: the order parameter m and
the bond-energy per spin eJ . The former is defined as [42]

m(L,�, n) = qρ − 1

q − 1
, (4)

where

ρ = 1

L3
max

α

(∑
i

δsi,α

)
(5)

denotes the fraction of spins attaining the most common ori-
entation, while the latter is given by

eJ (L,�, n) = − 1

L3

∑
〈i j〉

δsi,s j . (6)

In a second step, by taking a disorder average [· · · ]av, we
arrive at the order parameter [m]av, the average bond-energy
per spin [eJ ]av, and several other physical quantities associ-
ated with these, namely the disconnected susceptibility χdis,
the Binder-cumulant U4, the specific heat C, and the energy-
cumulant V4, which, in turn, are defined by the following
expressions:

χdis(L,�, n) = L3[m2]av, (7)

U4(L,�, n) = 1 − [m4]av

3[m2]2
av

, (8)

C(L,�, n) = ∂[eJ ]av

∂�
, (9)

V4(L,�, n) = 1 −
[
e4

J

]
av

3
[
e2

J

]2

av

. (10)

These quantities predict the critical behavior of the system
near the transition, see, e.g., Refs. [42,43]. We note that the
expression (9) corresponds to a zero-temperature proxy for
the specific heat, see the discussion in Sec. III E.

The error bars for each observable are calculated via
the jackknife method applied over the set of disorder sam-
ples [44,45]. For determining the critical exponents, in some
cases we use scaling collapses performed using the tool
autoscale.py, developed by O. Melchert [46]. This pro-
gram uses a minimization procedure to optimize the scaling
parameters via a downhill simplex algorithm [47]. We also
determine the goodness-of-fit parameter Q to quantify the
quality of fit. This is defined as the incomplete gamma func-
tion of χ2 and the number f of degrees-of-freedom [47]:

Q = 


(
χ2

2
,

f

2

)
. (11)

Q determines the probability that a value of

χ2 =
N∑
i

(
yi − g(xi )

σi

)2

, (12)

with N data points (xi, yi ± σi ) from a fit of the function g to
the data identical to or worse than the observed value should
occur by chance if one assumes that the model is correct [47].
According to common practice, if Q � 0.1 the goodness-of-fit
is believable. If Q � 0.001, the fit may be acceptable if the er-
rors are non-normal or have been moderately underestimated.
If Q < 0.001, then the fit is not acceptable, see, e.g., Ref. [47].

III. SIMULATION RESULTS

A. Extrapolation of the physical quantities

As outlined above, in order to improve on the results of
the α-expansion minimization of a sample, we repeat such
calculations for n distinct initial conditions of the spins and
pick the run resulting in the lowest energy. To extrapolate the
results, for each disorder realization we run the simulations
for different values of n up to nmax = 100 and inspect the
functional form of the dependence of numerical averages of
observables on n.

Figure 1 shows a typical plot of different disorder-averaged
quantities (magnetization [m]av, disconnected susceptibility
χdis, Binder-cumulant U4, and the bond-energy per spin [eJ ]av)
as a function of n at a fixed disorder strength � = 1.63 and for
a lattice size of L = 64. Typically, we observe a two-stage pat-
tern for the convergence of these estimated zero-temperature
averages. Initially, there is a fast relaxation followed by a
much slower convergence as n increases. This behavior is
effectively described by the sum of two power laws [37],

O(L,�, n) = an−b(1 + cn−e) + O∗(L,�), (13)

where b < e is the asymptotic slow exponent, e represents the
initial fast decay of finite-n corrections, and O∗ denotes the
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FIG. 1. Disorder-averaged estimates of the magnetization [m]av, the disconnected susceptibility χdis, the Binder-cumulant U4, and the
bond-energy per spin [eJ ]av as a function of the number of initial conditions n at a fixed value of � = 1.63 and for lattice size L = 64. The red
lines show simultaneous fits to Eqs. (14)–(17) with b = 0.02 and e = 0.242 ± 0.023.

limiting value for n → ∞. As we have previously shown in
Ref. [37], this form is quite generic and applies well to a
specific subset of samples with known exact ground states,
which are very useful for benchmarking the approach. For
these cases we extended our study to much larger nmax =
10 000 and found that the residuals with respect to the exact
results, i.e., O(n) − Oex, for all considered quantities scale
as an−b(1 + cn−e), with b 	 0.02 and e 	 0.5. This behavior
extends even to the cases where the exact results are not
available [37,38]. The value of b is found to be very stable,
such that we fix it to be 0.02 for the subsequent fits of the
present study, for which n � 100. In order to arrive at stable
results, we perform joint fits for the different quantities with a
common value of e, i.e.,

[m]av(n) = a0n−b(1 + c0n−e) + m∗, (14)

χdis(n) = a1n−b(1 + c1n−e) + χ∗
dis, (15)

U4(n) = a2n−b(1 + c2n−e) + U ∗, (16)

−[eJ ]av(n) = a3n−b(1 + c3n−e) − e∗, (17)

where ai and ci, i = 0, . . . , 3 are amplitude parameters and
m∗, χ∗

dis, U ∗, and e∗ are the asymptotic values of [m]av, χdis,
U4, and [eJ ]av, respectively, in the limit n → ∞.

