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Abstract – The concept of Schramm-Loewner evolution provides a unified description of domain
boundaries of many lattice spin systems in two dimensions, possibly even including systems with
quenched disorder. Here, we study domain walls in the random-field Ising model. Although, in
two dimensions, this system does not show an ordering transition to a ferromagnetic state, in the
presence of a uniform external field spin domains percolate beyond a critical field strength. Using
exact ground-state calculations for very large systems, we examine ground-state domain walls
near this percolation transition finding strong evidence that they are conformally invariant and
satisfy the domain Markov property, implying compatibility with Schramm-Loewner evolution
(SLEκ) with parameter κ= 6. These results might pave the way for new field-theoretic treatments
of systems with quenched disorder.

Copyright c© EPLA, 2011

In the past decades, analytic techniques such as confor-
mal field theory (CFT) and Coulomb gas methods have
led to a rather comprehensive understanding of critical
phenomena in two dimensions (2D). In particular, CFT
allows for a complete classification of 2D critical points,
the exact determination of critical exponents and, in some
cases, even scaling amplitudes [1]. This success is tied to
the fact that the conformal group is infinite-dimensional,
however, which is true only in 2D, and few of the results
generalize to higher dimensions [2]. Another difficulty for
this approach arises for the important class of systems
with quenched disorder, such as diluted magnets, random-
field systems and spin glasses [3], since the non-unitary
CFTs that are believed to describe systems with quenched
disorder are poorly understood [4].
While some geometrical aspects of critical phenomena

had been previously worked out using concepts from the
Coulomb gas [5] and two-dimensional quantum gravity [6],
a breakthrough was achieved with the description of
domain boundaries in terms of random curves in the
plane in a framework dubbed Schramm-Loewner evolution
(SLE) [7]. In SLE, stochastic curves in the plane are
constructed from one-dimensional Brownian motion, thus
classifying a statistical ensemble of curves with only
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one parameter, the diffusion constant κ. Characteristic
interfaces in many physical systems have been shown (in
some cases rigorously) to satisfy SLEκ. These include
percolation (κ= 6), self-avoiding walks (κ= 4/3), as well
as spin cluster boundaries (κ= 3) and Fortuin-Kasteleyn
cluster boundaries (κ= 16/3) in the Ising model. In
recent years, close connections between SLE and CFT,
including links between probabilistic properties of SLE
curves and scaling operators in CFT, or between the
central charge c of the CFT and the diffusion constant
κ have been established [7]. A number of numerical
studies have found interfaces in disordered systems to
be (partially) consistent with SLE, in particular the 2D
Ising spin glass [8,9], the Potts model on dynamical
triangulations [10], the random bond Potts model [11], and
the disordered solid-on-solid model [12]. Such findings and
the close link between SLE and CFT spur the hope of a
more complete understanding of systems with quenched
disorder from a field-theoretic perspective.

Random-field Ising model. – Here, we study domain
walls in the random-field Ising model (RFIM) with Hamil-
tonian [13]

H=−J
∑
〈i,j〉
sisj −

∑
i

hisi, (1)
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where the spins si =±1 are located on the sites of a
square lattice and interact ferromagnetically with nearest
neighbors. The local fields hi are quenched random vari-
ables which, for the time being, we take as drawn from a
Gaussian distribution with mean H and standard devia-
tion ∆. Since only the ratio J/∆ is relevant, we take J = 1.
Random field models have a large number of experimental
realizations which are of technological importance such as
superfluid helium, liquid crystals in silica aerogels, Bragg
glasses in high-Tc superconductors, amorphous solids [14]
and ferroelectric materials [15]. It was shown by Imry and
Ma [16] that random fields destabilize the ferromagnetic
order in dimensions d� 2. For the case of 2D, it was argued
by Binder [17] that ferromagnetic order occurs only up

to a breakup length scale Lb ∼ eA/∆2 , which grows with
decreasing disorder ∆, and that the system remains para-
magnetic at scales L>Lb. Later, Aizenman and Wehr [18]
proved that for d� 2 the system indeed has a unique Gibbs
state, precluding the existence of an ordering transition.
On the contrary, for d� 3, Lb diverges at the thermody-
namic transition point, below which the system is ferro-
magnetic [13]. For non-zero average fields H, on the other
hand, even in 2D the size of spin clusters diverges at a
critical value Hc =Hc(∆) [19–22]. However, the weight of
these clusters is sub-extensive, such that the free energy
remains analytic and no thermodynamic phase transition
occurs. This phenomenon bears many similarities to the
Kertész line in ferromagnets in the absence of disorder [23].
It is this transition at non-zero H that we study in this
letter.
To investigate the properties of domain walls in the

