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Referat

Diese Arbeit befaflt sich mit der Koppelung von Vertex-Modellen an die planaren
¢*-Zufallsgraphen des Zugangs zur Quantengravitation iiber dynamische Polygoni-
fizierungen. Das betrachtete System hat eine doppelte Bedeutung, einerseits als
die Koppelung einer konformen Feldtheorie mit zentraler Ladung C' = 1 an zwei-
dimensionale Euklidische Quantengravitation, andererseits als Anwendung von geo-
metrischer, “annealed” Unordnung auf ein prototypisches Modell der statistischen
Mechanik. Da das Modell mit Hilfe einer groflangelegten Reihe von Monte Carlo
Simulationen untersucht wird, miissen entsprechende Techniken fiir die Simula-
tion von dynamischen Quadrangulierungen bzw. die dualen ¢*-Graphen entwik-
kelt werden. Hierzu werden verschiedene Algorithmen und die dazugehorigen Ziige
vorgeschlagen und hinsichtlich ihrer Ergodizitat und Effizienz untersucht. Zum Ver-
gleich mit exakten Ergebnissen werden die Verteilung der Koordinationszahlen bzw.
bestimmte Analoga davon konstruiert. Fiir Simulationen des F-Modells auf ¢*-
Zufallsgraphen wird ein Ordnungsparameter fiir den antiferroelektrischen Phasen-
iibergang mit Hilfe einer Plakettenspindarstellung formuliert. Ausfiihrliche “finite-
size scaling”-Analysen des Kosterlitz-Thouless-Phaseniibergangs des F-Modells auf
dem Quadratgitter und auf Zufallsgraphen werden vorgestellt und die Positionen
der jeweiligen kritischen Punkte sowie die dazugehorigen kritischen Exponenten
werden bestimmt. Die Riickreaktion des Vertex-Modells auf die Zufallsgraphen
wird in Form der Koordinationszahlverteilung, der Verteilung der “Baby-Universen”
und dem daraus resultierenden String-Suszeptibilitats-Exponenten sowie durch die
geometrische Zweipunktfunktion analysiert, die eine Schéitzung der intrinsischen
Hausdorff-Dimension des gekoppelten Systems liefert.
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Abstract

In this thesis, the coupling of ice-type vertex models to the planar ¢* random graphs
of the dynamical polygonifications approach to quantum gravity is considered. The
investigated system has a double significance as a conformal field theory with cen-
tral charge C' = 1 coupled to two-dimensional Euclidean quantum gravity and as
the application of a special type of annealed connectivity disorder to a prototypic
model of statistical mechanics. Since the model is analyzed by means of large-scale
Monte Carlo simulations, suitable simulation techniques for the case of dynamical
quadrangulations and the dual ¢* random graphs have to be developed. Different
algorithms and the associated update moves are proposed and investigated with
respect to their ergodicity and performance. For comparison to exact results, the
co-ordination number distribution of the dynamical polygonifications model, or cer-
tain analogues of it, are constructed. For simulations of the 6-vertex F' model on ¢*
random graphs, an order parameter for its anti-ferroelectric phase transitions is con-
structed in terms of a “plaquette spin” representation. Extensive finite-size scaling
analyses of the Kosterlitz-Thouless point of the square-lattice and random graph F
models are presented and the locations of the critical points as well as the corre-
sponding critical exponents are determined. The back-reaction of the coupled vertex
model on the random graphs is investigated by an analysis of the co-ordination num-
ber distribution, the distribution of “baby universes” and the string susceptibility
exponent as well as the geometric two-point function, yielding an estimate for the

internal Hausdorff dimension of the coupled system.
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Chapter 1

Introduction

The construction of a quantum theory of gravity is one of the fundamental open ques-
tions in theoretical physics. Einstein gravity being perturbatively non-renormalizable
as a field theory, this problem calls for novel, non-perturbative approaches. As it has
turned out in the past few years, the investigation of fluctuating, multi-dimensional
manifolds is a promising theoretical framework for this task. Ambitious approaches
in this direction include the theories of strings, branes etc. [1]. Despite their success,
however, these theories have severe problems of projecting the results of the involved

high-dimensional models back to the physical four-dimensional space-time.

Starting from early ideas about the formulation of a discretised theory of quan-
tum gravity [2], the introduction of the framework of dynamical triangulations by
Ambjorn et al. [3], David [4] and Kazakov et al. [5] has led to a successful theory of
Euclidean quantum gravity, for reviews see [6-12]. Although the model can be for-
mulated for an arbitrary number of dimensions, the focus of the analytical and most
of the numerical work in the field has been — mostly for technical reasons — put on
the exploration of the properties of the two-dimensional model. The dynamical trian-
gulations scheme starts out with the formal attempt to quantize the Einstein-Hilbert
action of general relativity with the path-integral method. The thus formulated pre-
scription to integrate over all possible choices of the metric tensor consistent with
certain constraints or, equivalently, over a suitable class of random (hyper-)surfaces
is replaced by a sum over discretised approximations of such surfaces in order to
regularize the considered path integral. In the dynamical triangulations approach,
these discrete surfaces are taken to be simplicial or combinatorial manifolds [13,14],

i.e., surfaces glued together from simplicial building blocks subject to certain reg-



2 CHAPTER 1. INTRODUCTION

ularity constraints. For the case of two dimensions these surfaces are nothing but
random triangulations composed of equilateral triangles. In this way, the problem

of Euclidean quantum gravity is reduced to a combinatorial one.

For the case of two dimensions, the resulting random-surface model can be explic-
itly solved to a quite complete degree. The summation over the triangulations can
be performed, alternatively, by early developed graph-theoretical methods for the
counting of triangulations [15], or by exploiting the equivalence of this counting
problem to a perturbative expansion of certain matriz integrals [16-18] originally
considered in the context of the planar approximation to QCD [19], which count
the orientable, “fat” ¢* graphs dual to the triangulations. For an excellent review
of the methods applied in this context see Ref. [10]. Apart from that, a numerical
treatment of the model is possible via Monte Carlo simulations of the fluctuating
surfaces [20-22]. Applying these methods, the model is found to exhibit a continuous
phase transition as a function of the fugacity controlling the number of triangles and
the corresponding continuum limit, corresponding to a diverging size of the triangu-
lations, coincides with the Liouwille theory of two-dimensional Euclidean quantum
gravity [6,23,24]; however, the information that can be extracted from the discrete
dynamical triangulations model goes beyond that of the continuum Liouville theory.
The critical exponents governing the scaling in the vicinity of this phase transition
can be determined exactly [10,16,25-28]. A key point in the understanding of the
properties of the model is given by the finding that the occurring triangulations can
be considered as self-similar fractals, composed of “baby universes” attached to the
main body of the lattice via a small number of links, i.e., via “bottlenecks” [29].
The corresponding fractal or Hausdorff dimension is found to be d;, = 4 [26-28],

thus largely exceeding the topological dimension two of the model.

The continuum theory predicts a renormalization of the critical exponents of con-
formal minimal matter with central charge 0 < C' < 1 coupled to the Liouville field
expressed by the KPZ/DDK formula [30-32]. In the discrete framework of the dy-
namical triangulations approach, a decoration of the lattice with matter variables
can be conveniently expressed in terms of suitably adapted matrix models. Some of
the resulting integrals could be explicitly performed, including the cases of the Ising
model [33-35], the g-states Potts model [36-39] and the O(n) loop model [40-44]
coupled to two-dimensional discrete, Euclidean quantum gravity. These and further
models have been analyzed numerically via Monte Carlo simulations of the com-

bined system of dynamical triangulations and coupled matter variables, see, e.g.



Refs. [45-52]. The critical exponents resulting from all these model studies coin-
cide with those predicted by the KPZ formula. The KPZ/DDXK solution breaks
down for central charge C' > 1, such that for this region the information about the
theory is still rather incomplete. Speculations about the behaviour of the dynam-
ical triangulations model on crossing this “C' = 1 barrier” have caused quite some
discussions [53,54]. For C' — oo the geometry of the model is known to collapse
to a branched polymer phase, i.e., to configurations of planar tree graphs [53] with
Hausdorff dimension d;, = 2. However, the breakdown of the model for C' > 1 is still
not completely understood [12]. Thus, the limiting case C' =1 is of obvious special

interest.

okosk

Vertex models of statistical mechanics, placed on regular lattices, exhibit an excep-
tionally rich phase structure, including lines of first- and second-order phase transi-
tions as well as critical and multi-critical points [55]. A multitude of models known
from statistical mechanics can be transformed to or formulated as limiting cases of
the 6- or 8-vertex models, cf. Refs. [55-58]. This series of models includes the Ising
and g-states Potts models as well as various graph colouring problems and quantum
spin models. Hence, vertex models can be considered as prototypes for models of
phase transitions in two dimensions. The zero-field, square-lattice 8-vertex model
has been solved exactly by Baxter [59,60], revealing a peculiar type of continuous
phase transitions with continuously varying critical exponents. The 6-vertex model
is found to correspond to a critical surface in the phase diagram of the 8-vertex
model. A special slice of the 6-vertex case, the anti-ferroelectric F' model [61,62],
exhibits an infinite-order phase transition of the Kosterlitz-Thouless type [63,64],

whereas other specializations undergo first-order phase transitions.

On the basis of the well-known results of universality and scaling for models of
statistical mechanics and condensed matter theory, the analysis of the effect of
disorder onto the behaviour of those systems has received an increasing amount
of attention during the last decades. The thus described area comprises a wide
range of separate subjects, including such different topics as spin glasses [65,66], the
effect of random fields on magnetic systems [66], disordered electronic systems [67]
or the analysis of generic random graphs and random networks [68], each of which
is a prominent field of research in condensed matter physics. For the lattice spin

models of statistical mechanics two major types of disorder are distinguished, namely
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annealed randomness, where the disorder varies on the same time scale as the spin
variables such as the cases considered in this thesis, and quenched disorder, where
the random degrees of freedom are frozen on the time scale of variation of the spins,
which is the case, e.g., for random-bond models and spin glasses. Depending on these
types of randomness, different predictions regarding possible changes of the order
and characteristics of the occurring phase transitions on application of the disorder
have been made [66,69-71]. In this context, an investigation of the properties of
spin models coupled to the random surfaces of the dynamical triangulations model
constitutes an analysis of the effect of a specific type of annealed geometrical or

connectivity disorder onto the considered lattice systems.

Vertex models coupled to the lattices of the dynamical triangulations model allow
one to study the effect of this geometrical type of disorder on prototypic models of
statistical mechanics. Since the most interesting of these models, the 6- and 8-vertex
models are defined on a four-valent lattice, the dynamical triangulations model has
to be generalized to a dynamical quadrangulations model, i.e., a model of surfaces
composed of squares, whose dual “fat” ¢* random graphs can be decorated by vertex
model arrows in the way prescribed for the 6- and 8-vertex models. For the case of
the 6-vertex model the lack of a global sense of orientation on the random graphs
reduces the range of sensible choices of vertex weights to the parameter space of
the F' model of an anti-ferroelectric. Its critical regime corresponds to a conformal
field theory of central charge C' = 1, such that the resulting vertex model on random
graphs corresponds to the limiting case of the “C' = 1 barrier” of discrete Euclidean
quantum gravity. This model can be formulated in terms of a matrix integral and an
asymptotic solution can be found by a saddle-point method [72,73], yielding partial
information about its content of scaling dimensions. In this thesis, we analyze this
model by means of an extensive set of Monte Carlo simulations of the combined
system of dynamical, planar ¢* random graphs and the coupled vertex model. A
general exploration of its phase diagram is followed by a detailed scaling analysis
of the matter- and graph-related observables of the system and a comparison of
the outcomes to the results of Refs. [72,73] as well as the KPZ/DDK framework of
Refs. [30-32].

*okosk

The outline of this thesis is as follows. Chapter 2 is devoted to an introduction to the

dynamical triangulations model. We review the steps taken from the path-integral



ansatz for the quantization of gravity and the related string models to the formula-
tion of simplicial quantum gravity and collect the most important analytical results
available for the two-dimensional model as well as the most prominent methods that
have been employed to achieve them. Finally, the predictions of KPZ/DDK [30-32]
for the effect of coupling matter systems to Euclidean quantum gravity in two di-

mensions are reported.

The methods for a numerical, Monte Carlo simulation of dynamical triangulations
are considered in Chapter 3. We distinguish different ensembles of triangulations
resp. the dual ¢* graphs with respect to the extent of allowed singular contribu-
tions, consider the classic sets of update moves for simulations in the canonical and
grand-canonical ensembles and discuss the aspects of ergodicity and detailed bal-
ance. Ideas for a generalization of this simulation scheme to the case of dynamical
quadrangulations resp. the dual ¢* random graphs first presented in Refs. [49, 74]
are picked up and elaborated in depths. As it turns out, for most of the considered
ensembles the update moves resulting from an ad hoc generalization of the moves
used in the triangulation model have to be augmented by a second type of moves
to ensure ergodicity. To have exact, finite-graph results at hand for comparison to
the simulation outcomes, we construct the co-ordination number distribution or cer-
tain analogues of it for the triangulation as well as the quadrangulation model from
the graph counting results of the matrix model approach. To alleviate the known
problem of critical slowing down of the considered type of dynamics, we adapt and
generalize the “minBU surgery algorithm” put forward in Ref. [75] to the case of
dynamical quadrangulations resp. ¢* random graphs. We conduct a dynamical scal-
ing analysis of the autocorrelation times of the different algorithms considered to

evaluate their performance.

Chapter 4 we start by a survey of the known exact results for vertex models on
regular lattices, focusing on the structure of their phase diagrams and the type
of the occurring phase transitions. The simulation of vertex models can be most
efficiently performed by algorithms of the cluster type, the most prominent of which
is the so-called loop algorithm [76]. While its use is well documented for the case
of regular lattices, the intended application for the simulation of vertex models on
random graphs calls for some modifications and adaptions. For the case of the
F" model considered, the definition of an order parameter for the anti-ferroelectric
phase transition on a random lattice requires a reformulation of the vertex model in

terms of “plaquette spins”.
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In Chapter 5 we address the problem of the F model coupled to planar ¢* random
graphs. After a short exposition of the exceptionally important position of vertex
models in the context of integrable models and conformal field theory in two dimen-
sions and a comparison of the situations on regular and random lattices, we report
the analytical results found for the system in Refs. [72,73]. Noting the surprising
lack of numerical work on the 6-vertex model on the square-lattice and in order to
calibrate our set of simulation and analysis tools, we analyze the Kosterlitz-Thouless
point of the square-lattice F' model via a set of Monte Carlo simulations. With the
thus gained insight, we perform large-scale simulations of the F' model on ¢* random
graphs and analyze the phase structure and the scaling properties in the vicinity of
its critical point. The outcomes are compared to the predictions of the KPZ for-
mula. The dynamical properties of the used combined link-flip, minBU surgery and
loop algorithm update are determined by a scaling analysis of the autocorrelation
times of several observables. The back-reaction of the matter degrees of freedom on
the properties of the random graphs is investigated by considering the distribution
of “baby universes” and extracting the string susceptibility exponent as well as an
analysis of the geometrical two-point function of the graphs, resulting in an estimate

of the Hausdorfl dimension of the lattices.

Finally, Chapter 6 contains a summary of the results obtained and some outlook on

ongoing and future work.



Chapter 2

The Dynamical Triangulations

Approach to Quantum Gravity

The dynamical triangulations approach to quantum gravity is a simplicial or lattice
regularization of the path integral formulation of the theory of gravity. Indepen-
dently, for the case of two dimensions the same type of expressions occur when
discretising the Polyakov interpretation of the bosonic string. While for the case of
general dimensions very few exact results are available, the quantum gravity model
in two dimensions, corresponding to string theory embedded in D = 0 dimensions,
can be solved exactly by several complementary combinatorial techniques. Within
the framework of Liouville theory one can find semi-exact results for the coupling
of C' < 1 unitary conformal matter to the gravitating space time, corresponding to
the Polyakov string embedded in 0 < D < 1 dimensions.

2.1 Path Integrals and Geometric Theories

2.1.1 Path integrals and quantum paths

The path integral approach of Dirac [77] and Feynman [78] has proved to be a suc-
cessful and physically appealing formulation of the quantization problem in physics
(for an introduction see, e.g., Ref. [79]). While algebraic schemes like canonical or
BRST quantization give quantization prescriptions which look rather arbitrary on

the operator level, the path integral approach is based intuitively on the funda-
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mental principles of quantum mechanics. Furthermore, it offers various technical
advantages like the inherent covariance of the formulation or the quite natural ex-

pression of renormalization theory in terms of path integrals.

In quantum mechanics, the transition amplitude of a point particle to move from

position z; to x5 in R? can be expressed in the path integral language as
z2 ot .
G(r1,22) = / Dla(t)] ¢ for dtHEIM, (2.1)
T

where

ﬂﬂMz/w&M%@ (2.2)

t1

denotes the classical action of the problem in terms of the Lagrangian L. That is,
the propagator is given by the functional integral over all possible classical paths of
the particle weighted by exp(iS/h). The classical limit follows naturally as i — 0
since at the classical solution one has 0S = 0, such that the phase factors are
wildly varying and thus destructively interfering everywhere but in the vicinity of
the classical path. Proceeding further, in second quantization the functional integral
Dx over paths z(t) is formally replaced by an integral of fields ¢(z), i.e.

Dx — Do(x). (2.3)

Since the world lines z(¢) being summed in the functional integral (2.1) are (simple)
geometric objects, it is natural to think of Eq. (2.1) as an integral over geometries
and formulate the action (2.2) in terms of the geometric properties of the world
lines. Instead of the explicit parameterization x(t¢), we consider an abstract path
P(z1,22) € P(x1,22), where P(x1,22) denotes the set of all smooth paths connect-
ing x; and x5. The simplest reparameterization-invariant choice of action is then

obviously given by
SW@JM:m/ i, (2.4)
P(xl ,132)

i.e., the length of the world line P(z1,2,), where m denotes a coupling parameter.

In terms of the parameterization x(t) this becomes

smm:m[amaWﬂ (2.5)

1
such that the classical equations of motion are those of a free relativistic particle,

Qﬁw:%<%>:& (2.6)
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solved by straight lines ## = const. Thus, the free relativistic particle has an elegant

co-ordinate free description via the functional integral
G(-Tl,l‘Q) - / D[P(l‘lal‘Q)] éimfp(ml,mﬁdl/h? (27)
P(x1,x2)

which is formulated entirely in terms of the geometry of the paths. Obviously, the
integral over paths P(x1,z3) should be over equivalence classes of paths instead of

individual paths, i.e. reparameterizations

x(t) = z(f(1), f>0, (2.8)

should not be counted as different paths.

2.1.2 Random surfaces and strings

A natural generalization of this concept replaces the zero-dimensional particle sweep-
ing out curves in time by one-dimensional strings sweeping out two-dimensional sur-
faces, the so-called world sheets. For simplicity we consider closed strings, i.e. world
sheets M (71, 72) spanned between two boundary strings 7;, 72 of topology S'. The

obvious generalization of the action (2.4) then is

SMGe)=n [ da, 29)
M(v1,72)

with a string coupling p, such that the action is given by the area of the world sheet

and the propagator now is represented as

Gl = [ DM )] eSO, (2.10)
M(71,72)

Then, different interpretations of such a system are in place. First, if the swept out
manifolds M are considered as parameterized surfaces X : S' x [0,1] — R” with
co-ordinates (£',€%) =&~z = (z',...,zP), the action (2.9) becomes

SxalXsul = /dA /d25\/|deth

O au2 Ok Ok 2
- ofe|() () - (). em

where h denotes the metric on the embedded world sheet induced by the mapping
X, ie.,

ort OxH

hor = oga ogr

(2.12)
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This is the celebrated Nambu-Goto action of string theory [80]. Inserted in the path
integral (2.10), the formal integral over surfaces M (71, 2) then becomes an integral
over equivalence classes of maps X under diffeomorphisms. On the other hand,
introducing an internal metric g, on M, Brink, di Vecchia and Howe [81] proposed

the following re-write of the action,

1
SelXgin) = 5 [ PEVTAotglg" (s + 1), (2.13)

which is known as the Polyakov string action. As indicated by the double argument
of Sp, the integration of Eq. (2.10) should now be performed independently with
respect to both variables X and ¢ as was proposed by Polyakov [82]. It can be
seen by a simple calculation that the actions (2.11) and (2.13) are equivalent at the

classical level; in a quantized theory, however, their equivalence is not at all obvious
(see, e.g., Ref. [10]).

2.1.3 Quantum gravity

Of course, the Nambu-Goto and Polyakov actions are only the simplest possible
actions for random surfaces; for a physical theory one might add further terms,
probably involving either the extrinsic curvature H in terms of the induced metric
h or intrinsic curvature terms R*, k = 1,2, ..., resulting from the internal metric g.
For a quantum theory of gravity in d dimensions, the natural action to start with is

the Einstein-Hilbert action of classical gravity,

Semlgs 1, \] = /M a%é /[ det gl — AR). (2.14)

which, as expected for a gravity theory, does not refer to an embedding space, but
is entirely formulated in terms of the internal metric properties. The first term is
still the area term (generalized to d dimensions), now written as a function of the
internal metric g, while the second term introduces the scalar curvature R derived
from g. In this context, p gains the meaning of a cosmological constant and A denotes
the gravitational coupling constant. The action (2.14) is explicitly invariant under
diffeomorphisms £* — £ of the co-ordinates, since the determinant of ¢ transforms

as

3(6)] = det (aél“) ra) (2.15)

oEp
such that the additional determinant just cancels the determinant stemming from

the transformation of the measure d?¢ (R, of course, transforms as a scalar). Since
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for the case of quantum gravity we do not any more have the propagation of strings
in mind, the path integral is naturally performed over closed surfaces M instead of

“tubes” S' x [0,1] and we thus define the partition function of the system as

2.0 = [ Dlg)esevimmin, (2.16)

were the functional integral covers all diffeomorphically inequivalent metrics g of
closed, smooth manifolds.

If the quantum gravity path integral (2.16) should be more than a symbolic ex-
pression of a quantization programme, even from superficial consideration several

fundamental problems and the need for interpretation of Eq. (2.16) come to mind:

1. Eq. (2.16) prescribes a state sum over a complex phase factor. Such sums,
however, are generally divergent, see, e.g. Ref. [83]. Furthermore, Riemannian
manifolds and thus metrics offer a variety of technical advantages over the

Lorentzian metrics we are instructed to sum over.

2. The integral over equivalence classes of metric tensors ¢ is not obviously a
priori well-defined. How is the over-counting due to diffeomorphically equiva-
lent metrics accounted for? What about different differentiable structures and

different topologies of the manifolds?

3. Since the curvature term of the action (2.14) can become arbitrarily large, the
Einstein-Hilbert action is in general unbounded from below. This obviously
renders the path integral (2.16) ill-defined, unless the measure term Dl[g] gives

negligible weight to such configurations.

The complex phase factor is commonly circumvented by the formal substitution
t— T (2.17)

of the time-like co-ordinate of the metric g. Under this Wick rotation the phase
factor changes as
el e/t _y o Seu/h, (2.18)

thus making the path integral Euclidean and therewith potentially convergent. After
performing the integration, a Lorentzian signature of the metric is supposed to be

recovered by analytic continuation in 7 or, alternatively, an explicit back-rotation.
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While this prescription is a well-established trick in quantum field theory on a fixed
(Minkowski) background based on the Osterwalder-Schrader reconstruction theorem
(see, e.g., [84]), it has been noted [85-87] that the possibility of a Wick back-rotation
is far from obvious in quantum gravity. For a dynamical and spatially varying metric
a Wick (back-)rotation cannot be given by the simple prescription (2.17) which is
obviously not invariant under diffeomorphisms; from the space of metrics to be
integrated over almost all will have no geometrically apparent notion of time [87].
In fact, the class of metrics and thus manifolds in the sense of the path integral
(2.16) compatible with a Lorentzian signature is different from the class of metrics
with Euclidean signature. Thus, the substitution (2.18) is an ad hoc assumption
that (as it turns out) changes the theory. We will speak about “Euclidean quantum
gravity” in contrast to “Lorentzian quantum gravity” when referring to the Wick

rotated theory.

As far as the over-counting of diffeomorphically equivalent metrics in the path inte-
gral (2.16) resp. its Euclidean counterpart is concerned, two possible solutions come
to mind [11]: either only one representative of each equivalence class of metrics is
counted in the functional integral, which is, however, practically quite impossible.
Or the integral should be performed over all metrics, taking care of the over-counting
by dividing out the “volume” of the diffeomorphism group in the measure, i.e., one

should make the following replacement:

Dlg]
/D[g] %/m (2.19)

The precise meaning of this transformation depends on the methods applied to fur-
ther develop the problem. In a continuum theory this additional factor corresponds
to the Fadeev-Popov determinant, whereas in the discretised models considered
below, the symmetry with respect to diffeomorphisms of metrics transforms to a
permutation symmetry of discrete objects.

A sum over different topologies of manifolds, which should be in principle included
in the path integral (2.16), is quite intractable for the case of general dimensions,
since for d > 3 there is no obvious classification of topologies in terms of a finite set
of parameters. For d > 4 there additionally occurs the problem of diffeomorphically
inequivalent differentiable structures for the same manifold. Also for those reasons

we now turn to the case of two-dimensional quantum gravity.
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2.1.4 The case of two dimensions

In two dimensions the topology of a closed surface M, is uniquely characterized
by its genus' h given in terms of the Euler characteristic by x = 2 — 2h. Taking
the discussion of the previous section into account, the partition function of two-

dimensional Euclidean quantum gravity reads

—SEn[gn;uAl
Z / Vol| Dlﬁ ¢ ’ (2.20)

with the action of Eq. (2.14). Here, we have set i = 1 for simplicity. Since the Euler

characteristic is a topological invariant and related to the integral over the scalar

/ d*¢+/|det gy| R = 4y = 87 (1 — h), (2.21)
My,

which is the celebrated Gauf$-Bonnet theorem (see, e.g., Ref. [88]), the path integral
(2.20) can be reduced to

curvature as

= et zh(, (2.22)

h=0

where the partition function Z"(y) at fixed genus h is given by

ZMp) = / %e—“%h, (2.23)
where V,, = [ M, d2¢/| det g | is the volume of the universe Mj,. Taking into account
the topological triviality of two-dimensional gravity, we note that the Polyakov string
action (2.13) can be alternatively interpreted as two-dimensional quantum gravity
coupled to the D independent scalar fields h,g. The topological triviality of the
Einstein-Hilbert action in two dimensions results in a boundedness of the action for
any fized topology; it remains to be checked, whether a summation over topologies
can be performed after solving the problem at fixed topology. This leads to the

so-called double-scaling limit to be discussed below in Section 2.3.7.

A field-theoretic solution of the problem of two-dimensional quantum gravity is
based on the uniformization theorem [89] for two-dimensional Riemannian surfaces
which states that every Riemannian surface is conformally equivalent to (see, e.g.,
Ref. [23])

"Here, h should not be confused with the external metric h = h,z above.
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e CP!, the Riemann sphere, or
e H, the Poincaré upper half plane, or

e a quotient of H by a discrete subgroup I' C SL(2, R),

such that the metric g can be written as

g=2¢"%g (2.24)

with respect to some reference metric ¢ on one of the above spaces. Thus, two-
dimensional gravity can be formulated in terms of the single Liouville field ¢; this
Liouville field theory can be treated analytically on the quantized level, see Refs.
[6, 23, 24] for reviews. However, the discretised theories presented below can be
solved exactly and yield results going beyond those of the continuum approach; the

results from both approaches coincide whenever they overlap.