In Fig. 2 we show the behavior of the residuals for the
different quantities considered. According to the functional
form (13), if one plots nb[O(n) − O∗] as a function of n−e,
the data should fall on a straight line of intercept a and slope
ac. Plotting the data in this way is hence useful to identify any

deviations from the scaling form (13), especially in the asymp-
totic limit n → ∞. This is what we show in Fig. 2 for different
(L,�) as specified, where the solid lines are fits according to
the forms (14)–(17) which yield fit qualities Q = 0.43, 0.81,
and 0.74 for panels (a), (b), and (c), respectively. Overall, this
analysis lends credibility to the claim that the results presented
below are indeed representative of the true zero-temperature
limit of the RFPM.

In the rest of this paper, we use the extrapolated estimates
together with the estimates for finite n to investigate the crit-
ical behavior via a comprehensive finite-size scaling (FSS)
analysis.

B. Energy cumulant and phase transition order

In view of the first-order nature of the transition of the q =
4 Potts model in the absence of disorder and the lack of clarity
from previous studies about the shift in the tricritical point qc,
[21,23–25,30] our first task is to determine the order of the
transition. One useful tool for this purpose is the fourth order
energy cumulant V4(L,�) as defined in Eq. (10). It’s general
behavior was discussed in detail in Ref. [42]. Away from a
phase transition, the probability distribution of the energy al-
ways tends to a (single) Gaussian in the thermodynamic limit,
centered at the expected energy 〈E〉. Also, the relative width
of this Gaussian shrinks to zero, so the distribution turns into a
δ function. In this case, it is easily seen [48] that V4(L) → 2/3.
The same is the case for T = Tc at a continuous transition. In
this case, the shape of the distribution is no longer Gaussian,
but its relative width still shrinks to zero as L → ∞. On the
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FIG. 2. Residuals nb[O(n) − O∗] as a function of 1/ne according
to the scaling form (13) for various quantities O: magnetization
[m]av, disconnected susceptibility χdis, Binder-cumulant U4, and
bond-energy per spin [eJ ]av. Panel (a) is for L = 64 and � = 1.63,
corresponding to the data in Fig. 1. Panel (b) is for L = 96 and
� = 1.63, and panel (c) is for L = 96 and � = 1.68. The solid lines
are joint fits according to Eqs. (14)–(17), which produce exponent
estimates e = 0.242(23) with fit quality Q = 0.43 for the top panel
(a), e = 0.253(28) with Q = 0.81 for panel (b), and e = 0.60(25)
with Q = 0.74 for the bottom panel (c).

contrary, for a first-order transition the limit of V4(L) is related
to the distance of the ordered and disordered peaks that stays
finite in the thermodynamic limit. Hence, V4(L) approaches a
nontrivial value in this case [42,49].

Figure 3(a) shows the behavior of V4(L,�) as a function
of � at n = 100 and for different L. It is clearly visible that
V4(L,�) displays a minimum at a certain �, say �min, and
the depth of the minimum strongly decreases with increasing
system size L. To analyze this size dependence, we performed
parabolic fits near the minimum: V4(�) = a0(� − �min)2 +

FIG. 3. (a) The energetic cumulant V4(L,�) for n = 100 as a
function of � for various system sizes L. The dashed line indicates
the trivial limit 2/3 of V4(L,�). (b) Vmin(L) = 2/3 − V4(L, � =
�min ) as a function of L on a log-log scale. For a better view, the
data for different n are shifted relative to each other. The solid lines
are power-law fits Vmin(L) ∼ La with a value of a in the range 2.058
to 2.085.

V4(�min) and obtained V4(�min) as the depth of the minimum
of V4. In Fig. 3(b), we plot (on a doubly-logarithmic scale) the
depth of the minima after subtraction from 2/3 as a function
of L and for different n, i.e.,

Vmin(L, n) = 2/3 − V4(L,�min, n). (18)

Apparently, this dependence is well described by a power law,

Vmin(L) ∼ L−a,

as indicated by the fits drawn as solid lines. The decay expo-
nent is found to be a = 2.058(8) for n = 1 and a = 2.085(9)
for n = 100, clearly different from the expected values a =
d = 3 for a first-order transition [42]. From this nontrivial
value of a and the convergence of V4 to 2/3 we hence con-
clude that the q = 4 RFPM undergoes a continuous transition
at T = 0.

C. The order parameter

We now turn to an analysis of the critical behavior of the
system at its continuous transition. We start by considering
the order parameter. Figure 4(a) shows the disorder-averaged
magnetization [m]av as a function of � for system size L = 96
and a range of different numbers n of initial conditions as
well as the extrapolated estimate for n → ∞. As is clearly
visible, [m]av approaches the limit n → ∞ rather smoothly,
and we hence do not expect strong corrections from the ex-
trapolation procedure. In Fig. 4(b), we show the lattice size
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FIG. 4. (a) Average magnetization [m]av as a function of � for
L = 96 and different numbers n of initial conditions employed.
(b) Extrapolated estimate m∗ as a function of � for various sys-
tem sizes L. (c) Scaling plot of m∗(L,�)Lβ/ν as a function of
(� − �c )L1/ν with �c = 1.607(2), 1/ν = 0.645(8), and β/ν =
0.0393(12).

dependence of the extrapolated magnetizations m∗ as a func-
tion of disorder �. The expected finite-size scaling (FSS) form
of m∗ is [50]

m∗(�, L) = L−β/νM̃[(� − �c)L1/ν]. (19)

