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Abstract. Analyzing football score data with statistical techniques, we investigate how the not purely
random, but highly co-operative nature of the game is reflected in averaged properties such as the
probability distributions of scored goals for the home and away teams. As it turns out, especially the tails of
the distributions are not well described by the Poissonian or binomial model resulting from the assumption
of uncorrelated random events. Instead, a good effective description of the data is provided by less basic
distributions such as the negative binomial one or the probability densities of extreme value statistics. To
understand this behavior from a microscopical point of view, however, no waiting time problem or extremal
process need be invoked. Instead, modifying the Bernoulli random process underlying the Poissonian model
to include a simple component of self-affirmation seems to describe the data surprisingly well and allows
to understand the observed deviation from Gaussian statistics. The phenomenological distributions used
before can be understood as special cases within this framework. We analyzed historical football score
data from many leagues in Europe as well as from international tournaments, including data from all past
tournaments of the “FIFA World Cup” series, and found the proposed models to be applicable rather
universally. In particular, here we analyze the results of the German women’s premier football league and
consider the two separate German men’s premier leagues in the East and West during the cold war times
as well as the unified league after 1990 to see how scoring in football and the component of self-affirmation
depend on cultural and political circumstances.

PACS. 89.20.-a Interdisciplinary applications of physics – 02.50.-r Probability theory, stochastic processes,
and statistics

1 Introduction

Football is the most popular sports in Europe, attracting
millions of spectators and involving thousands of players
each year. As a traditional socio-cultural institution of sig-
nificant economical importance, football has also been the
subject of numerous scientific efforts, for instance geared
towards the improvement of game tactics, the understand-
ing of the social effects of the fan scene etc. Much less effort
has been devoted, it seems, to the understanding of foot-
ball (and other ball sports) from the perspective of the
stochastic behavior of co-operative “agents” (i.e., players)
in abstract models. This problem as well as many other
topics relating to the statistical properties of socially in-
teracting systems have recently been identified as fields
where the model-based point-of-view and methodological
machinery of statistical mechanics might add a new per-
spective to the much more detailed investigations of more
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specific disciplines [1,2]. Some reports of such research are
collected in reference [3].

Score distributions of football and other ball games
have been occasionally considered by mathematical statis-
ticians for more than fifty years [4–10]. Initially, the lim-
ited available data were found to be reasonably modeled
by the Poissonian distribution resulting from the simplest
assumption of a completely random process with a fixed
(but possibly team dependent) scoring probability [4]. In
the following, it was empirically found that a better fit
could be produced with a negative binomial distribution
originally introduced as an ad hoc measure of general-
izing the parameter range for fitting certain biological
data [11]. The negative binomial form occurs naturally
for a mixture of Poissonian processes with a certain distri-
bution of (independent) success probabilities [5]. Further-
more, recently it was found [10] that score distributions
of some football leagues are better described by the gener-
alized distributions of extreme value statistics [12], while
others rather follow the negative binomial distribution.
This yielded a rather inhomogeneous picture and, more
generally, for a system of highly co-operative entities it
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might be presumed that such models without correla-
tions cannot be an adequate description. What is more,
all these proposals remained in the realm of observation,
since the considered statistical models were selected by
best fit, without offering any microscopical justification
for the choice.

The distribution of extremes, i.e., the probability den-
sity function of (kth) maximal or minimal values of inde-
pendent realizations of a random variable, is described by
only a few universality classes, depending on the asymp-
totic behavior of the original probability density [12].
Apart from the direct importance of the problem of ex-
tremes in actuarial mathematics and engineering, general-
ized extreme value (GEV) distributions have been found
to occur in such diverse systems as the statistical me-
chanics of regular and disordered systems [13–18], tur-
bulence [19] or earth quake data [20]. However, in most
cases global properties were considered instead of explicit
extremes, and the occurrence of GEV distributions led to
speculations about hidden extremal processes in these sys-
tems, which could not be identified in most cases, though.
It was only realized recently that GEV distributions can
also arise naturally as the statistics of sums of correlated
random variables [21–23], which could explain their ubiq-
uity in physical systems.

For the problem of scoring in football, correlations nat-
urally occur through processes of (positive and negative)
feedback of scoring on both teams, and we shall see how
the introduction of simple rules for the adaptation of the
success probabilities in a modified Bernoulli process upon
scoring a goal leads to systematic deviations from Gaus-
sian statistics. We find simple models with a single param-
eter of self-affirmation to best describe the available data,
including cases with relatively poor fits of the negative
binomial distribution. The latter is shown to result from
one of these models in a particular limit, offering an ex-
planation for the relatively good fits observed before. For
the models under consideration, exact recurrence relations
and precise closed-form approximations of the probability
density functions can be derived. Although the limiting
distributions of the considered models in general do not
follow the statistics of extremes, it is demonstrated how
alternative models leading to GEV distributions could be
constructed. The best fits are found for models where each
extra goal encourages a team even more than the previous
one: a true sign of football fever.

The rest of the paper is organized as follows. Section 2
discusses the probability distributions used in previous
studies and the present work to fit football score data
and their relations to the microscopic models introduced
here. The results of fits of the considered models and dis-
tributions to the data are summarized and discussed in
Section 3 with emphasis on a comparison of the goal dis-
tributions in the divided Germany of the cold war times
and of the German women’s and men’s premier leagues, as
well as an analysis of the results of the “FIFA World Cup”
series. Finally, Section 4 contains our conclusions. Some of
the statistical technicalities of the considered modified bi-
nomial models are summarized in Appendix A.