2.2 Simplicial Quantum Gravity

While the continuum Liouville theory sketched above develops the problem covari-
antly to introduce a short-distance cut-off only at the end, a discretisation of the
problem makes the involved expressions finite from the beginning. After solving
the discretised theory, the relevant coupling constant(s) should be tuned such as
to define a proper continuum limit of the theory; this involves a renormalization of

relevant parameters.

However, a discretisation of the geometries to be integrated over, either by a lattice
model or the simplicial building blocks described below, has to ensure that the sum
over discretisations covers all metrics to be summed over in Eq. (2.20). That is, the
discretised metrics have to be something like a dense subset of the original space of
metrics. Such a property can be guaranteed for the case of “quantum gravity” in

one dimension. The discussion of the next section follows Ref. [10].

2.2.1 Random walks and the Wiener measure

Let fo(z) be the initial distribution of a cloud of particles in RP coupled to a heat

bath. Its diffusive spread in time is in the simplest approximation described by the
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diffusion equation,
of 1
— =-A 2.25
subject to the initial condition f(x,0) = fy(z), which is solved by [90]

Fat) = [ dyGilan) o), (2.26)

where the heat kernel Gy(z,y) if defined as

1 _lz—y|?

Gi(z,y) = (@r1)PP e

(2.27)
From Gaussian integration we have the following decomposition property of Gy(x, y):
Gt(xo, l'N) = /dm cedryog Gt/N(xN, l'N—l) e 'Gt/N($1, 1‘0)7 (2-28)

for any N > 1. Now, consider the piecewise linear path w : [0,#] — RP connecting

the points (zg,...,2n),

T — Tk—-1 k—1 k—1

k
- t t < —t, 1<k<N. 2.2
T T, Tt<a< gt 1<ESN (29)

w(s) =mxp_1 +

Then, the expression

£\ 2N
DNw = (2”N> dzy---dry_, (2.30)
may be considered as a measure on the space Qy(z,y) of all such paths connecting
x and y. Using the identity

i | — 2 ]? _ZN: Joe — 2]\ / 6o (s)|ds (2.31)
— t/N N N - /N '

in Eq. (2.28), the propagator G(x,y) can be written in a form reminiscent of a path

integral as
1 t
Gi(z,y) = DNw exp <——/ |d)(s)|2ds> , (2.32)
(z.9) 2 Jy

which is called the random-walk representation of G(z,y) on Qn (%, y). The expres-
sion (2.32), which is a conventional integral of a finite number of variables, can be
viewed as a discrete approximation to a true path integral, i.e., there exists a mea-

sure D; w on the space Q;(z,y) of all continuous paths w : [0,¢] — R” connecting x
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and y, such that [91]
IRV 1 N-1
(I’y)Din exp (—5/0 |w(s)|2ds> f{w (Nt>,...,w< N t)]
1 N -1
= D —t),... t 2.
[ prfo(§t) e (S e

for all bounded and continuous functions f : RV-DP — R and arbitrary N > 1;

i.e., the discrete measures are identical to D; w with respect to functions f uniquely
defined by their values at the reference points %t. The measure D;w is called the
Wiener measure on Q(x,y). Thus, we have constructed a path integral measure
from the set of piecewise linear paths. Reversing the view, one can ask for the be-
haviour and convergence of different discrete approximations to the Wiener measure.
Obviously, given a path w € Q;(z,y), we can define discretised paths wy € Qu4(z,y)
by wy(kt/N) = w(kt/N), k = 0,..., N, such that wy — w uniformly on [0, ] and

in view of Eq. (2.33) the measures

DNw exp[— ,
/ |w(s)|*ds, (2.34)

can be considered as approximations to the Wiener measure D;w for N — oco. In
fact, in can be shown that not only for S(w) given above but for rather general
actions one has convergence D}Nw exp[—S(w)] — D;w of the measures; in statistical
physics terms such a property is known as universality with respect to “microscopic
realizations”. Thus, according to this theorem of Donsker (see, e.g., Ref. [92]) for
the case of one-dimensional manifolds, i.e. curves, a whole variety of discretisations
of the path integral can be chosen which all properly converge to the continuum

formulation in terms of the integral measures.

2.2.2 Discretising quantum gravity

In more than one dimension there is no analogue of Donsker’s theorem that could
guarantee different discretisations to converge to the continuum formulation. Nev-
ertheless, discretisations similar to the random-walk representation of the Wiener

measure are possible.

A discretisation for the Nambu-Goto string of Eq. (2.11) embedded in R? is perhaps

most naturally defined by considering random surfaces on a hypercubic lattice Z¢.
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Figure 2.1: A small patch of a random triangulation (thick lines) embedded in the
plane. The dual graph (thin double lines) of the lattice is a ¢* graph of the same
topology.

Here, the lattice surface is defined as a set of plaquettes in Z? each consisting of
four cyclically ordered vertices in Z¢%, i.e. a set of squares of the lattice, usually
connected to a closed surface. Due to the over-exponential growth of the number
of these (self-intersecting) surfaces with the number of vertices, the problem is only
well-defined for fixed topology, usually that of planar graphs. This lattice random
surface (LRS) model has been considered in early approaches towards discretising
quantum gravity initiated by Weingarten [2]. We will not discuss this model further

here, for a review see Ref. [10].

A suitable discretisation of the intrinsic, not embedded geometry occurring in the d-
dimensional quantum gravity model is given by the concept of piecewise linear (PL)
manifolds, i.e. d-dimensional simplicial complexes subject to suitable regularity con-
ditions. In the case of two dimensional quantum gravity the simplices of maximal
dimension are 2-simplices glued together along their edges, such that the complex
can be depicted as a closed random triangulation. Fig. 2.1 shows a patch of such

a triangulation embedded in the plane. Such discrete approximations to quantum
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gravity have originally been proposed by Regge [93] for a co-ordinate free descrip-
tion of (classical) gravity. Given these fundamental building blocks, the summation
over triangulations should in principle include a variation of the edge lengths of the
triangles as well as the connectivity of the simplicial complex?. Simultaneous varia-
tion of both of these properties is possible and the corresponding ansatz is known as
the “dynamical Regge approach” [94,95]. However, historically two limiting cases

of this general scheme have been more intensively developed:

(a) Starting from the original discretisation attempt of Regge [93] and Regge and
Ponzano [96] the Regge calculus approach to quantum gravity [97-100] per-
forms the sum over metrics by considering a triangulation of fized connectivity
and varying the edge lengths of the triangles. The effect of this variation then
has to be incorporated in the path integral measure, which led to some dis-
cussion about how this should be done [101,102]. This approach has been
followed mainly by numerical methods, including studies of the resulting ge-
ometry [103,104], the effect of the coupling of matter to the gravitating uni-

verse [105] and extensions to the four-dimensional case [106].

(b) Stressing the combinatorial aspect of PL manifolds, the theory of dynamically
triangulated random surfaces (DTRS) considers triangulations consisting of
equilateral triangles, integrating over all possible gluings of a given number of
triangles to a (usually) closed surface of a given topology. Thus, its dynamic
aspect comes from the connectivity of the complex instead of from the edge
lengths. This model, originally proposed independently as a model for quan-
tum gravity in two dimensions by Ambjorn et al. [3], David [4] and Kazakov
et al. [5], can be solved exactly for the case of two dimensions in the pure case
and also for the coupling of certain kinds of matter to it, cf. the discussion

below.

The Regge calculus approach (a) will not be discussed further here. Instead, we
concentrate on the DTRS approach (b) and discuss the properties of the consid-
ered simplicial manifolds and the therewith discretised action of two-dimensional

quantum gravity.

2Since in quantum gravity we do not consider an embedding of the surfaces, the mentioned edge
lengths should be considered as properties of the internal metric.
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Figure 2.2: 0-, 1-, 2- and 3-simplices.
2.2.3 Dynamical triangulations and the discretised action

An r-dimensional simplex o, = (pq . ..p,) is the point set in R? defined by [88]

r

Jr:{xERd|x:Zcipi, ciZO,Zcizl}, (2.35)

i=0 i=0

with geometrically independent points p; € R?. A ¢-face of 0, = (py...p,) is
the simplex o, = (pi,...p;,). Fig. 2.2 shows the simplices of lowest dimension.
A simplicial compler K is a finite set of simplices, such that (i) all faces of each
simplex of K belong to K and (ii) the intersection of any two simplices of K is either
a simplex of K or the empty set. The dimension of K equals the maximum of the
dimensions of the simplices it contains. The star stary (o) of a simplex o € K is the
union of all simplices of K of which o is a face; the link linkg (o) is the union of all
faces oy of all simplices in starg (o) satisfying oyNo = 0. The point set | K| = Uyexo
is called the polyhedron of K, which provides the underlying topological space of the
complex; the polyhedron | K| is said to be triangulated by K. A subdivision K' of K
is a simplicial complex such that |K'| = |K| and each r-simplex of K’ is contained

in an r-simplex of K.

Then, a piecewise linear or PL manifold M is a polyhedron such that each point in
M has a neighbourhood which is simplicially isomorphic to an open set in R?, where
“simplicially isomorphic” means that the corresponding map is invariant under sub-
divisions. On the other hand, a simplicial manifold is a d-dimensional complex K
such that link(o,) ~ S4="=! [14]. Thus, simplicial manifolds are abstract, combinato-
rial representations (triangulations) of PL manifolds. However, in the DTRS scheme
triangulations are not deduced a posteriori as triangulations of manifolds, but con-
structed independently by gluings [13]. There, a set of simplices is endowed with

identifications of faces of different simplices such that each face is subject to exactly
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one gluing procedure. In two dimensions, i.e., when gluing triangles in the indi-
cated way, the resulting simplicial complex is a simplicial manifold®. In general, the
gluing of d-simplices to a simplicial manifold M has to obey the Dehn-Sommeruville

relations,

X(M) = (=1’ Ny(M), (2.36)

1=0

2 1(_1)i (i— Zk(j——g)}();k A =0, (2.37)

if d is even, where 1 < k < d/2. Whereas if d is odd the second equation reads

d

Z(—w( (i+1) N;(M) =0, (2.38)

=2k + 1)2kR

where 1 < k < (d —1)/2 and N;(M) is the number of i-simplices in M. Eq. (2.36)
is the well-known way to compute the Euler characteristic for a simplicial surface;

for the case of d = 2 the second equation reduces to the simple property
2N (M) = 3Ny(M), (2.39)

expressing the fact that each link is shared between exactly two triangles. Note
that for the d = 2 case the combination of Eqs. (2.36) and (2.37) leaves only one
independent variable, for example the number of triangles Ny(M). For d = 3,4 one
has one additional independent variable, say the number of (d — 2)-simplices (bones)
Ny_o(M).

Now, a d-dimensional dynamical triangulation T, can be defined as a triangulation
(subdivision) of a simplicial manifold M built by gluing Ny(T,) d-simplices with a
common, fixed edge length a. Here, a serves as cut-off for the discretisation of the
path integral (2.20). As far as the discretisation programme is concerned, it can
unfortunately be shown that not every topological manifold can be triangulated in
general dimensions [13]. Thus, as mentioned above there is no analogue of Donsker’s
theorem for d > 1. However, one can prove an approximation theorem which states
that for any Riemannian manifold M of bounded geometry there is a cut-off a and
numbers of d- and d — 2-simplices N4(T,) and Ny_5(T,) such that there exists a dy-

namical triangulation 7, x, n, , with a distance from M in the Gromov-Hausdorff

In dimensions d > 2 the result will in general only be a pseudo-manifold [14].
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metric smaller than a given arbitrary, positive number [14]. Stated in other words,
any such manifold can be approximated with arbitrary precision by dynamical tri-
angulations. Note that this result is much weaker than Donsker’s theorem in the

one-dimensional case.

Given the concept of a dynamical triangulation, the notions of differential calculus
necessary for the formulation of general relativity should be transferred to the dis-
crete language. This programme has been first carried out by Regge in the seminal
paper [93] and later on adapted to the view of dynamical triangulations in [98]. The
basic properties which have to be translated are those of (geodesic) distance, of area
(or volume for d > 2) and of curvature. The classic distance definition stemming
from Regge calculus [93] is the continuation of the generic, flat metrics of the in-
terior of the simplices of the simplicial manifold to the whole of the complex; the
resulting metric, however, is obviously singular at the vertices. Instead, considering
the simplicial complexes as combinatorial objects, the metric should be defined in
terms of the simplicial building blocks of the triangulation, i.e. its faces, edges and

vertices. The distance between vertices p; and py in T, can be conveniently defined

as
d(p1,p2) = a min |I(p1,pa)l, (2.40)

I(p1,p2)
where the minimum is taken over all discrete curves [(py, p2) = (D1 = Diys Pigy - -+ » Pir, =

p2) for arbitrary n < Ny(T,) such that (p;,,p;,,,) is a link belonging to 7, and
|l(p1,p2)] = mn. Since the edge length is a constant, we will frequently consider
d(p1,p2)/a. Analogously, one can define the distance between edges as the mini-
mum number of edges of the dual lattice one has to travel to connect them and,
similarly, distances between simplices of larger dimension. On the grounds of uni-
versality (cf. Section 2.2.1) we expect the precise definition of distance to make no
difference as long as a continuum limit can be defined (i.e., the model exhibits a
continuous phase transition). Note that all of those distances are geodesic for the
discrete surfaces and can thus be used in the places where the theory of relativity

refers to geodesic distances.

To discretise the notion of curvature, we concentrate on the case of two-dimensional
simplicial manifolds. Recall that (one of the versions of) the Gaufl-Bonnet theorem
states that for a geodesic n-angle t with angles 3; on a smooth surface the integral

over the scalar curvature R,

%/thA:zi:&— (n—2)m = e, (2.41)
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Figure 2.3: The excess angle ¢; of the geodesic rectangle (1234) is equal to the deficit
angle ¢; of vertex i. (a) The geodesic triangle (1234) and an interior vertex i. (b)
Embedding of the surroundings of 7 into the plane, after cutting the triangulation

open along the link (1i).

does in general not vanish (as in flat space); instead, the n-angle ¢ has an excess
angle €;. Alternatively stated, the parallel transport of a vector around the triangle
will rotate it by the excess angle €¢; [93]. On the discretised surface, the interior
of simplices is flat; since scalar curvature is an intrinsic property which does not
depend on the embedding (this is the “Theorema Egregium” of Gaufl), curvature
can also not be attributed to the edges, because the simplicial surface can be bent
along the edges without changing the intrinsic properties. Thus, curvature has to be
associated with the vertices of the simplicial manifold. If for each vertex we define

the deficit angle €; as

g=2r— > al(pipm)l; (2.42)

(PispjPr)ETa

we read off from Fig. 2.3(b) that ¢; = ¢;. Thus, from Eq. (2.41) we have

%/thA = Z € = Z R; A;, (2.43)

pi€Ty pi€T,
where the area A; and curvature R; associated to the vertex p; are defined as
262'

A;
(PispjPr)ET
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i.e., the area of each triangle (pi, po, p3) is equally distributed between its vertices
p;. For the case of equilateral triangles occurring in the DTRS scheme all angles
equal /3 and therefore ¢; = (6 — ¢;)m/3, where ¢; denotes the co-ordination number
of the vertex p;. Eq. (2.44) then reads

02 27’(’(6 — ql)
A =—q, R ="-—>" 2.45
3 K ;0 ( )
where a? = a?\/3/4. Now, the integral over curvature can be evaluated as
2T
D A=) (6-q) =4n[No(T) = No(To) /2] = dmx(Ta),  (2.46)

pi€Tn pi€Ty

where we have used the Dehn-Sommerville relation (2.39) in the last step and x(77,)
is given by (2.36). This proves the discrete analogue of the Gaufi-Bonnet theorem.

Writing the total area of the surface as
D A= Ny(To), (2.47)
pi€Ta

the path integral of two-dimensional simplicial quantum gravity is given by

Z(j, \;a) = ZeMX(h)/\ i o—Ha® N2 Z C(lT ) (2.48)

o0

h=0 No=1 To€Ta(h,N2)

In the following, we absorb the “lattice spacing” a formally into the coupling con-
stant p, until in Section 2.3.7 the continuum limit of the discrete theory is discussed.
The C(T,) denote the symmetry factors associated with dynamical triangulations of
genus h and with N, triangles, that is, the volume of the corresponding symmetry
group. Thus, two-dimensional simplicial quantum gravity is reduced to the purely
combinatorial problem of determining the number N[T,(h, N5)] of triangulations of
a given topology and size and the corresponding symmetry factors C'(7,). They
encode the over-counting of metrics in the path integral measure due to equiva-
lent metrics, i.e., metrics connected by an orientation-preserving diffeomorphism.
For labelled triangulation as they naturally occur in computer simulations of DTRS
models (see Chapter 3 below), C(T,) is simply given by the factorial Ny(7,)! re-
flecting the number of possible re-labellings of the vertices [11]. In general, the
space of equivalence classes of metrics can be characterized by a finite-dimensional
Teichmdiiller space (see, e.g., Ref. [88]) of metrics §(ty,...,tn), t; € C, such that any
metric g on a manifold M is equivalent to

6¢§(t11 cee 7tm)7 (249)
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where ¢ is a function on M. Here, the parameters ¢; correspond to the combina-
torial freedom in the gluing of simplices, whereas the conformal factor e? encodes
additional invariants such as volume and curvature. Without discussion we mention
that the discretised Einstein-Hilbert action of a simplicial manifold T" in dimensions
d > 2 is given by [107,108]

ST[KJd, I{d_g] = KJde(T) — KJd_QNd_Q(T), (250)

where k4 and k4_o are suitable combinations of the cosmological and gravitational
coupling constants (see, e.g., Ref. [9]). Also, the additional term h, in the Polyakov
action Eq. (2.13) adds a term

(zi — x;)° (2.51)

(pipj)€ETa

DO | —

to the discretised action, where the z;, are additional co-ordinates in R” associated to
the vertices of the lattice. This justifies the claim presented above, that the Polyakov
string (at fixed topology) can be viewed as two-dimensional quantum gravity coupled
to D Gaussian fields.

2.3 Analytical Results for the Discretised Theory

In the following we concentrate on the case of the DTRS model in two dimensions,
such that, unless otherwise stated, all results cited apply to the case d = 2. Having
defined a discretised theory of two-dimensional Euclidean quantum gravity in terms
of dynamical triangulations, one has to ensure the existence of a continuum limit for
the theory to become a possible candidate for the quantum theory of gravity. If such
a limit exists, we expect certain observables to scale according to power laws in the
vicinity of the critical point, thus defining universal critical exponents of the theory.
In a cursory survey, we present the methods which have been successfully applied to
solve the combinatorial problem exactly and the main results of the analysis. First
of all, one has to check, whether the sum of Eq. (2.48) over dynamical triangulations
is well-defined (that is, finite) such as to have a chance to define a continuum limit.
To entertain the reader and stimulate her imagination regarding the objects to be
summed over, Fig. 2.4 shows a sample two-dimensional dynamical triangulation
embedded in R3.
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Figure 2.4: Embedding of a two-dimensional dynamical triangulation with Ny, =
5000 triangles in R* (projected to R? for obvious reasons). The colour of the triangles
encodes the local curvature of the surface according to Eq. (2.45); blue regions have
curvature R > 0, red patches denote R < 0. The embedding was generated with an
adaptive algorithm described in Appendix B.

2.3.1 Existence of the discretised partition function

Adopting the interpretation of the Polyakov string action (2.13) as two-dimensional
quantum gravity coupled to D Gaussian fields, we consider the discretised m-loop
function at fixed topology,

> 1 1 2

Gh(ly,...,ln) = 5 e M2 E Ni/ | | dx; "2 2@ @) (252

L = . Loyt (2:52)
2= aEE(h,lez) pzeTa

Here, the [; denote fixed boundary loops consisting of n; = n(l;) links of the triangu-

lation. The G (I, ...,[,) are quite general functionals, which include the m-point
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functions G, (pi, ..., pm) when contracting the loops [; to points p; and the parti-
tion function Z, for m = 0. The symmetry factors C(T,) in general depend on the
number m of fixed loops or points and are thus not identical to the factors C(7T,) of

Eq. (2.48). If we include the sum over topologies,

o0

Gulli, .. ) =Y ™AGH (1, L), (2.53)
h=0
where A = 0 for the Polakov string, the number of such triangulations can be shown

to have a lower bound of the form [10]
(eNo)!, (2.54)

which grows faster than any exponential. Since the fields z; will result for a fixed

triangulation in a free energy F' < fN, for some f > 0, it is obvious that

G(liy. o lm) > ) (eNg)! e N2, (2.55)

Ny=1

which is divergent. Thus, including the sum over topologies, the m-loop functions
are ill-defined for any value of the coupling i due to the entropy of the triangulations.
We thus concentrate on the problem at fixed topology. A possible inclusion of the

sum over topologies using matrix models is discussed below in Section 2.3.7.

For the case of triangulations of fixed genus h the situation is fortunately more pleas-
ant: it can be shown that the number |7, (h, N3)| of such inequivalent triangulations

is exponentially bounded with respect to the number of triangles [8], i.e.,
1 Ta(h, Np)| < econst= N2, (2.56)

Then, for a spanning tree on a given triangulation 7, the Gaussian integral in Eq.
(2.52) can be easily performed due to the absence of closed loops to yield the bound
10]

/ IT d= e~ Zan @ m)? < (o) Na(Ta)D/2, (2.57)

pi€Th

such that Gﬁ(ll, ooyl is finite for p > % log 2. Thus, for given h and a given
number of boundary loops Iy, ...,[, there is a po(li,...,ln) > 0 such that the
m-loop functions are finite and analytic for p > pug(ly,...,l,) and divergent for
p < po(ly, ... L) (this includes, of course, the partition function of the model).

Furthermore, it can be proved that pg(ly,...,ln) = po does not depend on the
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choice of boundary loops I; and is even independent of the genus h [3,109, 110].
Since for p right above the limiting value o the sum over Nj in (2.52) is dominated
by the large-N, terms, the limit u | pg is the obvious candidate for the continuum

limit of the model.

For the case of simplicial quantum gravity in dimensions d > 2 a similar prop-
erty could only quite recently be proved [111-113]; also there, the number of non-
isomorphic triangulations with a given number of d-simplices is exponentially bounded
with Ny.

2.3.2 String susceptibility, mass gap and string tension

Integrating over the marked vertices in the m-point function, the susceptibilities are
defined as

X(imy (12) :/dl‘g---dxm Gh (0,22, .., Tm). (2.58)

In the thermodynamic limit Ny, — oo their singular part can also be expressed as

derivative of the partition function,

7). (2:59)

since in view of Eq. (2.52) differentiating with respect to g will pull down a factor
of —N,, which is, in the limit of a large number of triangles, the same effect as
fixing an additional vertex in the triangulations in going from G%(0, s, ..., Zm_1)
to GZ(O, T, ..., Ty). The differences for small Ny stem from the different symmetry
factors associated with the triangulations. Since Z"(y) is singular at the special
point . = pg, the susceptibility is expected to scale with the string susceptibility

exponent v as
_~h
X" (1) = X{oy ~ (10— po) 7% (2.60)

It turns out that the critical exponent 4" indeed does depend on the genus h of the

triangulations.

By separating out the minimum of the Gaussian action,

Smin(T,) = min 1z:(:ci—:z,«j)?, (2.61)
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the Gaussian integral in Eq. (2.52) can be written as

D/2
) ) Na(To\Ta)
/ H dz;e 2 20y (@i=23)" — o= Smin(Ta) (L) . (2.62)

0
pi€Ta det CT‘;

Here, Cr is the adjacency matriz of the triangulation T} constructed by removing
all boundary links from 7, and identifying all boundary sites with one vertex given
the label 0 and

(Cry)is = { A (2.63)
where ¢; is the co-ordination number of vertex p;, and ¢;; is the number of links
connecting vertices p; and p; (i.e., either 0 or 1 for simplicial manifolds). The
modified adjacency matrix C’%; is defined by deleting the row and column indexed by
0. The representation (2.62) allows a continuation of the theory to non-integer and
even negative embedding dimensions D; especially to the case D = —2, which can
be solved analytically, see Refs. [5,21,114-116]. Inserting (2.62) into the definition
of the susceptibility (2.59), x"(1) can be expressed in terms of the determinant
det C’%ﬂ. Using the fact that this determinant is additive with respect to “gluings”
of two spherical universes along two of their boundary lines [;, for h = 0 one can

prove the inequality [117]

W<s, (2.64)

DN =

which is one of the most general results for the DTRS models; this mean-field like
bound is supposed to hold for any random surface model with local interactions.
Especially, via the extension of Eq. (2.62) to non-integer and negative dimensions
D, this result is valid for the coupling of conformal matter of any central charge
to two-dimensional Euclidean quantum gravity. The mean-field limit in statistical
mechanics is usually found to be equivalent to the limit of infinite dimensionality
of space. Considering D — oo in the DTRS model, from Eq. (2.62) obviously
configurations minimizing the determinant det C’%; will dominate; as it turns out,
this minimal weight is attached to configurations of branched polymers, i.e. planar
tree graphs. The branched polymer model (see, e.g., Refs. [118,119]) can be solved
exactly and not surprisingly yields the limiting value 7% = 1/2. In Section 2.3.3 we
will see that for pure gravity, i.e. the case D = 0, a value different from mean-field
behaviour, namely 72 = —1/2 is realized. Bounds similar to (2.64) can be found for

higher-genus surfaces, see Ref. [10] and references therein.
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Considering the long-distance behaviour of the m-loop or m-point functions, we
define the inverse correlation length or mass gap m(u) as the limit*
In G"(r
m"(p) = — lim ﬁ, (2.65)

r—00 T

where G(r) = G"(0,z), |z| = r. The proof of the existence of the indicated limit
is technically somewhat intricate [7,10]. It follows from a sub-additivity property of

the two-point function, namely
Gh(r1 +12) > Gl(r1)Gh(ra). (2.66)

Qualitatively, the origin of this relation is quite obvious if we consider the (suitably
normalized) 2-loop function GZ(h, l5) as the probability of the propagation of a string
from Iy to lo, where |l1] = |ls|. Then, the probability of the string to propagate from
[1 to Iy through a fized intermediate position, corresponding to the rhs of Eq. (2.66),
is naturally smaller than the probability for it to propagate through any possible
intermediate position, represented by the lhs of (2.66) [8]. It can also be shown that
mh(u) > 0 for g > pp and m"(u) is a decreasing function of p. It is not proved
(for the most general case), but almost certainly true, that m”(u) really vanishes at

[ = g, i.e. that the correlation length 1/m” (1) diverges at the critical point pq.