Hence, when plotting m∗(L,�)Lβ/ν against (� − �c)L1/ν

with the correct values of the parameters �c, ν and β/ν,
the data for different L should collapse onto a single master
curve near the critical region � ≈ �c, corresponding to the
universal scaling function M̃. A correspondingly rescaled
representation of the data is shown in Fig. 4(c). Here, the
parameters are determined using autoscale.py [46] with

TABLE II. Estimates of �c, ν, and β/ν according to Eq. (19) as
well as γ̄ /ν according to Eq. (28) extracted from scaling collapses of
the data for different n as well as the extrapolated data for n → ∞
(Lmin = 24). S1 and S2 are the qualities of the collapses according to
(19) and (28), respectively (S ≈ 1 for perfect collapses).

n �c 1/ν β/ν γ̄ /ν S1 S2

1 1.637(4) 0.734(6) 0.0556(7) 2.8902(14) 2.82 2.88
5 1.625(3) 0.747(5) 0.0452(8) 2.9092(13) 1.62 2.69
10 1.621(5) 0.740(6) 0.0438(8) 2.9123(15) 1.58 1.20
50 1.617(7) 0.726(4) 0.0422(9) 2.9153(17) 1.45 1.08
100 1.615(4) 0.702(5) 0.0413(8) 2.9182(17) 1.40 0.96
∞ 1.607(2) 0.645(8) 0.0393(12) 2.9215(25) 1.22 0.77

the initial choice of parameters �c = 1.62, 1/ν = 0.7,
β/ν = 0.05 and excluding the data for L < Lmin = 24 to
effectively take scaling corrections into account. The best col-
lapse is obtained with the scaling parameters �c = 1.607(2),
1/ν = 0.645(8), and β/ν = 0.0393(12) for a fitting range
−1 � (� − �c)L1/ν � 1. We also performed a collapse anal-
ysis for the magnetization for finite n = 1, 5, 10, 50, and 100.
In Table II, we summarize the exponents from the scaling of
the magnetization for finite as well as infinite n along with the
qualities S1 of the scaling collapses [46]. We also attempted
to extrapolate the exponent estimates for 1/ν themselves for
n → ∞ and found these data to be consistent with the behav-
ior of the extrapolated magnetizations, see Appendix A.

D. Binder cumulant

Next we conduct an analysis of the Binder parameter ac-
cording to Eq. (8). As is well known, the intersections of the
cumulant curves U4(�, L) predict the location of the critical
point �c at which they become independent of lattice size L
[51,52]. In Fig. 5(a) we show the Binder cumulants U4(�, L)
against � for n = 100 and different linear lattice sizes L.
The cumulant curves intersect in the range � ∈ (1.60, 1.62)
for L � 32, hence suggesting a corresponding location of the
critical point �c for n = 100 in this area.

In order to conduct the extrapolation for n → ∞, we con-
sidered the extrapolated results of U4(L,�) in this limit, cf.
Fig. 5(b). In this plot, however, we do not see a consistent
crossing of the cumulant curves, although a maximum cross-
ing can be seen in the range of � ∈ (1.6, 1.61). To check
whether this lack of consistency arises from instabilities in
the extrapolations across different values of L and �, we
attempted to simultaneously extrapolate the cumulants for
all L and � within the range of 1.58 to 1.64 by using the
extrapolated form (16) with a common exponent e. The result
of this analysis is presented in Fig. 5(c), showing a clearer
crossing of the cumulant curves in the range � ∈ (1.59, 1.61).
In the inset, an enlarged view of the crossing of U ∗(�, L) is
presented for selected values of L.

The expected finite-size scaling form for U ∗(�, L) =
U4(�, L, n → ∞) is given by [50]

U ∗(�, L) = Ũ [(� − �c)L1/ν], (20)

where Ũ is a universal scaling function. We again per-
formed a scaling analysis using autoscale.py to check
for consistency with this form. The resulting collapses are
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FIG. 5. (a) Binder cumulant U4(L,�) for n = 100 as a function
of � for various system sizes L as specified. (b) Extrapolated es-
timates U ∗ of the Binder cumulant as a function of � for various
system sizes L. (c) Extrapolated U ∗ as determined from joint fits of
U4(L,�, n) for all L and � in the range 1.58 to 1.64. The joint fits are
performed according to the extrapolated form (16) with the shared
exponent e and n � 2. The inset is an enlarged view of the crossing
region shown for selected L.

displayed in Fig. 6, where panel (a) shows the best scaling
collapse of the cumulants U4(�, L) for n = 100, which is
achieved for �c = 1.6124(3) and 1/ν = 0.7026(16) with a
quality of collapse parameter S = 0.74. Panel (b) shows the
collapse of the extrapolated data U ∗(�, L) from the joint
fits, yielding estimates �c = 1.593(3) and 1/ν = 0.655(44)
with a quality of S = 2.34. Comparing to the data for the
order parameter, we find consistent estimates for �c and
1/ν for n = 100. For the extrapolated data 1/ν is also
consistent, but �c is slightly shifted—an effect that we at-
tribute to the observed difficulties with extrapolations for this
observable.

FIG. 6. (a) Scaling collapse of the Binder cumulant U4(L,�) for
n = 100 initial conditions as a function of (� − �c )L1/ν for system
sizes in the range L = 16 − 64, which yields �c = 1.6124(3) and
1/ν = 0.7026(16) with the quality of collapse parameter S = 0.74.
(b) Collapse of U ∗(L, �) versus (� − �c )L1/ν with �c = 1.593(3),
1/ν = 0.655(44), and S = 2.34.

