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Abstract. We review the pertinent features of the phase diagram of
the zero-field Blume-Capel model, focusing on the aspects of transition
order, finite-size scaling and universality. In particular, we employ a
range of Monte Carlo simulation methods to study the 2D spin-1
Blume-Capel model on the square lattice to investigate the behav-
ior in the vicinity of the first-order and second-order regimes of
the ferromagnet-paramagnet phase boundary, respectively. To achieve
high-precision results, we utilize a combination of (i) a parallel ver-
sion of the multicanonical algorithm and (ii) a hybrid updating scheme
combining Metropolis and generalized Wolff cluster moves. These tech-
niques are combined to study for the first time the correlation length
of the model, using its scaling in the regime of second-order transitions
to illustrate universality through the observed identity of the limiting
value of ξ/L with the exactly known result for the Ising universality
class.

1 Introduction

The Blume-Capel (BC) model is defined by a spin-1 Ising Hamiltonian with a single-
ion uniaxial crystal field anisotropy [1–4]. The fact that it has been very widely
studied in statistical and condensed-matter physics is explained not only by its relative
simplicity and the fundamental theoretical interest arising from the richness of its
phase diagram, but also by a number of different physical realizations of variants
of the model, ranging from multi-component fluids to ternary alloys and 3He–4He
mixtures [5]. Quite recently, the BC model was invoked by Selke and Oitmaa in order
to understand properties of ferrimagnets [6].

a e-mail: nikolaos.fytas@coventry.ac.uk

http://www.epj.org/
https://doi.org/10.1140/epjst/e2016-60337-x


790 The European Physical Journal Special Topics

The zero-field model is described by the Hamiltonian

H = −J
∑

〈ij〉
σiσj +Δ

∑

i

σ2i = EJ +ΔEΔ, (1)

where the spin variables σi take on the values −1, 0, or +1, 〈ij〉 indicates summa-
tion over nearest neighbors only, and J > 0 is the ferromagnetic exchange interaction.
The parameter Δ is known as the crystal-field coupling and it controls the density of
vacancies (σi = 0). For Δ→ −∞, vacancies are suppressed and the model becomes
equivalent to the Ising model. Note the decomposition on the right-hand side of
equation (1) into the bond-related and crystal-field-related energy contributions EJ
and EΔ, respectively, that will turn out to be useful in the context of the multicanon-
ical simulations discussed below.
Since its original formulation, the model (1) has been studied in mean-field theory

as well as in perturbative expansions and numerical simulations for a range of lattices,
mostly in two and three dimensions, see, e.g., references [7,8]. Most work has been de-
voted to the two-dimensional model, employing a wide range of methods including real
space renormalization [9], Monte Carlo (MC) simulations and MC renormalization-
group calculations [10–21], ε-expansions [22–25], high- and low-temperature series
expansions [26–28] and a phenomenological finite-size scaling (FSS) analysis [29]. In
the present work, we focus on the nearest-neighbor square-lattice case and use a
combination of multicanonical and cluster-update Monte Carlo simulations to exam-
ine the first-order and second-order regimes of the ferromagnet-paramagnet phase
boundary. One focus of this work is a study of the correlation length of the model,
a quantity which to our knowledge has not been studied before in this context. We
locate transition points in the phase diagram of the model for a wide temperature
range, thus allowing for comparisons with previous work. In the second-order regime,
we show that the correlation-length ratio ξ/L for finite lattices tends to the exactly
known value of the 2D Ising universality class, thus nicely illustrating universality.
The rest of the paper is organized as follows. In Section 2 we briefly review

the qualitative and some simple quantitative features of the phase diagram in two
dimensions. Section 3 provides a thorough description of the simulation methods, the
relevant observables and FSS analyses. In Section 4 we use scaling techniques to eluci-
date the expected behaviors in the first-order regime as well as the universality of the
exponents and the ratio ξ/L for the parameter range with continuous transitions. In
particular, here we demonstrate Ising universality by the study of the size evolution
of the universal ratio ξ/L. Finally, Section 5 contains our conclusions.

2 Phase diagram of the Blume-Capel model

The general shape of the phase diagram of the model is that shown in Figure 1.
While this presentation, comprising selected previous results [17,19–21,29] together
with estimates from the present work, is for the square-lattice model, the general
features of the phase diagram are the same for higher dimensions also [1–4]. The
phase boundary separates the ferromagnetic (F) from the paramagnetic (P) phase.
The ferromagnetic phase is characterized by an ordered alignment of ±1 spins. The
paramagnetic phase, on the other hand, can be either a completely disordered arrange-
ment at high temperature or a ±1-spin gas in a 0-spin dominated environment for low
temperatures and high crystal fields. At high temperatures and low crystal fields, the
F–P transition is a continuous phase transition in the Ising universality class, whereas
at low temperatures and high crystal fields the transition is of first order [1–4]. The
model is thus a classic and paradigmatic example of a system with a tricritical point
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Fig. 1. Phase diagram of the square-lattice, zero-field BC model in the Δ–T plane. The
phase boundary separates the ferromagnetic (F) phase from the paramagnetic (P) phase.
The solid line indicates continuous phase transitions and the dotted line marks first-order
phase transitions. The two lines merge at the tricritical point (Δt, Tt), as highlighted by the
black diamond. The data shown are selected estimates from previous studies as well as the
present work. The numerical values of all individual estimates are summarized in Table 1
below.