RFIM we numerically compute exact ground states of
samples of random-field realizations. Ground states can be
found in polynomial time via a mapping to a minimum-
cut/maximum-flow problem [24]. We employ a fast algo-
rithm based on the idea of “augmenting paths” [25],
which allows us to find ground states of systems of 107

spins in about 6 s, such that the maximum system sizes
exceed those of previous studies [19–21] by about an order
of magnitude. We use a variety of domain geometries,
partially with fixed spins to enforce the occurrence of
domain walls. The calculations reported here were carried
out at either ∆= 2.5 and H = 0.01362 =Hc(∆)± 0.00007
or at ∆= 1.7 and H = 5.08× 10−4 =Hc(∆)± 0.07× 10−4.
For both cases the breakup length scale is only a few lattice
spacings, much less than the system sizes we look at. Both
the breakup length scale and the critical external field were
determined using recipes laid out in ref. [20].

Schramm-Loewner evolution. – In the framework
of Loewner evolution one imagines a random curve γt
in the plane as being continuously grown in time t in a
random process. Instead of studying this process directly,
one considers the evolution of a family gt:H \ γt→H of
conformal maps that take the complement of γt in the
upper half-plane H to H. Under this map the curve γt,
which lies on the boundary of H \ γt, is taken to the

boundary of H, i.e. to the real line. Assuming standard
normalization and boundary conditions, it turns out that
gt is completely determined by the one-dimensional func-
tion ξt, which corresponds to the image under gt of the tip
of the growing curve on the real line, via the differential
equation

∂gt(z)

∂t
=

2

gt(z)− ξt . (2)

It was shown by Schramm [26] that if the ensemble
of curves γt is conformally invariant and satisfies the
domain Markov property (to be discussed below), the
one-dimensional random process described by ξt must be
Brownian motion with zero mean and variance κt. For such
SLE curves, many stochastic properties can be calculated
rigorously including, for instance, the fractal dimension
df = 1+κ/8 or the probability PLP(x, y) that the curve
γt passes to the left of the point (x, y). The latter was
proven by Schramm [27] for curves starting at the origin
of the upper half-plane H to be

PκLP(x, y) =
1

2
+

Γ(4/κ)√
π Γ
(
8−κ
2κ

) x
y
2F1

(
1

2
,
4

κ
;
3

2
;−
(
x

y

)2)
,

(3)

where 2F1 is Gauss’ hypergeometric function.

Domain Markov property. – The domain Markov
property (DMP) formalizes the notion that a growing path
of the type described above is agnostic about its past.
Let PD(γab) be the probability measure of curves γab in a
domain D running between points a and b on the boundary
of D, and let c be a point in the interior of D. Then, the
DMP states that

PD(γcb|γac) = PD\γac(γcb), (4)

i.e., the probability of γcb is independent of whether γac is
preconditioned in domain D, or whether γac is excluded
from the domain itself. While it is not debated that
the DMP holds for domain boundaries in pure lattice
systems [7], even off criticality, it has been argued that it is
likely not to survive the average over quenched disorder [9].
For the RFIM, we have checked the DMP numerically
using the left passage probabilities PLP(x, y) instead of
calculating the probability of all possible curve segments
γcb. For the l.h.s. of eq. (4), this amounts to picking
out those configurations of the random fields that yield
an interface along γac, while for the r.h.s., the interface
is asserted to run along γac, for instance by fixing the
corresponding spins with large magnetic fields. If the DMP
holds, then

∆PDMP(x, y) =
∑
γcb

PD(γcb|γac)PLP(x, y; γcb)

−
∑
γcb

PD\γac(γcb)PLP(x, y; γcb) (5)
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Fig. 1: (Color online) The main panel shows the spatial
distribution of |∆PDMP(x, y)| for a system of 4000 spins in a
circular domain and a vertical cut γac of length 6 starting at
the bottom of the domain. Lighter colors correspond to larger
deviations from the DMP. The right inset panel shows the
decay of |∆PDMP(35, y)| with distance in the positive vertical
direction ∆y (in lattice spacings) from the point of maximum
deviation. Three different system sizes and correspondingly
scaled cut lengths γac are shown. The left inset panel shows
the decay in the negative vertical direction (i.e. along the cut)
vs. ∆y scaled by the cut length. The tests were performed at
∆= 2.5 and H = 1.362× 10−2 ≈Hc(∆).