2 Probability distributions and microscopic
models

The most obvious and readily available global property
characterizing a football match is certainly given by the
overall score of the game. Hence, to investigate the bal-
ance of chance and skill in football [5], here we consider
the distributions of goals scored by the home and away
teams in football league or cup matches. To the simplest
possible approximation, both teams have independent and
constant probabilities of scoring during each appropriate
time interval of the match, thus degrading football to a
pure game of chance. Since the scoring probabilities will
be small, the resulting probabilities of final scores will fol-
low a Poissonian distribution,

P h
λh

(nh) =
λh

nh

nh!
exp(−λh), P a

λa
(na) =

λa
na

na!
exp(−λa),

(1)

where nh and na are the final scores of the home and away
teams, respectively, and the parameters λh and λa are
related to the average number of goals scored by a team,
λ = 〈n〉. As an additional check of the fit to the data,
one might then also consider the probability densities of
the sum s = nh + na and difference d = nh − na of goals
scored under the assumption of Poissonian distributions
for nh and na,
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where Id is the modified Bessel function (see Ref. [24],
p. 374). Note that PΣ

λh,λa
(s) is itself a Poissonian distri-

bution with parameter λ = λh + λa.
Clearly, the assumption of constant and independent

scoring probabilities for the teams is not appropriate for
real-world football matches. Since we are interested in av-
erages over the matches during one or several seasons of a
football league or cup, one might expect a distribution of
scoring probabilities λ depending on the different skills of
the teams, the lineup for the match, tactics, weather con-
ditions etc., leading to the notion of a compound Poisson
distribution. It is easily seen [25,26] that for the special
case of the scoring probabilities λ following a gamma
distribution,

f(λ) =

⎧
⎨

⎩

ar

Γ (r)
λr−1e−aλ, λ > 0,

0, λ ≤ 0,

(3)
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the resulting compound Poisson distribution has the form
of a negative binomial distribution (NBD) [26],

Pr,p(n) =
∫ ∞

0

dλPλ(n)f(λ) =
Γ (r + n)
n! Γ (r)

pn(1 − p)r, (4)

where p = 1/(1+a). The negative binomial form has been
found to describe football score data rather well [6,10].
The underlying assumption of the scoring probabilities fol-
lowing a gamma distribution seems to be rather ad hoc,
however, and fitting different seasons of our data with the
Poissonian model (1), the resulting distribution of the pa-
rameters λ does not resemble the gamma form (3).The
parameter r introduced in equation (3) at first only ap-
pears as an empirical fit parameter. As will be shown be-
low, however, it corresponds to the ratio of initial scoring
probability and “self-affirmation factor” in the context of
one of the microscopic models considered here. Analogous
to equation (2), for the negative binomial distribution (4)
one can evaluate the probabilities for the sum s and dif-
ference d of goals scored by the home and away teams,

PΣ
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(s) = (1 − ph)rh(1 − pa)rapa
s Γ (ra + s)

s! Γ (ra)

× 2F1
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,
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(d) = (1 − ph)rh(1 − pa)raph
d Γ (rh + d)

d! Γ (rh)

× 2F1 (rh + d, ra; 1 + d; ph pa) , (5)

where 2F1 is the hypergeometric function (see Ref. [24],
p. 555). Restricting to ph = pa, the distribution of the
total score simplifies to PΣ

p, r, q, s(s) = Pp, r+s(s), i.e.,
one finds a composition law similar to the case of the
Poissonian distribution.

To do justice to the fact that playing football is differ-
ent from playing dice, one has to take into account that
goals are not simply independent events but, instead, scor-
ing certainly has a profound feedback on the motivation
and possibility of subsequent scoring of both teams (via
direct motivation/demotivation of the players, but also,
e.g., by a strengthening of defensive play in case of a lead),
i.e., there is a fundamental component of (positive or nega-
tive) feedback in the system. We do so by introducing such
a feedback effect into the bimodal model (being the dis-
crete version of the Poissonian model (1) above): consider
a football match divided into N time steps (we restrict
ourselves here to the natural choice N = 90, but good fits
are found for any choice of N within reasonable limits)
with both teams having the possibility to either score or
not score in each time step. Feedback is introduced into
the system by having the scoring probabilities p depend
on the number n of goals scored so far, p = p(n). Several
possibilities arise. For our model “A”, upon each goal the
scoring probability is modified as

p(n) = p(n − 1) + κ, (6)

with some fixed constant κ (unless p(n − 1) + κ > 1, in
which case p(n) = 1, or p(n − 1) + κ < 0, which is re-
placed by p(n) = 0). Alternatively, one might consider a
multiplicative modification rule,

p(n) = κp(n − 1) (7)

(again modified to ensure 0 ≤ p(n) ≤ 1), which we refer
to as model “B”. The resulting modified binomial distri-
butions PN (n) for the total number of goals scored by one
team can be computed exactly from a Pascal type recur-
rence relation,

PN (n) = [1 − p(n)]PN−1(n) + p(n − 1)PN−1(n − 1), (8)

where, e.g., p(n) = p0+κn for model “A” and p(n) = p0κ
n

for model “B”. Equation (8) is intuitively plausible, since
n successes in N trials can be reached either from n suc-
cesses in N − 1 trials plus a final failure or from n − 1
successes in N − 1 trials and a final success. For a more
formal proof see the discussion in Appendix A, where for
the additive case of model “A”, it is also demonstrated
that the continuum limit of PN (n), i.e., N → ∞ with
p̄0 ≡ p0N and κ̄ ≡ κN kept fixed, is given by the negative
binomial distribution (4) with r = p̄0/κ̄ and p = 1 − e−κ̄

(note that this also includes the “generalized binomial dis-
tribution” considered in Refs. [27,28]). Thus the good fit
of a negative binomial distribution to the data can be un-
derstood from the “microscopic” effect of self-affirmation
of the teams or players, without making reference to the
somewhat poorly motivated composition of the pure Pois-
sonian model with a gamma distribution. As shown in
Appendix A, approximation formulas for the distributions
PN (n) of both models can be derived from a saddle-point
calculation in the number of trials N , resulting in
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N

n

)
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×
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for model “A” resp.

PN (n) ≈ Z−1

(
N

n

)
pn
0κ

n(n−1)
2

×
[
1 +

1
n ln κ

ln
(

1 − p0

1 − p0κn

)]−(N−n)

, n > 0, (10)

for model “B”. Here, Z ensures that PN (n) is a prop-
erly normalized probability density. Both distributions are
trivially given by PN (0) = (1−p0)N for the case n = 0 not
included in the formulas (9) and (10). These expressions
are readily checked to simplify to the standard binomial
distribution in the limits κ → 0 (model “A”) resp. κ → 1
(model “B”). For these formulas to be applicable, it is
naturally assumed that p0 + Nκ ≤ 1 (model “A”) resp.
p0κ

N ≤ 1 (model “B”). For the parameter range of inter-
est here, (9) and (10) are almost indistinguishable from
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the exact distributions deduced from the recurrence rela-
tion (8), cf. the comparison shown in Figure 1.

Finally, the assumption of independence of the scoring
of the home and away teams can be relaxed by coupling
the adaptation rules upon scoring, for instance as

ph(n) = ph(n − 1)κh,
for a goal of the home team,

pa(n) = pa(n − 1)/κa,

ph(n) = ph(n − 1)/κh,
for a goal of the home team,

pa(n) = pa(n − 1)κa,
(11)

which we refer to as model “C”. If both teams have κ > 1,
this results in an incentive for the scoring team and a de-
motivation for the opponent, but a value κ < 1 is conceiv-
able as well. The probability density function PN (nh, na)
can also be computed recursively, cf. Appendix A.