(Δt, Tt) [5], where the two segments of the phase boundary meet. At zero temper-
ature, it is clear that ferromagnetic order must prevail if its energy zJ/2 per spin
(where z is the coordination number) exceeds that of the penalty Δ for having all
spins in the ±1 state. Hence the point (Δ0 = zJ/2, T = 0) is on the phase boundary
[2–4]. For zero crystal-field Δ, the transition temperature T0 is not exactly known,
but well studied for a number of lattice geometries.
In the following, we consider the square lattice and fix units by choosing J =1

and kB=1. The estimates shown in Figure 1 for this case are based on phenomeno-
logical FSS using the transfer matrix for systems up to size L=10 [29], standard
Wang-Landau simulations up to L=100 [20], two-parameter Wang-Landau sim-
ulations up to L=16 [17] and L=48 [21], as well as the results of the present
work, using parallel multicanonical simulations at fixed temperature up to
L=128 (T > Tt) and L=96 (T < Tt). A subset of these results is summarized in
Table 1 included below in Section 4 for comparison. Note that in the multicanonical
simulations employed in the present work we fix the temperature T while varying
the crystal field Δ [8], whereas crossings of the phase boundary at constant Δ
were studied in most other works. In general, we find excellent agreement between
the recent large-scale simulations. Some deviations of the older results, especially
in the first-order regime, are probably due to the small system sizes studied. We
have additional information for T =0 where Δ0= zJ/2=2 and for Δ=0, where
results from high- and low-temperature series expansions for the spin-1 Ising model
provide T0=1.690(6) [26–28], while phenomenological finite-size scaling yields
T0 � 1.695 [29], one-parametric Wang-Landau simulations give T0=1.693(3) [20],
and two-parametric Wang-Landau simulations arrive at T0=1.714(2) [17].
Overall, the first three results are in very good agreement. The deviations
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observed for the result of the two-parametric Wang-Landau approach [17]
can probably be attributed to the relatively small system sizes studied there. Deter-
minations of the location of the tricritical point are technically demanding as the two
parameters T and Δ need to be tuned simultaneously. Early attempts include MC
simulations, [Δt=1.94, Tt=0.67] [10,12,13], and real-space renormalization-group
calculations, [Δt=1.97, Tt=0.580] [9,30–33]. More precise and mostly mutually
consistent estimates were obtained by phenomenological finite-size scaling,
[Δt=1.9655(50), Tt=0.610(5)] [29], MC renormalization-group calculations,
[Δt=1.966(15), Tt=0.609(3)] [14], MC simulations with field mixing, [Δt=1.9665(3),
Tt=0.608(1)] [34] and [Δt=1.9665(3), Tt=0.608(1)] [35], transfer matrix and
conformal invariance, [Δt = 1.965(5), Tt = 0.609(4)] [15], and two-parametric
Wang-Landau simulations, [Δt=1.966(2), Tt=0.609(3)] [17] and [Δt=1.9660(1),
Tt=0.6080(1)] [21].
Below the tricritical temperature, T < Tt, or for crystal fields Δ > Δt, the model

exhibits a first-order phase transition. This is signaled by a double peak in the prob-
ability distribution of a field-conjugate variable. This is commonly associated with a
free-energy barrier and the corresponding interface tension. Finite-size scaling for first-
order transitions predicts a shift of finite-size transition points according to [36,37]

Δ∗L = Δ
∗ + aL−D, (2)

where Δ∗ denotes the transition field in the thermodynamic limit and D is the
dimension of the lattice. Note that a completely analogous expression holds for the
shifts T ∗L in temperature when crossing the phase boundary at fixed Δ. Higher-order
corrections are of the form V −n = L−nD with n ≥ 2, where V is the system volume,
but exponential corrections can also be relevant for smaller system sizes [38,39]. The
phase coexistence at the transition point is connected with the occurrence of a latent
heat or latent magnetization that lead to a divergence of the specific heat C and the
magnetic susceptibility χ, evaluated at the finite-size transition point, where both
show a pronounced peak: C∗L = C(Δ

∗
L) ∼ LD and χ∗L = χ(Δ∗L) ∼ LD.