E. Specific heat

A crucial quantity in the energetic sector is the specific
heat. In numerical calculations this is usually computed from
the standard fluctuation-dissipation relation or from a temper-
ature derivative of the internal energy. Since we operate at
zero temperature, however, these approaches are not viable
here. Instead, a specific-heat-like quantity can be obtained by
differentiating the disorder-averaged internal energy eJ with
respect to � as indicated in Eq. (9) (see Ref. [53] for details).

Numerically, we determine it using a three-point formula
by taking the derivative at an intermediate point. Since our
� values are not equally spaced (a finer grid is used in the
vicinity of the critical point), the usual symmetric difference
formulas are not suitable. Instead, we use a three-point for-
mula based on the Lagrange interpolating polynomial [47].
If �1, �2, and �3 are three different consecutive values
of �, an estimate of the specific-heat C at �2 can thus be
computed as

C(�2) = (�2 − �3)

(�1 − �2)(�1 − �3)
[eJ (�1)]av

+ (2�2 − �1 − �3)

(�2 − �1)(�2 − �3)
[eJ (�2)]av

+ (�2 − �1)

(�3 − �1)(�3 − �2)
[eJ (�3)]av. (21)
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FIG. 7. (a) Extrapolated estimate e∗(�, L) of the bond energy
as a function of � for various system sizes L. (b) Specific heat
C(L,�) for n = 100 according to Eq. (21). (c) Extrapolated estimate
C∗(L, �) of the specific heat derived by differentiating e∗.

Using this formula, we determine the specific heat C for
different L, � and n. In panel (a) of Fig. 7, we first present the
extrapolated estimates of the disorder-averaged bond energy
per spin e∗(L,�) against � and for different values of L.
Figures 7(b) and 7(c) display the behavior of the specific heat
as a function of � for different L, where panel (b) shows
C(L,�) for n = 100, whereas panel (c) displays the extrap-
olated specific heat C∗(L,�) after a numerical differentiation
of e∗(L,�) with respect to �. In these plots, a clear peak in the
specific heat can be seen, which moves towards lower � with
increasing L, and the height of the peak initially grows with an
increase in L. Eventually, it decreases with L, indicating a neg-
ative specific heat exponent α. To determine the peak positions
and heights, for every L we performed simulations for addi-
tional � values near the peak and used a parabolic fit to the
peak region of the form C(L,�) = a0(� − �max,C )2 + Cmax

in order to obtain the peak positions �max,C (L) and the peak

FIG. 8. (a) Residual peak locations �max(L, n) − �c(n) of the
specific heat against 1/L (on a double log scale) for different n, where
�c(n) are determined from fits of the form of Eq. (23). Solid lines are
power-law fits, whose slope give the exponent 1/ν, see Table III. For
increased clarity, the data for different n are slightly shifted relative to
each other. (b) Effective exponent 1/νeff as a function of 1/Lmean for
n = ∞. The solid line is a linear fit, yielding an extrapolated estimate
1/ν = 0.658(49), consistent with the corresponding estimate from
the FSS of m∗, see Table II. (c) Scaling of the maxima Cmax(L) as a
function of L for different n. The solid curves are fits of Eq. (27). The
corresponding fit parameters α/ν and ω are collected in Table III.

heights Cmax(L). The point symbols in panels (a) and (c) in
Fig. 8, respectively, show �max,C (L) and Cmax(L) as a function
of system size L for finite as well as infinite n.

To analyze the peak positions and heights, we note that the
singular part of the specific-heat is expected to scale as

Cs ∼ Lα/νC̃[(� − �c)L1/ν], (22)

where ν is the correlation-length exponent and α is the
specific-heat exponent. At the peak, if the argument x = (� −
�C )L1/ν of the scaling function C̃ takes some value, say x0,
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TABLE III. Parameters of fits of the forms (23) and (27) to
the locations �max(L, n) and heights Cmax(L, n), respectively, of the
specific-heat peaks. Q1 is the quality of the fit for �max(L, n), and Q2

is the quality of the fit for Cmax(L, n).

n �c 1/ν α/ν ω Q1 Q2

1 1.639(10) 0.734(92) −0.004(56) 1.07(97) 0.03 0.42
5 1.633(5) 0.747(71) −0.058(51) 1.07(74) 0.19 0.98
10 1.628(4) 0.773(64) −0.075(52) 1.08(73) 0.14 0.97
50 1.624(3) 0.742(54) −0.099(45) 1.18(66) 0.26 0.91
100 1.621(3) 0.721(51) −0.088(30) 1.47(63) 0.21 0.83
∞ 1.612(6) 0.686(69) −0.201(75) 1.35(66) 0.58 0.95

then the peak position �max,C (L) should vary as

�max,C (L) ≈ �c + x0L−1/ν, (23)

and the maximum value of the singular part of the specific
heat scales as

Cs,max(L) ∼ Lα/ν. (24)

We use Eq. (23) to estimate the infinite-size critical disorder
�c and the correlation length exponent 1/ν from the data for
�max,C (L). The corresponding fits are shown together with
the data in Fig. 8(a). The resulting fit parameters for �c and
the exponent 1/ν for different values of n are summarized in
Table III, which also contains the overall satisfactory values
of the fit qualities Q1. We note that the estimate of 1/ν is
slightly larger than the one extracted from the order parameter,
cf. Table II. In order to check whether this is an effect of addi-
tional scaling corrections that we did not account for, we also
considered an analysis of effective exponents. To this end, we
fixed the estimate �c = 1.612 and performed fits of the func-
tional form (23) to the data for three consecutive lattice sizes
L1 < L2 < L3 for increasing values of Lmean = (L1 + L3)/2.
The corresponding effective estimates 1/νeff are shown as a
function of Lmean in Fig. 8(b). Based on general arguments of
finite-size scaling, one expects [54]