Starting from the observation that the goal distribu-
tions of certain leagues do not seem to be well fitted by
the negative binomial distribution, Greenhough et al. [10]
considered fits of the GEV distributions,

Pξ, μ, σ(n) =
1
σ

(
1 + ξ

n − μ

σ

)−1−1/ξ

× exp

[
−

(
1 + ξ
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σ
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]

for ξ 	= 0,

Pμ, σ(n) =
1
σ

exp
[
− exp

(
−n − μ

σ

)
−n − μ

σ

]
for ξ = 0,

(12)

to the data, obtaining good fits in some cases. According
to the value of the parameter ξ, these distributions are
known as Weibull (ξ < 0), Gumbel (ξ = 0) and Fréchet
(ξ > 0) distributions, respectively. The shape parameter
ξ controls the asymptotic decay of Pξ, μ, σ(n) for large n,
such that increasing values of ξ correspond to stronger
feedback effects in terms of the self-affirmation models dis-
cussed here. As for the case of the negative binomial form
emerging as a compound Poisson distribution, the use of
extremal value statistics appears here rather ad hoc. We
would like to point out, however, that the GEV distri-
butions indeed can result from a modified microscopical
model with feedback. To this end, consider again a se-
ries of trials for a number N of time steps. Assume that
the probability to score U1 goals in time step 1 is dis-
tributed according to P1(U1) = P (U1) (e.g., with a Pois-
son distribution P ), the probability to score U2 goals in
time step 2 is P2(U2) = P (U1 + U2)/Z2 etc., such that
Pi(Ui) = P (

∑i−1
j=1 Uj + Ui)/Zi. For any continuous distri-

bution P , this means that due to the normalization factors
Zi the distribution of Ui will have enhanced tails com-
pared to the distribution of Ui−1 (unless Ui−1 = 0) etc.,
resulting in a positive feedback effect similar to that of
models “A”, “B” and “C”. We refer to this prescription as
model “D”. From the results of Bertin and Clusel [22,23]
it then follows that the limiting distribution of the total

NBD
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Fig. 1. Quality of the approximations (9) and (10) for the
probability distributions PN (n) of the additively or multiplica-
tively modified Bernoulli models “A” and “B” as compared to
the exact values computed from the recurrence relation (8).
The data for model “A” are for parameters p0 = 0.01 and
κ = 0.005, whereas parameters for model “B” where chosen as
p0 = 0.1 and κ = 1.02 (N = 90 was used in both cases). The
dashed-dotted line denotes the negative binomial distribution
with parameters chosen according to (A.12), the continuum
approximation for model “A”.

score n =
∑N

i=1 Ui is a GEV distribution, where the spe-
cific form of distribution [in particular the value of the
parameter ξ in (12)] depends on the falloff of the original
distribution P in its tails.

3 Data and results

Concerning football played in leagues, our main data
set consists of matches played in Germany, namely for
the “Bundesliga” (men’s premier league FRG, 1963/64 –
2004/05, ≈12 800 matches), the “Oberliga” (men’s pre-
mier league GDR, 1949/50 – 1990/91, ≈7700 matches),
and for the “Frauen-Bundesliga” (women’s premier league
FRG, 1997/98 – 2004/05, ≈1050 matches) [29–32]. Our
focus was here to see how in particular the feedback ef-
fects reflected in the football score distributions depend
on cultural and political circumstances and are possibly
different between men’s and women’s leagues. We first
determined histograms estimating the probability density
functions (PDFs) P h(nh) and P a(na) of the final scores
of the home and away teams, respectively.1 Similarly, we
determined histograms for the PDFs PΣ(s) and PΔ(d) of
the sums and differences of final scores. To arrive at error
estimates on the histogram bins, we utilized the bootstrap
resampling scheme [33].

We first considered fits of the PDFs of the phe-
nomenological descriptions considered previously, namely
the Poissonian form (1), the negative binomial distribu-
tion (4) and the distributions (12) of extreme value statis-
tics. The parameters of fits of these types to the data

1 To ensure reliable error estimates, in the fits presented be-
low we ignored histogram bins consisting of single or isolated
entries, i.e., outliers.
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Table 1. Fits of the phenomenological distributions (1), (4) and (12) to the data for the East German “Oberliga” between
1949/50 and 1990/91 and for the West German “Bundesliga” for the seasons of 1963/64 – 1990/91.

Oberliga Bundesliga

Home Away Home Away

Poisson λ 1.85 ± 0.02 1.05 ± 0.01 2.01 ± 0.02 1.17 ± 0.01

χ2/d.o.f. 12.5 12.8 6.53 7.31

NBD p 0.17 ± 0.01 0.14 ± 0.01 0.11 ± 0.01 0.10 ± 0.01

r 9.06 ± 0.88 6.90 ± 0.84 15.9 ± 2.10 11.3 ± 1.84

p0 0.0191 0.0112 0.0213 0.0126

κ 0.0021 0.0016 0.0013 0.0011

χ2/d.o.f. 0.99 4.09 0.68 2.29

GEV ξ −0.05 ± 0.01 0.02 ± 0.01 −0.09 ± 0.01 −0.01 ± 0.01

μ 1.12 ± 0.02 0.49 ± 0.02 1.28 ± 0.02 0.58 ± 0.02

σ 1.30 ± 0.02 0.90 ± 0.02 1.36 ± 0.02 0.96 ± 0.02

χ2/d.o.f. 1.93 5.04 1.83 4.74

Gumbel μ 1.12 ± 0.02 0.48 ± 0.02 1.28 ± 0.02 0.59 ± 0.01

σ 1.25 ± 0.01 0.92 ± 0.01 1.25 ± 0.01 0.95 ± 0.01

χ2/d.o.f. 4.13 4.65 12.9 4.06

Table 2. Fits of the phenomenological distributions (1), (4) and (12) to the data for the German men’s premier league
“Bundesliga” between 1963/64 and 2004/05 and for the German women’s premier league “Frauen-Bundesliga” for the seasons
of 1997/98 – 2004/05.