Above the tricritical temperature T > Tt, or for crystal fields Δ < Δt, the model
exhibits a second-order phase transition. This segment of the phase boundary is
expected to be in the Ising universality class [29]. The shifts of pseudo-critical points
hence follow [40]

Δ∗L = Δc + aL
−1/ν , (3)

where ν is the critical exponent of the correlation length. An analogous expression
can again be written down for the case of crossing the phase boundary at constant
Δ. The relevant exponents for the Ising universality class are the well-known Onsager
ones, i.e., α = 0, β = 1/8, γ = 7/4, and ν = 1. Corrections to the form (3) can include
analytic and confluent terms, for a discussion see, e.g., reference [41]. Since α = 0 we
expect a merely logarithmic divergence of the specific-heat peaks, C∗L ∼ lnL. The
peaks of the magnetic susceptibility should scale as χ∗L ∼ Lγ/ν .
We recall that critical exponents are not the only universal quantities [41], as they

are accompanied by critical amplitude ratios such as the combination Uξ = f
+/f−

of the amplitudes of the correlation length scaling ξ ∼ f±t−ν above and below the
critical point [42]. Less universal are dimensionless quantities in finite-size scaling
such as the ratio of the correlation length and the system size, ξ/L, which for Ising
spins on L× L patches of the square lattice with periodic boundary conditions for
L→∞ approaches the value [43]

(ξ/L)∞ = 0.905 048 829 2(4). (4)
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We will study this ratio below for the present system in the second-order regime.
Another weakly universal quantity is the fourth-order magnetization cumulant
(Binder parameter) V4 at criticality [42,44].

3 Simulation methods and observables

For the present study we used a combination of two advanced simulational setups.
Most of our simulations are performed using a generalized parallel implementation
of the multicanonical approach. Comparison tests and illustrations of universality
are conducted via a hybrid updating scheme combining Metropolis and generalized
Wolff cluster updates. The multicanonical approach is particularly well suited for the
first-order transition regime of the phase diagram and enables us to sample a broad
parameter range (temperature or crystal field). It also yields decent estimates for
the transition fields in the second-order regime and the corresponding quantities of
interest. For such continuous transitions, the hybrid approach may then be applied
subsequently in the vicinity of the already located pseudo-critical points in order to
obtain results of higher accuracy. In all our simulations we keep a constant temper-
ature and cross the phase boundary along the crystal-field axis, in analogy to our
recent study in three dimensions [8].

3.1 Parallel multicanonical approach

The original multicanonical (muca) method [45–48] introduces a correction function to
the canonical Boltzmann weight exp(−βE), where β = 1/(kBT ) and E is the energy,
that is designed to produce a flat histogram after iterative modification. This can
be interpreted as a generalized ensemble over the phase space {φ} of configurations
({φ} = {σi} for the BC model) with weight function W [H({φ})], where H is the
Hamiltonian and E = H({φ}). The corresponding generalized partition function is

Zmuca =

∫

{φ}
W [H({φ})] d{φ} =

∫
Ω(E)W (E) dE. (5)

As the second form shows, a flat energy distribution Pmuca(E) = Ω(E)W (E)/Zmuca =
const. is achieved ifW (E) ∝ Ω−1(E), i.e., if the weight is inversely proportional to the
density of states Ω(E). For the weight function W (n)(E) in iteration n, the resulting
normalized energy histogram satisfies 〈H(n)(E)〉 = P (n)(E) = Ω(E)W (n)(E)/Z(n).
This suggests to choose as weight function W (n+1)(E) =W (n)(E)/H(n)(E) for the
next iteration, thus iteratively approaching W (E) ∝ Ω−1(E). In each of the ensem-
bles defined byW (n), we can still estimate canonical expectation values of observables
O = O({φ}) without systematic deviations as

〈O〉β = 〈O({φ})e
−βH({φ})W−1[H({φ})]〉muca

〈e−βH({φ})W−1[H({φ})]〉muca . (6)

For the present problem we apply the generalized ensemble approach to the
crystal-field component EΔ of the energy only, thus allowing us to continuously
reweight to arbitrary values of Δ [8]. To this end, we fix the temperature and apply
a generalized configurational weight according to

e−β(EJ +ΔEΔ) → e−βEJ W (EΔ) . (7)
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The procedure of weight iteration is applied in exactly the same way as before. Data
from a final production run with fixed W (EΔ) may be reweighted to the canonical
ensemble via a generalization of equation (6),

〈O〉β,Δ = 〈Oe
−βΔEΔW−1(EΔ)〉muca

〈e−βΔEΔW−1(EΔ)〉muca . (8)

As was demonstrated in references [49,50], the multicanonical weight iteration
and production run can be efficiently implemented in a parallel fashion. To this end,
parallel Markov chains sample independently with the same fixed weight function
W (n)(EΔ). After each iteration, the histograms are summed up and form indepen-

dent contributions to the probability distributionH(n)(EΔ) =
∑p
i=1H

(n)
i (EΔ). In the

present case, we ran our simulations with p = 64 parallel threads and demanded a
flat histogram in the range EΔ ∈ [0, V ] with a total of 200 transits, where V = L2 is
the total number of lattice sites. A transit was here defined as a single Markov chain
traveling from one energy boundary to another.
Using this parallelized multicanonical scheme we performed simulations at var-

ious fixed temperatures, cf. the data collected below in Table 1 in Section 4. For
each T , we simulated system sizes up to Lmax = 128 in the second-order regime
of the phase diagram (T > Tt) and up to Lmax ≤ 96 (depending on the temper-
ature) in the first-order regime (T < Tt). At one particular temperature, namely
T = 1.398, we were able to compare with several previous, in part contradictory,
studies [17,19,20,29].