From the definition (2.65) of the mass gap we infer the following long distance

behaviour of the correlator
h —mh(u)r h
G(r) ~e Wr > 1/mh (). (2.67)

If the mass scales to zero, which is essential for the existence of a well-defined
continuum limit, we associate this scaling with the critical exponent v:

h

m" () ~ (1 = o). (2.68)

The exponent v is expected to be independent of the genus h. As will be demon-
strated in Section 2.3.5 v is related to the fractal structure of the lattices character-
ized by the Hausdorff dimension dy as v = 1/dy. The exponents v or dy are not
known exactly for the general case, i.e., two-dimensional quantum gravity coupled

to conformal matter with central charge C' = D. On the other hand, the short

distance behaviour of the 2-point function defines the anomalous dimensions n* as

GZ(T) ~ ! r < 1/m" (), (2.69)

4For the quantum gravity (and not the string theory) point of view, the two-point function will

rd—2+nh’

be explicitly defined in terms of geodesic distance, see below Section 2.3.5.
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where the additional factor 79~! stems from the average over spherical shells implied
in considering G;(r). In view of the scaling of the mass m” (1) to zero at the critical
point p = pg, the limits of long and short distance considered in Eqs. (2.67) and
(2.69) can be alternatively interpreted in terms more natural for statistical physicists:
since the region r < 1/m"(p) eventually covers the whole triangulation as p — fig,
(2.69) describes the correlator in the vicinity of the critical point (the scaling region),
whereas the exponential decay (2.67) is valid off criticality. Combining the definition
(2.58) of the susceptibility with the scaling properties (2.60), (2.68) and (2.69) we
find

0 1/mO ()
(=)~ [arGhin) - / dr ! o (1/mP (1)) ~ (1 = pig) ™2,
(2.70)

i.e. the Fisher scaling relation

% =102 -1n"). (2.71)

Finally, considering the exponential decay of the 1-loop function Gg(l) for a large

planar loop [ enclosing an area A,
G (1) ~ AP e 02, (2.72)

defines the string tension for spherical surfaces, o°(p1), which can be interpreted as
the surface tension of a membrane attached to the “frame” [. It can be shown [120]
that the string tension o(u) > 1, such that it does not scale to zero as u — pg. As
will be shown below in Section 2.3.7 this implies that the physical, re-scaled string

tension defined from the continuum limit becomes infinite.

2.3.3 The combinatorial solution

The problem of the Polyakov string (2.13) embedded in D = 0 dimensions, i.e. pure
Euclidean quantum gravity in two dimensions can be solved exactly with a gener-
ating function technique known as the loop equation. An alternative formulation of
this system in term of a matriz integral, which can also be performed analytically,

will be sketched in the next section.

To dynamically control the presence and weight of boundaries in the triangulations,
we add a boundary term to the discretised Einstein-Hilbert action of Eq. (2.48) at



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 31

fixed topology h, i.e.

b
ST[M) K’la"'a"{"b] = MNQ +ZK'1,”1, (273)

i=1
should denote the action of a simplicial manifold 7" with b punctures enclosed by
boundary polygons of geodesic lengths n; = n(l;); the k; thus play the réle of

boundary cosmological constants. Using the abbreviations

1
A (2.74)

Ta€7a(h,N2;n;) C(Ta)

for the number of triangulations of genus h with b boundaries of lengths n; and

defining fugacities of triangles and boundary links,
m=e * & =e" (2.75)
the loop functions (2.52) for fluctuating loop lengths n; and at D = 0 now read

Gt 0) =) D7 w0l (2.76)

Ny ni,...,np

whereas the loop functions for fixed boundary lengths® n;, the Hartle-Hawking wave

functionals [121], are given by
Gflli(nIJ e 7nb) = Z w]h\‘b’nl...’nme?_ (277)
N>

Obviously both kinds of loop functions are related by a Laplace transform as

Gu(lr,....8)= D & "l Ga(ng,. ) (2.78)
N1y Np
From a combinatorial point of view, the G (€,,... &) can thus be considered as the

h

generating functions of the numbers wy, ., ..

Considering the effect of simple surgery operations on the triangulations that change
the number of triangles or the number of boundary links by units of one, correspond-
ing to a multiplication by factors of m, m~!, £ or £, one can derive the following

recursion relation for the generating function for planar triangulations (h = 0) [15]%:

1
go(m, €) = m € go(m, £) + Egg(m, 8), (2.79)

®Note that the n(l;) are diffeomorphism invariant quantities.
6The relation originally derived by Tutte [15] is for a slightly different class of triangulations

and includes corrections for the smallest triangulations; it thus look slightly more complicated than
the relation given.
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where

gn(m, By, 8) = Gh(ey, ... 6)E -8t (2.80)

Eq. (2.79), known as the loop equation (a form of the Dyson-Schwinger equation),

should be understood order by order in the variables m and €. This type of equation

h

can be used to iteratively generate the numbers wy, .,

,- In the limit of large N
closed-form expressions can be given (for a review see, e.g. Ref. [10]); for the case of

closed triangulations of general genera h one finds [25]
wh ~ NE"eroN2[1 4+ O(N, 1)), (2.81)

where

Sh—T7
5
The number of closed triangulations with N, triangles grows exponentially as indi-

0y, =

(2.82)

cated in Section 2.3.1 with a power-law correction characterized by the exponents
0". These exponents are related to the string susceptibility exponents 7" as follows.

Consider the partition function at fixed topology

o0

ZMp)y =" e ZM(Ny), (2.83)

Ny=0

where Z(N,) = w}, denotes the canonical partition function at fixed volume. In-

serting the expression (2.81) into this equation, we have’
Zh(,u) ~ Z e*(u*uo)MNgh ~ (u— MO)*(WH)_ (2.84)
Na=0

Recalling that via Eqs. (2.59) and (2.60) Z"(u) ~ (1 — po)2 %, it follows that

0" = 4" — 3 and thus
b5h —1
= 5 (2.85)

Especially, for planar surfaces h = 0, one finds 4 = —1/2 in contrast to the mean-

field result 7% = 1/2. Along the same lines also the counting of surfaces consisting

not only of triangles, but of arbitrary polygons, is possible [122,123].

"Concerning the last equality, consider the continuum expression

/oo AN o~ (HmroNs NI* (e + 1) '
0 (1 — po)?"
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2.3.4 Matrix models

An alternative path of derivation of the central result (2.81) for the number of
triangulations of a given number of triangles is given by the analysis of matriz
integrals (for reviews see, e.g., Refs. [6,23,124]), originally considered by ’t Hooft
for the large-N limit of QCD [19]; in fact, the concept of “loop equations” has been

originally developed in the context of matrix models.

Consider the Taylor expansion of the zero-dimensional field theory integral

[ave e - Z / dge b L (‘%’ﬁy i;,( ) (%), (280

where ¢ is a simple, real-valued variable. Introducing an external source .J, the

occurring terms can be written as

/d¢e¢2/2¢n — (_Z)n d /d¢6¢2/2+ij¢

an 7']2/2
o g

9

(2.87)

J=0 J=0

Since each derivative 0/0.J brings down a factor of J, after setting J = 0 only
pairs of such derivatives give contributions without factors of .J, which thus do not
vanish. Therefore, one has a zero-dimensional version of Wick’s theorem (see, e.g.,
Ref. [125]),

G dn) = D (Ginbin) (i, i)- (2.88)

perm(iy,...,in)

Associating with each factor ¢®/3 a vertex with three external lines,

%

the expansion of (2.86) corresponds to the pairwise connection of vertices via links.
The resulting ¢* Feynman graphs are generic, “thin” graphs without an orientation
of the plaquettes; this is obviously not enough structure for the triangulation of
Riemannian surfaces (even though these graphs are interesting in their own right,

see e.g. Refs. [126-128]). Therefore, consider the more general integral

00 k
W(g,N) = /d¢65“¢2+35ﬁ“¢3 = Z% (ﬁ) (Tr ™), (2.89)
k=0
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Figure 2.5: The Wick expansion of the matrix integral (2.89) corresponds to the

gluing of oriented triangles mediated by the matrix indices.

where now ¢ is a N x N Hermitian matrix and

dp =[] dRedap [ [ dIm bus. (2.90)

a<lp a<f

Then, again, the expansion is given by the combination of all possible Wick con-

tractions of (Tr ¢®)* and the two-point function is

<¢a6¢a/6/> = /d¢ 6752415 |¢am2¢o¢g¢a,6, = 504,8’56(1’ (291)

Then, via the pairing of the indices of ¢, the corresponding vertices receive a rib-

N
)~

leading to orientable plaquettes of the surface. In terms of the triangulation, i.e. the

boned, “fat” structure,

dual lattice of the ¢3 graph, the “fat” structure can be understood as follows: to
each factor Tr¢® we associate a triangle and to each term ¢,s0s,¢,q contributing
to Tr ¢* a labelling of the vertices of the triangle by «, 3, v in cyclic order; thus,
the element ¢,5 corresponds to the oriented link between vertices o and 3. Then
the Kronecker § symbols of Eq. (2.91) ensure that each link (o, ) is identified with
an oppositely oriented link (f’, o). This is illustrated in Fig. 2.5.

In this way, the integral (2.89) corresponds to a sum over closed, orientable triangu-

lations of Ny(T') = k triangles, which are, however, possibly disconnected. Making
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use of a common trick in field-theory [125], taking the logarithm of (2.89) kills all dis-
connected contributions, leaving only connected surfaces. Summing over Eq. (2.91)
it is obvious that each vertex of the triangulation picks up a factor of N, such that

the overall weight of a triangulation 7" is given by
1 1
gN2(T)NN0(T)*N2(T)/2 — oV2(T) NrX(T) ) (2.92)
Note that the factorial k! in (2.89) is partially cancelled against the number of

permutations of the triangles, resulting in the symmetry factor 1/C(T'). In view of
Eq. (2.48), the identifications

N=¢™ g=e* (2.93)
let us conclude that W (g, N)
g,
Z(u, \) =1ln ——= 2.94

is the partition function of the two-dimensional Euclidean quantum gravity problem.
Note that the Hermiticity of the considered matrices is essential for the orientability
of the triangles and thus the surfaces; using real symmetric matrices instead makes
the two indices o and f indistinguishable, thus generating both orientable and non-
orientable triangulations. From the weights (2.92) it is obvious that the planar limit
N — oo leaves only triangulations with minimal y = 2 — 2A, i.e. with h = 0. On
the other hand, in the limit N = 1 we recover the case of generic, “thin” graphs,
where all genera come with equal weights. From the discussion up to this point it
should be clear that the partition function Z(u, A) defined in this way — as a sum
over topologies — is divergent and should therefore be considered as a symbolic

representation of the collection of all orders of a large-N expansion,

In N > _ = o
Z(p=—-Ing,A=——) = ZNQ 2h 7 () = ZNQ 2h Z gV ZM(Ny).  (2.95)

4

The leading term of this expansion, i.e. the limit N — oo (the planar theory), can
be computed exactly via the saddle-point method to give [16]

8N (2N, 00
ZO(NQ) — (21 2) NQ,j N—7/2 6N21n12\/§_ (296)
(N2 +2)! (5N + 1)
Comparing with the result (2.81) we find agreement for the planar case and the
additional information that the critical value of the cosmological constant for this

particular model is given by
1o = In(12v/3). (2.97)
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As mentioned above, the matrix model approach is very closely related to the
combinatorial ansatz leading to the loop equations. For example, the numbers
gn(g = m,¥;,...,8) can be directly computed within the matrix model scheme.
If we denote (in contrast to the above notation) by (-) an average with respect to

the measure
1 p g
W—l(g,N) 6_§T‘I‘¢Z+m“¢3d¢’ (298)

the generating function g, is given by

~ <Tr ¢k1 .. .¢kb>conn
(g, b k) = N2 Y PR SR T a (2.99)
k1,..,kp 1 Y

where (-)conn denotes the connected part of the correlation function.

With the same technique further models can be considered by changing the matrix

potential. Re-writing (2.89) more generally as

1o U (2.100)

W(g.N) = [doe V0D V(gg) = 6 - !

which involves a re-scaling ¢ — v/ N¢ for technical purposes, it can be easily seen

that, for example, the quartic potential,

1 g
generates the ensemble of “fat” ¢* graphs, i.e. the dual lattices of quadrangulations.
Matrix potentials with more than one matrix or with non-Hermitian matrices cor-

respond to a dressing of the random graphs with matter variables, see Section 2.4.3.

2.3.5 Fractal structure of the lattices

Considering the features of geometrical observables on random triangulations of
the introduced type, it quickly becomes clear that the intrinsic geometry of the
lattices is far from smooth; instead they have a very ragged and highly detailed
structure reminiscent of fractals. This can most eye-catchingly be demonstrated by
considering an embedding of the two-dimensional lattices in R? trying to faithfully

reproduce the property of equal edge lengths of the triangles, cf. Fig. 2.6.

The prevailing parameter characterizing the “fractality” of a structure is the Haus-

dorff dimension with respect to a given metric, which defines how a suitably defined
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Figure 2.6: Embedding of a two-dimensional dynamical triangulation with Ny =
5000 triangles in R®. The triangulation is taken from the same ensemble as the
more smooth looking example of Fig. 2.4. The embedding was generated with an
adaptive algorithm trying to avoid edge intersections while uniformizing the edge
lengths, cf. Appendix B.

measure of linear length of the structure scales in terms of its volume. For the
case of the Polyakov string embedded in R” the mean square extent with respect to
distances in the embedding space and in the grand-canonical ensemble of a varying

number of triangles N, is defined as

_ [dz2?G(0, )

(x%), = : (2.102)
" [dzGh(0,2)
Then, define the average number of triangles in this ensemble as
de 2G"(0,
(N,), = J dv 5,G(0,) (2.103)

~ [dzGh(0,2)
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since differentiating (2.52) with respect to p brings down a factor of —Ny. If the

limit

1 In(z?)
di = = li “
=2 55 In(Ny),,

exists, it is called the external Hausdorff dimension of the considered ensemble of

(2.104)

random surfaces; otherwise, we set dy = 0o. Alternatively, it can be defined in the

canonical ensemble of a fixed number of triangles N, as

1 In(z?) y.
dyg = 5 lim ———=. 2.105
" 2 Nzlgloo In NQ ( )
Thus, the average area of the surfaces asymptotically scales as
(No)u ~ (@) = po. (2.106)

For the case of pure quantum gravity, no embedding in a target space (apart from
illustrative purposes) is available. Recall from (2.52) that the two-point function in
D = 0 is defined as

Gh(r)=Y_ e > § (d(p1,p2) — 1), (2.107)
Na=1 Ta€Ta(h,N2; p1,p2)

where d(py, p2) denotes the internal geodesic distance of Eq. (2.40). Then, we define

the analogue of the mean square extent as

(), = om0 Culr) (2.108)
Y GL)
and the average number of triangles by
© 9 ok
(Vo) = —zrig @(j”(r). (2.109)
2o G(r)
Then, the internal Hausdorff dimension® d, is given by
1 In(r?
dp = &t (2.110)

T 2w In(Ny),,

Obviously, a similar definition of an intrinsic Hausdorff dimension can also be given
for the case of the Polyakov string. Both dimensions are not necessarily equal;

instead, it can be shown that d;, < dg, which is intuitively obvious since in the

8Note the use of upper case and lower case subscripts H resp. h to distinguish the external and

internal Hausdorff dimensions.
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embedding space one does not have to follow the surface to travel between two

points, such that distances are shorter there.

It should be emphasized that there are several slightly different definitions of internal

Hausdorff dimensions which have been used in the literature (see, e.g. Refs. [7, 10,

11]). It is possible, for instance to drop the summation over r in (2.109) and consider
9 (h

=G"p(r )

(Na(r))u = —@T(r)() = InG)(r) ~ 7%, r— oo, m(p)r=const. (2.111)

From the definition of the mass m(u) Eq. (2.67) and its scaling as Ay — 0 Eq.

(2.68), we have

(Ny(r)), ~ agi“)r ~ )T o P, (2.112)

where we have used the scaling assumption m(u)r = const above. Thus we have the
scaling relation
v =1/dp, (2.113)

which together with the Fisher scaling relation (2.71) determines the number of

independent exponents.

Numerically, the intrinsic Hausdorff dimension of two-dimensional simplicial quan-
tum gravity is observed to be much larger than the topological dimension d = 2; in
fact, from the transfer-matrix approach described below, it is known that d, = 4
for pure quantum gravity in two dimensions. This is related to the structure of
the lattices as depicted in Fig. 2.6. The triangulation appears as composed from
“blobs” of all length scales attached to the main surface through necks of only a
few links; in this way, the whole “universe” can be decomposed into a tree of baby
universes, which are (apart from the cut-off a) similar to the whole graph [29]. The
relation between the “baby universes” and the fractal dimension can be understood
by means of the real space renormalization group approach [11,129,130]. Defining
an elementary blocking transformation by cutting from the original ensemble a all
last generation minimal neck baby universes (minBUs), i.e. those at the leafs of the
“baby universe” tree, to result in a renormalized ensemble b, the scales of lengths

and areas are related asymptotically as [11]

<]]\\Zzb ~ <§:jib>d/2 Na — o0, (2.114)

where the averages are here performed in the canonical, fixed Ny ensemble. The

dimension d, is numerically found to approach d, = 4 for large graphs; thus, the
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“baby-universe” structure of the triangulations is closely related to their fractal

structure.

Two further dimensions are commonly considered in connection with random sur-
faces, see e.g. Refs. [11,12]. Let ng,(r) be the number of vertices p; of a given
triangulation 7}, which have a distance d(0,p;) < r from a marked point 0. Then
the branching dimension d, describes the scaling of the average of the number of

disconnected components ng(r) of the boundary of the ball of volume ny, (r),
(no(r)) ~r%, Ny — oo. (2.115)

Numerical simulations give results of d, 2 2.5, signalling indeed a large rate of
branching. Finally, to define the spectral dimension d, consider, in the continuum
theory, the diffusion of a test particle on the surface; in the short-time limit, the

average probability density for the particle to return to its initial point scales as
(P(t)) ~ =%/t —0. (2.116)

Surprisingly, it can be shown that, despite of the rather large Hausdorff dimension,
the spectral dimension stays at the flat-space value d;, = 2 for quantum gravity
with C' < 1 [131]. However, the fractal structure of the triangulations (i.e., the
dimension dj) can still be seen also in the diffusion process, namely in the scaling

of the travelled distance of the particle with time,

(ry, ~ Yt — 0. (2.117)

2.3.6 Further results and the transfer matrix

Considering the scaling relations (2.71) and (2.113) and the exact values of the string
susceptibility exponent of Eq. (2.85), one needs one further exponent, either dy, n or
v for a complete description of the critical behaviour of the two-dimensional quantum
gravity problem. This missing information can be extracted from a differential
equation for the generating functions of the b-loop function mentioned above in
Section 2.3.3 [28] or, alternatively, from a transfer-matriz formulation of the problem
[26,27).

Starting from the general generating function (2.76), one can again derive a recursion
relation of the Schwinger-Dyson type with respect to elementary operations at the

entrance and exit loops of the correlators known as the “peeling” and “slicing”
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decomposition of the triangulations, see, e.g., Ref. [10]. Then, writing down and
solving a differential equation mimicking the elementary steps used, the correlator

in the scaling limit is found to be [28],

cosh [B(Ap)"/*r]
ESSIETIS

G (r) ~ (2.118)

where 3 = v/6exp(u). In the two limits considered in Section 2.3.2 this reduces to
0 —2(Ap)/48r
GO(r) m 7AW s 1/ m(p), (2.119)

and

GZ(T) ~r 3 e /m(p), (2.120)

such that from the definitions (2.67), (2.69) and (2.68) we read off the exponents
v = 1/4 and n° = 4. From the scaling relation d;, = 1/v we infer an internal

Hausdorff dimension d;, = 4.

Using the above-mentioned slicing decomposition, which divides a triangulation in
spherical shells of triangles of equal geodesic distance from a given point or loop,
it is possible to write down a transfer-matrix formulation of the problem. Besides
deriving the result (2.118), this method even yields the so-called loop distribution
function p°(r,1) for spherical topology, that is: p(r,[)dl is the average number of
loops of lengths between [ and [ + dl at the boundary of a ball with radius r on the
triangulations. In the thermodynamic limit Ny — oo of the canonical ensemble of
planar lattices (h = 0) it is given by [26]

PO, 7) = 3 e lx*?’/? I %xl/Z e (2.121)

T2 2

where z = 2/l is a scaling variable. From this very detailed result, it is also
possible to derive the scaling dimensions d;, = 4 and d, = 3 which are related to the
singular behaviour of the distribution. In view of the possibility of a transfer-matrix
formulation, the question arose, whether one could find the quantum Hamiltonian
corresponding to the continuum limit of the transfer matrix which would yield a
completely new description of two-dimensional quantum gravity. There, proper time
is identified with the geodesic distance of the slicing decomposition. Approaches in
this direction can be found in Refs. [132,133].
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2.3.7 The continuum limit

As usual in lattice field theory, for the definition of a proper continuum limit the mass
m(p) (the inverse correlation length) has to scale to zero as u approaches piyg, since
only then the resulting continuum expressions become independent of the chosen
cut-off. As mentioned above, the scaling of the mass cannot be proven analytically
for the string model and thus has to be assumed there; for the quantum gravity
model, on the other hand, from the continuum expression of the two-point function
Eq. (2.118), the scaling of the mass is obvious. For the case of the string model,
the edge length a of the simplicial manifolds corresponds to a length scale cut-off €
in the physical embedding space R”. For a non-vanishing physical mass mpny with
dimension 1/[length] to appear, the coupling p has to be sent to po depending on €
such that

m(u(e)) = mpne, (2.122)

i.e., we take the limit ¢ — 0 and p — p in a correlated way, keeping myy fixed.
Alternatively, the continuum limit can be considered in terms of the intrinsic cut-off
a — 0 of the triangulations. The relation between the scaling of both quantities
is found from inserting the physical area of the surface A = Nya? and the physical
distance x,n, = xe into Eq. (2.106) to give

a? ~ el (2.123)

The physical string tension o,y as a surface tension has the dimension of 1/€?, such
that it should obey

o(pu(€)) = opny€’. (2.124)

Since, as mentioned in Section 2.3.2 o(u) > 1, this equation can only be fulfilled
for oy = 0o. Physically, this means that the imagined membrane attached to the
frame of a loop [ is flat up to spiky outgrowths of almost no area. This corresponds
to the picture of a branched polymer model, which is known to be the right de-
scription in the mean-field limit of large target dimensionality D. In terms of the
equivalent model of quantum gravity coupled to D Gaussian fields, this corresponds
to the observed collapse of the geometry to a branched polymer phase for central
charge C' = D > 1. Obviously, a physically sensible string theory would consider
physical dimensions D > 1. However, a scaling of the string tension can be possibly
established by adding higher (extrinsic) curvature terms H*, k = 1,2,3,... to the
action (2.13), see Ref. [10].
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In the quantum gravity model, we want a physical cosmological constant p,, which

has dimension 1/[length]?. Thus, the renormalization condition is
1= o = fphy@’, (2.125)
which from the scaling of the mass implies that
m(p(a)) = mpnya® = mypya?/, (2.126)

equivalent to Eq. (2.122)°. Then, in terms of the intrinsic cut-off a, the continuum
distance is rpny = ra® and the continuum propagator Gh(rphy,,uphy) should be
defined as
: v(1—nh —2v
Gh(rph}’alu’phy) = il_l’)I(l) CL2 (= )GZ(a) (Tphya ? )7 (2127)

which from Eqs. (2.69) and (2.67) yields the intended asymptotic behaviour

h

h 1-n -1
G (Tph}” ,uphy) ~ Tphy ) T'phy < mphy’ (2 128)
h —Mphy T -1 '
G"(Tphy, Hphy) ~ e~ mehToby, Tphy > Myppy-

The summation over topology Eq. (2.53) is divergent without further modifications.
Thus, there is no naive scaling with respect to the gravitational coupling A. Within
the matrix model formulation (2.89), the sum over topologies translates into the
large-N expansion in the dimension of the matrices given in Eq. (2.95). It turns
out that the critical points gf = Mo of the fixed-topology partition functions do not
depend on the genus A [10]. From the dependence (2.85) of the string susceptibility

exponent on the genus,

(2-7) = 2-7)A-h) = (2-7)x(h)/2 (2.129)

and the scaling of the fixed genus partition functions,
ZMp) ~ M = o), (2.130)

it is obvious that the contribution of the higher genus surfaces increases as pu — .
Thus it might make sense to take the limits © — g and N — oo in a correlated

manner. Renormalizing the gravitational coupling constant as

ety = N (p — p1g) 27/ (2.131)

)

9Note, however, that here in contrast to Eq. (2.122), the intrinsic Hausdorff dimension has to
be used.
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the scaling limit of the all genus partition function Eq. (2.95) can be written as

Z(p1, \) ~ ZNX(h) (1 — o) B=1XM/2 Z eronyX(h) £, (2.132)
h=0 h=0

This limit, i.e. p — po and N — oo with Ay, = const is known as the double
scaling limit of the matrix model Eq. (2.89) [134-136]. To give an interpretation
to this representation, one can, for example, define a matrix model which has the
same perturbation expansion as the one given above, but is convergent. It turns out,
however, that there are no real solutions to the resulting Painlevé I equation [10].
Thus, the problem of a non-perturbative definition of the sum over topologies is still

unsolved.

2.4 Dressing Dynamical Triangulations

As mentioned several times, the D-dimensional Polyakov string can be interpreted
as two-dimensional quantum gravity coupled to conformal matter of central charge
C = D. Most of the results presented above, however, only apply to the case of pure
gravity, i.e. D = 0. As discussed in Section 2.3.2, the limit D — oo corresponds
to the mean-field limit of the model, which has 7? = 1/2 indicating the collapse of
geometry to branched polymers. On the other hand, the opposite limit D — —o0
corresponds to the classical or Liouville limit of the theory with surfaces regular
up to a finite number of points with defects, which has 7" = —oco. Additionally,
the non-unitary case D = —2 can be solved exactly due to a cancellation in the
determinant (2.62) to give 72 = —1, dg = oo [21]'°. The behaviour in between
these two extremal cases and the question, where transitions between the different

types of behaviour occur, will be discussed now.

2.4.1 Annealed and quenched disorder

Concerning disorder in systems of statistical mechanics, two fundamentally differ-
ent scenarios are commonly distinguished. Symbolically expressing the probability

distribution of the disorder degrees of freedom by P and the partition function for

ONote that dfy = oo makes a proper continuum scaling impossible due to the relation (2.123).
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a given realization of the disorder by Z({u;}; P), the partition function for the full

disordered system is given by

Z({wi}) = [Z({pi}t; P)lp, (2.133)

where the square brackets indicate averaging with respect to P and the y; are some
coupling parameters. Expectation values can usually be expressed as derivatives of
the free energy, i.e.

9 In Z({ju})
Opis, O,
Thus, the thermal and disorder averages are performed on the same level; this

<A>annealed ~ (2134)

scenario is commonly referred to as that of annealed disorder. On the other hand,
one can compute expectation values on the level of the partition function Z({u;}; P)

and perform the disorder average afterwards, i.e.

0% In Z ({}; P)}

<A>quenched ~ |: (2135)

Opiy -+ - Opui,
defining the notion of quenched disorder. Physically, both schemes correspond to
limiting cases with respect to the time scales of fluctuation of thermal and disorder
related properties. While in the annealed scenario both types of variables fluctuate
on the same time scale, quenched disorder can be considered as an approximation
to the situation that the disorder degrees of freedom fluctuate so much slower than
the thermal variables that they can effectively be considered as fixed on the time

scale of thermal fluctuation.