Bundesliga Frauen-Bundesliga

Home Away Home Away

Poisson λ 1.91 ± 0.01 1.16 ± 0.01 1.78 ± 0.04 1.36 ± 0.04

χ2/d.o.f. 9.21 9.13 14.6 14.4

NBD p 0.11 ± 0.01 0.09 ± 0.01 0.45 ± 0.03 0.46 ± 0.03

r 16.24 ± 1.82 12.08 ± 1.69 2.38 ± 0.24 1.97 ± 0.22

p0 0.0202 0.0125 0.0160 0.0133

κ 0.0012 0.0010 0.0067 0.0068

χ2/d.o.f. 1.08 2.22 2.32 1.37

GEV ξ −0.10 ± 0.01 −0.02 ± 0.01 0.04 ± 0.04 0.25 ± 0.07

μ 1.17 ± 0.02 0.57 ± 0.01 0.83 ± 0.08 0.77 ± 0.07

σ 1.33 ± 0.01 0.96 ± 0.01 1.49 ± 0.06 1.18 ± 0.05

χ2/d.o.f. 3.43 7.95 3.40 1.55

Gumbel μ 1.18 ± 0.01 0.58 ± 0.01 0.81 ± 0.08 0.58 ± 0.07

σ 1.21 ± 0.01 0.94 ± 0.01 1.53 ± 0.05 1.31 ± 0.05

χ2/d.o.f. 24.5 7.26 3.17 4.09

are summarized in Table 1 comparing the East German
“Oberliga” to the West German “Bundesliga” (1963/64
– 1990/91, ≈8400 matches) during the time of the Ger-
man division, and in Table 2 comparing the data for
all games of the German men’s premier league “Bun-
desliga” to the German women’s premier league “Frauen-
Bundesliga”. Not to our surprise, and in accordance with
previous findings [5,10], the simple Poissonian ansatz (1)
is not found to be an adequate description for any of
the data sets. Deviations occur here mainly in the tails
with large numbers of goals which in general are found
to be fatter than can be accommodated by a Poissonian
model, whereas the peaks of the distributions are reason-
ably well represented. On the contrary, the negative bi-
nomial form (4) models all of the considered data well as

is illustrated with fits of the corresponding form to our
data in Figure 2 comparing “Oberliga” and “Bundesliga”
and in Figure 3 presenting “Bundesliga” and “Frauen-
Bundesliga”. Comparing the leagues, we find that the pa-
rameters r of the NBD fits for the “Bundesliga” are about
twice as large as for the “Oberliga”, whereas the parame-
ters p are smaller for the “Bundesliga”, cf. the data in Ta-
ble 1. Recalling that the form (4) is in fact the continuum
limit of the feedback model “A” discussed above, these
differences translate into larger values of κ and smaller
values of p0 for the “Oberliga” results. That is to say,
scoring a goal in a match of the East German premier
league was a more encouraging event than scoring a goal
in a match of the West German league. Alternatively, this
observation might be interpreted as a stronger tendency
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Fig. 2. Probability density of goals scored by home teams, away teams, and of the total number of goals scored in a match. Left:
“Oberliga” of the GDR between 1949/50 and 1990/91. Right: “Bundesliga” of the FRG in the seasons of 1963/64 – 1990/91.
The lines for “home” and “away” show fits of the negative binomial distribution (4) to the data; the line for “total” denotes
the resulting distribution of the sum, equation (5).
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Fig. 3. Probability density of goals scored in the German men’s premier league “Bundesliga” for all seasons (left) and in the
women’s “Frauen-Bundesliga” (right).

of the perhaps more professionalized teams of the West
German league to switch to a strongly defensive mode of
play in case of a lead. Consequently, the tails of the dis-
tributions are slightly fatter for the “Oberliga” than for
the “Bundesliga”. Comparing the results for the “Frauen-
Bundesliga” to those for the men’s “Bundesliga”, even
more pronounced tails are found for the former, resulting
in very significantly larger values of the self-affirmation
parameter κ for the matches of the women’s league, see
the fit parameters collected in Table 2 and the fits of the
NBD type presented in Figure 3.

Considering the fits of the GEV distributions (12) to
the data for all three leagues, we find that extreme value
statistics are in general a reasonably good description of
the data. The shape parameter ξ is always found to be
small in modulus and negative in the majority of the cases,
indicating a distribution of the Weibull type (which is in
agreement with the findings of Ref. [10]). On the other
hand, fixing ξ = 0 yields overall clearly larger values of χ2

per degree-of-freedom (d.o.f.), indicating that the data are
hardly compatible with a distribution of the Gumbel type.
Comparing “Oberliga” and “Bundesliga”, we consistently
find larger values of the parameter ξ for the former, in-
dicative of the comparatively fatter tails of these data dis-
cussed above, see the data in Table 1. The location param-
eter μ, on the other hand, is larger for the West German
league which features a larger average number of goals per
match (which can be read off also more directly from the
λ parameter of the Poissonian fits), while the scale pa-
rameter σ is similar for both leagues. Comparing to the
results for the NBD, we do not find any cases where the
GEV distributions would provide the best fit to the data,
so clearly the leagues considered here are not of the type of
the general “domestic” league data for which Greenhough
et al. [10] found better matches with the GEV than for the
NBD statistics. Similar conclusions hold true for the com-
parisons of “Bundesliga” and “Frauen-Bundesliga”, with
the latter taking on the role of the “Oberliga”.
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Table 3. Matching of the sums and differences of goals. Fits were performed to the home and away score distributions only
and mean-squared deviations were computed for the distributions of sums and differences from equations (2) and (5) with the
thus found parameters λh and λa resp. ph, rh, pa and ra.