3.2 Hybrid approach

For the second-order regime of the phase boundary, our simulations need to cope with
the critical slowing down effect that is not explicitly removed by the multicanonical
approach. Here, we make use of a suitably constructed cluster-update algorithm to
achieve precise estimates close to criticality. While the Fortuin-Kasteleyn represen-
tation of the Ising and Potts models [51] allows for a drastic reduction or, in some
cases, removal of critical slowing down using cluster updates [52], the situation is more
involved for the BC model, where no complete transformation to a dual bond lan-
guage is available. As suggested previously in references [53–55], we therefore rely on
a partial transformation, applying a cluster update only to the spins in the ±1 states,
ignoring the diluted sites with σi = 0. This approach alone is clearly not ergodic as
the number and location of σi = 0 sites is invariant, and we hence supplement it by
a local Metropolis update. For the cluster update of the ±1 spins we use the single-
cluster algorithm due to Wolff [56]. In the present hybrid approach an elementary MC
step (MCS) is the following heuristically determined mixture: after each Wolff step
we attempt 3× L Metropolis spin flips and the elementary step consists of L such
combinations. In other words, a MCS has 3 Metropolis sweeps and L Wolff steps.
The convergence of the hybrid approach may be easily checked for every lattice

size used in the simulations. For instance, to observe convergence for L = 24 we used
3 different runs consisting of 12800× V , 25600× V , and 51200× V (about 30× 106)
MCS, whereas for L = 48 we compared another set of 3 different runs consisting of
2560× V , 5120× V , and 10240× V (about 23× 106) MCS. In all our simulations a
first large number of MCS was disregarded until the system was well equilibrated.
Our runs using this technique focused on the temperature T = 1.398 mentioned above,
using system sizes up to Lmax = 128. For each L, we used up to 100 independent runs
performed in parallel to increase our statistical accuracy.
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Fig. 2. Specific heat (a) and susceptibility (b) curves as a function of the crystal field
Δ obtained from parallel multicanonical simulations at T = 1.4 The lines show simulation
results as continuous functions of Δ from reweighting, the individual points indicate the size
of statistical errors.

3.3 Observables

For the purpose of the present study we focused on the specific heat, the magnetic
susceptibility and the correlation length. As in our simulations we cross the transition
line at fixed temperature, it is reasonable to study the crystal-field derivative ∂〈E〉/∂Δ
instead of the temperature gradient ∂〈E〉/∂T . As was pointed out in reference [8],
the singular behavior is also captured in the simpler quantity

C ≡ ∂〈EJ 〉
∂Δ

1

V
= −β (〈EJEΔ〉 − 〈EJ 〉〈EΔ〉) /V. (9)

The magnetic susceptibility is usually defined as the field derivative of the absolute
magnetization, and this yields

χ = β
(〈M2〉 − 〈|M |〉2) /V, (10)

where M =
∑
i σi. As we will discuss below, however, the use of the modulus |M | to

break the symmetry on a finite lattice leads to some subtleties for the BC model,
especially in the first-order regime. Exemplary plots of C and χ as a function
of the crystal field Δ obtained from the multicanonical simulations are shown in
Figure 2. It is obvious from these plots that both C(Δ) and χ(Δ) show a size-
dependent maximum, together with a shift behavior of peak locations.
Let us define Δ∗L,C and Δ

∗
L,χ as the crystal-field values which maximize C(Δ) and

χ(Δ), respectively. These are pseudo-critical points that should scale according to
equations (2) and (3), respectively. They are numerically determined by a bisection
algorithm that iteratively performs histogram reweighting in the vicinity of the peak,
detecting the point of locally vanishing slope. Error bars are obtained by repeating
this procedure for 32 jackknife blocks [57,58]. Similarly, we denote by C∗L = C(Δ

∗
L,C)

and χ∗L = χ(Δ
∗
L,χ) the values of the specific heat and the magnetic susceptibility at

their pseudo-critical points, respectively. These may be directly evaluated as canonical
expectation values according to equation (8).
We finally also studied the second-moment correlation length ξ [59,60]. This

involves the Fourier transform of the spin field σ̂(k) =
∑
x σxe

ikx. If we set

F =
〈|σ̂(2π/L, 0)|2 + |σ̂(0, 2π/L)|2〉 /2, the correlation length can be obtained via [60]

ξ ≡ 1

2 sin(π/L)

√
〈M2〉
F
− 1. (11)
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From ξ we may compute the ratio ξ/L, which tends to a weakly universal constant
for L→∞ as discussed above in Section 2.