1/νeff (L) ≈ 1/ν + bL−ω, (25)

where ω is the Wegner correction exponent. Our data for
1/νeff are not accurate enough to allow for a determination
of ω, but a simple linear extrapolation (that is consistent with
the values of ω extracted from the peak heights below, cf. the
data in Table III) yields an estimate 1/ν = 0.658(49) that is
noticeably closer to the value extracted from the scaling of the
order parameter than the uncorrected variant. This fit is also
shown in Fig. 8(b). We also again considered an extrapolation
of ν−1(n) for n → ∞, for details see Appendix A.

Let us now investigate Cmax(L) as shown in Fig. 8(c), which
for larger values of n exhibits a strong curvature (also on a
logarithmic scale), suggesting that α is negative. To determine
α, we initially tried to fit the functional form

Cmax(L) = C0 + aLα/ν, (26)

to the data, where C0 represents a nonsingular background
term and Lα/ν is the singular term as given in Eq. (24). This
form works for smaller values of n, but it is unable to represent
the nonmonotonic behavior seen for n � 10, cf. Fig. 8(c).

To describe such effects, we need to include corrections to
scaling, implementing fits of the form

Cmax(L) = C0 + c1Lα/ν (1 + c2L−ω ), (27)

where ω corresponds to the Wegner exponent and c2 is some
constant. Due to the nonlinearity, we are not able to reliably
fit this five-parameter form to the data and, instead, we find
that the results are heavily dependent on the initial parameter
values. For a negative α the maxima Cmax(L) will approach C0

as L → ∞, but a saturation to a nonzero C0 is not visible for
larger n as well as for n → ∞ within the range of available
system sizes, cf. Fig. 8(c). In order to stabilize the fits, we
might hence assume that C0 = 0, and we indeed find such fits
to work quite reliably. The best fits of this form are shown
as solid curves in Fig. 8(c) and the resulting estimates for
the exponents α/ν and ω are collected in Table III together
with the fit qualities Q2, which are found to be excellent.
Finally, concerning the possibility that α 	 0, from the form
(27) we would conclude that Cmax(L) 	 C′

0 + c′
2L−ω, which

would again imply saturation of Cmax as L → ∞. Since our
data for larger n do not show any sign of saturation of Cmax,
we rule out this possibility and conclude that α is negative as
given in Table III.

F. Susceptibility

We finally considered the connected and disconnected
susceptibilities. The disconnected susceptibility is defined in
Eq. (7). Panel (a) of Fig. 9 illustrates its extrapolated estimates
χ∗

dis(L,�) as a function of � for different L � 24. The ex-
pected FSS form is

χ∗
dis(L,�) = Lγ̄ /ν χ̃dis[(� − �c)L1/ν]. (28)

Based on this scaling form, we arrive at a clean scaling col-
lapse for γ̄ /ν = 2.9215(25), cf. Fig. 9(b). The values of �c

and the exponent 1/ν agree with those from the magnetization
scaling. We also performed FSS of the disconnected suscepti-
bility for finite n and obtained excellent scaling collapses. As
an example, in Fig. 9(c) we show the best scaling collapse
for n = 100. The values of the exponent γ̄ /ν for different
n, including the one for extrapolated χ∗

dis(L,�), are listed in
Table II, along with the qualities S2 of the data collapse. We
also arrive at exponent estimates for 1/ν, but we find them
to be nearly indistinguishable from the values found from
the magnetization (cf. Table II), so we do not list separate
values here.

The connected susceptibility χ (L,�) is the response of the
system to the presence of a small uniform external field h.
Since this study is conducted at temperature T = 0, we cannot
use the usual fluctuation-dissipation relation to determine χ .
Instead, we generalize arguments for the RFIM by Schwartz
and Soffer [55] to express the magnetic susceptibility for the
RFPM in a different form. Consider the Hamiltonian of the
RFPM in a uniform external magnetic field Hα ,

H = −J
∑
〈i j〉

δsi,s j −
∑

i

q−1∑
α=0

(
hα

i + Hα
)
δsi,α. (29)
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FIG. 9. (a) Extrapolated estimate χ∗
dis(L,�) of the disconnected

susceptibility as a function of � for various system sizes L. Error
bars are also shown, but they are much smaller than the symbol size.
(b) Scaling plot of χ∗

dis(L, �)L−γ̄ /ν as a function of (� − �c )L1/ν

with the values �c, 1/ν, and γ̄ /ν in Table II. (c) Same as (b) but for
n = 100.