Bundesliga 04/05 Bundesliga 90/91 Oberliga Women

Poisson λh 1.91 ± 0.01 2.01 ± 0.02 1.85 ± 0.02 1.78 ± 0.04

λa 1.16 ± 0.01 1.17 ± 0.01 1.05 ± 0.01 1.36 ± 0.04

Home χ2
h/d.o.f. 9.21 6.53 12.5 14.6

Away χ2
a/d.o.f. 9.13 7.31 12.8 14.4

Total χ2
Σ/d.o.f. 10.7 15.9 16.3 10.4

Difference χ2
Δ/d.o.f. 67.6 578 474 20.2

NBD ph 0.11 ± 0.01 0.12 ± 0.01 0.18 ± 0.01 0.47 ± 0.03

rh 15.56 ± 1.68 15.0 ± 1.88 8.86 ± 0.82 2.28 ± 0.23

pa 0.09 ± 0.01 0.10 ± 0.01 0.14 ± 0.01 0.46 ± 0.03

rh 11.82 ± 1.61 11.0 ± 1.69 6.80 ± 0.80 1.97 ± 0.21

Home χ2
h/d.o.f. 1.08 0.68 0.99 2.32

Away χ2
a/d.o.f. 2.22 2.29 4.09 1.37

Total χ2
Σ/d.o.f. 25.1 17.3 8.31 18.9

Difference χ2
Δ/d.o.f. 23.9 18.0 7.16 3.55

Assuming, for the time being, that the histograms of
the final scores of the home and away teams are properly
modeled by the fits presented in Tables 1 and 2, it is worth-
while as a consistency check to see whether the resulting
estimates (2) and (5) of the PDFs for the Poisson and
negative binomial distributions are consistent with the
data for the sums and differences. Of course, such con-
sistency can only be expected if the histograms of home
and away scores are statistically independent, which as-
sumption certainly is a strongly simplifying approxima-
tion. In Table 3 we summarize the mean squared devi-
ations χ2 of the PDFs (2) resp. (5), evaluated with the
parameters of the fits to the home and away scores of
Tables 1 and 2, from the data for the sums and differences.
While again clearly the Poissonian ansatz disqualifies as
an acceptable model of the data, the NBD fits the data
for the “Oberliga” and the “Frauen-Bundesliga” compar-
atively well, cf. the data in Table 3 and the “total” fits
in Figures 2 and 3. For the “Bundesliga”, however, sig-
nificant deviations are observed. These deviations might
go back to an effect of correlation between the home and
away scores. To investigate this question we computed the
empirical correlation coefficient,

R =
Cov(nh, na)√

Var(nh)Var(na)
, (13)

where Var(n) denotes the variance of n and Cov(nh, na)
the covariance of nh and na. We find R = −0.015± 0.011
for the “Oberliga” and R = −0.031 ± 0.009 for the
“Bundesliga”, indicating stronger home-away score cor-
relations for the “Bundesliga”.2

In total, the best fits so far are clearly achieved by the
NBD ansatz. Since this distribution is obtained only as the
continuum limit of the microscopic model “A”, it is inter-
esting to see how fits of the exact distribution (for N = 90)

2 The available statistics for the “Frauen-Bundesliga” is too
small to allow a meaningful estimation of R.

resulting from the recurrence (8) for model “A”, but also
fits of the multiplicatively modified binomial distribution
of model “B” compare to the results found above. We per-
form fits to the exact distributions of both models by em-
ploying the simplex method [34] to minimize the total χ2

of the data for the home and away scores. Alternatively,
we also considered fitting additionally to the sums and
differences in a simultaneous fit and found very similar
results with an only slight improvement of the fit quality
for the sums and differences at the expense of somewhat
worse fits for the home and away scores. We summarize
the fit results in Table 4. We also performed fits to the
more elaborate model “C”, but found rather similar re-
sults to the simpler model “B” and hence do not present
the results here. Comparing the results of model “A” to
the fits of the limiting NBD, we find almost identical fit
qualities for the final scores of both teams. However, the
sums and differences of scores are considerably better de-
scribed by model “A”, indicating that here the deviations
from the continuum limit are still relevant. In Figure 4,
we present the differences of goals in the German women’s
premier league together with the fits of models “A” and
“B”. The multiplicative model “B”, where each goal moti-
vates a team even more than the previous one, within the
statistical errors yields fits of the same quality as model
“A”, such that a distinct advantage cannot be attributed
to either of them, cf. the data in Table 4.

Finally, to leave the realm of German football, we
considered the score data of the “FIFA World Cup” se-
ries from 1930 to 2006, focusing on the results from the
qualification stage (≈4800 matches) [35].3 The results of
fits of the phenomenological distributions (1), (4) and (12)
as well as the models “A” and “B” are collected in Table 5.
Compared to the German league data discussed above,
the results of the World Cup show distinctly heavier tails,

3 We disregarded all games played in tournaments on neutral
grounds. The final knockout stage follows different rules.
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Table 4. Fit results for models “A” and “B”. Fits were performed to the score distributions of the home and away teams only
and the resulting model estimates for the sums and differences of goals compared to the data.

Bundesliga 04/05 Bundesliga 90/91 Oberliga Women

Model “A” p0,h 0.0199 ± 0.0002 0.0210 ± 0.0002 0.0188 ± 0.0002 0.0159 ± 0.0005

κ0,h 0.0015 ± 0.0001 0.0016 ± 0.0002 0.0024 ± 0.0002 0.0070 ± 0.0005

p0,a 0.0125 ± 0.0002 0.0125 ± 0.0001 0.0112 ± 0.0001 0.0132 ± 0.0004

κ0,a 0.0012 ± 0.0001 0.0013 ± 0.0002 0.0018 ± 0.0002 0.0071 ± 0.0007

Home χ2
h/d.o.f. 1.01 0.68 1.07 2.28

Away χ2
a/d.o.f. 2.31 2.37 4.23 1.44

Total χ2
Σ/d.o.f. 16.6 11.5 5.33 12.4

Difference χ2
Δ/d.o.f. 18.6 14.0 5.63 2.86

Model “B” p0,h 0.0200 ± 0.0002 0.0211 ± 0.0002 0.0189 ± 0.0002 0.0166 ± 0.0005

κ0,h 1.0679 ± 0.0060 1.0695 ± 0.0072 1.1115 ± 0.0083 1.3146 ± 0.0303

p0,a 0.0125 ± 0.0001 0.0125 ± 0.0002 0.0112 ± 0.0001 0.0138 ± 0.0004

κ0,a 1.0932 ± 0.0106 1.1015 ± 0.0124 1.1526 ± 0.0149 1.4115 ± 0.0543

Home χ2
h/d.o.f. 1.25 0.71 0.75 3.24

Away χ2
a/d.o.f. 1.96 20.2 3.35 0.95

Total χ2
Σ/d.o.f. 16.9 11.8 5.40 13.5

Difference χ2
Δ/d.o.f. 18.4 13.8 5.26 2.82

Model “B” (χ2/d.o.f. = 2.82)
Model “A” (χ2/d.o.f. = 2.86)
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Fig. 4. Goal differences in the German women’s premier league
together with fits of models “A” and “B”.

cf. the presentation of the data in Figure 5. Considering
the fit results, this leads to good fits for the heavy-tailed
distributions, and, in particular, in this case the GEV dis-
tributions provides a better fit than the negative bino-
mial model, similar to what was found by Greenhough
et al. [10] for some of their data. This difference to the
German league data can be attributed to the occasion-
ally very large differences in skill between the opposing
teams occurring since all countries are allowed to partici-
pate in the qualification round. A glance back to Table 2
reveals a remarkable similarity with the parameters of the
“Frauen-Bundesliga” (e.g., in both cases the NBD param-
eters p are comparatively large while r is small, and the
GEV parameters ξ are positive), where a similar explana-
tion appears quite plausible since the very good players
are concentrated in two or three teams only. Turning to

Table 5. Fit results for the qualification phase of the “FIFA
World Cup” series from 1930 to 2006.