The relevance of the application of quenched disorder to a system of statistical
mechanics undergoing a continuous phase transition in terms of a change of the
universal critical properties such as critical exponents depends on the rate at which
the fluctuations of the pseudo-critical couplings induced by the disorder die out in the
thermodynamic limit. A systematic analysis of this observation leads to the Harris
[69] and Harris-Luck [71] criteria for the relevance of quenched disorder. For the
case of a first-order phase transition of the model on regular lattices, one can expect
a disorder-induced weakening to a continuous transition. Numerical simulations
of Potts models on the quenched ensemble of random planar ¢* graphs indicate a
change of the critical exponents in the cases with a second-order phase transition
and a softening to continuous phase transitions of the first-order cases [137, 138].
An attempt to calculate the exponents for the quenched case from those observed

in the annealed case via use of the replica trick (see, e.g., Ref. [139]) can be found
in Ref. [140].
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The scenario of annealed disorder in the framework of dynamical triangulations
corresponds to the coupling of matter to the gravitating universe such that the
geometry induces effects on the matter, which in turn has a back-reaction onto the
geometry of space-time. The corresponding partition function at fixed topology is

very similar to the expression for the loop correlator (2.52) and reads

00 No
) 1 "
Z(p Biysa) =Y ety relia / [[ dos e SmeeerlioahstBl - (2.136)
Nao=1 Ta €70 (h,N2) (72) i=1

where the 0; are matter variables located on the triangles of the simplicial manifold
and the f3; are matter-related coupling parameters''. For annealed disorder, the
general relevance criteria of Harris and Luck do not apply. However, it is found
that the coupling of C' < 1 conformal matter to two-dimensional gravity is always
relevant and, even more, it can be demonstrated, how the scaling dimensions of the

matter part renormalize due to the coupling to gravity.

2.4.2 The KPZ/DDK solution

According to Polyakov, the bosonic string can be interpreted as two-dimensional
quantum gravity coupled to D bosonic fields. Since the action (2.13) does not contain
any coupling constants to tune, it describes a critical theory of central charge C' = D.
Thus, solving the Polyakov string model or an approximation to it is directly related
to the problem of quantum gravity coupled to matter. By considering the problem
in the light-cone gauge and making some ad hoc assumptions, Knizhnik, Polyakov
and Zamolodchikov [30] could evaluate the partition function of the coupled system
for the planar case h = 0. This solution was later on re-derived in the conformal
gauge and extended to higher genera by David [31] and Distler and Kawai [32]. For
the string susceptibility exponent 7% they find'2

D —25— /(25— D)(1— D)
24 '

Furthermore, if we consider a primary field ¢ of the matter theory which has con-

(2.137)

vr—2=x(h)

formal weight A before coupling it to the gravitating surface, the operator picks up

Tt is, of course, also possible to place the matter variables on other types of fundamental

building blocks of the simplicial complex such as the vertices or the edges.
12Note, that the number 25 (and in the following 24) occurring in this formula is related to the

fact that the Polyakov string is critical in D = 26, where the gravity theory essentially decouples
from the matter part.
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a gravitational dressing leading to a new weight A satisfying the KPZ equation 130],
- 1 .- -
A—A= —§a2A(A— 1), (2.138)

where

1
a:—2—\/§(\/25—D—\/1—D). (2.139)

Solving for A, we have

V1-D+24A—+/1-D
V25-D—-1-D
Note that from the formulae (2.137) and (2.140) v* and A pick up imaginary parts

A=

(2.140)

as D > 1, such that the considered calculation breaks down in this limit. The case
D =1 is marginal and therefore logarithmic corrections to scaling are expected.
This effect is known as the C' = 1 barrier of two-dimensional quantum gravity. Note
that due to this effect this calculation does not shed much light on the string theory
originally considered since, of course, there dimensions D > 1 constitute the case
of interest. However, from the point of view of coupling matter to quantum gravity
it is highly valuable, since most of the interesting “toy models” of matter have
central charge C' < 1. Especially, consider the unitary conformal minimal models of
Ref. [141] with central charge

Czl—*, meN m>2, (2.141)

m(m + 1)

which include the critical versions of, e.g., the Ising model (C' = 1/2) and the 3-state
Potts model (C' = 4/5). Within the minimal series of models, a theory is completely
described by the central charge C'. In contrast, for the limiting case C' = 1 there are
several inequivalent realizations such as the 4-state Potts model, a single massless

scalar field or the 6-vertex model. For the minimal series, from Eq. (2.137) we have

Ve =—1/m.

On the same lines of argumentation, i.e. within the Liouville scheme of quantum

gravity, by considering diffusion on a fluctuating geometry an expression for the

intrinsic Hausdorff dimension of the coupled system can be derived [142],

VB -C+V49-C
V25-C+vV1-C"

where 0 < C' < 1. However, an alternative conjecture was made based on matrix

N (2.142)

model calculations reading [143]
24

= e i—C v =0)

(2.143)
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Both formulas agree for C' = 0, i.e. pure gravity, but yield different results for the
other cases. In contradiction to both results, numerical simulations are consistent
with a constant d, = 4 for all 0 < C' < 1 [51,144]. For non-unitary matter C' < 0
the predictions of Eq. (2.142) agree with numerical results for C' = —2 [116]. Also,
the classical limit C' — —oo yields dj, = 2 as expected. Thus Eq. (2.142) could be
correct, for C' < 0.

What happens beyond the C' = 1 barrier? Numerically, in all cases studied the
string susceptibility exponent is found to become positive [54], accompanied by
a divergence of the sizes of the “baby universes” in the thermodynamic limit!?.
For C' > 4 the value of 72 seems to approach the branched polymer value 1/2.
However, the question whether the collapse to branched polymers takes place exactly
at C' = 1 or at some larger “critical” central charge is still unsettled. However, a
renormalization group study of the problem revealed that the systems probably
collapse to the branched polymer phase as C' exceeds 1 [53]; but the attraction
to the new fixed point is only logarithmic, explaining that numerically one has
to go to rather large central charges C' 2 4 to see the branched polymer phase.
The mechanism leading to the geometry of branched polymers, is physically very
plausible for the case of multiple copies of spin models generating C' > 1. First,
the interaction between geometry and matter is strongest in the vicinity of the
critical point, since only there the spins are correlated on a macroscopic scale. Now,
in the critical region typical spin configurations consist of clusters of differently
oriented spins of all sizes, such that a considerable amount of the total free energy
of the system is “stored” in the surfaces (i.e., closed curves in two dimensions)
separating patches of different spin alignments. Since the corresponding free energy
is approximately proportional to the area (or length) of the phase boundaries, it
is energetically favourable to have minimal length boundaries between patches of
equal spin alignment. On a regular lattice, the minimal surface of a patch of fixed
volume cannot become arbitrarily small, but is just given by the shape of a sphere.
On a dynamical triangulation, however, at each point there can grow a baby universe
of arbitrarily large volume connected to the mother universe only via a very small
number of links. Thus, if only the energies associated to the matter interactions
are strong enough (i.e., if C' is large enough), the free energy of the critical system

will be minimal for lattices composed of “blobs” (“baby universes”) decorated with

13Note that, since the central charge is additive, large C' can be generated by coupling several
copies of, say, Ising models to the lattices.
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spins of equal alignment and connected to each other by a minimal number of links.

This is exactly the geometry of branched polymers.

2.4.3 Matrix model examples

As mentioned above in Section 2.3.4, changing the matrix potential of Eq. (2.89)
allows for the representation of decorated random graphs. For the case of an Ising
type decoration this was first noted by Kazakov [33,145], who considered a two-
matrix model with the potential

Vi, d2;c,9) = %(ﬁ + ¢3) — chipy — %(ﬁ + ¢3), (2.144)

where the matrix integral (2.100) should now be performed with respect to both
Hermitian N x N matrices ¢; and ¢,. Obviously, the quartic terms d)‘llﬂ generate
“fat” graphs with vertices of co-ordination number four instead of three, the dual
lattices of which correspond to dynamical quadrangulations instead of triangulations.
Remembering that the propagators Tr ¢? correspond to the links of the graphs, there

are now two types of such bonds,

1
— 2\ __
(o) = (=12, s
(Trprgpa) = 1_ 2
Setting ¢ = exp(—2/4), we have

_ /e
<T‘r¢%/2> - 1 _CCQ eXp(B)a (2146)
(Trree) = 17 exp(=h),

such that one can interpret the two types of vertices as the two alignments of Ising
spins placed on the ¢* vertices and the bond (or propagator) weights correspond to
those of the Ising model up to the common factor v/¢/(1—¢?) which is just an overall
shift of the energy scale. Using the methods developed in [17,18] one can derive
a set of parametric equations in the planar limit N — oo which, to each order in
the number of vertices, allows to compute the partition function of the Ising model
coupled to planar ¢* graphs [145]. In the limit of diverging graph size, the model is

found to exhibit a continuous, third-order phase transition at the critical coupling

B.=1n2, (2.147)
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and with matter-related critical exponents o = —1, f = 1/2 and dpv = 3 [34],
which differ from the Onsager exponents for the Ising model on a flat lattice of
a=0,3=1/8 and dyv = 2." The exponents found agree with those predicted
from the KPZ equation (2.140). The string susceptibility exponent is found to stay
at the pure gravity value 70 = —1/2 everywhere except at the critical point 5 = f.,
where it is shifted to 70 = —1/3. Thus, only at the critical point the back-reaction
of the matter part on the fluctuating lattices is strong enough to influence their

universal properties. It turns out that the slightly generalized matrix potential

V(d1, P23 ,¢,9,h) = %(d)% + 42) — o1y — %(eh o1 + e p3), (2.148)

which obviously corresponds to the additional application of a magnetic field A to the
Ising spins, still corresponds to a solvable matrix integral, leading to the remarkable
fact that the two-dimensional Ising model in the field can be solved exactly when
coupled to fluctuating planar random lattices, in contrast to the usual static square
lattice case. From the above discussion it should be obvious that a very similar
treatment is possible for the case of the Ising model coupled to planar ¢* graphs,
i.e., the duals of dynamical triangulations. The critical exponents found there do
not differ from the ¢* case as expected [34]. When considering a torus of genus
h = 1, the critical exponents of the matter part remain unchanged and ! = 2 as
expected from (2.137) [146]. Note that ! = 2 is valid for all inverse temperatures (3
since according to (2.137) for h = 1, 7, does not depend on the central charge. This
effect is connected to the speciality of A = 1 that it has a logarithmically diverging

partition function.

More complicated systems can be expressed in terms of non-Hermitian matrix mod-
els. For instance, the 6-vertex model coupled to “fat” ¢* graphs is described by the
matrix potential [72, 73]

V(@ f;b,c) = 66" — b6*6™ — Z(00')2 (2.149)

This will be discussed further in Chapter 5 below.

14Tt has been noted that the new exponents actually coincide with those of the spherical model
in three dimensions. It is not clear, however, whether this has a physical explanation.



Chapter 3

The Simulation of Dynamical

Graphs

The combination of methods presented in the previous chapter led to a rather com-
plete solution of the pure two-dimensional Euclidean quantum gravity problem.
Quite a few of these results could only be achieved by the guidance of numerical
work, i.e., Monte Carlo (MC) simulations of dynamical triangulations. Furthermore,
the exact information about the coupling of matter to random lattices is by far not
as complete as in the pure case, such that numerical simulations are still very well

in place.

Since the final objective of this thesis are simulations of the 6-vertex model, which
necessarily lives on a four-valent lattice, the well-known methods for simulations of
dynamical triangulations and the dual ¢* graphs have to be generalized and adapted
to the cases of dynamical quadrangulations resp. the dual ¢* graphs. As it turns
out, the main issue in this context is the ergodicity of the chosen set of update
moves. This will be tested against known exact results for the cases of pure gravity
and an Ising model coupled to the graphs. An analysis of the autocorrelation times
of the algorithm calls for more sophisticated update procedures found in the baby-
universe surgery method. If not stated otherwise, all discussions of the present
chapter exclusively apply to the case of dynamical polygonifications and their dual

graphs in two dimensions.

ol
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(a) (b)

Figure 3.1: Singular contributions of the self-energy type in a non-combinatorial
triangulation. Black solid lines show the triangulation part, red dashed lines indicate
the corresponding ¢* graphs. (a) The three points p;, p» and p3 define two distinct
triangles; the two points p; and p; define two distinct links. The dual ¢® graph has
a local self-energy contribution. (b) The points p; and p4 define two distinct links,
but all triangles are combinatorially unique. The dual ¢* has a non-local self-energy

contribution or non-trivial two-point subgraph.

3.1 Graph Ensembles

3.1.1 Triangulations and ¢* graphs

In the theoretical discussions of the previous chapter we have omitted some necessary
comments on how the considered triangulations or the dual ¢ graphs look like
in detail. The notion of simplicial manifolds presented in Section 2.2.3 describes
the “naive” picture of a triangulation composed entirely of regular, non-degenerate
triangles, which is in agreement with the representation of Fig. 2.1. Formally, the
regularity of the triangulations was described in Section 2.2.3 by the fact that the
reference points defining an r-simplex should be geometrically independent in R¢ and
their considered linear combination (2.35) should be convex. On the other hand,
similar assumptions were obviously not made when considering the matrix integrals
of Section 2.3.4; there, all orientable graphs of a given topology that can be formed
by connecting a given number of vertices with three links each were considered,

including possibly occurring degeneracies.

Consider the case of two-dimensional dynamical triangulations. In combinatorial
terms, the question of singular contributions can be split into two parts. First, in
a regular triangulation the simplicial building blocks of the manifold, i.e. the links

and triangles, are uniquely defined by two (links) or three (triangles) vertices. The
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(a) (b)

Figure 3.2: Singular contributions of the tadpole type in a non-combinatorial trian-
gulation. (a) A triangle is defined by only two points p; and py; p; corresponds to
two identified points, the link (p;p,) represents two identified links. The dual graph
has a tadpole contribution. (b) The point p; corresponds to two identified points,

but no links are identified. The dual ¢ graph contains a one-point subgraph.

degenerate cases of two vertices defining two distinct links or three vertices defining
two distinct triangles can occur in the same situation, which is depicted in Fig.
3.1(a). It corresponds to the possibility that two triangles share two links instead
of one. The dual graph of this situation is called a self-energy contribution, that is,
a loop of length two in the ¢* graph. More generally, considering only degenerate
links of the triangulation, these singularities are described as double links of the
triangulation or (non-trivial) two-point subgraphs of the dual ¢* graph, cf. Fig.
3.1(b). A two-point subgraph is a component of a graph which can be disconnected

by deleting two edges.

The second singular contribution stems from the possibility of vertices to loose not
only their geometrical independence, but to become actually identified, which leads
to an originally degenerate triangle as depicted in Fig. 3.2(a), where also two links
have become identified. In the ¢* graph this situation corresponds to a tadpole
insertion, alternatively described as a loop of length one. Relaxing the condition of
identified links, a general singularity of this type is given by a degenerate triangle
(without identification of links) or, in the dual graph, a one-point subgraph, cf.
3.2(b). By “one-point subgraph” we mean a subgraph that can be cut off from the
rest of the graph by deleting one vertex.

From the point of view of the ¢® graphs, the most general singular contributions can
be considered as “dressings” of the elementary self-energy and tadpole diagrams.

Thus, a non-trivial two-point subgraph can be depicted as a dressed self-energy,
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Z

and a one-point subgraph corresponds to a dressed version of the tadpole graph,

—

In the following, the short terms “self-energy” and “tadpole” will be often used

synonymously for the contributions depicted above.

Note that degenerate triangles or one-point subgraphs can only occur when the graph

also contains non-trivial two-point subgraphs', whereas the latter are independent of

the existence of one-point subgraphs. Thus, it makes sense to consider the following

hierarchy of three ensembles of triangulations and dual ¢* graphs:

(a)

The exclusion of all singular contributions to the triangulations defines the
reqular ensemble of dynamical triangulations and their dual ¢* graphs. All
simplicial building blocks of the triangulations are combinatorially distinct,
no double links or degenerate triangles occur. In the dual ¢* graphs, non-

trivial two-point insertions and one-point subgraphs are forbidden.

Allowing two vertices of the triangulation to define two distinct links and three
vertices to define two distinct triangles, but still excluding degenerate trian-
gles, defines a set of triangulations which we call restricted singular ensemble.
There, the triangulations can contain double links, and the dual ¢ graphs

include non-trivial two-point subgraphs as depicted in Fig. 3.1.

In addition including degenerate triangles, i.e., triangles defined by only two
points, one arrives at the singular ensemble of dynamical triangulations. The
corresponding ¢® graphs are unrestricted and contain non-trivial two-point

subgraphs as well as the one-point subgraphs depicted in Fig. 3.2.

Obviously, the regular ensemble corresponds to the class of triangulations considered

in the context of simplicial manifolds in the previous chapter. On the other hand,

!This is obvious from Fig. 3.2(b), where the right vertex of the ¢ graph has to be connected

to a two-point subgraph to become a co-ordination point of the graph.
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Figure 3.3: Singular contributions in a non-combinatorial quadrangulation (black
solid lines) and the dual ¢* graph (red dashed lines). (a) The points p; and p4
define two distinct links; the points py, ..., ps define two distinct quadrangles. The
¢* graph contains a self-energy subgraph. (b) The points p;, p» and ps define a
degenerate quadrangle. The dual ¢* graph contains a tadpole insertion.

the matrix models of Section 2.3.4 naturally generate graphs of the singular ensem-
ble. Especially, the result (2.96) for the partition function of pure, two-dimensional
Euclidean quantum gravity and the critical value zo = In(12v/3) of the cosmological
constant are for triangulations of the singular ensemble. The restricted singular
ensemble can be considered as an interpolation between the other two extremal

cases.

3.1.2 Quadrangulations and ¢* graphs

The notion of combinatorial uniqueness is easily generalized to the case of more
general polygonifications of manifolds. Here, we consider the case of quadrangu-
lations and their dual ¢* graphs. Figure 3.3 shows the local versions of singular
insertions of the self-energy and tadpole types?. The general, non-local versions of

these subgraphs change slightly. The dressed self-energy subgraph is the same as

Z

but the dressed tadpole graph now has two external lines,

B

2The tadpole-type contribution for the ¢* case is sometimes also called seagull graph.

before,
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Figure 3.4: A double link in a random ¢* graph (red dashed lines) does not corre-
spond to a singularity of the corresponding quadrangulation (black solid lines), but
indicates that two quadrangles share two edges instead of one. These configurations
are forbidden in the “strict” ensemble.

Note from Fig. 3.3(a) that the local self-energy contribution is now no longer rep-
resented by a double link, but a triple link in the dual graph. Double links in the
¢* graphs can nevertheless occur and correspond to quadrangles sharing two sides
instead of one as depicted in Fig. 3.4. Thus, in the quadrangulation they do not
correspond to singular contributions in the sense of a loss of the combinatorial dis-
tinctness of the fundamental building blocks. However, it turns out that in certain
situations it is favourable to also exclude double links from the ¢* graphs. Thus, for

the case of quadrangulations or ¢* graphs we define an additional ensemble:

(a’) Quadrangulations of the strict ensemble are those quadrangulations of the
regular ensemble that do not contain neighbouring quadrangles sharing more
than one side. The dual ¢* graphs do not have any multiple links and no

one-point, or non-trivial two-point subgraphs.

The notion of universality of critical phenomena implies that results for the con-
tinuum limit of the theory do not depend on the details of the chosen discretisa-
tion, i.e., universal quantities such as critical exponents and universal amplitude
ratios should not depend on whether one uses triangulations or quadrangulations
and which restrictions on the inclusion of singular contributions are imposed. This
has been explicitly checked by matrix model calculations for the case of pure two-
dimensional quantum gravity [16,21] and, among other cases, for the coupling of
an Ising model to dynamical triangulations and quadrangulations [34,35]. Even the
rather crude restriction of the dynamical triangulation model to vertices with co-
ordination numbers 5, 6 and 7 does not change its critical behaviour [147]; the same

is true when adding an additional R? (higher curvature) term to the action [148]. As
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ensemble »? o
regular In%8 ~ 2249 | In2f ~1.910
restricted singular In % ~ 2.603 | In % ~ 1.982
singular In12v/3 ~ 3.034 | In12 ~ 2.485

Table 3.1: Critical value p of the cosmological constant for the pure two-dimensional
dynamical polygonifications model for the cases of triangulations resp. ¢ graphs
and quadrangulations resp. ¢* graphs for various graph ensembles. The numbers
are taken from Ref. [151]. For the case of the strict ensemble of ¢* graphs there is

no exact result available.

mentioned above, the naive matrix model ansatz counts ¢? resp. ¢* diagrams includ-
ing all possible singular insertions, that is, it corresponds to the singular ensemble
of the above classification. Results for the less singular ensembles can be found by
explicit renormalization techniques that kill the tadpole and self-energy contribu-
tions [16,149-151]. Alternatively, it can be shown on quite general grounds that the
inclusion or exclusion of singular graph contributions does not change the critical
behaviour of matrix model theories [152]. Non-universal properties, on the other
hand, naturally depend on the ensemble considered. Especially, the critical value py
of the cosmological constant for the case of pure quantum gravity in two dimensions
is only given by the value of Eq. (2.97) for the singular ensemble of ¢ graphs. For
reference, the values for the other cases are given in Table 3.1.*> Nevertheless, sim-
ulations including (at least some) singular contributions in the polygonifications or
dual graphs can have some advantages over those in the regular or strict ensembles,
since situations have been observed where the finite-size effects decreased with the
inclusion of singular contributions [50]. This will be discussed further in Section
3.3.2.

3.2 Simulation of Dynamical Polygonifications

As for regular lattices also for the case of dynamical polygonifications and random

graphs a statistical, but exact method for the determination of expectation values

3A value for the strict ensemble in the ¢* case is not available since in the Dyson-Schwinger
approach of Ref. [151], double links are only part of the contribution of dressed four-point vertices

which are removed in one step.
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and the analysis of phase transitions is given by the Monte Carlo integration tech-
nique. There, from a given probability distribution, states are sampled by setting
up a Markov chain in the configuration space of the model. Successive states of
the Markovian process are connected by a given set of (often local) changes to the
system state, which are commonly called the moves associated with a specific Monte
Carlo dynamics. A proper convergence of this sampling scheme can be guaranteed,
when the conditions of ergodicity and detailed balance are fulfilled. The most im-
portant formulae are collected in Appendix A.1. For general introductions see, e.g.,
Refs. [153-155]. In the next two sections we consider the aspects of ergodicity and
detailed balance for the dynamical triangulations (or ¢*) model only. The general-
ization of these results to the case of dynamical quadrangulations of ¢* graphs is

presented in Section 3.2.3.

3.2.1 Moves and ergodicity

While ensuring detailed balance is just a matter of correctly setting up the transition
probabilities associated to the considered moves, ergodicity is a property of the class
of applied moves itself. Stated a bit sloppily, a set of update moves is ergodic, iff
starting from an arbitrary point in the state space all of the other points are touched
by the Markov chain with finite probability and in finite time*. For the simulation
of the dynamical triangulations problem, a set of update moves thus must ensure
that, for a finite number of simplices, all topologically equivalent triangulations can
be generated from each other by a finite series of update moves. This implies that
we consider the problem at fized topology, which will be the case for the rest of this
thesis.

The notion of equivalence of triangulations is not unique. First, triangulations
can be considered homeomorphically equivalent, i.e., connected by a topological
homeomorphism. On the other hand, two triangulations are called combinatorially
equivalent, iff they can be subdivided into the same triangulation (up to a re-labelling
of the simplices), see Section 2.2.3. The claim that both notions itself are equivalent
is the “Hauptvermutung” of topology and has been proved true for two and three
dimensions, but false for d > 5. Tt is true in general dimensions, however, for the

case of smooth triangulations; on the other hand, for dimensions four and above,

4For systems with continuous variables this condition can obviously not be the fulfilled. There,
one has to consider probability densities instead of probabilities.
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Di

Figure 3.5: Application of the Alexander move [157] to a two-dimensional simplicial
manifold (black solid lines) and its dual ¢* graph (red dashed lines). The vertex ¢ is
inserted along the link (p;p;) and its surroundings are triangulated. In the reversed

move ¢ is deleted together with the sub-division it generated.

not every topological manifold admits a smooth triangulation, for details see Ref.
[156] and references therein. Since we are mainly interested in the case of two
dimensions, we can safely concentrate on the notion of combinatorial equivalence.
Thus, a set of Monte Carlo update moves will be considered ergodic, if it generates

all combinatorially equivalent triangulations.

Such a set of moves has been proposed (in a different context, though) by Alexander
[157] for d-dimensional simplicial manifolds. For each face o of a simplicial manifold
M we symbolically write

M=0P+Q, (3.1)

such that oP denotes all components of M that contain the face o and @ the
complement of P in M. Then, with respect to a face ¢ of M = oP + (@, the

Alexander move is defined by
oP+Q@Q — qaP +Q, (3.2)

where ¢ is an additional vertex originally not contained in M and & denotes the
boundary of o. It turns out [157] that one can concentrate on the case of a link
o = (p;p;) without loss of generality. Here and in the following, we use the notation
(po - - - pr) to symbolize an r-simplex, cf. Section 2.2.3 for a precise definition of this
concept. Then, the rule (3.2) instructs one to insert a new vertex ¢ on the link
(pipj) and re-triangulate the surroundings of the new point. Correspondingly, in the
reverse move ¢ and the created parts of the sub-division have to be deleted. This
is depicted for the case of two dimensions in Fig. 3.5. It has been shown that all

combinatorially equivalent simplicial manifolds can be generated from each other by
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Figure 3.6: The (k,l) moves in two dimensions applied to a simplicial manifold
(black solid lines) and the dual ¢* graph (red dashed lines). (a) The (2,2) or flip

move. The product (p1p2){(qi1g2) = (p1p2q1) + (P1p2¢2) is replaced by (pip2)(q1g2) =
(P1q1¢2) + (p2q1q2) and vice versa for the reversed move. (b) The (3,1) (insertion)

and (1, 3) (deletion) moves. In the (3,1) move the product (p1peps){q1) = (p1p2p3)
is replaced by (pipaps)(q1) = (Pipaqi) + (Pap3q1) + (Pspr1an)-

a series of these Alexander moves [157]. However, for computer simulations these
moves are not very convenient, since it is computationally demanding to locally find
links and vertices where the moves can be applied, especially in dimensions d > 2.
Apart from that, they do not allow simulations in the canonical ensemble of a fixed

number of triangles.