4 Numerical results

In this section we present our main finite-size scaling analysis, covering both first-
and second-order transition regimes of the phase diagram of the square-lattice model.
We begin by presenting the canonical probability distribution P (EΔ) at the pseudo-
critical crystal fields Δ∗L,C for different temperatures. Figure 3 shows P (EΔ) for the
temperature T = 0.5, which is in the first-order regime, and for T = 0.8 and 1.4,
which are in the second-order regime of the transition line, for a system size L = 48.
Well inside the first-order transition regime the system shows a strong suppression
of transition states, connected to a barrier between two coexisting phases. This is
characteristic of a discontinuous transition. Here, the barrier separates a spin-0 dom-
inated (small EΔ, Δ > Δ

∗) and a spin-±1 dominated (large EΔ, Δ < Δ∗) phase. In
this regime, the model qualitatively describes the superfluid transition in 3He-4He
mixtures. As the temperature increases and exceeds the tricritical point Tt ≈ 0.608,
the barrier disappears and the probability distribution shows a unimodal shape, char-
acteristic of a continuous transition. In this regime the model qualitatively describes
the lambda line of 3He-4He mixtures.

4.1 First-order regime

Here we focus on one particular temperature, namely T = 0.5, to verify the expected
scaling discussed in Section 2. Figure 4a shows a finite-size scaling analysis of the
pseudo-critical fields for which we expect shifts of the form

Δ∗L,O = Δ
∗ + aOL−x. (12)

We performed simultaneous fits to Δ∗L,C and Δ
∗
L,χ with a common value of x. In-

cluding the full range of data L = 8–96 we obtain Δ∗ = 1.987 893(6) and x = 2.03(4)
with Q ≈ 0.98.1 This is consistent with the most recent and very precise estimate
1 Q is the probability that a χ2 as poor as the one observed could have occurred by chance,
i.e., through random fluctuations, although the model is correct [61].
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Δ∗ = 1.987 89(1) by Kwak et al. [21], and the theoretical prediction x = D = 2. We
note that for all fits performed here, we chose a minimum system size to include in
the fit such that a goodness-of-fit parameter Q > 0.1 was achieved. For the specific
heat at the maxima, we expect the leading behavior C∗L ∼ LD. Scaling corrections
at first-order transitions are in inverse integer powers of the volume [38,39], L−nD,
n = 1, 2, . . ., so we attempted the fit form

C∗L = bCL
x
(
1 + b′CL

−2) (13)

and we indeed find an excellent fit for the full range of system sizes, yielding
x = 1.9999(2) and Q = 0.78 — note that due to the value of x, the 1/L2 correc-
tion simply corresponds to an additive constant. The amplitudes are bC = 0.8065(6)
and b′C = 0.84(5). This fit and the corresponding data are shown in Figure 4b.
For the magnetic susceptibility, on the other hand, the correction proportional

to L−2 is not sufficient to describe the data down to small L, and neither are higher
orders L−4, L−6 etc. We also experimentally included an exponential correction which
is expected to occur in the first-order scenario and occasionally can be relevant for
small L [38,39], but this also did not lead to particularly good fits. Using an additional
1/L correction, on the other hand, i.e., a fit form

χ∗L = bχL
x
(
1 + b′χL

−1 + b′′χL
−2) (14)

yields excellent results with Q = 0.98 and x = 2.001(1) for the full range L = 8–96
of system sizes, the corresponding fit and data are also shown in Figure 4b. Here,
bχ = 0.458(2), b

′
χ = −0.94(5) and b′′χ = 2.5(3). A 1/L correction term is not expected

at a first-order transition [38,39], but its presence is rather clear from our data. Some
further consideration reveals that it is, in fact, an artifact resulting from the use
of the modulus |M | in defining χ in equation (10). To see this, consider the shape
of the magnetization distribution function at the transition point Δ∗L,χ shown for
different system sizes in Figure 5a. The middle peak corresponds to the disordered
phase dominated by 0-spins, while the peaks on the left and right represent the
ordered ±1 phases. While in P (M), the middle peak is symmetric around zero and
hence 〈M〉d = 0 in the disordered phase, the modulus |M | will lead to an average
〈|M |〉d = O(L) of the order of the peak width.2 Since χ measures the square width
2 The width of the peak is estimated from the fact that O(V ) spins in the disordered phase
equal +1 and O(V ) others equal −1. Hence their sum is of order O(√V ) = O(L).
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disordered phase with a majority of σi = 0 states, while the peaks on the left and right stem
from the ordered phases with pre-dominance of σi = ±1. (b) Corrections to the finite-size
scaling of the magnetic susceptibility χ of equation (10) and to χ̃ = β(〈˜M2〉 − 〈˜M〉2)/V
with ˜M according to equation (15). The solid lines show a fit of the form a+ b/L+ c/L2,
including an inversely linear term, for χ (Q = 0.85) and a fit of the form a+ b/L2 for χ̃
(Q = 0.30). Both quantities are evaluated at the locations Δ∗L,χ of the maxima of χ. The
dotted line shows the linear fit contribution.

of the distribution of |M |, this will have a 1/L correction stemming from this O(L)
contribution to |M |.
This problem can be avoided by employing a different method of breaking the

symmetry on a finite lattice. One possible definition could be

M̃ =

{
M for |M |/V < 0.5
|M | for |M |/V ≥ 0.5 , (15)

which only folds the −1-peak onto the +1-peak, but leaves the 0-peak untouched. As
is seen from the data and fits shown in Figure 5b in contrast to χ the scaling of the

corresponding susceptibility χ̃ = β(〈M̃2〉 − 〈M̃〉2)/V does not show a 1/L correction,
but only the volume correction ∝ 1/L2 expected for a first-order transition.
Overall, it is apparent that our simulations nicely reproduce the behavior ex-

pected for a first-order transition, whereas a conventional canonical-ensemble simu-
lation scheme would be hampered by metastability and hyper-critical slowing down.