Home Away

Poisson λ 1.52 ± 0.02 0.90 ± 0.01

χ2/d.o.f. 21.7 28.5

NBD p 0.36 ± 0.02 0.37 ± 0.02

r 3.08 ± 0.20 1.84 ± 0.12

p0 0.0152 0.0095

κ 0.0050 0.0051

χ2/d.o.f. 2.88 1.91

GEV ξ 0.10 ± 0.02 0.17 ± 0.02

μ 0.85 ± 0.03 0.37 ± 0.03

σ 1.21 ± 0.03 0.87 ± 0.02

χ2/d.o.f. 1.13 2.44

Gumbel μ 0.79 ± 0.03 0.27 ± 0.03

σ 1.30 ± 0.02 0.95 ± 0.02

χ2/d.o.f. 3.68 13.7

Model “A” p0 0.0151 ± 0.0002 0.0094 ± 0.0002

κ 0.0052 ± 0.0003 0.0053 ± 0.0003

χ2/d.o.f. 3.12 2.08

Model “B” p0 0.0154 ± 0.0002 0.0096 ± 0.0002

κ 1.2725 ± 0.0130 1.4490 ± 0.0281

χ2/d.o.f. 1.00 0.85

the fits of the models “A” and “B”, we again find model
“A” to fit rather similarly to its continuum approxima-
tion, the NBD. On the other hand, model “B” describes
the data extremely well, for the away team even better
than the GEV distributions (12).

To get some idea about the variations in the play of
different national teams, we also performed fits of the mul-
tiplicative model “B” to matches of single teams in the
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Fig. 5. Probability density of goals scored by the home and away teams in the qualification stage of the “FIFA World Cup”
series from 1930 to 2006.
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Fig. 6. Initial scoring probability p0 and self-affirmation pa-
rameter κ for some teams of the qualification stage of the
“FIFA World Cup” series from 1930 to 2006 from fits of model
“B” to the data, grouped by continent (CONCACAF stands
short for “Confederation of North and Central American and
Carribean Association Football”).

qualification stage of the “FIFA World Cups”.4 The re-
sulting values of the parameters p0 and κ are displayed in
a scatter plot in Figure 6. As can be seen, even with the
relatively small statistics for this per-team analysis, sta-
tistically significant differences emerge. To understand the
outcome, it is crucial to take into account that the qualifi-
cation stage is played separately on each continent. Hence,
results per se cannot be compared between continents.
Also, the spread of skill between the teams varies from
continent to continent, such that for instance in Oceania,
Australia is clearly superior to all other teams, leading to
a rather large value of κ. A reasonably fair comparison is

4 Because of the much reduced statistics for a per-team anal-
ysis, we here disregarded the effect of home-field advantage.

probably possible between all teams of Europe and South
America and, indeed, all of the favorites of past world cups
from these continents appear in the upper right corner of
the diagram, indicating large initial scoring probabilities
p0 as well as self-affirmation parameters κ. The reader
might want to confront the individual placement of teams
in the diagram with the well-known folklore about country
specific styles of play.

It is, of course, also possible and interesting to analyze
the results from the final round. Similar to other cups
such as the German “DFB-Pokal” we also considered, the
rules are slightly different here, since no game can end in
a draw, leading to special correlation effects in particular
in the histograms of the goal differences. These problems
should be investigated in future studies.

4 Summary

We have considered German domestic and international
football score data with respect to certain phenomeno-
logical probability distributions as well as microscopically
motivated models. The Poisson distribution resulting from
the assumption of independent scoring probabilities for
the opposing teams does not provide a satisfactory fit
to any of our data. Many data sets are rather well de-
scribed by the negative binomial distribution considered
before [5], however, some cases have heavier tails than can
be accommodated by this distribution and, instead, rather
follow a distribution from extreme value statistics.

We have shown that football score data can be under-
stood from a certain class of modified binomial models
with a built-in effect of self-affirmation of the teams upon
scoring a goal. The negative binomial distribution fitting
many of the data sets can in fact be understood as a limit-
ing distribution of our model “A” with an additive update
rule of the scoring probability. It is found, however, that
the exact distribution of model “A” provides in general
rather better fits to the data than the limiting negative
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binomial distribution, in particular concerning the sums
and differences of goals scored. However, it does not pro-
vide very good fits in cases with heavier tails such as the
qualification round of the “FIFA World Cup” series. The
variant model “B”, on the other hand, where a multiplica-
tive update rule ensures that each goal motivates the team
even more than the previous one, fits these world-cup data
as well as the data from the German domestic leagues ex-
tremely well. Thus, the contradicting evidence for better
fits of some football score data with negative binomial
and other data with generalized extreme value distribu-
tions is reconciled with the use of a plausible microscopic
model covering both cases by successfully interpolating
between the two extremes. We also analyzed results from
further leagues, such as the Austrian, Belgian, British,
Bulgarian, Czechoslovak, Dutch, French, Hungarian, Ital-
ian, Portuguese, Romanian, Russian, Scottish and Spanish
premier leagues, and arrived at similar conclusions.

Comparing the score data between the separate Ger-
man premier leagues during the cold war times, we find
heavier tails for the East German league. In terms of our
microscopic models, this corresponds to a stronger compo-
nent of self-affirmation as compared to the West German
league. Similarly, the German women’s premier league
“Frauen-Bundesliga” shows a much stronger feedback ef-
fect than the men’s premier league, with at first sight sur-
prisingly many parallels to the “FIFA World Cup” series.
In general, we find less professionalized leagues to feature
stronger components of positive feedback upon scoring a
goal, perhaps indicating a still stronger infection with the
football fever there . . .