Therefore, a different set of moves is much more commonly used in numerical sim-
ulations. The (k,[) or Pachner moves proposed in Ref. [156] are in d dimensions

given by the substitution

(pr )@ aqe) = (e oo @ i), (3.3)

where k+1 =d+ 2, k =1,...,d + 1. Here, overlining of a simplex denotes the

application of the boundary operator to it, where the boundary of an oriented r-
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simplex (pg - - p,) is given by,
Bo oy =S (=10 B i), (3.4)

where the vertex p; under “’ is omitted. The (k,[) move (3.3) is, obviously, only
defined if (py -+ pi){q1 - - @) is and (py - - - p;) is not originally part of the simplicial
manifold. Thus, a (k,l) move replaces the product of an [ — 1-simplex and the
boundary of a k — 1-simplex with a configuration where the boundary operator is
exchanged between the two parts. The inverse of a (k,l) move is an (I, k) move. In
two dimensions, one arrives at a (2,2) move which is its own inverse and a set of
mutually inverse moves (3,1) and (1,3). These are depicted in Fig. 3.6. The (k,)
moves are known to be equivalent to the Alexander moves in dimensions 2, 3 and
4 [156]. An argument for general dimensions has been given in Ref. [158]. The case
of two dimensions is special in the respect that the (2,2) or flip move alone is known
to be ergodic for simulations of the canonical ensemble of a fixed number of triangles
N, [21,157]. This ensemble is much more convenient for numerical simulations and,
apart from that, provides the possibility of making use of the powerful finite-size

scaling (FSS) techniques.

Although the presented discussion concentrated on updating the triangulations, it
should be obvious from Figs. 3.5 and 3.6 that the Alexander and Pachner moves
translate in a natural way to moves in the dual ¢* graphs. Considering the graphs
in their own right, by duality the presented statements about ergodicity hold true.
For the present work all simulations were performed directly in the language of the

graphs.

Note that the mentioned proofs of ergodicity apply to simplicial manifolds only, i.e.,
in the language of the previous section only for simulations in the reqular ensemble of
dynamical triangulations ergodicity of the (k, ) moves is proven. To proof ergodicity
at fixed N, for the restricted singular and singular ensembles also, it suffices to show
that every triangulation containing degenerate links or triangles can be transformed
to a regular, combinatorial triangulation via a series of flip moves. The possibility
to do this can be most easily seen in the dual ¢ graph language. There, a one-point
subgraph can be reduced to a regular contribution by a flip move on the vertices

adjacent to the external line,

0 - 1D
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thus removing the singularity. The right vertex of the original graph belongs to the
one-point subgraphs, but is drawn outside of it for illustrative purposes. Of course,
it can happen that the two external lines of the diagram are themselves connected to
the same point, thus producing another one-point subgraph after the flip. However,
the flips can always be continued, until the subgraph is connected by at least two

lines. For the case of non-trivial two-point subgraphs a similar transformation can

be found,

“mother universe”. Note

which connects the subgraph by at least three lines to the
that the flip move applied in this way cannot produce tadpole insertions, such that
one does not leave the restricted singular ensemble if one starts from it. Thus the
(2,2) flip move is ergodic for dynamical triangulations of a fixed number of triangles

and the dual ¢* graphs in all of the defined ensembles.

3.2.2 Detailed balance and pseudo grand-canonical simula-

tions

As far as the condition of detailed balance is concerned it is obvious, e.g., from
Eq. (2.48) that for a fixed number of triangles the weight factors for single tri-
angulations are trivial. Up to overall factors, the only remaining weights are the
symmetry factors C'(T,) of the triangulations. However, for labelled triangulations
which naturally occur in the context of computer simulations, these are just given
by C(T,) = Ns!, which is a constant for fixed N,. Therefore, all weight factors
are equal, unless additional matter is coupled to the triangulations. The detailed
balance condition is then trivially fulfilled for the (2,2) flip move, such that for sim-
ulations in the canonical ensemble each proposed move compatible with the chosen

ensemble is accepted.

For simulations in the grand-canonical ensemble of a varying number of triangles,
however, a detailed balance check has to be implemented. The Boltzmann weight

of a labelled triangulation 7T is given by

_ 1 exp[—uNo(T)]
No(T)E 2 ()

(3.5)
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Now, consider a (3,1) insertion move to a triangulation 7" consisting of Ny(T") =
No(T') + 2 triangles. The detailed balance condition for this move reads
e~ HN2 ( /) e~ H(N2+2)
PT'—=1T)=
(N, + 21 Z(5)
The transition probability P(T — T") consists of two parts,

P(T' = T). (3.6)

P(T = T") = Pyprioni(T = T") Par (T — T7), (3.7)

where P,piori is the probability to randomly select a specific move and Py, is the
acceptance probability for the proposed update. For the insertion move we choose a
triangle at random, which then is split into three triangles as shown in Fig. 3.6(b);

thus,

1
Papriori(T — TI) = N2 (T) . (38)

For the opposite (1, 3) deletion move we randomly choose a vertex with co-ordination

number three, and the adjacent triangles are replaced by a single triangle. In the dual
graph language this corresponds to finding a loop of length three and contracting it
to a point; if there are nz(T") of such loops, we have

1
n3(T")
Thus, for the detailed balance condition (3.6) to hold, the acceptance probabilities
should fulfil

Papriori(T, — T) = (39)

Puo(T = T') _ e No(T) (3.10)
Pua (T = T)  [N(T) + 2No(T) + 1] 13 (T7)° '

Note that this expression is not symmetric with respect to the original and reversed

moves. Therefore, the usual Metropolis rule for the acceptance probabilities cannot
be applied; instead, we choose Py, = r = const for one of the moves and adapt the

probability of the opposite move accordingly.

In this thesis we will mainly apply canonical simulations, exploiting their conceptual
and technical advantages. However, as will become obvious in Section 3.3, we have
some interest in the determination of ratios Z(Ny)/Z(Ny—2) of canonical partition
functions. These can be sampled with a different and simpler variant of simulations
with varying number of triangles which we call pseudo grand-canonical simulations.
Suppose that we allow variations of Ny only in a window Nomin < No < Na max.
Then, we consider the sampling of dynamical triangulations in a non-Boltzmann

grand-canonical ensemble at p = 0 with weights

(3.11)
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where
NZ,max

Z0)= Y Z(N) (3.12)

N2:N2,min
In this ensemble, the probability of the appearance of a triangulation with Ny tri-

angles is
P(N;) = Y W(T)= ZZ(,](\S")) (3.13)

T€TN,

such that ratios of partition functions can be estimated by

(H(Ny) _ P(Ny) _ Z(Ny)
(H(N)) PNy Z(N3) (3.14)

where H(N,) denotes the sampled frequency (or histogram) of the occurrence of
triangulations with N, triangles in the sampling process. Obviously, in this ensem-
ble one has to delimit N, at least from above, since otherwise Ny would diverge
(until hitting some computer memory constraints) in the Monte Carlo process of

the proposed ensemble. The detailed balance condition for this ensemble reads

1 N /
Moy T = T = s Paa(T > T), (3.15)

which is solved by Py, (T — T') =r, r < 1, and

ng (T’) . ng (T’)

Puo(T' — T) = _
(T = T) "No(T) T T N(T = 2

(3.16)

such that the insertion move is accepted with a constant probability r and the
acceptance probability of the deletion move can be computed entirely in terms of
the properties of T". If Ny = Ny max and an insertion move is tried or Ny = Njmin
and a deletion move is attempted, the moves are rejected (but nevertheless counted
as links of the Markov chain). Since the reversed variants of these moves cannot
occur either, detailed balance is not violated. A method related to the approach

presented here has been proposed in Ref. [159].

3.2.3 Generalization to quadrangulations

While simulations of dynamical triangulations have been widely applied (see, e.g.,
Refs. [21,159-161]), also for the more special cases of modified gravity actions [147,
162] and the coupling of various types of matter to the lattices (see, e.g., Refs.
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Figure 3.7: Generalization of the (2,2) link flip move for dynamical triangulations
to the case of a random quadrangulation (black solid lines) and the dual ¢* graph
(red dashed lines). Note that, in contrast to the triangulation case, there are two

inequivalent ways to flip the link between the two squares.

[45,46,48,50-52,163]), other dynamical polygonifications have attracted much less
attention. The only simulations of dynamical quadrangulations we know of are
reported in Refs. [49, 74].

As with the simulation of dynamical triangulations, the main issue for the quadran-
gulation case is the necessity of update moves that ergodically sweep out the space
of quadrangulations and the dual ¢* graphs. The rather obvious generalization of
the (2,2) flip move was first proposed in Ref. [49] and is depicted in Fig. 3.7. In
Ref. [74] Baillie and Johnston give a justification for this choice of moves in terms
of a break-up of the squares of the quadrangulation into triangles. Obviously, each

vertex of the dual ¢* graph can be broken up into two connected ¢? vertices,

|
-

Taking into account the two possibilities to do such a break-up, one ends up with

four possible break-ups of the dual diagram of two adjacent squares as shown in Fig.
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a) (b)
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c) (d)
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Figure 3.8: The four possible ways to break the dual ¢* graph of two adjacent

squares up into a ¢* graph. The red dashed lines denote the newly introduced links

along which the vertices have been broken up.

3.8. Now, one can apply the usual ¢ flip move to the resulting graphs. Doing so,
one notes that some of the flips connect two of the newly introduced, dashed links
to the same vertex. To retain the possibility of contracting the ¢* graph back to a
¢* diagram again, these moves should obviously be forbidden. The remaining moves
on the diagrams of Figs. 3.8(a)-(d) either leave them unchanged or produce exactly
the ¢* flip moves shown in Fig. 3.7 after contracting back to the ¢* language. Fur-
thermore, both orientations of the resulting ¢* flip move come with equal frequency.
Thus, the flip move for quadrangulations or ¢* graphs can be traced back to the

(2,2) flip move for triangulations.

Let us consider the question of ergodicity of such flip moves in the different ensembles
of quadrangulations and ¢* graphs. Obviously, every ¢* graph can be transformed
to a ¢ graph in the way described above. If the ¢* graph was taken from the strict
ensemble, the resulting ¢* graph will not contain any singular contributions. Since
the (2,2) link flip for ¢* graphs is ergodic in the space of regular triangulations, one
might argue that thus the corresponding ¢ link flip is ergodic in the ensemble of
strict graphs. This is the view advocated in Ref. [74]. While numerical simulations
show that this is very probably true (see Ref. [74] and the results presented below),
we would like to point out that to our opinion this argument cannot be considered

a proof of ergodicity. This is due to the fact that in the language of the broken-up
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diagrams of Fig. 3.8 some of the ¢* flip moves are disallowed in order to guarantee
the possibility of a contraction to a ¢* graph after the flip. In a regular ¢* graph
with only one kind of links, however, these moves would be possible. Theoretically,
it is very well possible, though, that the exclusion of these flips raises barriers in the
configuration space of those ¢* graphs that can be contracted to strict ¢* graphs,
thus breaking the ergodicity of the proposed flip move. Ergodicity could be shown
if one could set up a one-to-one correspondence between ¢* graphs of the strict
ensemble and ¢* graphs of the regular ensemble. This question is naturally related
to the question of the existence of a perfect matching of the ¢3 graphs. A perfect
matching of a graph is a subset of its edges, such that no two of these edges meet at
a vertex, but each vertex of the graph is an end of one of the edges of the matching.
This question in turn is related to a three-colouring problem for the links of the ¢?
graphs; if such a three-colouring is possible, one can contract all pairs of ¢ vertices
connected by a link of, say, colour one to end up with a proper ¢* graph. In fact, as a
consequence of the celebrated proof of the four-colouring conjecture it can be shown
that every planar ¢ graph from the regular ensemble is three-link-colourable (this
is the so-called “Petersen-Tait theorem”, see, e.g., Ref. [164]). However, it turns
out that the contractions defined in this way can lead to singular contributions in
the resulting ¢* graph even though the ¢* is regular. Thus, the problem is that of
a mixing of the different ensembles, such that it seems not to be obvious how to
prove ergodicity of the ¢* flip move for a given (more or less restricted) ensemble.
The problem of ergodicity of the ¢* moves will be analyzed more thoroughly by

numerical means below.

The insertion and deletion moves of the triangulation case have their obvious general-
ization in the moves depicted in Fig. 3.9. Move (a) is applicable to quadrangulations
and ¢* graphs of all ensembles, whereas move (b) cannot be applied in the strict
ensemble. However, as far as the deletion move is concerned, it is obviously rather
improbable to find a configuration as the one shown in Fig. 3.9(a), such that this
type of move suffers from very small acceptance rates. Since we will not perform
(pseudo) grand-canonical simulations in the strict ensemble, we concentrate on the
moves shown in Fig. 3.9(b). The detailed balance condition for simulations in the
pseudo grand-canonical ensemble, Eq. (3.16), is almost unchanged for the case of

quadrangulations,

Pakz (T, - T) = 2 (TI) - (T,)

TON(T)  2No(T) -1 (3.17)
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Figure 3.9: Two variants of insertion and deletion moves for dynamical quadran-
gulations (black solid lines) and ¢* graphs (red dashed lines). (a) Insertion of an
additional square that adds four vertices to the ¢* graph and its inverse deletion.
These moves are applicable in all of the defined ensembles. (b) Insertion of a single
vertex on the diagonal of the square, which adds only one vertex to the graph. This

move and its inverse are not allowed in the strict ensemble.

where now ny(7") is the number of two-loops of the quadrangulation 7". The addi-
tional factor 1/2 appearing here as compared to (3.16) stems from the fact that there
are two combinatorially distinct possibilities to insert a point on the diagonal of the
square, cf. Fig. 3.9(b), whereas the insertion move for triangulations was unique up
to re-labellings of the vertices.

3.2.4 Necessary checks and implementation details

Up to now, we have not discussed how one ensures that the flip move dynamics
for canonical simulations always generates polygonifications or graphs of the same
consistent ensemble. That this is guaranteed, however, was taken for granted in
the discussion of the ergodicity properties at least in the case of triangulations. It
is obvious that, starting from a polygonification of the strict or regular ensembles

some of the flips can produce multiple links; furthermore, as soon as those appear,
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degenerate triangles resp. squares can be produced by flip moves. We will discuss

the case of triangulations first and then generalize to quadrangulations.

Triangulations and ¢* graphs

In the regular ensemble of triangulations or ¢* graphs it suffices to prevent the
appearance of double links in the triangulation or, equivalently, the appearance of
non-trivial two-point subgraphs in the dual diagram. Degenerate polygons resp. one-
point subgraphs can only be produced by link flips from an ensemble that already
contains degenerate links resp. non-trivial two-point subgraphs. In terms of the flip
move for triangulations, one has to ensure that the vertices ¢; and ¢» of Fig. 3.6(a)
are not already connected by a link before the flip move. Concerning the dual graph,

we distinguish two ways of the flip move,

which we label with a “chirality” variable x to indicate the direction of rotating the
links of the vertices a and b as x = +1 (left diagram) and x = —1 (right diagram).
Here, and in the following, the black solid lines denote the graph before the flip and
the blue dashed lines indicate the flipped diagram. For un-labelled graphs, these two
flips are identical, since they can be mapped onto each other by an exchange a < b;
since the computer code has to work with labelled triangulations, we nevertheless
distinguish them. Then, on comparing the above diagrams with the corresponding
pair of triangles of Fig. 3.6(a), it becomes obvious that the check for the creation of
a double link of the triangulation translates into the graph language as the check,
whether the faces (or loops) adjacent to the links (bb;) and (aa;) have a common
link before the flip®. This touching link test is illustrated in Fig. 3.10. Note that
in terms of the ¢ graph this check is non-local since the considered faces can be
arbitrarily large. In contrast, the corresponding check for the triangulation is local.

If the touching link test fails (or one of the other tests described below), the move

5Note that, by definition, we always traverse the faces or loops of the graphs along their links
counter-clockwise; that is, at each vertex we turn left.
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Figure 3.10: The loops (faces) adjacent to the links (bb;) and (aa;) (red dashed
lines) acquire a common link by applying the x = —1 link flip move to a ¢* diagram.
If both loops already have a common link before the flip, a non-trivial two-point
subgraph characterized by two loops sharing more than one link, is generated. In
the triangulation this corresponds to a double link. The check for the y = 4+1 move

is identical to the presented one.

is rejected, but the unchanged configuration is nevertheless counted as new state of
the Monte Carlo Markov chain.

Once we allow degenerate links in the triangulation or non-trivial two-point sub-
graphs in the dual graph, but still want to exclude degenerate triangles resp. one-
point subgraphs, i.e. for simulations in the restricted singular ensemble, another
check has to be applied. A one-point subgraph is produced by a flip move, if one of
the points a and b would become a co-ordination point of the graph after the flip;
this is demonstrated in Fig. 3.11. The checks are identical for both of the ¢ flip
move variants x = +1 given above. In practice, one checks whether any loop (face)
emerging from (bb;) and (aas) or their reversal links arrives back at one of those
four links, i.e., whether (bb;) and (aas) are uniquely connected to each other (and
similarly for the links (bby) and (aa,)).

Finally, for the singular ensemble no specific conditions have to be fulfilled for a
flip move to be allowed, such that the flip move acceptance rate is 100% there. To
summarize, we present a C++ code snippet from the simulation program coded for
the simulations of ¢ and ¢* graphs of this thesis, that contains function calls for
the necessary checks on the link flip move performed on a randomly chosen link 1

of a ¢ graph:

template<> bool Graph<3>::check_flip_move(const Link<3>& 1, int chir)
{

// exclude 2-point subgraphs (and thus 1-point subgraphs)

if (umode () < restricted_singular && touching_link(1+1, rl+l) )

return false;
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Figure 3.11: If one of the shown loops (red dashed lines) is exclusively connected
to the rest of the graph via the links (bb;) and (aas) (upper loop) resp. (bby) and
{(aay) (lower loop), the shown flip move transforms it to a one-point subgraph, since
removing one of the vertices a or b would disconnect it from the rest of the “universe”.

In the triangulation this corresponds to a degenerate triangle.

else if(umode() == restricted_singular) {
// exclude 1-point subgraphs
if ( uniquely_connected(1-1, rl+l) ) return false;

if ( uniquely_connected(1+1, rl-1) ) return false;

return true;

Here, umode () denotes the used graph ensemble, rl is the reverse link of 1 and the
“+” and “-” signs symbolize counter-clockwise and clockwise traversal of the links
adjacent to a vertex, respectively®. Thus, in the notation of the previous figures, 1
is given by the link (ab), 1+1 by (aa;) etc.

Quadrangulations and ¢* graphs

Using labelled quadrangulations or graphs we have four distinct variants of flip

moves in the ¢? graph language, namely (cf. Fig. 3.7),

6Note that due to the “fat” structure of the graphs we can always assign such a cyclic order to

the links emerging from a vertex.
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Figure 3.12: Production of a double link by a ¢* flip move of type x = —1. To
prevent the occurrence of double links, one has to ensure that a; # b3 and a3 # by
for y = +1.
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referred to by x = +2 (left) and y = —2 (right). The latter two correspond to an
exchange of the labelled vertices a <> b. In the singular ensemble they are equivalent
to the double application of the x = +1 flips. Furthermore, it can be easily seen by
inspection that the necessary checks on the flip moves for the different ensembles
always give the same result for y = +2 as for a Yy = £1 move. Thus, the inclusion
of the x = +2 moves cannot generate graphs different from those generated by the
x = +1 moves alone; also, numerically we find no improvement in the de-correlation
of the links of the Markov chain. Therefore, we restrict ourselves to the y = +1

moves.

The necessary geometry tests to rule out disallowed flips for the regular, restricted

singular and singular ensembles for the ¢* case are almost identical to those of the
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#? or triangulations case; the only difference is given by the fact that the loops to be
considered for the “touching link” test now depend on the chosen variant of move’
x = £1. The strict ensemble, which additionally excludes the appearance of double
links in the ¢* graph, needs an additional check which is depicted in Fig. 3.12. Note
that, in contrast to the other three ensembles, this additional check is not sufficient
to also rule out the appearance of the next singular contributions, i.e., non-trivial
two-point subgraphs. Again, the necessary checks on the flip moves are summarized

in the following code segment for the case of simulations of ¢* graphs:

template<> bool Graph<4>::check_flip_move(const Link<4>& 1, int chir)
{
if (umode () == strict) {
// exclude double link a3=bl/al=b3
if( target(l+1) == target(rl-1) ) return false;
if ( target(l-1) == target(rl+l) ) return false;
// exclude 2-point subgraphs (and thus 1-point subgraphs)
if ( touching_link(1+1+(chir>0), rl+1+(chir>0)) ) return false;
}
else if(umode() == regular)
if ( touching_link(1+1+(chir>0), rl+1+(chir>0)) ) return false;
else if (umode() == restricted_singular) A{
// exclude 1-point subgraphs
if ( uniquely_connected(1-1, rl+l) ) return false;

if ( uniquely_connected(1+1, rl-1) ) return false;

return true;

We note the technical point that it is crucial for an acceptable performance of the
program code that both, the ¢ or ¢* graph and the polygonification, given by the
faces or loops of the graph joined by the corresponding links, are held up-to-date
during the Monte Carlo process. This is due to the fact that the information of the
faces or loops is needed for the “touching link” and “uniquely connected” type of

tests during the update.

"The details can be seen from the piece of code shown below.
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Finally, it should be noted that also the grand-canonical moves have to be subject
to some geometry tests in order not to leave the chosen ensemble of graphs. The
insertion moves in both the ¢* and ¢* cases do not need any additional checks. This
holds true for the deletion move of Fig. 3.6(b) for the ¢ case. The ¢* deletion move
of Fig. 3.9, however, can produce one-point subgraphs which have to be excluded
unless simulating in the singular ensemble. The corresponding geometry test is
similar to those presented for the flip moves. It will not be discussed in detail here,
since (pseudo) grand-canonical simulations are only used for auxiliary purposes in
this thesis.

3.3 The Co-Ordination Number Distribution

Given the rather non-trivial complexity of the restrictions on the flip moves for the
simulation of dynamical graphs or polygonifications, it is highly desirable to have
exact results for the models at hand to compare them with the simulation out-
comes. An obvious candidate for this comparison are the exactly known critical
exponents of the dynamical triangulations model presented in the previous chapter
or, alternatively, the critical exponents of the Ising model coupled to dynamical poly-
gonifications found in Refs. [34,35]. However, in view of the observed pronounced
robustness of the model, i.e. the universality of the critical behaviour between the
#* and ¢* cases and even with respect to such drastic changes as the restriction of
co-ordination numbers to the values 5, 6 and 7 reported in Ref. [147], the critical
exponents are not expected to react very sensitively on “bugs” in the program code,

unless they are really of paramount importance.

There are mainly two areas, where defects in the simulation of dynamical graphs
could show up. First, a faulty implementation of the necessary checks on the flip
moves in the ensembles with restrictions could lead to the appearance of disallowed
graph contributions. This possibility is easily ruled out by checking the whole graph
for such disallowed contributions after each update move. Also, the possibility of
the graph to change topology from the (usually) planar case® to higher genera by a
destruction of the cyclic order of the links around vertices in the updating process,

can be easily checked for and excluded by the application of graph planarity tests

8Obviously, the notions of planarity and spherical topology of a graph are identical, since one
can always blow up one of the faces of a spherical graph to enclose the whole diagram and then
embed it in the plane.
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(see, e.g., Ref. [164]). Here, a combination of the Euler and Dehn-Sommerville
relations Eqgs. (2.36) and (2.37) is very useful. While this kind of difficulty can arise
in any sufficiently complex simulation program, there is an additional and more
subtle problem, which is not so familiar from, e.g., spin model simulations on regular
lattices, namely the question of ergodicity of the update moves. Especially for the
case of ¢* graphs, where no ergodicity proofs are available, such problems of non-
ergodicity of the updating scheme can arise. Depending on how “much” non-ergodic
the moves are, the resulting deviations from the true results can be very small and
are thus extremely hard to detect, unless the appropriate observable is considered.
Therefore, a very sensitive, local property of the graphs or polygonifications has
to be used. An excellent candidate for such a quantity is given by the probability
distribution of the co-ordination numbers of the polygonifications, which can be

computed exactly in some special cases.

In the following, we speak synonymously about the co-ordination number distribu-
tion of the dynamical polygonifications model or the distribution of loop lengths of
the corresponding dual ¢* or ¢* graph representation. Since every link of the graph
corresponds to a link of the polygonification it should be obvious from (almost) any
of the figures presented in this chapter that the number of sides of a face of the
graph (the loop length) is identical to the co-ordination number of the vertex of the

polygonification which is dual to the considered face of the graph.

3.3.1 Counting planar graphs
The ¢* regular case

Matrix model techniques allow the exact solution of the counting problem for closed,
planar ¢® and ¢* graphs (cf. Section 2.3.4 above). While originally matrix models
count graphs of the singular ensemble, the calculations can be extended to the case of
the regularized graphs. In addition, it is not only possible to count closed graphs (or
vacuum diagrams), but also graphs with a given number of external lines. For planar
¢* and ¢* diagrams of the singular and regular ensembles this has been first done
by matrix model techniques in Ref. [16]. Making use of these results, Boulatov et
al. [21] have proposed a method for deriving the co-ordination number distribution of
dynamical triangulations from the calculated graph numbers. Consider the partition

function of the dynamical triangulations model in the reqular ensemble with one of
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the Ny vertices, py say, marked and held fixed; this is obviously by symmetry equal
to NoZ(N3), where Z(N,) denotes the canonical partition function of the dynamical
triangulation model for “universes” with a fixed number N, of triangles, cf. Section
2.3.3. On the other hand, it can also be expressed as [21]

MZ(V) = Y 0l (3.18)
q

where Q((,Nz) denotes the contribution of triangulations that have ¢ triangles joining
at the marked vertex py. This implies that the co-ordination number distribution
for dynamical triangulations is given by

(N2)

P, (q) = qJ\fog’i(N{z)' (3.19)

Cutting out the ¢ triangles meeting at the marked vertex py from the triangulation,
one is left with an open triangulation with N, — ¢ triangles. In terms of the dual ¢?
graph this corresponds to a diagram with Ny —q vertices and ¢ external lines. Then,
the cut out part can be re-inserted again in one of ¢ possible ways, accounting for
the factor 1/¢ in (3.19). This is illustrated in Fig. 3.13(a). Therefore, Q™) is equal
to the number Gfﬁ\b_q
external lines. The restriction to connected diagrams stems from the fact that, for

of connected, planar ¢* graphs with Ny — ¢ vertices and ¢

the regular ensemble, a closed graph cannot become disconnected on removing a

“ring” sub-diagram of the form indicated in Fig. 3.13(a).

On the other hand, the partition function can be expressed in terms of the number

Gg’f}vrl of diagrams with three external lines as

11
Z(N2) = §EG§,}V2_1, (3.20)

where the factor 1/3 accounts for the three distinct ways to close the graphs by the
insertion of a single ¢* vertex. Thus, the co-ordination number distribution for the

regular ensemble of planar dynamical triangulations is given by [21]

(¢)
3N2 G No—
Py,(q) = pId, (3.21)
g(N2/2+2) G,

where we have used that Ny = N, /242 for planar triangulations, which follows from
the Euler and Dehn-Sommerville relations (2.36) and (2.37). The graph numbers

Gfﬂ\b can be found exactly as the coefficients of a power series expansion [16]. If we
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Figure 3.13: Construction of the co-ordination number distribution of the dynamical
triangulations model from the number of ¢* diagrams with a given number of vertices
and external lines. Solid lines show the triangulation, dashed lines indicate the dual
¢> graph. (a) Regular ensemble: removing the marked vertex p, and its ¢ adjacent
triangles from the triangulation leaves, in terms of the dual ¢* graph, a diagram
with Ny — ¢ vertices and ¢ external lines. Re-inserting the ring diagram of length
q cut out before results in an additional symmetry factor of 1/¢ for the ¢ distinct
external legs of the ring. (b) Other ensembles: degenerate links of the triangles
adjacent to the marked vertex py enhance the symmetry factor associated with the

insertion of the ring diagram.
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write for the generating function of the number of connected, regular ¢* graphs the

following expansion [16,151],

00,00

G (z,qg) = Z Zq—lgNgG((;;VZ, (3.22)

q=1,N2=0
the coefficients Gfﬁv2 are exactly the numbers of such graphs with ¢ external lines
and N, vertices. This expansion can be explicitly performed [151] and one finds,
e.g., for ¢ = 2,
G9g) = 14 g+ ¢>+3¢°+13¢7 +68¢° + 399¢"" + 253043 (3.23)
+16965¢"° + 118668¢'" + 8579564 + 6369883¢>! + 48336171¢%
1373537388 4 293168281097 + 23317105140¢%° 4+ O(g*")
Inserting these numbers in Eq. (3.21) yields the exact co-ordination number distri-

bution for finite triangulations. Finally, for the limit Ny — 0o one has the explicit

expression [16,21]

3 )q (¢ —2)(2q — 2)!