Then the (q-component) magnetic susceptibility is defined as

χμ = lim
Hμ→0

1

N

[
∂〈Mμ〉
∂Hμ

]
av

, (30)

where 〈Mμ〉 denotes the thermal average of the total magneti-
zation, and N is the number of spins. Defining h̄α

i = hα
i + Hα ,

the disorder average [· · · ]av in the above equation can be
expressed as[

∂〈Mμ〉
∂Hμ

]
av

=
∫

d{h̄α
i }P({h̄α

i })
∂〈Mμ〉h̄α

i

∂Hμ
. (31)

Given that

∂〈Mμ〉
∂Hμ

=
∑
i,α

∂〈Mμ〉
∂ h̄α

i

∂ h̄α
i

Hμ
=

∑
i

∂〈Mμ〉
∂ h̄μ

i

,

partial integration applied to Eq. (31) yields[
∂〈Mμ〉
∂Hμ

]
av

= −
∑

i

∫
d
{
h̄α

i

}∂P
({

h̄α
i

})
∂ h̄μ

i

〈Mμ〉{h̄α
i }. (32)

Since P(h̄α
i ) is a normal distribution of mean Hα and variance

�, we have

∂P
(
h̄μ

i

)
∂ h̄μ

i

= − h̄μ
i − Hμ

�2
P
(
h̄μ

i

)
.

Using this in (32), we hence find for the susceptibility,

χμ = lim
Hμ→0

1

N

[
∂〈Mμ〉
∂Hμ

]
av

= 1

�2

[
〈mμ〉

∑
i

hμ
i

]
av

, (33)

where mμ = Mμ/N is the magnetization per spin in the state
μ. This form for χμ provides the correct susceptibility as
long as spontaneous symmetry breaking occurs between the q
different states. While this is the case in the thermodynamic
limit, a suitably modified approach is necessary for finite
systems. An explicit symmetry breaking in this case can be
achieved by applying a small external field that must be,
however, sufficiently strong to actually break the symmetry.
From the Hamiltonian (29), if we look at the typical scale
of energy contributions due to a constant external field H
and the random fields of strength �, we see that an external
field H � �N−1/2 is sufficient to break the symmetry (note
N = L3). In Table I, we present the values of the constant
external field H for different lattice sizes L chosen to break the
symmetry, such that the susceptibility χ exhibits a maximum.
These fields are applied to spin state 1 (i.e., μ = 1) and χ is
computed from Eq. (33) for different L and � after averaging
over a large number of disorder realizations Nsamp as listed in
Table I. Since χ , as defined in (33), amounts to a correlation
measure among the magnetization and the total random field
over the distribution of the latter, we find that no reliable
extrapolation in n is possible for this quantity. We hence study
it for our largest finite n = 100.

Figure 10(a) shows χ (L,�) as a function of � for n =
100 and all lattice sizes 16 � L � 96. A clear maximum in
χ (L,�) can be seen, and the maxima move to lower � with
growing L; further, the height of the maximum continuously
grows with L, signaling that χ has a divergent behavior. To
analyze this divergence, we fit a parabola near the maximum
in order to obtain the location �max,χ and the height χmax of
the susceptibility maximum. Figures 10(b) and 10(c), respec-
tively, show �max,χ (L) and χmax(L) as a function of L and for
different n. Note that χmax(L) is plotted on a log-log scale.
From the FSS ansatz

χ (L,�) = Lγ /νχ̃ [(� − �c)L1/ν] (34)

we deduce that

�max,χ (L) ≈ �c + a1L−1/ν, (35)

and

χmax(L) ∼ Lγ /ν . (36)

Fits of the form (35) to our data for �max,χ (L) work
marginally well and lead to the parameters �c and 1/ν that
are compiled in Table IV. If we compare these values to
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FIG. 10. (a) χ (L,�) (on a semi log scale) for n = 100 as a func-
tion of � and for all system sizes L as specified. (b) �max, the location
of the maxima of χ , as a function of L and for different n. Inset: effec-
tive exponent 1/νeff as a function of 1/Lmean for n = 100. The solid
line is a linear fit, yielding an extrapolated estimate 1/ν = 0.704(43)
of the exponent, consistent with the corresponding estimate from the
FSS of [m]av(L, �, n = 100), see Table II. (c) Maximum χmax(L) of
the susceptibility against L (on a log-log scale) for different n. The
line corresponds to a power-law fit of the form χmax(L) ∼ Lγ /ν with
an estimate of γ /ν = 1.343(9) to the data for χmax(L) at n = 100.

TABLE IV. Estimates of �c, 1/ν, and γ /ν from fits of the loca-
tions �max(L, n) and the heights χmax(L, n) of the susceptibility. Q1

denotes the quality of the fit for the data of �max(L, n), whereas Q2

is the quality of the fit for the data of χmax(L, n).

n �c 1/ν γ /ν Q1 Q2

3 1.625(6) 1.058(99) 1.401(10) 0.08 0.03
5 1.622(5) 1.065(85) 1.375(10) 0.04 0.06
10 1.620(4) 1.064(77) 1.349(10) 0.04 0.02
50 1.618(4) 1.054(89) 1.343(9) 0.05 0.05
100 1.617(4) 0.963(67) 1.343(9) 0.05 0.03

FIG. 11. FSS behavior of χdirect (on a double-log scale), evalu-
ated at several �c for the largest n = 100. For a better view, the
data for different �c are shifted relative to each other through mul-
tiplication by a constant factor. The lines are fits of the power-law
χdirect (L,�c ) ∼ Lγ /ν for all L � Lmin to the data. The resulting expo-
nents γ /ν from different choices of Lmin are collected in the Table V.

those from magnetization (Table II) and specific heat (Ta-
ble III), we see that the values of �c are consistent but the
values of 1/ν are appreciably larger than the previous es-
timates, strongly suggesting the presence of corrections to
scaling. Unfortunately, including a correction-to-scaling term,
i.e., �max,χ (L) = �c + a1L−1/ν (1 + a2L−ω ) leads to very un-
stable fits and hence a reliable analysis is not possible. Instead,
we again reverted to the concept of effective exponents anal-
ogous to Eq. (25). A linear extrapolation of the estimates
1/νeff (L) for n = 100 as shown in the inset of Fig. 10(b) for
this case yields 1/ν = 0.704(43), which is consistent with
the corresponding n = 100 estimate for the order parameter
scaling.