It is obvious that the presented models with a
single parameter of self-affirmation are a gross over-
simplification of the complex psycho-social phenomena
on a football pitch. It is all the more surprising then,
how rather well they model the considered score distri-
butions [36].5 Naturally, however, a plethora of oppor-
tunities for improvement of the description and further
studies opens up. For instance, considering averages over
whole leagues or cups, we have not taken into account the
differences in skill between the teams. Likewise, if time-
resolved scoring data were made available, a closer inves-
tigation of the intra-team and inter-team motivation and
demotivation effects would provide an intriguing future
enterprise to undertake. Such data would allow us to in-
vestigate the behavior of the (average) scoring probability
as a function of playing time, and hence a direct test of our
basic assumption of score-dependent scoring probabilities
incorporated into the models “A”–“D” discussed above.
In particular, the functional form of the thus extracted
scoring probability p(n) could be compared to the linear
or exponential forms implied by equations (6) and (7) for
models “A” and “B”. Some data of this type has been ana-

5 Also, on this level of abstraction it cannot be excluded that
we are, in fact, observing an effect of spurious contagion as oc-
curring for the negative binomial distribution, which results as
limiting distribution from non-contagious situations (as com-
pound Poisson distribution) and contagious models (our model
“A”). See also reference [26].

lyzed in reference [37], showing a clear increase of scoring
frequency as the match progresses, thus supporting the
presence of feedback as discussed here.
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Appendix A: Probabilistics of correlated
Bernoulli trials

Consider a series of N Bernoulli random variables Ui, i =
1, . . . , N , with probabilities 1−pi and pi for the outcomes
“0” (“failure”) and “1” (“success”), respectively. We are
interested in the distribution PN (

∑N
i=1 Ui = n) of the

number of successes in N trials. For the limiting case of
equal and constant probabilities pi = p, i = 1, . . . , N ,
the Ui are i.i.d. random variables and PN is given by the
binomial distribution

PN (
N∑

i=1

Ui = n) =
(

N

n

)
pn (1 − p)N−n, (A.1)

which is a properly normalized (discrete) probability dis-
tribution function according to the binomial theorem.
This can be generalized for arbitrary independent choices
of probabilities pi.

We discuss a more general case where, instead, the
probabilities pi themselves depend on the number of pre-
vious successes, pi = p(

∑i−1
k=1 Uk). Due to the introduced

correlations, one should then consider the joint probability
distribution of the Ui,

P (U1, . . . , UN) =
N∏

i=1

{
p(

i−1∑

k=1

Uk)δUi,1

+ [1 − p(
i−1∑

k=1

Uk)]δUi,0

}
, (A.2)

from which the desired distribution of successes follows as
the marginal PN (n) =

∑
{Ui} P (U1, . . . , UN )δ∑

Ui,n. In-
stead of formally proceeding from (A.2) it is more conve-
nient, however, to observe that the distances Dj between
subsequent successes are independent geometrically dis-
tributed random variables with probabilities 1− p(n), i.e.
P (Dj = dj) = p(j)[1 − p(j)]dj−1, j = 0, . . . , n, and the
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desired marginal distribution becomes

PN (n) =
N−n∑

d0=1

· · ·
N−n∑

dn=1

[1 − p(0)]d0−1p(0) · · · p(n − 1)

× [1 − p(n)]dn−1δ∑
j dj ,N

=
n−1∏

j=0

p(j)
N−n∑

d0=1

· · ·
N−n∑

dn=1

n∏

j=0

[1 − p(j)]dj−1 δ∑
j dj ,N .

(A.3)

If to a first approximation for scarce successes, i.e. N 
 1
and maxj p(j) � 1, we assume that the dj all take their
mean values, 〈dj − 1〉 = [1 − p(j)]/p(j), a run of N trials
can see n successes if

n−1∑

j=0

〈dj〉 < N, (A.4)

such that the mean 〈n〉 to this approximation follows from

〈n〉−1∑

j=0

p(j)−1 = N. (A.5)

Manipulating the form (A.3) it is straightforward to prove
a Pascal type recurrence relation for the probabilities
PN (n),

PN (n) = [1−p(n)]PN−1(n)+p(n−1)PN−1(n−1), (A.6)

which together with the initial condition P0(0) = 1
and noting that PN (n) = 0 for n > N allows to con-
struct the distribution with an O(N2) computational ef-
fort compared to the formal O(2N) effort implied by equa-
tion (A.2). Equation (A.6) is intuitively plausible, since n
successes in N trials can be reached either from n successes
in N − 1 trials plus a final failure or from n− 1 successes
in N − 1 trials and a final success. Multiplying (A.6) by
un and summing over all n, one arrives at

GN (u) − GN−1(u) = (u − 1)HN−1(u), (A.7)

where

GN (u) =
∞∑

n=0

PN (n)un, HN (u) =
∞∑

n=0

p(n)PN (n)un,

(A.8)
such that GN (u) is the generating function of PN (n). The
continuum limit N �→ t is thus described by the differential
equation

∂G(u, t)
∂t

= (u − 1)H(u, t). (A.9)

The additive, correlated binomial model discussed in the
main text modifies p �→ p + κ on each success, unless
p + κ > 1 in which case p �→ 1. Restricting ourselves to
the range of parameters where p < 1, we have p(n) = p0 +

κn, HN (u) = p0GN (u) + κu ∂
∂uGN (u) and equation (A.9)

becomes

∂G(u, t)
∂t

= (u − 1)[p0G(u, t) + κu
∂

∂u
G(u, t)], (A.10)

which is readily checked to be solved by

G(u, t) = [eκt − u(eκt − 1)]−p0/κ. (A.11)

Hence, P (n) has a negative binomial distribution [11,25],

Pt(n) = e−p0t Γ (p0/κ + n)
n! Γ (p0/κ)

(
1 − e−κt

)n

=
(

r + n − 1
n

)
pn(1 − p)r, (A.12)

where r = p0/κ and p = 1 − e−κt. For Nκ = const. < 1,
this continuum approximation is appropriate in the same
limit where the Poissonian distribution is a valid approxi-
mation for the binomial distribution (A.1), i.e., for N 
 1
with Np0 = const.