will be identically zero. We have studied system sizes of
1000, 4000, and 16000 spins with proportionally scaled
cuts γac of length 3, 6, and 12, respectively. For the largest
system, we looked at 3× 108 ground-state configurations,
of which only about 2800 satisfied the conditioning along
γac. As is clearly seen from |∆PDMP(x, y)| shown in the
main panel of fig. 1, the DMP does not survive the disorder
average exactly. The deviations are maximal around the
tip of γac and fall off rapidly with the distance from γac.
As shown in the right inset panel, the decay of ∆PDMP
with the vertical offset ∆y from the tip of γac is nearly
independent of the system size and the length of γac. In
contrast, as shown in the left inset, the decay rate for
∆y < 0, i.e., along the cut, is proportional to the cut
length. Perpendicularly to the cut, the decay rate (not
shown) is again independent of system size. Hence, the
intrusion of deviations into the interior of the domain
extends to only a few lattice spacings and is largely
independent of system size and cut length, such that the
DMP will be recovered in the scaling limit. We find that
the agreement with the DMP in the scaling limit also holds
off the critical percolation line.

Left passage probability. – We examined the agree-
ment of the RFIM interfaces with the SLE expectations
for the left passage probabilities. As the rigorous result of
eq. (3) is valid on the upper half-plane H, we performed
our ground-state calculations on lattices embedded in
domains D which have simple, closed-form conformal maps
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Fig. 2: (Color online) Magnitude of the deviation of the left
passage probability for spin domain interfaces from the exact
result of eq. (3) for κ= 6 in circular and square domains.
The interfaces are constrained to run between points a and
b as shown. The lower panel displays the spatially averaged
deviation E(κ) as a function of the diffusion constant κ,
showing a clear minimum close to κ= 6. Calculations were
performed for 10000 disorder realizations on systems of 6× 106
spins at ∆= 2.5 and H = 1.362× 10−2 ≈Hc(∆).

w(z) to H [12]. By fixing the boundary spins through
the respective random fields, the interface was forced to
run between points a and b in D which are mapped
to the origin and infinity in H, respectively. Numerical
checks were performed for the unit circle with the interface
between −i and i, which is mapped to H by w(z) = i 1+z1−z ,
as well as the unit square with interfaces defined from 0 to
1+ i, which is mapped to H by w(z) =−℘(1+ i− z; 1, i)
where ℘(z;w1, w2) is the Weierstrass p-function. Looking
at the left passage probability for multiple domains addi-
tionally acts as a check of conformal invariance. For a
quantitative comparison we considered the mean square
deviation of the computed left passage probability PLP
from the exact result PκLP of eq. (3),

E(κ) =
〈
[PLP(x, y)−PκLP(x, y)]2

〉1/2
D

, (6)

where 〈·〉D denotes a spatial average over D, excluding
the vicinity of the fixed boundary spins. This quantity
is shown in fig. 2 as a function of κ for the circle and
square geometries. In both cases E(κ) is minimal for κ
within 0.05 of the value κ= 6. The spatial dependence of
the deviation from Pκ=6LP (x, y) is also shown in fig. 2 and,
for a horizontal cut through the domain, in fig. 3. There
appears to be no systematic deviation.

Crossing probability. – From the presented results
it is evident that spin domain interfaces in the 2D RFIM
satisfy the domain Markov property and are conformally
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Fig. 3: (Color online) Deviation from the exact left passage
probability along a horizontal line crossing the center of the
circle geometry that is shown in fig. 2.