4.2 Second-order regime

We continue with the second-order regime, again focusing on one particular tem-
perature, T = 1.2, in order to verify the expected scaling as discussed in Section 2.
We restrict ourselves here to the leading-order scaling expressions,

Δ∗L,O = Δeff + aOL
−1/νeff , (16)

C∗L = bC + b
′
C lnL, (17)

χ∗L = bχL
γ/ν , (18)

taking scaling corrections into account by systematically omitting data from the small-
L side of the full range L = 8–128. Figure 6 shows the FSS analysis for T = 1.2.
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Fig. 6. Finite-size scaling analysis in the second-order transition regime (T = 1.2) based
on the specific heat and magnetic susceptibility from data of the multicanonical simula-
tions. Panel (a) shows a simultaneous fit of the pseudo-critical fields to the leading-order
ansatz (16). The effective estimates are further subjected to an extrapolation in 1/Lmin as
shown in the inset (Δeff linear and νeff quadratic in the lower-fit bound 1/Lmin). Panel (b)
shows fits of the maxima at the pseudo-critical points with the predicted behavior. The
results verify the expected Ising universality class.

A simultaneous fit of the pseudo-critical fields in Figure 6a yields Q ≈ 0.26 for L ≥
32 with Δeff = 1.4161(6) and νeff = 1.09(3). This is only marginally consistent with
the expected Ising value ν = 1. We attribute this effect to the presence of scaling
corrections. We hence performed a further finite-size scaling analysis of Δeff and νeff
as a function of the inverse lower fit range 1/Lmin to effectively take these corrections
into account. For a quadratic fit in 1/L for νeff we find ν = 0.97(10), while a linear
fit for Δeff yields Δc = 1.4169(7), see the inset of Figure 6b.
We further checked for consistency with the Ising universality by considering the

scaling of the maxima of the specific heat and magnetic susceptibility as shown in
Figure 6b. The specific heat shows a clear logarithmic scaling behavior for L ≥ 12
with Q ≈ 0.16 in strong support of α = 0. Moreover, a power-law fit to the mag-
netic susceptibility peaks yields for L ≥ 32 a value γ/ν = 1.750(3) with Q ≈ 0.24, in
perfect agreement with the Ising value γ/ν = 7/4. Overall, this reconfirms the Ising
universality class, with similar results for other T > Tt.

4.3 Correlation length

We now turn to a discussion of the correlation length ξ. This is where we used the
results of the hybrid method for improved precision. We determined the second-
moment correlation length according to equation (11) and then used the quotient
method to determine the limiting value of the ratio ξ/L [62–65]. We define a series
of pseudo-critical points Δ∗(L,2L) as the value of the crystal field where ξ2L/ξL = 2.
These are the points where the curves of ξ/L for the sizes L and 2L cross. A typ-
ical illustration of this crossing is shown in the inset of Figure 7a for T = 1.398.
The pair of system sizes considered is (8, 16) and the results shown are obtained
via both the hybrid method (data points) and the multicanonical approach through
quasi continuous reweighting (lines). Denote the value of ξ/L at these crossing
points as (ξ/L)∗. The size evolution of (ξ/L)∗ and its extrapolation to the ther-
modynamic limit, denoted by (ξ/L)∞, will provide us with the desired test of
universality. In Figure 7a we illustrate the L→∞ extrapolation of (ξ/L)∗ for the
previously studied case T = 1.398 and compare the two simulation schemes, hy-
brid and multicanonical. The sequence of pairs of system sizes considered is as
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Fig. 7. Finite-size scaling of the correlation length crossings (ξ/L)∗. The dashed horizontal
line in both panels shows the asymptotic value for the square-lattice Ising model with periodic
boundaries according to equation (4). (a) Results for T = 1.398, comparing data from the
multicanonical and hybrid methods. The line shows a quadratic fit in 1/L to the data from
the hybrid method. The inset demonstrates the crossing point of L = 8 and L = 16 from
both muca (lines) and hybrid (data points). (b) Simultaneous fit for several temperatures
obtained from multicanonical simulations. The inset shows results from direct fits for a
range of temperatures in comparison to the asymptotic value of equation (4). Well above
the tricritical point, (ξ/L)∗ nicely converges towards the Ising value. Towards the tricritical
point, additional corrections emerge.