Turning to χmax(L), we fit the power-law χmax(L) ∼ Lγ /ν

to the data of Fig. 10(c) and collect the results for the expo-
nent γ /ν along with the (rather marginal) fit qualities Q2 in
Table IV. Here, we do not find any clean signature of a correc-
tion to scaling; the fit results vary only slightly on excluding
small L, and within error bars they are consistent. Given
the experience with the peak locations we were nevertheless
skeptical about the apparent absence of corrections, and we
hence conducted additional analyses of the susceptibility χ at
fixed � and without the explicit symmetry breaking through a
small external field. As our best estimate for the critical field
strength is �c = 1.607(2), we conducted such simulations in
the range �c ∈ [1.605, 1.609] with steps of size 0.001. The
resulting quantity, which we denote as χdirect, is shown at dif-
ferent estimates for �c in Fig. 11. (The data have been shifted
vertically by multiplying a constant factor so that χdirect at
different �c can be seen distinctly.) Power-law fits according
to Eq. (34) work quite well. To identify any corrections to
scaling, the power law fits are performed on various ranges of
L � Lmin. The fit results for the exponent γ /ν together with
the fit qualities Q are collected in Table V. Clearly, there is
very little systematic variation in the resulting estimate of γ /ν

on variation of Lmin. We hence put forward the fits for the com-
plete range of L, i.e., for Lmin = 16. Such fits at various �c

are shown as solid lines in Fig. 11, and the corresponding γ /ν

estimates for different �c as found in Table V are consistent
with each other. We quote γ /ν = 1.467(53) corresponding
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TABLE V. Estimates of the exponent γ /ν after fitting the form
χ (L,�c ) ∼ Lγ /ν for all five �c to the corresponding data. The fits
are performed to all L � Lmin with the cut-offs Lmin = 16, 20, and
24, respectively.

Lmin = 16 Lmin = 20 Lmin = 24

�c γ /ν Q γ /ν Q γ /ν Q

1.605 1.542(52) 0.62 1.529(64) 0.52 1.557(80) 0.43
1.606 1.562(51) 0.22 1.560(62) 0.16 1.559(78) 0.11
1.607 1.467(53) 0.63 1.447(66) 0.54 1.463(84) 0.42
1.608 1.488(50) 0.45 1.531(62) 0.49 1.499(79) 0.42
1.609 1.556(48) 0.72 1.577(59) 0.66 1.558(74) 0.57

to the value at �c = 1.607 and for Lmin = 16 as our final
estimate. Clearly, there is a noticeable difference in the values
of γ /ν estimated through this direct approach from the ones of
the χ estimates including the symmetry-breaking field, but we
believe that the unbroken estimates are the more reliable ones.
This is in broad agreement with other experiences concerning
the connected susceptibility in critical phenomena, which is
often found to suffer from significant corrections, see, e.g.,
Refs. [56,57].

Finally, in Table VI, we present all our extrapolated results
for the critical exponents ν, α, β, γ , and γ̄ . The exponents η,
η̄, and θ are obtained using the relations γ = ν(2 − η), γ̄ =
ν(4 − η̄), and θ = 2 − η̄ + η. With these estimates, one can
check the validity of the Rushbrooke equality α + 2β + γ =
2 and the modified hyperscaling relation 2 − α = ν(d − θ ).
[3,58,59]. It can be easily inspected from Table VI that both
relations are well satisfied (within error bars). The so-called
two-exponent scaling scenario predicts η̄ = 2η [60,61]. This
is also compatible with our results for q = 4 as we find a very
marginal value of the difference 2η − η̄ = 0.013(53), indicat-
ing that there are only two independent critical exponents.
In Table VI, we also show the exponents from our previous
study for q = 3 RFPM [38] and the recent estimates for the
three-dimensional RFIM [7].

IV. SUMMARY AND DISCUSSION

Based on a recently developed tool-chain of quasiexact
ground-state calculations for Potts models with random fields,

TABLE VI. Critical exponents of the q = 4 RFPM as compared
to those of the q = 3 RFPM [38] and the RFIM (the q = 2 case)
[7]. All exponents are for dimension d = 3 and the numbers in the
parentheses denote the error bars in the last significant digits.

RFIM q = 3 RFPM q = 4 RFPM

ν 1.38(10) 1.383(8) 1.55(2)
α −0.16(35) −0.082(28) −0.31(12)
β 0.019(4) 0.0423(32) 0.061(2)
γ 2.05(15) 2.089(84) 2.274(87)
γ̄ 4.10(6) 4.07(3) 4.53(6)
η 0.5139(9) 0.49(6) 0.533(53)
η̄ 1.028(2) 1.060(3) 1.080(3)
θ 1.487(1) 1.43(6) 1.45(6)
α + 2β + γ 2.00(31) 2.08(9) 2.09(15)

we have investigated the four-state random-field Potts model
on the cubic lattice with a focus on its zero-temperature crit-
ical behavior. Our approach is based on the application of
graph-cut methods, which are known to be exact for two-state
(Ising-like) systems, to an embedding of two-state variables
into the q states of the Potts system [35,36]. Combining
this method with a systematic extrapolation technique based
on n repetitions of such approximate ground-state calcula-
tions provides access to zero-temperature behavior of the
system while avoiding the exponentially growing effort for
any exact approach applied to this NP hard optimization
problem [37].