invariant at the percolation threshold H =Hc(∆) in the
scaling limit, and thus are described by SLE. Furthermore,
the parameter κ appears to be consistent with κ= 6 to
high precision. To corroborate these findings, we tested
our results for compatibility with the exact formulas for
the crossing probabilities of percolation clusters, another
system with κ= 6 [28]. These give the probability of
finding a cluster of a given species (say up spins) which
touches two non-adjacent segments of the boundary of
a domain. In particular, the probability πr of a domain
touching both the top and bottom of a rectangle of aspect
ratio r is known to depend only on r [28]. Similarly, in a
domain defined by an equilateral triangle, the probability
of a cluster crossing from a fraction x of one boundary edge
to the opposite edge is πx = x [29] (see fig. 4 for a schematic
representation). Figure 4 shows these exact percolation
results together with numerical simulation data for the
RFIM at ∆= 1.7 and H = 5.08× 10−4 ≈Hc(∆= 1.7) for
a system of 6× 106 spins for both the rectangle and
triangle geometries. We find very good agreement with the
percolation results, cf. the lower panel of fig. 4. We also
show results calculated with an external field H = 4.71×
10−4 ≈ 0.93Hc. Systematic deviations from SLE can be
clearly seen, even for this slight detuning from criticality,
indicating the high sensitivity of our tests.

Fractal dimension. – One of the rigorous results
for curves described by SLEκ is their fractal dimension,
which is given, for κ� 8, by df = 1+κ/8. We numerically
determined the fractal dimension for a range of different
geometries and display the results in fig. 5. We find that
corrections to scaling for the interface length LI are well
described by the form

LI = aL
df (1+ b/L). (7)

We take L as the square root of the number of spins
for the case of non-rectangular domains. For the circle
geometry we find df = 1.7506(9), while for the square
geometry we arrive at df = 1.7514(14), using ∆= 2.5 and
H = 1.362× 10−2 ≈Hc(∆) in both cases. These results
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Fig. 4: (Color online) Upper panel: crossing probabilities for
spin clusters in the 2D RFIM in rectangular (lower scale) and
triangular (upper scale) domains. Calculations were performed
at ∆= 1.7 and H = 5.08× 10−4 ≈Hc(∆) for 20–30× 103 disor-
der realizations for the rectangular domain and 7× 103 real-
izations for the triangular domain. The solid lines indicate
the exact results for percolation clusters (SLEκ=6) derived in
refs. [28,29]. Lower panel: deviations of the numerical results
from the exact expression for percolation for the rectangular
domain. Deviations in the triangular domain are similar. Shown
with dashed error bars are data calculated at ∆= 1.7, but at
an external field H = 4.71× 10−4. Some systematic deviations
from SLE expectations are already seen for this slight detuning
from criticality.

are perfectly compatible with df = 7/4 = 1.75 expected for
SLE curves with κ= 6.

Brownian motion. – As the most direct test for
SLE, we studied the one-dimensional stochastic process
(or driving function) ξt generated by the Loewner map
gt according to eq. (2) as applied to domain walls in
the RFIM. For a lattice system, the family of maps gt is
realized as a discrete series of maps gi iteratively removing
a small section from the beginning of the curve. For this
purpose, gi is approximated using a vertical slit map [30],

gi(z) = i
√
−(z− ξi)2− 4∆ti+ ξi. (8)

Here, ξi and ∆ti are determined through ξi = xi,i−1 and
∆ti = y

2
i,i−1/4, where xi,i−1 and yi,i−1 are the coordinates

of the i’th segment of the curve after undergoing the
i− 1 successive maps gi−1 ◦ . . . ◦ g1. The parameter ξi
is the value of the driving function ξt sampled at time

40001-p4
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Fig. 5: (Color online) Scaling of interface lengths with system
size. The best-fit values —df = 1.7506(9) for the circle geome-
try and df = 1.7514(14) for the square geometry— are in excel-
lent agreement with the value expected for SLE6, df = 7/4.
The calculations were carried out at ∆= 2.5 and H = 1.362×
10−2 ≈Hc(∆).

ti =
∑
j�i∆tj . The complex square root in eq. (8) is calcu-

lated, as usual, with the branch cut along the negative real
axis. We studied the statistics of 10000 interfaces gener-
ated in a half-disc, optimally mimicking the full space
H. The interface is initiated at the origin by two fixed
spins and is considered ended when it touches the curved
boundary. We used systems of 6 million spins at ∆= 2.5
and H = 1.362× 10−2 ≈Hc(∆). We find that the variance
of the driving function calculated from the interfaces
is κ̂= 〈(ξt−〈ξt〉)2〉/t= 6.086(87), and the normalized
mean is ξ̂ = 〈ξt〉/

√
κ̂t= 0.017(10), perfectly compatible

with SLEκ=6. Using a Kolmogorov-Smirnov test [30,31],
we further checked that the ξt are normally distributed
and find a p-value of p= 0.17, indicating consistency
with a normal distribution. To check for the statistical
independence of the increments of ξt, we divided ξt into
n increments evenly spaced in time and checked whether
the signs of these increments follow a χ2 distribution
with 2n− 1 degrees of freedom [30]. For n= 10, we find
a p-value of p= 0.18 indicating consistency with the
assumption of statistical independence. As a further
check of conformal invariance, we performed the same
tests on interfaces originating in the two domains of fig. 2,
and found similar agreement with SLE.