Folg) =16 <E q!(q—1)!

This distribution of co-ordination numbers is shown in comparison to that of Pois-

(3.24)

sonian random lattices constructed by the Voronoi-Delaunay prescription [165] in
Fig. 3.14. While the co-ordination number distribution of Voronoi-Delaunay random
lattices is peaked around the mean value 6, the distribution (3.24) is monotonous;
especially, in the latter case many more vertices have co-ordination numbers 3 and
4 and the distribution exhibits a long tail for large co-ordination numbers ¢q. The
distribution of Poissonian random lattices falls off as exp(—o¢lng) with o ~ 2 as
q — oo [165], whereas the distribution (3.24) declines much slower proportional
to exp(—oq) with 0 = In4/3 ~ 0.3 [21]. On the other hand, both distributions
have the same mean, since in any closed triangulation each triangle appears in the

co-ordination number of each of its three vertices, such that

1 3N, Ny
= — i) = = 6 ,
(9) N, Zp_ a(pi) Ny " No+4

which approaches 6 as Ny — oo.

(3.25)

¢ graphs with singular contributions

For the more singular graph ensembles it is still possible to calculate the graph num-

bers Gfﬁ\b either in the matrix model scheme of Refs. [16,149] or by writing down
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Figure 3.14: Co-ordination number distribution of Poissonian random lattices built
by the Voronoi-Delaunay construction in comparison to the co-ordination number
distribution of planar random triangulations (QG) from the DTRS model according
to Eq. (3.24). Both distributions are for the limit of infinite-size lattices. The results

for Poissonian lattices are taken from Ref. [165].

equations of the Schwinger-Dyson type for the graph counting, see Ref. [151]. How-
ever, the “cut-out and re-insert” prescription for the calculation of the co-ordination
number distribution described for the case of regular triangulations does not simply
carry over to situations when singular graph contributions are present. The general
problem is that the symmetry factor 1/¢ associated with the insertion of the ring
diagram depicted in Fig. 3.13(a) changes when the inserted ring itself contains mul-
tiple links or tadpoles. Consider the case of a double link present in the restricted
singular and singular ensembles as shown in Fig. 3.13(b). While the co-ordination
number of the considered vertex of the triangulation is still equal to ¢, the inserted
ring diagram has only ¢ — 1 external lines, which destroys the symmetry arguments
used in writing down Eq. (3.19), since diagrams with varying numbers of external

lines mix.

For the restricted singular ensemble, however, it is still possible to apply the same

formula Eq. (3.21) for the co-ordination number distribution with the graph numbers
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Gfﬂ\b replaced by the number G, y, of (possibly) disconnected diagrams including
non-trivial two-point subgraphs. Possibly disconnected graphs have to be taken into
account since with the presence of non-trivial two-point subgraphs, cutting out a
ring diagram of the type shown in Fig. 3.13 can leave the remaining graph in several
disconnected pieces. The gluing picture of Fig. 3.13 is still valid since — in the
restricted singular ensemble — there is a one-to-one correspondence between graphs
with ¢ external lines that one can paste the ring of Fig. 3.13(a) into and graphs with
q — 1 external lines, which can be closed by rings of the type shown in Fig. 3.13(b).
This is due to the fact that one can always pair off two of the external lines of a
graph with ¢ external lines to end up with a graph with the same symmetry and
g — 1 external lines. This reduced graphs are still of the same, restricted singular
ensemble, since no two of the ¢ external lines are allowed to originate from the same
vertex, which would represent a disallowed one-point subgraph. If the latter would
be allowed, the pairing of two external lines could lead to a tadpole contribution
which is forbidden in the restricted singular ensemble. Since the same reasoning can
be put up for the cases of several double links present on the ring diagram to be
inserted, the co-ordination number distribution can be calculated in the same way as
for the regular ensemble. There is one exceptional point where this reasoning breaks
down: if ¢ = N,, which is obviously the maximum allowed co-ordination number,
one is left with a single closed ring-diagram with alternating single and double links;

this configuration can obviously not be decomposed in the way described above.

As soon as one-point subgraphs are allowed to appear in the graphs, the described
“cut-out and re-insert” rule can no longer be used to calculate the co-ordination
number distribution for general q. While it still works for small ¢, the calculation
breaks down due to a mixing of symmetry factors for the general case. Note also
that the definition of a co-ordination number is ambiguous for the singular ensemble.
Besides the number of triangles meeting at a vertex, one could consider the number
of links joining at a vertex. While these two definitions coincide for the regular and
restricted singular ensembles, the appearance of one-point subgraphs in the singular

ensemble results in the fact that a vertex can have more incident links than triangles.

A special case of the co-ordination number distribution is given by the ratio of
partition functions for Ny and N, — 2 triangles, which is by Eqgs. (3.20) and (3.21)
Z(NQ) _ NQ -2 G3’N2_1

_ , 3.26
Z(NQ — 2) N2 G3,N2—3 ( )

where the graph numbers GG should be suitably chosen to match the ensemble under
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consideration, i.e., connected and regular for the regular ensemble and disconnected
and with the corresponding type of singularities for the restricted singular and sin-
gular ensembles. Since the transformation Ny — N, + 2 corresponds to the grand-
canonical moves presented above, this relation can be used in all of the ensembles
for comparison to results from the pseudo grand-canonical method. Alternatively,
the ratios Z(Ny)/Z(Ny — 2) can be determined from simulations in the canonical
ensemble by considering the number of possible insertion or deletion moves in the
following way. With respect to the insertion and deletion moves of Fig. 3.6(b), one

can write [159]

Z(Na) P(Ny —2 — N>)
Z(N,—2) <P(N2 — N, —2) >N2 ’ (3.27)

where P(Ny — 2 — N,) denotes the total probability of performing an insertion
move Ny — 2 — N, if the probability for each single, allowed insertion move is a
constant. Analogously, P(Ny — Ny — 2) denotes the cumulated probability for a
deletion step Ny — Ny — 2. The thermal average is supposed to be taken in the
canonical ensemble, i.e., the insertion and deletion steps are never really performed,
but only the number of such possible moves is counted. An insertion move can be
performed on each of the N, —2 vertices of the smaller ¢ graph and a deletion move

is possible for each of the n3 three-loops of the larger graph. Therefore, we have,

P(Ny—2— Np)\  Np—2
<P(N2 — Ny _2)>N2 ~ (ns)y,

. (3.28)

Finally, noting that (ns)y, corresponds to the number of vertices of the triangulation

that have co-ordination number three, one can write

Z(Ny)  Ny—2  N,—2 1
Z(No—2)  (na)y, No/2+2Py,(3)

(3.29)

This relation can be used in all of the ensembles to determine Py, (3).

¢* graphs

Boldly generalizing the discussion of the previous paragraph, one might be tempted
to write down an analogue of the expression (3.21) for the co-ordination number

distribution,

Py (g) = it Sy
’ q(No+2) Gyny1’

(3.30)



82 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS

where now Gy, n,—, denotes the number of (connected or disconnected) planar ¢*
graphs of the considered ensemble. The corresponding graph numbers can be found
order-by-order for the regular and singular ensembles in Ref. [16] and for all but
the strict ensembles in Ref. [151] from a different approach. Finally, Ref. [150] gives
explicit, closed-form expressions for the graph numbers for all of the ensembles but
the strict one. However, as will be shown in the next Section, this approach does
not give the correct co-ordination number distribution in the general case. In view
of Egs. (3.26) and (3.29) one can write
Z(Ny)  No—1Gun,-1  No—1

- - 3.31
Z(Na—1)  No Gany—2  (nh)w, 331

which uses the analogue of Eq. (3.20) for quadrangulations resp. ¢* graphs, namely

11
Z(NQ) - ZEG4’N2,1. (332)

Here, n), denotes the number of two-loops of the ¢* graph that can be deleted
without leaving the considered ensemble. For the regular and singular ensembles
one has n), = ny, i.e., all deletion moves are allowed. In the restricted singular
ensemble, however, the removal of a two-loop belonging to a triple link (self-energy
diagram) produces a disallowed seagull contribution, such that there n}, # ny in
general. Therefore, the relation

Z(N,) 2Ne—1) 1
Z(Na—1) No+2 Prn(2) (3:33)

is only valid for the regular and singular ensembles. These relations are again not
applicable for the strict ensemble, since the used ratio of partition functions corre-
sponds to the insertion or deletion of a loop of length two, which is forbidden in
the strict case. For the graph numbers in Eq. (3.32), disconnected graphs should
only be considered in the singular ensemble, since only there the removal of a single

vertex can split the graph.

The reason for the failure of the ansatz (3.30) for general ¢ is similar to that of
the corresponding formula for singular ¢ graphs. The situation is even more com-
plicated though, since the analogue of the ring diagram of Fig. 3.13(a) now has 2q
paired external lines as depicted in Fig. 3.15. Thus, even if the graph numbers for the
strict ensemble would be available, the insertion process would lead to the appear-
ance of double links. Even worse, for all of the ensembles the appearance of double

links alters the symmetry factor 1/q as in the restricted singular ¢* case; however,
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Figure 3.15: A ¢* ring diagram (dashed lines) and the corresponding part of the
quadrangulation (solid lines) as a candidate for the construction of the co-ordination
number distribution of quadrangulations. The marked vertex py has co-ordination

number four. In contrast to the ¢3 case each ring vertex has two external lines.

in contrast to the latter situation, for ¢* graphs of all ensembles it is possible for two
of the ¢ external lines of the outside graph (i.e., the graph the ring diagram is pasted
into) to originate from the same vertex. This destroys the symmetry assumption
of the insertion process. Thus, for checks of simulations of ¢* graphs one has to
entirely rely on the partition function ratio method of Eqs. (3.31) and (3.33).

3.3.2 Comparison to simulation results

For the measurement of co-ordination numbers two types of simulations were per-
formed. Firstly, direct measurements of the co-ordination number distribution and
the number of deletion moves ns resp. n}, by simulations in the canonical ensemble
of a fixed number of ¢3 or ¢* vertices. Secondly, simulations in the pseudo grand-
canonical ensemble, delimiting the range of allowed numbers N, to a small band
around the values Ny and Ny — 2 resp. N and Ny — 1 needed for the comparison
with Eqs. (3.26) and (3.31). All simulations were directly performed in terms of the

dual ¢3 or ¢* graphs. Since ergodicity problems and code bugs are expected to show
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Figure 3.16: Distribution of co-ordination numbers of dynamical triangulations with
N, triangles from canonical simulations of ¢ graphs with the (2,2) flip move. (a)
Results for graphs of the regular ensemble compared to the exact expression (3.21)
evaluated with the exact ¢ graph numbers for the indicated graph sizes (solid lines).
The dashed line indicates the infinite-volume result (3.24). (b) The distribution for
graphs of the restricted singular ensemble. The solid lines denote the outcome of
inserting the number of (possibly) disconnected ¢ graphs of the restricted singular
ensemble into Eq. (3.21). As explained in the text, this formula is correct apart from
the value for the maximum possible co-ordination number. The statistical errors are

of similar size as the symbols.
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Figure 3.17: Co-ordination number distribution for dynamical triangulations with
N, triangles of the singular ensemble from MC simulations. The solid lines indicate
the values conjectured by inserting the number of possibly disconnected, singular
¢* graphs into Eq. (3.21). As explained in the text, this formula is not generally
applicable here due to a symmetry reduction in the inserted ring diagrams containing

tadpoles and double links.

up especially pronounced for the smallest graph sizes, most of the results presented

in this section are for graphs with Ny < 40 vertices.

Triangulations and ¢* graphs

According to the above explanations, we expect the co-ordination number distribu-
tion to be correctly predicted by Eq. (3.21) for the regular and restricted singular
ensembles. In contrast, due to symmetry problems with the described “cut-out and
re-insert” technique, the distribution of loop lengths for the ¢* singular ensemble
will not be correctly conjectured by the described ansatz. These expectations are
completely met by the simulation outcomes, which are presented in Fig. 3.16 for the
regular and restricted singular ensembles and in Fig. 3.17 for the singular ensemble.

The presented data result from Monte Carlo simulations of planar ¢* graphs with a
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Figure 3.18: The ratio Z(Ny)/Z(Ny — 2) of canonical partition functions for the
dynamical triangulations model from pseudo grand-canonical simulations of planar
¢ graphs of the various ensembles. The solid lines show the exact expressions from
Eq. (3.26) and the graph counting results of Refs. [16,151].

fixed number of vertices N, applying the ergodic (2,2) link flip move in accordance
with the geometry restrictions described in Section 3.2.4. The co-ordination num-
ber distribution was sampled after each “sweep” of flip moves of the graph, where
a sweep consists of one attempted flip move per vertex of the graph. The data
of Figs. 3.16 and 3.17 correspond to 50000 of such samples. Although, as will be
discussed below in Section 3.5.1, the considered flip move dynamics is subject to
rather pronounced critical slowing down effects, the lattice sizes considered here are
so small that these effects can be safely neglected. A detailed error analysis was not
performed for these check-only simulations; however, a comparison of independent
simulations reveals that the error bars are comparable in size to the used plotting

symbols.

When comparing the co-ordination number distributions for the three considered
ensembles, note that the small non-monotonicities of the function Py,(q) for small
co-ordination numbers ¢ and graph sizes N, for the cases of the regular and restricted

singular ensembles, as depicted in Fig. 3.16, reflect the geometric restrictions present



3.3. THE CO-ORDINATION NUMBER DISTRIBUTION 87

I T I T I T I T T T T
127 [T exact, regtricted singular I
- | & simulation, "pseudo” restricted singular .
ok | exact, regular |
o simulation, "pseudo” regular
N L i
g °r i
N - .
N L i
4 — —
2 — —
[ I RN I R NI R
6 8 10 12 14 16 18 20
Nz

Figure 3.19: Partition function ratios from simulations of planar ¢ graphs belonging
to “pseudo” restricted singular and regular ensembles that exclude the local singu-
larities, i.e. tadpoles and double links, but not more general one- and two-point
subgraphs. The deviation from the exact results for the proper restricted singular

and regular ensembles is apparent.

in these ensembles. Also, it is obvious that the present restrictions introduce hard
cut-offs on the allowed values of ¢. While all ¢ > 1 occur in the singular ensemble,
the restricted singular ensemble excludes loops of length one, i.e. ¢ > 2; finally, the
regular ensemble does not allow loops of length two either, that is ¢ > 3 there (as is
obvious in the dual regular triangulation). Comparing the results for the different
numbers N, of ¢ vertices for the regular ensemble to the N, — oo result of Eq.
(3.24) it is obvious that finite-size effects are rather weak for the case of Py,(q).
This is typical for local quantities such as Py, (q); in contrast, global properties such
as the mean square extent of the graphs (cf. Section 2.3.5 above) usually suffer from
strong finite-size corrections, see e.g. Refs. [51,166]. Furthermore, comparing Figs.
3.16(a) and (b) and Fig. 3.17, it is obvious that the size of finite-size corrections
is reduced as more of the singular contributions are included in the graphs. This
effect has been observed before, see e.g. Refs. [50,167]. The physical reason behind

this observation lies in the structure of the “universes” of dynamical triangulations
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as trees of “baby universes” inter-connected by minimal necks [29]. Depending on
the amount of singularities allowed, the average length of the “baby universe” necks
varies. While in the singular ensembles the smallest necks are of length one or two,
the minimal neck in the regular ensemble is given by a loop of length three. Thus,
one has an intrinsic length scale for the neck structure, whose size — compared to

the size of the “universe” — partly determines the strength of finite-size effects.

As an alternative comparison to exact results and to test the code for the singular
ensemble, we additionally performed simulations in the pseudo grand-canonical en-
semble in order to estimate the partition function ratios of Eq. (3.26). As shown in
Fig. 3.18 this test gives perfect agreement with the exact results of Eq. (3.26) for
all three ensembles, now including the singular one. To probe the sensitivity of the
partition function ratios to various possible code bugs and ergodicity problems, we
additionally simulated graphs in “pseudo” restricted singular and regular ensembles.
There, only the local singular contributions, i.e. tadpoles and self-energies, were ex-
cluded, but one- and (non-trivial) two-point subgraphs on larger length scales were
not taken care of. As can be seen in Fig. 3.19 such a change can be detected very

easily by a comparison to the exact results.

Quadrangulations and ¢* graphs

Using the generalization of the (2,2) link flip move to quartic planar graphs, the
co-ordination number distribution of planar quadrangulations was determined from
simulations with the same parameters as in the ¢* case. In addition to the previously
considered ensembles, for the ¢* graphs simulations were also performed in the strict
ensemble without double links. Fig. 3.20 shows the measured distributions for the
extremal cases of the strict and singular ensembles. Again, the reduction of finite-
size effects on including singular contributions is apparent. Also, in the singular
ensemble the fraction of vertices with large co-ordination numbers is enhanced as
compared to the strict ensemble, which is another indication for a reduction of finite-
size effects, since vertices with large co-ordination numbers typically occur in the
vicinity of the baby-universe bottlenecks. Note that, analogous to Eq. (3.25) for
triangulations, for quadrangulations the average co-ordination number is a constant

for a fixed number of squares, given by

No No
= 3.34
< (334)

1 4
(9) N, E,,. q(pi) - N, 12
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Figure 3.20: Co-ordination number distribution of dynamical quadrangulations from
canonical simulations utilizing the generalized (2, 2) link flip move. The simulations
were performed in the strict (a) and singular (b) ensembles. In contrast to the figures
for ¢® graphs, the solid lines do not show exact results, but are merely interpolations

between the data points to guide the eye.
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Figure 3.21: Partition function ratios Z(N;)/Z(Ny—1) of the dynamical quadrangu-
lations model from simulations using the generalized (2, 2) link flip. The simulations
were performed in the canonical ensemble, measuring (n}),, and using Eq. (3.31)
to infer Z(Ny)/Z(Ny — 1). The statistical error bars are of the size of the plotting
symbols, the apparent fluctuations stem from the strong dependence on the starting

configuration, which is due to the non-ergodicity of the update.

Thus, in the thermodynamic limit Ny — oo on average four squares meet at each

vertex of the quadrangulation.

To check the simulation program, a comparison to the exactly known partition func-
tion ratios of Eq. (3.31) had to be performed. Using Eq. (3.31) and the graph enu-
meration results of Refs. [16,150,151], the partition function ratios Z(Ny)/Z(Ny—1)
can be evaluated exactly for small graph sizes N, and all of the considered ensembles
apart from the strict one. While pseudo grand-canonical simulations yield results in
agreement with the thus calculated partition function ratios, the “indirect” method
of performing canonical simulations and applying Eqs. (3.31) and (3.33) to extract
the ratios Z(Ny)/Z(Ny — 1) from the measured averages (n))y, yields strong de-
viations from the exact results as indicated in Fig. 3.21. These deviations are far
from being covered by the statistical errors, which are again comparable in size
to the used plotting symbols. Furthermore, the sign and strength of deviation is
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strongly correlated to the used starting configuration for the canonical simulations
of ¢* graphs with N, vertices. Thus, they indicate a non-ergodicity of the used gen-
eralized (2, 2) link flip dynamics. In contrast, although there are no exact results for
comparison, for the strict ensemble no such strong fluctuations occur. It seems that,
in contrast to the ¢ case, the link flip move alone is not ergodic for simulations of
¢* graphs with a fixed number of vertices apart from graphs of the strict ensemble.
Grand-canonical simulations, however, i.e. the inclusion of insertion and deletion

moves, seem to work ergodically with the proposed dynamics.

3.4 The Two-Link Flip for ¢* Graphs

What exactly are the barriers in the configuration space of dynamical ¢* graphs
preventing the generalized (2,2) link flip move from being ergodic for canonical
simulations? In fact, one can easily find ¢* graph configurations which cannot be
mapped to each other by link flip moves. Consider, e.g., the configurations depicted
in Fig. 3.22, which can occur in all of the ensembles but the strict one. Obviously,
in order to connect the left and right configurations one would have to perform a
sequence of (2,2) flip moves. However, no matter where it is performed, the first
move produces a tadpole (or seagull) contribution in the graph of Fig. 3.22(b). Thus,
no move is possible for the regular and restricted singular ensembles. For graphs of
the singular ensemble, the first move is allowed, but there is nevertheless no sequence
of flip moves connecting the two diagrams. A proof of this more general statement
follows as a corollary from considerations about a two-colouring of the vertices of

the quadrangulations discussed below in Section 4.3.3.

On the other hand, the two shown diagrams are still connected to each other by
a kind of flip move. It corresponds to a flip move of the ¢* type, where the inter-

connection between vertices a and b is a double link, i.e.
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Figure 3.22: Configurations of a regular quadrangulation (a) and its dual ¢* graph

(b) that cannot be connected by a generalized (2, 2) link flip move without producing

a tadpole contribution.

which again comes in two chiralities, x = +1 (left) and y = —1 (right)?. This
“two-link flip” connects not only the configurations of Fig. 3.22, but — as it turns
out — removes all of the observed barriers in configuration space. As far as the
necessary geometry tests are concerned, inspection of the two-link flip move shows
that it cannot produce two-point subgraphs in the regular ensemble, but disallowed
one-point subgraphs can be produced in the restricted singular ensemble. Thus, an
additional test must only be implemented for the regular ensemble. Guaranteeing
detailed balance when including the new move is no issue for the regular and re-
stricted singular ensembles, since there only two-link flips are allowed along double
links and therefore a two-link flip is always tried when encountering a double link
between vertices a and b. For the singular ensemble, on the other hand, on hitting a
double link one has to choose between the two possibilities of performing a “normal”
(2,2) link flip (thus producing a seagull) or doing a two-link flip instead. One of the
possibilities to do this in a way consistent with detailed balance is to treat double
links between a and b as normal one-link flips during the update process and to in-

troduce the two-link flip as an additional type of update that is performed between

9Strictly speaking, there are four chiralities if one takes the two possible configurations of the
double link between a and b into account.
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Figure 3.23: Partition function ratios Z(Ny)/Z(Ny — 1) for the planar quadrangu-
lations model from MC simulations as compared to the exact result from Eq. (3.31)
and the graph enumeration results of Refs. [16,150,151]. The simulations were per-
formed in the canonical ensemble utilizing relation (3.31) for the estimation of the
ratios. The data result from 50 000 samples.

the others at a constant frequency. Since the number of double links changes during
the simulation, one chooses one of the double links irrespective of the number of

double links present.

Applying the two-link flip additionally to the one-link flip in canonical simulations
seems to ensure ergodicity also for simulations of a fixed number of vertices (recall
that simulations in the (pseudo) grand-canonical ensemble already were ergodic
with only the one-link flip). Although we cannot present an analytic proof for this
claim, comparison of the indirectly sampled partition function ratios Z(Ns)/Z(Ny—
1) from Eq. (3.31) to the exact results from the graph enumeration technique of
Refs. [16,150,151] now shows perfect agreement as illustrated in Fig. 3.23. Note
that the number of samples taken in the Monte Carlo update is identical between
the data shown in Figs. 3.21 and 3.23; thus, the apparent difference is solely due
to the restoration of ergodicity and not a matter of a reduction of the statistical

fluctuations.
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To summarize, for the ¢ and ¢* graphs of the different ensembles and the different

types of simulations the following statements about ergodicity can be made:

(a)

The (2, 2) link flip move is ergodic for simulations of dynamical triangulations
and the dual ¢* graphs at a fixed number of triangles resp. vertices of the ¢3
graph. This has been proved for the case of combinatorial triangulations, cor-
responding to the regular ensemble in our scheme, in Refs. [21,156]. Taking the
discussion of Section 3.2.1 into account, this result generalizes to the restricted
singular and singular ensembles as well. For variants of the grand-canonical
simulation method, adding the (3,1) and (1, 3) insertion and deletion moves
to the (2,2) link flip ensures ergodicity in the space of triangulations with a
varying number of triangles. The proof can be found for the regular ensem-
ble in Ref. [156]. Since every triangulation or ¢* graph of the more singular
ensembles can be transformed to a regular one by successive applications of
the link flip move, ergodicity of the grand-canonical set of moves for the re-
stricted singular and singular ensembles is guaranteed by the arguments given
in Section 3.2.1.

For simulations of dynamical quadrangulations and the dual ¢* graphs, the
information about ergodicity is mainly numerical. The generalization of the
(2,2) link flip move to ¢! graphs is not ergodic for canonical simulations as
can be easily proved. An exception to this statement is given by the strict
ensemble, where no double links occur. There, the one-link flip dynamics
seems to suffice to ensure ergodicity. Augmenting the one-link flip by a two-
link flip around double links obviously restores ergodicity also for the regular,
restricted singular and singular ensembles. In contrary, for simulations in the
grand-canonical type of ensembles of a varying number of ¢* vertices, the
generalization of the (3,1) and (1,3) insertion and deletion moves together
with the one-link flip are seemingly ergodic. That is, the possibility to change
the number of ¢* vertices or quadrangles circumvents the configuration space

barriers seen by the canonical one-link flip dynamics.

Although the information about the ergodicity of simulations of dynamical quad-

rangulations or the dual ¢* graphs is only numerical, it has been demonstrated that

the considered partition function ratios (being related to the small-¢ limit of the co-

ordination number distribution) constitute an observable which is highly sensitive to
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Figure 3.24: The specific heat C, per vertex of an Ising model coupled to planar
¢* random graphs with N, = 10 vertices as a function of the coupling 3 = 1/kpT.
The Ising model part was updated on the same time-scale as the graphs using the
Wolff single cluster algorithm [168]. (a) Application of the non-ergodic one-link
flip dynamics to graphs of the singular ensemble. The solid line shows the exact
result of Refs. [33,34,145]. The model undergoes a third-order phase transition
at J. = In2 &~ 0.693. (b) Comparison between simulations with the non-ergodic
one-link flip dynamics and the ergodic, combined one- and two-link flip update for

graphs of the regular ensemble. The solid line is only an interpolation to guide the

eye.
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a non-ergodicity of the considered update. This is, of course, intuitively rather ob-
vious, since the partition function of the dynamical polygonifications model simply
counts the number of polygonifications or graphs of a given ensemble. To demon-
strate how much less sensitive other observables can be to this kind of ergodicity
problems, as an aside in Fig. 3.24 we present the outcome of simulations of an Ising
model coupled to planar ¢* graphs. The simulations were performed either with the
one-link flip alone and thus were not ergodic, or with the almost certainly ergodic
combination of one- and two-link flips. For the singular ensemble and simulations
with the non-ergodic one-link flip alone, we find nevertheless perfect agreement with
the exact solution of the problem found in Refs. [33,34,145], cf. Fig. 3.24(a). Re-
membering that the non-ergodicity effect of the one-link flip was more pronounced
in the regular ensemble, we also compared simulations for the Ising model on regular
¢* graphs with the non-ergodic and ergodic set of moves as shown in Fig. 3.24(b).