Akin to the situation for other random-field systems, the
location of the disordered fixed point at temperature T = 0
implies that such ground-state calculations also describe the
critical behavior at nonzero temperatures. While for the pure
Potts system discontinuous transitions occur for all q � 3, the
transition order for the random-field problem is not known. In
a previous study we showed that for q = 3 states the RFPM
retains a continuous transition [38]. In the present work we
generalized these considerations to the four-states problem.
We have calculated the physical quantities, such as the mag-
netization, Binder cumulant, bond energy, specific heat, as
well as the connected and disconnected susceptibilities, on
various system sizes up to 963. To average these quantities,
the simulations were performed for a large number of disorder
samples and each disorder sample is further simulated for
n = 100 initial conditions to facilitate the extrapolation to the
quasiexact limit n → ∞. Employing a comprehensive finite-
size scaling analysis, we find that the first-order transition
of the pure system is softened through the random fields to
become continuous. Since the studied case of T = 0 corre-
sponds to the strongest disorder along the transition line, and
at the weakest disorder close to the pure case the transition
is of first order, one should expect a tricritical point at some
intermediate disorder strength which, however, could only be
discovered using finite-temperature methods such as Monte
Carlo simulations. This structure of the phase diagram is
rather different from the ones proposed in Refs. [23,26,30]
that had anticipated first-order transitions at zero temperature.

Studying the finite-size scaling of the magnetic and ener-
getic quantities, we extract the full set of critical exponents
of the model. Our estimates of various exponents are broadly
presented in Tables II to V. The last Table VI lists the extrap-
olated estimate of all exponents. As a sanity check, we test
these exponent estimates against the Rushbrooke scaling law
and find it satisfied. It is clear that the q = 4 estimates are
distinct from those of the q = 3 RFPM as well as the RFIM,
indicating that the q = 4 RFPM lies in a different universality
class. In particular, the correlation length exponent as well as
the magnetic exponents appear to be clearly distinct from the
cases q = 2 and q = 3. The hyperscaling-violation exponent
θ , on the other hand, is consistent within error bars between
all three models, so it is conceivable that it is independent
of q in this class of models [62]. The most subtle determi-
nation for random-field problems concerns the specific-heat
exponent α. Carefully taking scaling corrections into account,
we here find a clearly negative value α = −0.31(12), whereas
the three-state model was found to be closer to marginal with
α = −0.082(28).

214434-12



ORDERING TRANSITION OF THE THREE-DIMENSIONAL … PHYSICAL REVIEW B 111, 214434 (2025)

FIG. 12. Extrapolation of the exponent estimates for ν−1 to the
limit n → ∞. The lines show the corresponding fits of the functional
form (A1) to the data.

While these results imply a significant step forward in
the understanding of the RFPM in three dimensions, a lot
remains to be desired. Is there a multicritical value qc such that
the transitions become first order even at T = 0 for q > qc?
How does the finite-temperature phase-diagram look like?
Does the behavior of the RFPM depend on the particular
form of coupling the random fields to the spins and on the
random-field distribution? These and related questions form
interesting avenues for further studies.
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APPENDIX: DIRECT EXTRAPOLATION
OF THE CORRELATION-LENGTH EXPONENT

In the main text we compared the values of critical ex-
ponents determined from the data for finite n with those
extracted from the data extrapolated for n → ∞. Here, we
investigate the consistency of the two approaches for the ex-
ample of the disorder-averaged magnetization [m]av(L,�, n)
and the peak positions of specific-heat, viz. �max,C(L, n) (see
Tables II and III). To this end, we considered the possibility
of a power-law form for the finite-n deviations of the (inverse)
correlation length exponent 1/ν,

ν−1(n) = ν−1
∞ + bn−c, (A1)

where ν−1
∞ is the extrapolated value of ν−1 in the limit

n → ∞. Attempting such fits for the estimates ν−1
m (n) from

the magnetization data collapse and ν−1
C for the scaling of

the specific-heat peak locations, we are not able to arrive
at stable results if leaving all three parameters to vary. The
fit routine produces negative extrapolated values for both
1/ν∞,m and 1/ν∞,C with a small power-law exponent c,
which are nonphysical. If, on the other hand, we fix ν−1

∞,m =
0.645 and ν−1

∞,C = 0.686 from Tables II and III, respectively,
we find acceptable fits with b = 0.1294(66), c = 0.131(17)
with χ2/d.o.f = 1.86 from 1/νm, and b = 0.143(55), c =
0.206(26) with χ2/d.o.f = 0.23 from 1/νC . As the residuals
ν−1(n) − ν−1

∞ shown in Fig. 12 reveal, the signal-to-noise
ratio in these corrections is too small for a reliable nonlinear
three-parameter fit. We hence conclude that the extrapolations
of the exponent estimates for finite n are consistent with the
n → ∞ result, but an extrapolation of the observable quanti-
ties to n → ∞ is the more reliable strategy as compared to an
extrapolation of the exponent estimates themselves.
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