Binary fields. – Finally, we also considered a binary
(Bernoulli) field distribution, where each local random
field hi takes on the value ∆ with probability p and −∆
with probability 1− p. Because of the discrete nature of
the distribution, this system has a massive ground-state
degeneracy, and behaves rather differently from the
Gaussian RFIM, at least at zero temperature. Although
polynomial algorithms for enumerating all ground states
are known [32], handling all ground states becomes
impractical for larger system sizes. Here, instead, we
sample from the ground-state manifold by adding a tiny
noise term (normally distributed with strength δ) to the
Bernoulli field distribution. For sufficiently small δ, the
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Fig. 6: (Color online) Crossing probabilities for the binary
distribution of fields as a function of the fraction p of up-
fields. The upper panel shows the dependence of these curves
on disorder strength (for system size L2 = 106). The bottom
panel shows the crossing of these curves for different system
sizes at the critical point pc (at disorder strength ∆= 2.1).

resulting state is also a ground state of the noiseless
system, and, importantly, is selected without bias from
among the degenerate ground states. We find that there
exists a geometric transition where spin clusters diverge
at p= pc(∆), in analogy with Hc(∆) for the Gaussian
case. This is illustrated in fig. 6, where we have plotted,
for a number of different disorder strengths, the prob-
ability of finding a spin-up cluster that touches both
the top and bottom boundaries of a square geometry.
Shown in the bottom panel is the size dependence of
these curves, demonstrating that different sizes cross
at pc. We also point out that this crossing of curves
happens when the crossing probability is 0.5 as expected.
Interestingly, as can be seen in in the upper panel of
fig. 6, for ∆< 2 this transition appears to occur at the
constant value pc(∆< 2) = 1/2, while pc(∆� 2)> 1/2.
We test agreement with SLE predictions by looking at
the fractal dimension at pc, finding df = 1.746(2), and
by looking at the left passage probability, the results of
which are shown in fig. 7. Both properties are consistent
with SLE for κ= 6.

Conclusions. – We have studied the properties of spin
cluster interfaces in the ground state of the Gaussian
random field Ising model at values of the external field
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Fig. 7: (Color online) Left passage probabilities for the binary
distribution of fields. See fig. 2 for a detailed description of
the setup. The calculations were carried out at ∆= 2.1 and
p= 0.522≈ pc(∆) for systems of 6 million spins. Averages were
performed over 10 randomly chosen ground states for each of
6000 disorder configurations.

strength H where the size of the clusters diverges. For
this T = 0 system with quenched disorder, the domain
Markov property was shown to be satisfied in the scal-
ing limit. Together with the conformal invariance of the
interfaces deduced from Schramm’s formula and the cross-
ing probabilities, it is shown clearly that the spin domain
interfaces satisfy SLEκ=6, corresponding to pure percola-
tion. The fractal dimension is in perfect agreement with
these observations, contrary to the case of the solid-on-
solid model studied in ref. [12], where κ≈ 4 was found
from Schramm’s formula, but df ≈ 1.25 �= 1+κ/8. Study-
ing the SLE map directly, we have shown that the driving
function describes Brownian motion. The consistency with
SLE carries over to the case of binary random fields, where
degeneracies occur. This is in contrast to the observations
for the spin glass model, where domain walls appear to
be only described by SLE for continuous disorder distri-
butions [8,9,33]. The 2D RFIM thus seems to provide a
paradigmatic example where SLE is realized in all known
aspects in a system with quenched disorder, nourishing
the hope for a more systematic treatment of systems with
quenched disorder in field theory.
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[20] Seppälä E. T. andAlava M. J., Phys. Rev. E, 63 (2001)

066109.
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[33] Risau-Gusman S. and Romá F., Phys. Rev. B, 77 (2008)

134435.

40001-p6