For the multiplicative, correlated binomial model, after
each success the probability is modified as p �→ κp (unless
κp > 1, in which case p �→ 1), such that p(j) = p0κ

j for
the range of parameters where p(n) < 1. In this case, the
differential equation (A.9) becomes

∂G(u, t)
∂t

= (u − 1)p0G(κu, t). (A.13)

Note that due to the different first arguments of G, this
is not an ordinary differential equation. We currently do
not see how the solution could be expressed in terms of
elementary or special functions in this case. Still, the dis-
tribution PN (n) can be easily computed from the recur-
rence (A.6). The estimate (A.5) now is

1
p0

1 − (1/κ)〈n〉

1 − (1/κ)
= N, κ 	= 1, (A.14)

or

〈n〉 =
ln[1 − p0N(1 − 1/κ)]

ln(1/κ)
, κ 	= 1 (A.15)

such that for large N the mean 〈n〉 grows logarithmically
slow (κ < 1) or logarithmically fast (κ > 1). This is in
contrast to the linear growth 〈n〉 = Np0 of the simple
binomial model for κ = 1. In fact, for p0 and |1−κ| small,
(A.15) gives a rather reasonable approximation to the true
mean.

Approximation formulae for the probabilities PN (n)
for large numbers N of trials can be derived starting from
the observation that PN (n) in fact is the coefficient of the
zN term of the power series expansion of 6

G(n)(z) = {1− [1− p(n)]z}−1
n−1∏

j=0

p(j)z
1 − [1 − p(j)]z

(A.16)

6 We thank O. Penrose for pointing this out to us.
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which is easily checked to give the correct binomial dis-
tribution (A.1) for the case of constant probabilities
p(j) = p. We select the relevant coefficient by a contour
integral,

PN (n) =
1

2πi

∮
dz

zN+1
G(n)(z) =

1
2πi

∮
dz eS(z), (A.17)

with the “action”

S(z) = − (N + 1 − n) ln z +
n−1∑

j=0

ln p(j)

−
n∑

j=0

ln{1 − [1 − p(j)]z}. (A.18)

At large orders N , the integral can be evaluated in the
saddle-point approximation. The saddle-point equation is

n∑

j=0

[1 − p(j)]z
1 − [1 − p(j)]z

= N + 1 − n, (A.19)

which is a polynomial of order n + 1. For large N ,
most of the roots are dominated by contributions from
only one of the poles of the l.h.s. of (A.19) at z =
[1 − p(j)]−1, i.e., they are approximately located at
zj ≈ [1− p(j)]−1(N + 1− n)/(N + 2− n). However, there
is also a “collective mode” zero with similar contributions
from all terms, which is closer to the origin and thus rele-
vant for the saddle-point expansion around z = 0, namely

z∗ ≈ N + 1 − n

(N + 2)(n + 1)

n∑

j=0

[1 − p(j)]−1. (A.20)

Since these zeros are real, the contour integral (A.17) can
be restricted to the real axis. For small variations of the
p(j), we approximate

1
n + 1

n∑

m=0

1 − p(j)
1 − p(m)

≈ 1, (A.21)

such that the action at this saddle point becomes

S(z∗) ≈ −(N + 1 − n) ln
N + 1 − n

N + 2
− (N + 1 − n)

× ln
1

n + 1

n∑

j=0

1
1 − p(j)

+
n−1∑

j=0

ln p(j)

− (n + 1) ln
n + 1
N + 2

. (A.22)

To this approximation, variations around the saddle point
merely lead to modifications of the factors depending on
N and n, and we take them effectively into account by
ensuring that p(j) = p leads to the correct expression
(A.1), thus arriving at

PN (n) ≈ Z−1

(
N

n

) n−1∏

j=0

p(j)

⎡

⎣ 1
n + 1

n∑

j=0

1
1 − p(j)

⎤

⎦
−(N−n)

,

(A.23)

where Z ensures the correct normalization. For the bi-
nomial case p(j) = p, all zeros of (A.19) are degenerate
and (A.20) becomes z∗ = (1 − p)−1(N + 1 − n)/(N + 2).
With this expression, the saddle-point calculation to sec-
ond order results in the exact expression (A.1) apart from
a shift n → n+1 and N → N+1 in the binomial coefficient
and the application of the Sterling approximation for the
factorials. Finally, for not too small values of n, we can
replace the sum in (A.23) by an integral, resulting for the
additively modified binomial model with p(n) = p0+κn in

PN (n) ≈Z−1

(
N

n

)
κnΓ (p0/κ + n)

Γ (p0/κ)

×
[

1
nκ

ln
(

1 − p0

1 − p0 − nκ

)]−(N−n)

, n > 0,

(A.24)

while for the multiplicatively modified model with p(n) =
p0κ

n we arrive at

PN (n) ≈Z−1

(
N

n

)
pn
0κ

n(n−1)
2

×
[
1 +

1
n ln κ

ln
(

1 − p0

1 − p0κn

)]−(N−n)

, n > 0,

(A.25)

where in both cases PN (0) = (1 − p0)N .
Finally, for the case of two coupled, correlated bino-

mial distributions with probabilities pA for “success A”,
pB for “success B” and (1−pA−pB) for “failure”, similar
considerations lead to a recurrence relation

PN (nA, nB) = [1 − pA(nA, nB) − pB(nA, nB)]

×PN−1(nA, nB) + pA(nA − 1, nB)

×PN−1(nA − 1, nB) + pB(nA, nB − 1)

×PN−1(nA, nB − 1), (A.26)

which reduces in the special cases “A” (with pB ≡ 0) and
“B” (with pA ≡ 0) to equation (A.6). In the general case
of the model variant “C”, the distribution PN (nA, nB) can
be easily computed in O(N3) time.
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2006



E. Bittner et al.: Football fever: goal distributions and non-Gaussian statistics 471

4. M.J. Moroney, Facts from Figures, 3rd edn. (Penguin,
London, 1956)

5. C. Reep, R. Pollard, B. Benjamin, J. Roy. Stat. Soc. A
134, 623 (1971)

6. R. Pollard, J. Am. Stat. Assoc. 68, 351 (1973)
7. S.R. Clarke, J.M. Norman, The Statistician 44, 509 (1995)
8. D. Dyte, S.R. Clarke, J. Op. Res. Soc. 51, 993 (2000)
9. L.C. Malacarne, R. Mendes, Physica A 286, 391 (2000)

10. J. Greenhough, P.C. Birch, S.C. Chapman, G. Rowlands,
Physica A 316, 615 (2002)

11. A.G. Arbous, J.E. Kerrich, Biometrics 7, 340 (1951)
12. S. Kotz, S. Nadarajah, Extreme Value Distributions:

Theory and Applications (World Scientific, Singapore,
2000)

13. S.T. Bramwell, P.C.W. Holdsworth, J.-F. Pinton, Nature
396, 552 (1998)

14. S.T. Bramwell, K. Christensen, J.-Y. Fortin,
P.C.W. Holdsworth, H.J. Jensen, S. Lise, J.M. López,
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