Also there, no obvious deviations are visible.

3.5 Enhancing the Efficiency

Once the question of ergodicity of the considered update is settled, the issue of
performance of the suggested algorithm deserves some interest. Since in the canon-
ical ensemble of a fixed number of polygons the dynamical polygonifications model
should be considered as critical for all values of Ny, we expect the algorithm to be
hampered by critical slowing down. Additionally, the considered update is local,
such that fairly large dynamical critical exponents can be expected. This is indeed
the case, such that more sophisticated, less local algorithms are highly desirable. A

class of such updates is given by the baby-universe surgery method.

3.5.1 Autocorrelation times

Monte Carlo simulations in the important sampling scheme are governed by an arti-
ficial dynamics characterized by the used set of update moves and the corresponding
energy changes that determine the move acceptance rate via the Metropolis rule,
cf. Appendix A.1. Of major interest for the analysis of static behaviour such as
thermal averages is the integrated autocorrelation time T (A), which determines

the variance of the mean 0?(A) and thus the accuracy of the estimate A of (A) from
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a time series of length N. The relevant relation is given by:

o*(4)

o*(4) ~ N/2rm(A)’

(3.35)
that is, in presence of autocorrelations the number of independent measurements is
effectively reduced to N/27,(A), cf. Appendix A.2. Numerically, there are several
methods for the determination of integrated autocorrelation times, the most popu-
lar being a direct numerical integration of the normalized autocorrelation function
and the application of a combined binning/jackknifing technique. Especially, the
estimation of variances of the autocorrelation time estimate itself is computation-
ally non-trivial; the relevant formulae are given in Appendix A.4. Since in both
approaches some subjective decision about the degree of convergence of the respec-
tive estimates must still be taken, we apply both methods in parallel to be able to

detect runaway results via a lack of consistency between the two outcomes.

As indicated in Eq. (3.35), the integrated autocorrelation time depends on the con-
sidered observable A. As far as the efficiency of the used Monte Carlo dynamics is
concerned, one is mainly interested in the slowest mode of the update, i.e., one is
looking for the observable with the largest autocorrelation times since these times
can be taken as the autocorrelation times of the MC process as a whole. In view
of the locality of the considered flip-move dynamics, quantities that depend on the
global structure of the graphs are the obvious candidates for such observables. The
main global observable discussed in Chapter 2 was the mean square extent of the
polygonifications or dual graphs, which is, as shown in Section 2.3.5, directly related
to the global structure of the lattices, being described as a tree of “baby universes”.
The definition of the mean square extent used in the simulations is still slightly
different from the versions used in the analytical considerations of Section 2.3.5. In
the canonical ensemble of a fixed number of vertices used in the simulations, we
decompose the polygonifications into spherical shells of vertices of equal geodesic

distance r from a randomly chosen reference vertex pg; the number of such points is
denoted by Gy (r), i.e.,

G11(r) = # vertices with a geodesic link distance r from py. (3.36)

Then, the mean square extent of the polygonification or the dual graph is defined

to be . 2 )
2 Zr:%xr \r

= = , 3.37

i, < > Gu(r) >N2 (3.37)
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where the maximal occurring distance ry., is determined by the current graph
configuration and, for dynamical graphs, varies between measurements'®. Here,
the average (-)y, denotes the thermal average in the canonical ensemble of a fixed
number N, of graph vertices. Since the pure dynamical polygonifications model at
a fixed number N, of polygons has no free coupling parameter, it can be considered
critical for all values of N;. Therefore, the well-known arguments of dynamical
scaling apply. Especially, the integrated autocorrelation times 7y, (r?) are expected

to scale with the size Ny of the system as
2\ z,2/dp,
Tint (17) = A2 N, , (3.38)

cf. Appendix A.2. In contrast to the dynamical critical exponent z = zey, defined
from the scaling of the exponential autocorrelation times 7y, which is on the basis
of universality arguments believed to be independent from the observable under
consideration, see e.g. Ref. [169], the exponent z4 = zin, 4 associated to the scaling
of the integrated autocorrelation time of an observable A can in general depend on
the choice of A, cf. Appendix A.2.

Exploiting the given relations, one can extract the critical exponent z,2 from the MC
simulations of dynamical graphs. Since the focus of this work lies on ¢* graphs, only
this type of graphs is considered in detail here, divided into the different ensembles
with respect to the inclusion of singularities described in Section 3.1. The simula-
tions were performed in the canonical ensemble of a fixed number N, of ¢* vertices.
To generate the initial configurations, starting from an octahedron, i.e. a regular
eight-sided polygon consisting of six vertices, insertion moves of the type described
in Section 3.2.3 were performed until the desired graph size was reached. From the
following series of (one- and two-link) flip-move updates at least the first 500 7iy; (r?)
sweeps'! were discarded for equilibration'?. The remaining time series of (almost)
equilibrium measurements of 72 was then analyzed with the methods described in
Appendix A.4 to extract the integrated autocorrelation time 7, (r?). Simulations

were performed for different lattice sizes up to 8192 vertices to allow for a finite-size

0Here, one could also consider averaging on the level of G (r) instead of the indicated average.
For a proper analysis of variances and autocorrelation times, however, this would require the

recording of a huge amount of data.

"Here and in the following, a sweep of flip moves refers to one attempted flip move per vertex
of the ¢* (or ¢®) graph.

20bviously, this has to be done in a self-consistent way via an a posteriori check, since Ting(72)

is not known a priori.
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strict regular restricted singular

No || me(r?) | A 0?) | me(r?) | mee () | m(r?) | e (r?)
64 || 0.708(40) | 0.718(46) | 0.551(16) | 0.546(35) | 0.613(20) | 0.624(38)
128 || 0.937(55) | 0.919(49) | 0.681(27) | 0.677(33) | 0.763(31) | 0.715(60)
256 || 1.38(11) | 1.33(11) | 0.943(81) | 0.871(46) | 1.062(78) | 1.029(50)
512 || 2.19(32) | 2.28(23) | 1.43(12) | 1.47(12) | 1.534(95) | 1.513(83)
1024 || 3.10(11) | 3.12(18) | 2.27(13) | 2.27(09) | 2.32(11) | 2.290(77)
2048 || 4.90(35) | 4.61(24) | 3.37(13) | 3.47(14) | 3.66(24) | 3.80(17)
4096 || 7.16(33) | 7.40(36) | 5.37(14) | 5.51(23) | 5.27(16) | 4.90(21)

8192 8.07(104) | 8.66(85)

Table 3.2: Integrated autocorrelation times of the mean square extent (r?) for the
(one- and two-link) flip-move dynamics for ¢* random graphs of the strict, regular
and restricted singular ensembles. The graph sizes range from 64 up to 8192 vertices.
The autocorrelation times are measured in units of ten sweeps of flip moves using
direct integration of the estimated normalized autocorrelation function |7 (r?)] and,
alternatively, a combined binning/jackknife technique [7°%(r2)]; all error estimates

are calculated via the jackknife method, cf. Appendix A.4.

scaling analysis. The results for the integrated autocorrelation time are collected in
Table 3.2. Note that the cited values for 7;,(r?) are given in units of ten sweeps of
link-flip moves. Since for the singular ensemble it would be computationally very
demanding to keep the ¢* graph and the quadrangulation up-to-date synchronously
during the flip-move process, simulations of graphs of this ensemble are very inef-
ficient. Thus, although finite-size effects have been observed to be least there as
discussed above in Section 3.1, in our simulational setup, where the graphs and not
the polygonifications are the primary objects, simulations in the singular ensemble
are not sensible from efficiency considerations. Therefore, we have not performed
extensive simulations of graphs of this ensemble. During the simulations, the (quite
expensive) measurements were taken after ten sweeps of link-flip moves. For the lat-
tices with Ny = 64, ...,512 vertices 50 000 measurements were taken; for the graphs
with Ny = 1024, Ny = 2048 and Ny = 4096 vertices we took 200 000, 300 000 and
500 000 samples, respectively. For the additional simulation with Ny = 8192 vertices

for the regular ensemble 100 000 samples were taken.

Considering the data presented in Table 3.2 we find good agreement between the two

methods of determining the autocorrelation times. The absolute values of Ty, (r?) for
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the strict ensemble are clearly enhanced as compared to the results for the other two
ensembles, which in turn are not strikingly different for the used sizes of the graphs.
This reflects the rather large number of restrictions on the number of allowed flip
moves for the strict ensemble, resulting in a quite small acceptance rate of the flip
move process. In order to extract the dynamical critical exponent z,2/dy, we fitted
the functional form (3.38) to the results of Table 3.2. Figure 3.25 shows finite-size
scaling plots of the autocorrelation time in the strict, regular and restricted singular
ensembles and the corresponding fits of Eq. (3.38). The fits were performed using
the autocorrelation times Ty (7“2) estimated by direct integration of the normalized
autocorrelation function; the fits to the estimates 7% (r2) are consistent with those

presented within error bars. The fit result for the strict ensemble is given by,

A = 0.050(11),
ze2/dy, = 0.597(30), (3.39)
Q = 0.94,

where () denotes the quality-of-fit parameter (see, e.g., Ref. [170]). The simulations

for regular ensemble graphs give,

A2 = 0.0285(53),
22 )d, = 0.629(24), (3.40)
Q = 0.96,

while the results for graphs of the restricted singular ensemble are given by,

A, = 0.0405(69),
z2/dp, = 0.585(23), (3.41)
Q = 0.90.

All three fits do not include the simulation results for the graphs of sizes N, = 64 and
Ny = 128 in a trade-off between the attempt to make the best use of the produced
simulation data and the need to keep corrections to finite-size scaling reasonably
small as compared to the statistical errors. On the basis of universality arguments
and the results from matrix model calculations [10, 152], we expect the exponent
22 /dy, not to depend on the considered ensemble of graphs. The given results are
marginally compatible with each other with respect to the statistical errors. The
remaining variation between the results is attributed to effects of corrections to
finite-size scaling and give some idea about the total, statistical and systematic,

precision of the estimate. Especially, a comparison of the fit results for the regular
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Figure 3.25: Finite-size scaling of the integrated autocorrelation times of the mean
square extent of dynamical ¢* graphs from a local link-flip move simulation. The
autocorrelation times are given in units of ten sweeps of link-flip moves. The solid
lines denote fits of the functional form (3.38) to the simulation data. The extent of

the lines indicates the range of graph sizes N, included in the fits.

and restricted singular graphs in view of the fact that the autocorrelation times
themselves do not differ much between the two ensembles, demonstrates nicely that,
for a small region of graph sizes Ny, a slight increase in amplitude can be compen-
sated by a decrease of the exponent and vice versa. However, we do not aim at a
highly precise determination of the dynamical critical behaviour of the model, but
mainly want to know how the simulation parameters have to be tuned to efficiently
produce an effectively uncorrelated time series of measurements. Also, considering
the different graph ensembles, it is obvious that the regular and restricted singular
ones are quite equally well suited for simulations from the point-of-view of autocor-
relation times, at least on the given level of precision and for the considered system
sizes; the dominant restrictions on flip moves for graphs of the strict ensemble, on
the other hand, strongly reduce the efficiency of the considered update process. This

point will be further discussed in the next section.

To provide a consistency check, we also performed simulations of dynamical ¢3
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Figure 3.26: Integrated autocorrelation times 7, (ng) of the fraction nz of loops
(faces) of length three for a MC simulation of dynamical ¢® graphs of sizes between
N> = 64 and 8192 vertices. Up to the present accuracy, no sign of critical slowing

can be detected.

graphs, utilizing the ergodic Pachner flip-move dynamics described in Section 3.2.1,
and determined the integrated autocorrelation times with the methods described
above for the case of ¢* graphs. Here, the starting configuration is given by a tetrahe-
dron, blown up to the intended final graph size by successive applications of the (3, 1)
insertion move. For the comparison, we restricted ourselves to simulations of the reg-
ular ensemble of ¢* graphs. Again, graph sizes of Ny = 64,128, 256, 512, 1024, 2048, 4096
and 8192 vertices were considered, taking 150 000 MC samples for each system size.
Fitting the expected functional form (3.38) to the estimated autocorrelation times

Tins (1?), we arrive at the following fit parameters,

A: = 0.0238(30),

22 /dp, = 0.635(18), (3.42)
Q = 0.99,
where, again, the results for N, = 64 and N, = 128 have been omitted, since

they were too strongly affected by corrections to the leading FSS behaviour. The

dynamical critical exponent z,2/dj, found is in nice agreement with the result for the
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regular ensemble of ¢? graphs, which gave z,2/d, = 0.629(24). This agreement is
in principle expected on the basis of universality arguments, cf. Section 3.1. Note,
however, that the exponent z,2/d;, is a property of the utilized graph update moves
and not solely of the class of graphs considered. Thus, such agreement would not be

observed if applying completely different sets of update moves to ¢ and ¢* graphs.

Finally, to demonstrate the large range of different relaxation modes present in the
system, we also considered an autocorrelation time associated with the co-ordination
number distribution, which is, in contrast to the mean square extent, a strictly
local property of the graphs. In particular, we measured the autocorrelation time
Tins(n3) of the fraction of loops (faces) of length three for the case of regular ¢*
graphs. Figure 3.26 shows the size dependence of 7y, (n3) for the considered system
sizes. As can be clearly seen, with the present accuracy the estimate of 7, (n3) is
consistent with the minimal value 1/2, which is a theoretical lower bound for all
integrated autocorrelation times according to the definition (A.16). Thus, for this
local property critical slowing down is completely absent to the achieved level of
accuracy and, consequently, we conclude z,,/d;, ~ 0. For the case of ¢* graphs we

find an identical situation.

3.5.2 The baby-universe surgery method

The presence of strong autocorrelations with a rather large dynamical critical ex-
ponent'® 2/d;, has severely hampered the conclusiveness of numerical simulations
of the dynamical polygonifications model. As will be shown later in Chapter 5
these problems become even worse when coupling matter to the random graphs
(see, e.g., Ref. [75]). Smaller-scale improvements can be made, e.g., by vectorized
or parallelized updates (“parallel flip algorithm”) or, for the special case of pure
two-dimensional quantum gravity, by exploiting exact results from the graph enu-
meration (“recursive sampling”), see Ref. [161]. While the corresponding problem
for spin systems on regular lattices could be finally overcome by the introduction of
the concept of cluster algorithms [168,171], a feasible technique of similar potency
could up to now not be formulated for the dynamical polygonifications model. Nev-

ertheless, a successful push in this direction resulted in the baby-universe surgery al-

13Note that on regular lattices one usually considers z directly (and not z/d) such that, e.g., the
result z ~ 2 for the single-spin flip dynamics of the two-dimensional Ising model would translate
into z/d &~ 1 here.
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Figure 3.27: A minBU surgery step for a dynamical ¢* graph. The “baby universe”
is connected to the rest of the universe by three external lines (the neck). The mother
universe has an additional marked vertex. After cutting the neck, the marked vertex
is removed and used to connect the three external lines of the mother universe. At
the old position of the marked vertex, the “baby universe” is re-connected to the

main body.

gorithm [75,172], which was developed together with attempts to formulate a renor-

malization group transformation for the dynamical triangulations model [129, 130].

The concept

It has been shown that the structure of a dynamical triangulation of the quantum
gravity type is that of a self-similar tree of “baby universes” [29]. Thus, an update
operating directly on this baby-universe sub-structure appears natural for the prob-
lem and, in view of its non-local character, promises an appreciable reduction of
autocorrelation times. The basic idea is to cut a “baby universe” off the main uni-
verse along its neck, re-triangulate the resulting whole and glue the “baby universe”
back to the main body at a different place [75]. In the most general scheme derived
from the representation of Ref. [29], this transformation would have to be done for
“baby universes” of arbitrary sizes and neck lengths. However, it turns out that it
is computationally exceedingly demanding to identify “baby universes” with necks
longer than a few links, thus destroying the potential gain in efficiency provided by
such an algorithm. Therefore, one concentrates on the “baby universes” of minimal
neck length (minBUs) [75]. For triangulations of the regular ensemble the minimal
neck is given by a loop of length three, i.e., a minBU is given by a triangle that

4

does not belong to the triangulation'®. Since the simulations are done directly in

The restricted singular and singular ensembles would allow for even smaller necks. However,
we want to use the same algorithm for all three ensembles.
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Figure 3.28: A given, oriented link of a ¢* graph (dashed line) can be part of a
minBU neck with the minBU lying in arrow direction (right) or opposite to it (left).
The minBUs contained in each other are found by the algorithm in the order of their

containment.

the graph language, we present the minBU surgery method in terms of dynamical
@3 or ¢* graphs. Then, a surgery step can be depicted as shown in Fig. 3.27 for the
case of ¢* graphs. Especially, a neck of length I corresponds to a subgraph with [
external lines in the graph language. Note, that for simplicity we do not exploit an
additional symmetry of the problem, i.e., the possibility to also change the vertex
of the “baby universe” that connects it to the mother part. This, however, does

obviously not restrict the generality of the method.

Detailed balance and implementation details

We consider first the case of dynamical triangulations and their dual ¢* graphs
and generalize to ¢* graphs afterwards. There have been proposed (at least) two
different variants of implementation of the minBU surgery algorithm. In the original
paper [75] all necks of length three contained in a given configuration are first
identified in order to choose one of them at random and perform the surgery step
on it. For simulations in the language of the dual graphs, however, this technique is
rather inconvenient since the identification of the necks is a computationally quite
demanding task. While in the triangulation it suffices to check whether two vertices
connected by a link have a common neighbour, in the ¢ graph one has to traverse

two neighbouring loops (faces) of the graph and all their respective neighbouring
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loops to check for a subgraph with three external lines. Therefore, it is much more
convenient to only compute the list of necks containing a given, randomly selected
link of the graph as was proposed in Ref. [172]. The corresponding situation is
depicted in Fig. 3.28. As a second ingredient, we have to choose a vertex in the
mother universe part at random (or at least symmetric with respect to the move
and its inverse) to serve as the additional marked vertex of Fig. 3.27. Since the
graph is only endowed with a chiral ordering of the links around a vertex, but is
not per definition considered embedded in R?, the inside and outside of a “baby
universe” associated with a given neck are not a priori known. In other words:
since the whole graph can be inverted along the neck, the labelling of the two parts
separated by the neck as “baby universe” and “mother universe” can only be decided
when the number of vertices (the volumes) of the two parts are known. Then, we
simply define the “baby universe” to be the smaller part. However, if one just
follows the given orientation of the chosen link [ to find the volume of the part
lying on the corresponding side of the neck, cf. Fig. 3.28, on average one would
have to traverse half of the whole graph to decide about which part to interpret as
the “baby universe”. This, obviously, would destroy any potential efficiency gain
of the algorithm. There are several algorithmic tricks to overcome this difficulty.
One is based on the idea of performing a random walk along the links of the graph
starting from the randomly chosen link [ and preventing the walk to touch any of
the links belonging to the neck. This amounts to ignoring the distinction between
“baby” and “mother universe”, which on average leads to a weaker decorrelation of
the configurations between the surgery moves. Another method that does not suffer
from this weakness and which will be employed here, is given by interleaving two
breadth-first (or depth-first) searches of the graph, starting from either end of the
randomly chosen link [ of Fig. 3.28 and restricting both searches to their respective
sides of the chosen neck®. Then, since it is known that the average minBU is very
small compared to the volume of the whole graph [29], one of the searches will on
average terminate after only a few steps, thus defining the smaller part of the graph,
i.e., the “baby universe”. During the searches the vertices have been labelled, such
that a vertex of the mother part of the graph can now be chosen at random. Note
that the vertices directly adjacent to the links of the minBU neck should not be
selected here such as not to produce singular configurations. Finally, a link I’ of the

chosen vertex is selected at random.

5We thank Z. Burda for communicating to us this idea.
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After a minBU and a vertex of the mother universe have been selected in the de-
scribed way, they are exchanged upon fulfilment of a detailed balance condition. Let
n(l) be the number of minBU necks containing the link [ and n({") the corresponding
number of necks after the move has been performed, i.e., the link [ is located at its
new position !’ instead of one of the links of the marked vertex. Then, the detailed

balance condition reads [172],

1 1
— P, (l =1 = —<Pu,(I' = 1), 3.43
where we symbolically denote the minBU surgery move as [ — I’. Thus, we choose

the acceptance probability according to the Metropolis rule,

P, (I = 1') = min <1, %) : (3.44)
Note that for the considered case of ¢* graphs the counting of n(I') is simplified by
the fact that the decomposition of the graph into “baby universes” of neck length
three is a unique transformation to a tree structure [29] and the applied neck search
algorithm lists the minBUs in the order of their containment in each other, cf. Fig.
3.28. Thus, the position of the randomly chosen minBU in the list of minBUs
associated with the link [ gives the number of minBUs contained in the considered
one. Concerning the different graph ensembles it should be noted that the minBU
surgery moves do not produce singular contributions when starting from a graph
of the regular ensemble, such that the a priori acceptance rate is one. In order to
enhance the efficiency one might want to limit the size of the used minBUs from
below and only consider sufficiently large “baby universes”. Since their sizes are not
known in advance, however, this would be computationally more expensive than
including minBUs of all sizes. Only trivial minBUs consisting of only one vertex are
excluded.

Generalizing the described update scheme to the case of dynamical quadrangulations
and their dual ¢* graphs, a minBU is now defined for the strict and regular ensembles
to be considered here as a subgraph with four external lines. Correspondingly, the
operation of finding the necks adjacent to a given link is now O(m?) instead of
O(m?) for ¢* graphs, where m denotes the average co-ordination number of the
polygonification. Additionally, several technical complications not present in the
¢> case arise. First, a minBU surgery move on a graph of the strict ensemble can

produce a double link, thus making the algorithm inapplicable for this ensemble (at
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least without major changes). Triple links, on the other hand, cannot be produced,
such that no additional checks are necessary for simulations in the regular ensemble,
which we will hence exclusively focus on. Second, due to the presence of double links
in the graphs the number of vertices adjacent to a considered neck, which would be
four without multiple links, can be reduced to three or two. This is relevant for the
selection of a vertex “outside” of the minBU as described above. Since this effect
can be asymmetric with respect to the situations before and after the surgery move,

it has to be included in the detailed balance condition, which therefore now reads
1 1 1 1

Py, (l = 1') = ——Pu,(I' = 1), 3.45

w0 Vo) D = Sy Ve 0 (349

where V,,; denotes the number of vertices of the mother universe that are not directly

adjacent to the considered minBU. The acceptance probability for the surgery move

is therefore given by,

. n(l) Vour(l)
Py (l = 1) = 1, —= . 3.46
k: ( ) min ( n(l/) ‘/;)ut(ll) ( )
Finally, the mentioned simplification in the evaluation of n(I') for the ¢* case above
does not apply here, since different minBUs can overlap for the case of quadrangu-
lations or ¢* graphs. Therefore, the proposed move has to be completely performed
in order to evaluate n(l'); if the detailed balance condition (3.46) is not met, the

move must be reversed to restore the original situation.

Autocorrelation times

For ergodicity reasons, the minBU surgery update has to be mixed with the local
link-flip move dynamics. Since, at least for the ¢* case, the baby-universe surgery
moves are computationally much more expensive than the local updates, we found
it an acceptable compromise to mix the local and global updates at a ratio of three
to one. Then, a sweep of the new, mixed update consists of Ny/4 attempted surgery
moves and 3N;/4 one- and two-link flip updates. Traversing the same steps as for
the local link-flip update in Section 3.5.1, we determined the integrated autocor-
relation times for the combined, “mixed” update by a finite-size scaling analysis

13 vertices for ¢* and ¢* graphs of the regular

of simulations for N, = 26,27, ..., 2
ensembles. For the ¢? graphs, we took 150 000 samples each and for the ¢* graphs
100 000 samples. The results for ¢* and ¢* graphs are compiled for comparison in

Table 3.3. The corresponding FSS plot for the case of ¢* graphs is shown in Fig.
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¢° graphs ¢* graphs
N | 7 ((r2) | T ((r2) | 7 ((r%) | 7o (%)
64 | 0.497(15) | 0.496(13) | 0.506(13) | 0.541(25)
128 | 0.510(14) | 0.497(19) | 0.513(13) | 0.532(18)
256 | 0.581(14) | 0.556(20) | 0.593(16) | 0.586(25)
512 | 0.742(25) | 0.744(23) | 0.814(28) | 0.783(32)
1024 | 1.115(43) | 1.090(43) | 1.151(52) | 1.144(50)
2048 | 1.764(73) | 1.781(98) | 1.896(86) | 1.906(118)
4096 | 2.97(15) | 3.27(20) 2.97(17) | 2.93(19)
8192 | 4.76(28) | 4.79(21) 4.95(29) | 5.27(40)

Table 3.3: Integrated autocorrelation times of the mean square extent (r?) for the
“mixed” link-flip and minBU surgery dynamics for ¢* and ¢* random graphs of the
regular ensemble. The autocorrelation times are measured in units of ten sweeps
of mixed moves using direct integration of the estimated normalized autocorrela-
tion function [7i,((r?))] and, alternatively, a combined binning/jackknife technique
(7% ((r2))]. For the estimation methods, see Appendix A.4.

3.29, including the data for the purely local update for comparison. Fitting the
functional form (3.38) to the data, for the ¢* case we find

Apzy = 0.0139(22),
Q = 0.26,

while the data for ¢® graphs fit best with the parameters

Apzy = 0.0112(17),
Q = 049.

For both cases, the data points for Ny < 512 have been omitted due to too strong
corrections to the leading F'SS behaviour. The results for both types of graphs are
rather nicely compatible with each other as expected from universality arguments,

since we apply the same kind of update procedure to both graph types.

Obviously, the surgery update considerably reduces the amplitude of the critical
slowing down process as compared to the results (3.40) and (3.42) of the purely local

update. However, somewhat surprisingly the dynamical critical exponent z;»y/dj, is
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Figure 3.29: Finite-size scaling of the integrated autocorrelation times of the mean
square extent of dynamical ¢* graphs from a simulation applying one part of minBU
surgery updates and three parts of one- and two-link flip moves (mixed update). The
results from the pure link-flip dynamics of Fig. 3.25 are shown for comparison (local
update). The autocorrelation times are given in units of ten sweeps of the combined
update. The graphs are taken from the regular ensemble. The solid lines denote fits

of the functional form (3.38) to the simulation data.

not reduced, but compatible with the value for the local algorithm within statistical
errors. This might be partly an effect of the considered rather small system sizes,
which could entail different correction to scaling terms for the two considered up-
dates. We think, however, that the main reason for this disappointing performance
is given by the fact that the cutting and gluing process of “baby universes” does
not change very effectively the overall size of the universe, which is measured by
the mean square extent (r?). This observation is in qualitative accordance with the
results of Ref. [75] for the Polyakov string, where the authors find z(,2y/d;, = 0.76(3)
for an update of the mixed type and dynamical triangulations. As will be shown
below in Chapter 5, the performance gain of the minBU surgery method is overall
better for different observables and when coupling matter to the dynamical graphs.