follows: (8, 16), (12, 24), (16, 32), (24, 48), (32, 64), (48, 96), and (64,128). It is
seen that the results obtained with the hybrid method suffer less from statistical fluc-
tuations. It is found that a second-order polynomial in 1/L describes the data for
(ξ/L) well and a corresponding fit yields

(ξ/L)(hybrid)∞ = 0.906(2). (19)

A similar fitting attempt to the multicanonical data gives an estimate of

(ξ/L)(muca)∞ = 0.913(9), (20)

consistent with but less accurate than (ξ/L)
(hybrid)
∞ . Both estimates are fully consistent

with the exact value (ξ/L)∞ = 0.905 048 829 2(4) [43].
In Figure 7b we present a complementary illustration using data from the mul-

ticanonical approach and several temperatures in the second-order transition regime
of the phase diagram, as indicated by the different colors. In particular, we show the
values (ξ/L)∗ for several pairs of system sizes from (8, 16) up to (64, 128). The solid
lines are second-order polynomial fits in 1/L, imposing a common L→∞ extrap-
olation (ξ/L)∞. The result obtained in this way is 0.907(6), again well compatible
with the exact Ising value. We note that following the discussion in reference [43],
a correction with exponent 1/L2 or possibly 1/L7/4 is expected, but a term propor-
tional to 1/L is not. Here, however, we do not find consistent fits with 1/L7/4 or 1/L2

only, and using a second-order polynomial in 1/Lw instead we find w = 0.91(27), con-
sistent with the two terms 1/L and 1/L2. A possible explanation for this behavior
might be a non-linear dependence of the scaling fields on L as a linear correction
in reduced temperature t produces a term L−1/ν in FSS, and ν = 1 [42]. In the in-
set of Figure 7b we show the values of (ξ/L)∞ for various further temperatures.
In this case, each estimate of (ξ/L)∞ is obtained from individual quadratic fits on
each data set without imposing a common thermodynamic limit. The departure from
the Ising value 0.905, which is again marked by the dashed line, is clear as T → Tt.
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There, additional higher-order corrections due to the crossover to tricritical scaling
become relevant.
Finally, we also considered the behavior of the susceptibility and specific heat

from runs of the hybrid method at T = 1.398, evaluated at the pseudo-critical points
Δ∗(L,2L) from the crossings of ξ/L. For χ we find an excellent fit for the full range of
lattice sizes with the pure power-law form (18), resulting in γ/ν = 1.75(2) (Q = 0.96).
Similarly, a fully consistent fit is found over the full lattice size range for the specific
heat using the logarithmic form (17) (Q = 1.0).

4.4 Full temperature range

Having established the common first-order scaling for T < Tt and the Ising univer-
sality class for T > Tt, we attempted to improve the precision in the location of the
phase boundary for the square lattice model. To this end, we considered simultane-
ous fits of the scaling ansätze equations (2) and (3) to the peak locations Δ∗L,C and
Δ∗L,χ, depending on whether the considered temperature is in the first-order or in the
second-order regime,

Δ∗L,O = Δ
∗ + aOL−D for T < Tt, (21)

Δ∗L,O = Δc + aOL
−1/ν for T > Tt, (22)

with D = 2 and ν = 1 fixed. As before, we take corrections to scaling into account
by systematically omitting data from the small-L side until fit qualities Q > 0.1 are
achieved. The results for the transition fields are listed in Table 1, including fit er-
rors. Well inside the first-order regime, fits are excellent and cover the full data set
(L ≥ 8), so scaling corrections are not important there. Around the tricritical point,
fits become difficult. For example, a simultaneous fit for T = 0.65 with L ≥ 64 still
yields Q ≈ 0.07. This is, of course, no surprise as we should see a crossover to the
tricritical scaling there. Moving away from the tricritical point into the second-order
regime, fits become more feasible. Corrections appear to be smallest between T = 0.9
and T = 1.0 where we could include the full data set, L ≥ 8, with Q ≈ 0.4 each.
Increasing the temperature, we then again find stronger corrections. Particularly for
T = 1.6 fits with L ≥ 64 are required to obtain Q > 0.1. We attribute this effect to
the fact that our variation of Δ is almost tangential to the phase boundary there, so
field-mixing effects should be quite strong [34]. Overall, we find very good agreement
with recent previous studies, but often increased precision, cf. the data in Table 1.

5 Summary and outlook

In this paper we have reviewed and extended the phase diagram of the 2D Blume-
Capel model in the absence of an external field, providing extensive numerical results
for the model on the square lattice. In particular, we studied in some detail the
(weakly) universal ratio ξ/L that allows to confirm the Ising universality class of the
model in the second-order regime of the phase boundary. In contrast to most previous
work, we focused on crossing the phase boundary at constant temperature by varying
the crystal field Δ [8]. Employing a multicanonical scheme in Δ allowed us to get
results as continuous functions of Δ and to overcome the free-energy barrier in the
first-order regime of transitions. A finite-size scaling analysis based on a specific-heat-
like quantity and the magnetic susceptibility provided us with precise estimates for
the transition points in both regimes of the phase diagram that compare very well to
the most accurate estimates of the current literature. We have been able to probe the
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Table 1. Representative points in the phase diagram of the Blume-Capel model on the
square lattice from previous studies and the present work. In the first two columns we either
indicate the value of Δ for simulations that vary T or the value of T for simulations that
vary Δ. Error bars are given in parenthesis in either Δ or T , depending on the simulation
type.

Beale Silva et al. Malakis et al. Kwak et al. This work
reference [29] reference [17] reference [20] reference [21]

Δ T Δ T T T Δ Δ
0 1.695 1.714(2) 1.693(3)

1.6 0.375(2)
1.5 0.7101(5)

0.5 1.567 1.584(1) 1.564(3)
1.4 0.9909(4)
1.398 0.9958(4)

1.0 1.398 1.413(1) 1.398(2)
1.3 1.2242(4)
1.2 1.4167(2)

1.5 1.15 1.155(1) 1.151(1)
1.1 1.5750(2)
1.0 1.70258(7)

1.75 0.958(1)
0.9 1.80280(6)
0.8 1.87 1.87879(3)

1.9 0.755(3) 0.769(1)
0.7 1.92 1.93296(2)

1.95 0.651(2) 0.659(2)
0.65 1.95 1.9534 (1) 1.95273(1)
0.61 1.9655
0.608 1.96604 (1)
0.6 1.969 1.96825 (1) 1.968174(3)

1.975 0.574(2)
1.992 0.499(3)

0.5 1.992 1.98789 (1) 1.987889(5)
0.4 1.99681 (1) 1.99683(2)

first-order nature of the transition in the low-temperature phase and to illustrate the
Ising universality class in the second-order regime of the phase diagram. We finally
also provide accurate estimates of the critical exponents ν and γ/ν, as well as to
clearly confirm the logarithmic divergence of the specific-heat peaks. Using additional
simulations based on a hybrid cluster-update approach we studied the correlation
length in the second-order regime. Via a detailed scaling analysis of the universal
ratio ξ/L, we could show that it cleanly approaches the value (ξ/L)∞ = 0.905 . . . of
the Ising universality class for all temperatures up to the tricritical point.
In the first-order regime we found a somewhat surprising 1/L correction in the

scaling of the conventional susceptibility defined according to equation (10). As it
turns out, this is due to the explicit symmetry breaking by using |M | instead of M
in the definition of χ. For a modified symmetry breaking prescription that leaves the
disordered peak invariant, this correction disappears. It would be interesting to see
whether similar corrections are found in other systems with first-order transitions,
such as the Potts model.
To conclude, the Blume-Capel model serves as an extremely useful prototype

system for the study of phase transitions, exhibiting lines of second-order and
first-order transitions that meet in a tricritical point. Apart from the interest in
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tricritical scaling, this model hence also allows to investigate the effect of disorder on
phase transitions of different order within the same model. A study of the disordered
version of the model is thus hoped to shed some light on questions of universality
between the continuous transitions in the disordered case that correspond to different
transition orders in the pure model [66].
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the Deutsch-Französische Hochschule (DFH-UFA) through the Doctoral College “L4” under
Grant No. CDFA-02-07 as well as by the EU FP7 IRSES network DIONICOS under contract
No. PIRSES-GA-2013-612707. N.G.F. and M.W. would like to thank the Leipzig group, and
J.Z. would like to thank the Coventry group, for their hospitality during several visits over
the last years where part of this work was performed.

References

1. M. Blume, Phys. Rev. 141, 517 (1966)
2. H.W. Capel, Physica (Utr.) 32, 966 (1966)
3. H.W. Capel, Physica (Utr.) 33, 295 (1967)
4. H.W. Capel, Physica (Utr.) 37, 423 (1967)
5. I.D. Lawrie, S. Sarbach, in Phase Transitions and Critical Phenomena, edited by
C. Domb, J.L. Lebowitz., Vol. 9 (Academic Press, London, 1984)

6. W. Selke, J. Oitmaa, J. Phys. C 22, 076004 (2010)
7. N.G. Fytas, Eur. Phys. J. B 79, 21 (2011)
8. J. Zierenberg, N.G. Fytas, W. Janke, Phys. Rev. E 91, 032126 (2015)
9. A.N. Berker, M. Wortis, Phys. Rev. B 14, 4946 (1976)
10. D.P. Landau, Phys. Rev. Lett. 28, 449 (1972)
11. M. Kaufman, R.B. Griffiths, J.M. Yeomans, M. Fisher, Phys. Rev. B 23, 3448 (1981)
12. W. Selke, J. Yeomans, J. Phys. A 16, 2789 (1983)
13. W. Selke, D.A. Huse, D.M. Kroll, J. Phys. A 17, 3019 (1984)
14. D.P. Landau, R.H. Swendsen, Phys. Rev. B 33, 7700 (1986)
15. J.C. Xavier, F.C. Alcaraz, D. Pena Lara, J.A. Plascak, Phys. Rev. B 57, 11575 (1998)
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