Finally, it should be noted that, of course, the integrated autocorrelation times re-
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lated to the co-ordination number distribution are again compatible with a constant

value of 1/2 as was found for the case of the purely local update in Section 3.5.1.



Chapter 4

Vertex Models and Their

Simulation

[ce-type or vertex models on regular lattices form one of the most general classes
of models of statistical mechanics with discrete symmetry (for reviews see, e.g.,
Refs. [55,56,173]). Special cases of this class of models can be mapped onto more
well-known problems such as Ising and Potts models or graph colouring problems
[55]. For the case of two-dimensional lattices, a whole variety of such vertex models
can be solved exactly, yielding a very rich and interesting phase diagram including
various transition lines as well as critical and multi-critical points [55]. Thus, for
two-dimensional vertex models one has the rare combination of a rich structure
of phase transitions and an exceptional completeness of the available analytical
results. In view of these appealing properties it is of obvious interest to analyze
the behaviour of vertex models coupled to the random lattices occurring in the

framework of dynamical polygonifications.

In this chapter we introduce the concept of vertex or ice-type models and summarize
the known exact results for the case of regular lattices. Due to the encoding of the
vertex-model interactions in restrictions on the allowed configurations it is non-
trivial to formulate efficient algorithms for the simulation of such models. The loop
algorithm [76], a cluster algorithm for the simulation of rather general vertex models,
will be used for the vertex-model simulations of this thesis. While its implementation
for ice-type models on regular lattices is well documented [174], for random lattices
some special considerations have to be taken into account. After summarizing the

principles and implementation details of the loop algorithm, the special necessities

112
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of a simulation of vertex models on random graphs will be addressed.

4.1 Square-Lattice Vertex Models

4.1.1 Definition and basic properties

An ice-type or vertex model was first proposed by Slater [175] as a model for (type I)
ice. It was known that ice forms a hydrogen-bonded crystal, i.e., the oxygen atoms
are located on a four-valent lattice and the bonding is mediated by one hydrogen
atom per bond, which has the additional property of being near one or the other
end of the bond. Slater proposed that the four hydrogen atoms surrounding an
oxygen atom should satisfy the ice rule, stating that always two of them are in the
“close” position and two are in the “remote” position with respect to the considered
oxygen atom. Denoting the position of the hydrogen atom by a decoration of the
bond with an arrow pointing to the oxygen atom the hydrogen atom is closer to,
this leads to the arrow configurations depicted in Fig. 4.1 when placing the oxygens
on a square lattice; the other possible arrow configurations are excluded by the ice
rule. This cannot, of course, be a realistic model for physical ice, which is obviously
three-dimensional; some properties of ice are, however, astonishingly well described
by this square-lattice model. For instance, the per-site free energy of this square-
lattice ice model can be shown [176] to be f = (3)%? ~ 1.540 in the thermodynamic
limit, which is surprisingly close to the experimentally observed value for real ice of
f & 1.507 [56].

In the original ice model all of the shown configurations occur with equal probability,
such that the energies associated with the arrow configurations 1, ..., 6 shown in Fig.
4.1 are all equal and can thus, by a suitable shift of the reference point, be arranged
to be all zero. More generally, one assigns energies €, ..., € to the configurations,

such that the Hamiltonian of the model is given by
H:ZE(UZ), E(Uz) € {617"'766} (41)

where the sum runs over all sites of the lattice and v; denotes the configuration of
vertex ¢ of the lattice. The vertex energies give rise to the corresponding Boltzmann
weights,

w; = exp(—e¢;/kpT), (4.2)
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T

Figure 4.1: Allowed arrow configurations for the 6-vertex model on the square lattice.
In the ice model the arrows symbolize the position of the hydrogen atoms on the
bonds connecting the sites where the oxygen atoms are located. The allowed arrow
configurations are restricted by the ice rule, stating that each site must have two

incoming and two outgoing arrows.

and the partition function of the model is given by,

(4.3)

Depending on the respective choice of the vertex energies €;, this more general 6-
verter model includes models known by other names. As mentioned before, the
choice

6gE=...=6=0 (4.4)

corresponds to the ice model. On the other hand, taking
€1=€6=0, 3=...=¢>0, (4.5)

results in the so-called KDP model [175], which is supposed to describe the behaviour
of KHyPOy, a hydrogen-bonded four-valent crystal that exhibits ferroelectric order

at low temperatures. Finally, setting
€L=€=€e3=¢€, >0, €5 =¢5 =0, (4.6)

one arrives at the I’ model of anti-ferroelectrics [61]. In view of the vertex arrange-
ments of Fig. 4.1 and the given energy choices it is obvious that the KDP model
will have a ground state consisting entirely of the configurations 1 or 2 indicating
ferroelectric order when interpreting the arrows as dipoles. On the other hand, the
choice of energies of the F' model shows that its ground state will consist of the

configurations 5 and 6 and therefore is anti-ferroelectrically ordered with the arrow
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Figure 4.2: Additional vertex configurations of the 8-vertex model. These config-
urations form sinks and sources for the arrows and violate the ice rule. They are
compatible, however, with the rule that each vertex should have an even number of

incoming and outgoing arrows.

directions alternating between successive bonds when traversing the lattice on hori-
zontal or vertical lines. For a general choice of the ¢;, symmetry considerations still
impose some restriction. Namely, the fact that the model should be invariant under

a reversal of all the arrows of the lattice implies that,
€1 = €3, €3 = €4, €5 = €. (4.7)

Given the interpretation of the arrows as electrical dipoles, this symmetry should
be present whenever no external electrical field is applied!. In this thesis, we will

exclusively consider this zero-field model.

As will become obvious in the next section, the 6-vertex model has some pathologies
when considered as a model for solid state physics, which follow from the strong
constraint on the allowed vertex configurations. This observation led Sutherland
[177] and Fan and Wu [178] to the proposal to relax the ice rule and replace it by
the postulate that each vertex should have an even number of arrows going into and
out of it. This, obviously, includes the configurations satisfying the ice rule, but
additionally allows “sinks” (7) and “sources” (8) of arrows as depicted in Fig. 4.2.
Assigning energies €7 and eg to the newly introduced configurations, this defines the
8-vertex model of statistical mechanics. Whenever periodic boundary conditions are

imposed on the lattice, one has

€7 = €g, (4.8)

in addition to the restrictions (4.7). To simplify notation, we introduce the variables

!Note that the third condition, €5 = g, is always fulfilled on a lattice with periodic boundary
conditions, even if an electric field is applied.
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(a) (b) )

(_

Figure 4.3: A configuration of the square-lattice 6-vertex model in the original arrow
formulation (a) and its transformation to the worldline picture (b) of closed, non-

intersecting lines. Periodic boundary conditions are assumed.

a, b, c,d for the vertex weights,
Ga=w; =Wy, b=w3=wy, Cc=ws=uwg d=w;=ws, (4.9)

which are also used to label the vertices of type 1 and 2 (a), 3 and 4 (b) etc.

Finally, we note for future reference that the 6- and 8-vertex models have alternative
representations as worldline models. Consider drawing a line on an edge of the square
lattice whenever its arrow points down or to the left and leaving it empty otherwise.
In this way a given configuration of the 6-vertex model is translated as shown in Fig.
4.3 to a number of closed, non-intersecting lines on the lattice (we assume periodic
boundary conditions). For the 6-vertex model the number of present line-segments
is identical for each horizontal row of vertical edges of the lattice, while for the
8-vertex model this number can vary between rows. This worldline picture is the
natural representation for the quantum spin models equivalent to certain vertex

models as will be described in Section 4.1.3.

4.1.2 Exact solution of the zero-field cases
The 6-vertex model
The square-lattice, zero-field 6-vertex model has been solved exactly in the thermo-

dynamic limit by means of a transfer matrix technique by Lieb [62,176,179] and
Sutherland [180]. As it turns out [55,173], the analytic structure of the free energy
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b/c

alc

Figure 4.4: The phase diagram of the square-lattice, zero-field 6-vertex model in
terms of the re-scaled weights a/c and b/c. Phase boundaries are indicated by solid
lines. The phases I and II are ferroelectrically ordered, phase IV exhibits anti-
ferroelectric order and phase IIT constitutes the disordered regime. The dashed lines
do not indicate phase boundaries, but denote the parameter ranges of the KDP and

F models, respectively.

is most conveniently parameterized in terms of the variable
a? + b — c?

2ab
such that the free energy takes a different analytic form depending on whether
A< -1, -1 <A <1lorl < A. This leads to a phase diagram of the model

consisting of four distinct phases as shown in Fig. 4.4. The phases I and II are

A = (4.10)

both characterized by A > 1, thus corresponding to the same analytic form of
the free energy. For phase I one has a > b + ¢, such that the configurations are
dominated by the vertices 1 and 2. Therefore, at low temperatures the system
orders ferroelectrically; the corresponding ground state is of the form shown in Fig.
4.5(a). Phase II is characterized by b > a + ¢, i.e., it is related to phase I by a
simple exchange of vertices 1 and 2 by 3 and 4, which corresponds to a rotation of
the whole lattice by 7/2. Thus phase II is also a ferroelectrically ordered phase. In
the intermediate case —1 < A < 1, corresponding to phase III, the vertex weights
fulfil the relation a,b,c¢ < (a + b+ ¢)/2. Since this includes the infinite temperature
point a = b = ¢ = 1, this region corresponds to the disordered phase. However, it

can be shown [55,173] that the correlation length is infinite everywhere in phase III,
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Figure 4.5: Parts of the ground-state configurations of the 6-vertex model in phases
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IT and IV. (a) One of the two ferroelectrically ordered ground states in phase
II. Tt consists entirely of the vertex configuration 4. (b) One of the two anti-
ferroelectrically ordered ground states of phase IV. The state consists of vertices
5 and 6 at equal proportions. The dashed lines show one of the two tilted sub-

lattices, which are ferroelectrically ordered.

i.e., correlations decay algebraically instead of exponentially. Nevertheless, there is
no long-range ordering in this phase. This peculiarity can be traced back to the fact
that the 6-vertex model corresponds to a critical surface in the phase diagram of
the 8-vertex model [55]. Finally, for A < —1 one has ¢ > a + b, such that in phase
IV the vertex configurations 5 and 6 dominate, leading to anti-ferroelectric order;

the corresponding ground state is depicted in Fig. 4.5(b).

While the ferroelectrically ordered phases exhibit an overall polarization, which can
be used as an order parameter for the corresponding transition, the anti-ferroelectric
order of phase IV is accompanied by a staggered polarization with respect to a sub-
lattice decomposition of the square lattice. That is, when decomposing the square
lattice into two new square lattices tilted by 7/4 against the original one as shown in
Fig. 4.5(b), the anti-ferroelectric ground states correspond to a ferroelectric ordering
of the vertices of the sub-lattices with opposite signs of the overall polarization of
the sub-lattices. An order parameter for the corresponding transition can be defined

by introducing overlap variables o; for each vertex of the lattice such that [55],
o = v; * VY, (4.11)

where v) denotes the anti-ferroelectric ground-state configuration depicted in Fig.
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4.5(b) and the product “x” denotes the overlap given by

vxv = ZAk(v)Ak(v'), (4.12)

where k£ numbers the four edges around each vertex and Ag(v) should be +1 or
—1 depending on whether the corresponding arrow of v points out of the vertex or
into it. Then, the spontaneous staggered polarization {(o;)/2 = (o) /2 vanishes in the
disordered phase and approaches unity for low temperatures in phase IV and can

thus be used as an order parameter for the anti-ferroelectric transition.

The transitions between the phases I-IV can be analyzed from the exact expression
for the free energy of the model [62,176,179,180]. We consider the temperature
T as the external parameter to be tuned, whereas the vertex energies ¢; are kept
fixed. Then, starting from one of the ordered, low-temperature phases I, II or IV,
increasing the temperature one traces out a path in the phase diagram which always
ends at the infinite-temperature point a = b = ¢ = 1 in phase III, cf. Fig. 4.4. The
transition temperatures can be easily inferred from the exact phase boundaries of
the phase diagram Fig. 4.4. The transitions I — III and II — III are discontinuous or
first-order phase transitions between the ferroelectrically ordered and the disordered
regimes [55]. However, in the ferroelectrically ordered phases the model has the
peculiarity of sticking to the ground states throughout the whole phase, i.e., also
for non-zero temperatures. This is due to the fact that the simplest deformation of
the ground state depicted in Fig. 4.5(a) consists of reversing the arrows of a whole
line of bonds spanning the lattice?. In the thermodynamic limit, this corresponds to
an infinite amount of energy and thus does not occur within the phases I or II. On
the other hand, the anti-ferroelectric transition IIT — IV is also rather pathological.

The singular part of the free energy density can be shown to behave as [55]
feing ¢ exp(—const/|#]?), (4.13)

i.e., all temperature derivatives exist and vanish exponentially as |[t| — 0. This
corresponds to a phase transition of infinite order, known from the XY model as
Kosterlitz-Thouless (KT) phase transition [63,64].

2Qbviously it is also possible to flip the arrows around one of the elementary plaquettes, i.e.
squares. This, however, would produce vertices of the types 5 and 6, which are strongly suppressed
in the ferroelectrically ordered phases at low temperatures.
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The 8-vertex model

The inclusion of the vertices 7 and 8 of Fiig. 4.2 allows one to make local, finite-energy
deformations of the ferroelectric ground states and thus one expects less pathological
behaviour from the resulting 8-vertex model. In the thermodynamical limit, it can
be solved exactly by means of the method of “commuting transfer matrices” and
the “star-triangle relation” [59,60]. The parameter A classifying the phases is now
generalized to

a2+ b —c?—d?

A= 20ab+ cd) (4.14)

Depending on the value of A, the system is confined in one of five phases [59,60]:

I. Ferroelectric: a >b+c+d, A > 1,

I1. Ferroelectric: b >a+c+d, A > 1,
III. Disordered: a,b,c,d > (a+b+c+d)/2, -1 <A <1,
IV. Anti-ferroelectric: ¢ >a+b+d, A < —1,

V. Anti-ferroelectric: d > a+b+ ¢, A < —1,

which can be mapped onto each other exploiting certain symmetry relations of the
model [55]. In the generic case, the phase boundaries defined by the above relations
correspond to second-order phase transitions. It can be shown [59,60] that for this
generic case the singular part of the free energy scales in the vicinity of the phase

boundaries as
fsing ~ |t|7r/”; (415)

where now ¢ is a generalized reduced temperature variable and the critical value of
4 is given by

tan(u/2) = /cd/ab. (4.16)

From the given scaling form of the free energy it is obvious that the critical exponents

resulting from this scaling also depend on p; in particular, one finds [60]

B=m/16p, v=m/2u, ~="Tr/8, (4.17)

such that the critical exponents vary continuously with the parameter . Obviously,

this is in contradiction with the usual notion of universality of critical exponents.
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The situation can be reconciled with the expectations based on the concept of weak
universality [181], which suggests that instead of expressing the scaling ansatz in
terms of the parameter |¢|, one should formulate scaling in terms of the correlation
length &. This leads, very similar to the case of finite-size scaling, to an additional
factor of 1/v multiplying all of the other exponents, and the renormalized exponents,
7
1

are constant and independent of the value of p. At the exceptional points p = 7 /n,

F=plv=g, o =alv= (4.18)

where n is an integer, the scaling relation (4.15) is no longer valid and must be
either augmented by a logarithmic correction (n even) or is even replaced by a
completely different formula (n odd). This latter case especially includes the first-
order ferroelectric transitions present in the phase diagram of the 6-vertex model,
which obviously must be included in the more general 8-vertex model as the limiting
case d = 0. The special case u = 0 corresponds to the Kosterlitz-Thouless type
anti-ferroelectric phase transition of the 6-vertex model. From the point of view of
the 8-vertex model it is found that the disordered phase III of the 6-vertexr model
corresponds to a critical surface of the 8-vertex case; this explains the divergence of

the correlation length throughout this whole phase.

4.1.3 Transformations and specializations

The quite general 8-vertex model includes several interesting special cases. Ad-
ditionally, it can be mapped onto a multitude of different problems of statistical
mechanics and graph theory. We will only briefly summarize the most important of
these correspondences. The most obvious limiting case is that of the 6-vertex model,
which is obtained for d = 0 and in turn comprises as special cases the ice and F
models, among others. The ice model itself can be mapped to a variety of counting
problems, including that of dimers on the square lattice [56] and the three-colour

face-colouring problem of the square lattice [55].

The 8-vertex model, on the other hand, is equivalent to a non-interacting many-

fermion system for the special choice of weights [182]
a’ +0* =+ d?, (4.19)

which thus defines the free-fermion model, which is of interest since it can be solved

using Pfaffians, such that one does not need the much more elaborate ansatz used
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to solve the general 8-vertex model [55]. One of the most important transformations
is that of the 8-vertex model in an electric field to a zero-field Ising model® on the
square lattice, including nearest-neighbour, next-nearest-neighbour and four-spin
interactions [55,182]. Especially, by means of a suitable sub-lattice decomposition,
this model can be considered as the sum of two ordinary, nearest-neighbour Ising
models on the sub-lattices coupled by four-spin interactions. For a certain choice
of the vertex weights this coupling can be removed such that the resulting model is

that of two uncoupled Ising models [56] and the partition functions are related as
Zsv = 2 Z1sing. (4.20)

Alternatively, the 8-vertex model can be mapped onto an Ising model with only two-
spin interactions, which are then between nearest neighbours and next-next-nearest

neighbour spins [55].

Furthermore, the 8-vertex model is equivalent to the XYZ chain quantum spin

model with Hamiltonian

1 1 xr T z __Z
=—— Z?-[jjﬂ =3 Z[Jxaj 0j + Jyolol + Joiol, ], (4.21)
@ @

2
where the o; are quantum spin-1/2 operators at the sites j and (j) denotes sum-
mation over the chain assuming periodic boundary conditions. Here, “equivalence”
means identity of the eigenvalues of the respective transfer matrices [177]. The
transformation revealing this equivalence can be demonstrated in the worldline rep-
resentation of the XYZ chain [183], which can be sketched as follows (see, e.g.,
Ref. [155]). Split the Hamiltonian (4.21) into commuting pieces,

H == Heven"—Hodd
Heven,odd = Z Hjj+17 (422)

jreven,odd

and perform a Trotter-Suzuki breakup [184,185],
3 3 L
Z=Tre ™ = lim Zp = lim Tr (e*ﬁ”evene*n’*odd) gy (4.23)

Lt%oo Lt~>oo

where L; denotes the number of (imaginary) time slices used in the discretisation.

Inserting complete sets of 0% eigenstates, one arrives at the worldline representation,

71 = 3 W{SiH = S TIWs). (4.24)

3Note that the most general 16-vertex model on the square lattice (which has not been solved)
is equivalent to two Ising models in a magnetic field (which has also not been solved) [56].
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(a) (b)

Figure 4.6: Worldline and vertex-model representations of the XYZ quantum spin
chain. (a) Classical spin variables S* = +1 living on the corners of the shaded pla-
quettes and denoted by arrows pointing upward (41) or downward (—1) in the ver-
tical time direction. The arrow configurations correspond to those of a tilted square-
lattice 8-vertex model with special boundary conditions. (b) The same configuration
in the worldline representation. (c) Plaquette configuration of the Heisenberg-Ising
chain corresponding to an arrow configuration of the 6-vertex model. (d) The cor-

responding worldlines.

which is a sum over classical spin variables S7, = =+1 living on a checkerboard
lattice with the original space direction j = 1,..., N and an additional (imaginary)
time direction t = 1,..., Ly, cf. Fig. 4.6(a). The configurational weights W ({S%})
can be broken up into weights W, ({S,}) associated with the elementary plaquettes
p=10,1), (J+1,t), (5, t+1), (j+1,¢t+1)] of the lattice. As it turns out [155], only the
weights of plaquettes with an even number of up and down spins give non-vanishing
contributions. Thus, depicting the spin values S* by arrows pointing upwards or

downwards in imaginary time direction as shown in Fig. 4.6(a), the resulting arrow
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configurations on the shaded plaquettes fulfil the generalized ice-rule of the 8-vertex
model*. On the other hand, as mentioned above, the configurations of the square-
lattice vertex model can be depicted as closed, oriented, non-intersecting lines (or
polygons), cf. Fig. 4.3(b); thus one arrives at the worldline representation of the
XYZ quantum chain depicted® in Fig. 4.6(b).

Special cases of the XYZ quantum chain are the (quantum) Heisenberg model (.J, =
J, = J,), the XY model (J, = 0), the XZ chain (J, = 0) and the so-called
Heisenberg-Ising or XXZ model (J, = J,). As it turns out, the XZ limit corresponds
to the special case of the 8-vertex model equivalent to two uncoupled, nearest-
neighbour Ising models, the XY model corresponds to the free-fermion model limit
and the Heisenberg-Ising chain is equivalent to the 6-vertex model [55]. For the
latter case, the number of corresponding worldlines is conserved in the imaginary

time direction as depicted in Figs. 4.6(c) and (d).

Further transformations can be found when considering the 8-vertex model on the
Kagomé lattice (which is four-valent like the square lattice). This model is also
exactly solvable and has further correspondences to well-known models of statisti-
cal mechanics. Namely, it includes the triangular and honeycomb lattice nearest-
neighbour Ising models, the triangular and honeycomb critical g-state Potts models

and an Ising model with (only) three-spin interactions on the triangular lattice [55].

4.2 The Loop Algorithm

As mentioned above in the introduction of this chapter it is hard to formulate an
efficient update for vertex models due to the strong constraints on the allowed ar-
row configurations. A trivial local update would be to flip the arrows around the
elementary plaquettes of the lattice, e.g., the squares for the case of the square
lattice. This algorithm, however, suffers from critical slowing down with the dy-
namical critical exponent z & 2 typical for local algorithms [174]. For the 6-vertex

model one has the additional complication of a massless disordered phase, such that

4Note, however, that due to the tilting of the lattice the equivalent 8-vertex model acquires

rather unconventional boundary conditions.
®Note that the way the worldlines are drawn is slightly different from the presentation of Fig.

4.3(b), since here the line segments are drawn on the links of the checkerboard lattice and not on
those of the lattice formed by the vertex model arrows.
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autocorrelation times are expected to be large throughout this whole region. When-
ever cluster algorithms [168,171,186,187] can be found they are usually the most
efficient updates in the vicinity of continuous phase transitions. This was for the
first time achieved for the ferromagnetic, nearest-neighbour Ising, Potts and O(n)
models [168,171]. As could have been conjectured from the close relation of vertex
models to spin models such as the Ising and Potts models, it is possible to formulate
cluster algorithms for vertex models, too. The most prominent of these algorithms
is given by the loop algorithm [76,174,188,189].

4.2.1 Idea and outline

In a formal description, the basic idea of cluster algorithms is that of a transfor-
mation of the representation of the model under consideration from the “natural”
state space variables such as, e.g., the spin variables of the Ising model, to an en-
larged space of states, additionally comprising graph variables, which are usually a
subgraph of the lattice under consideration and are for each configuration “compat-
ible” with the original (e.g. spin) variables [186,187,190]. This is the generalized
notion of a Fortuin-Kasteleyn representation [191]. Then, new statistical weights
are chosen in the enlarged phase space in which the cluster simulation is performed.
While for the Ising model the relevant graph variables are bonds of the lattice that
are chosen to be activated or passive, for the loop algorithm the graph variables are
decompositions or breakups of the vertices and the surrounding edges. The possible
breakups for a four-valent lattice are shown in Fig. 4.7. As for the bonds in the Ising
case, which can only be set between parallel spins, not every breakup is compatible

with a given configuration of the vertex model.

After the graph transformation, i.e., after choosing a breakup for each vertex of the
lattice, a new configuration, which is also in agreement with the chosen breakup,
is achieved by a suitable flipping of the arrows on the lattice bonds. This can be
done in the following way. Interpreting the vertex arrows as a discrete vector field,
the ice-rule of the 6-vertex model translates to the condition of zero divergence of
this field. Analogously, the generalized ice-rule of the 8-vertex model is equivalent
to the statement that the corresponding vector field should have zero divergence
“mod 4”. As a consequence, every configuration of the 6- or 8-vertex models can

be constructed from a given reference configuration by a reversal of the arrows of
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| |
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Gac, de Gbc, Gad Gab, ch Gaa

Figure 4.7: Possible vertex breakups for the 8-vertex model. The breakups G*® are
labelled by the vertex energies a, b, c,d, such that a symbolizes vertices 1 and 2, b
vertices 3 and 4 etc. of Figs. 4.1 and 4.2. The breakup G®? is possible for a vertex
of type a € {a, b, ¢, d} and it is taken to configuration £, if the corresponding loop is
flipped. For the 6-vertex model, transitions with label d do not occur. The breakups
G** correspond to a freezing of the considered vertex, i.e., a flip does not change

the vertex weight since all arrows are flipped together.

a number of closed loops on the lattice®, with an “almost constant” direction of
the arrows along them [76]. Here, the restriction to “almost constant” takes care
of the vertices 7 or 8 of the 8-vertex model, where the loops have to change their
arrow direction. This set of loops is uniquely defined from the arrow configuration
of the vertex model in combination with the chosen breakups of the vertices. To
construct it, start to “grow” a loop at a given bond of the lattice, walking in the
direction of the arrows. Each time you hit a site of the lattice, the walk continues in
the direction indicated by the breakup of the corresponding vertex, i.e., it turns to
the left or right for breakups 1 and 2 or it goes straight on for breakup 3 (breakup
4 will be discussed later), cf. Fig. 4.7. For vertices of the types 7 or 8 the loop
changes its arrow direction at that site. Due to the (generalized) ice rule, each
walk constructed in this way eventually returns to the vertex it originated from,
thus closing it to a loop. Repeating this construction until each bond of the lattice
has been visited, decomposes the lattice into a set of such loops. Then, the new
vertex-model configuration is found by independently proposing to invert the arrow
direction along each loop with a probability of, say, one half. This is completely
analogous to the proposal of cluster flips in the Swendsen-Wang cluster algorithm
for the Ising model [171].

6Note that the such defined loops are possibly self-intersecting, in contrast to the worldlines
considered above.
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Figure 4.8: A loop cluster (black solid lines) built on top of a configuration of the

w

)

6-vertex model on a 8 x 8 lattice with periodic boundary conditions. The numbers
1-4 near the vertices indicate the chosen breakups according to Fig. 4.7. At the
vertex with breakup 4 (black dot) two loops are glued together to form the loop
cluster. For illustration purposes, the breakups are only shown along the path of

the presented loop cluster.

The type-4 breakup of Fig. 4.7, also called freezing of a vertex, requires a different
treatment. On coming across a frozen vertex, one chooses (at random) one of the
breakups 1 to 3 compatible with the given vertex configuration to determine the
direction to leave the vertex. After closing the loop, one has to grow a second loop
starting from one of the bonds of the frozen vertex that have not yet been touched.
Then, these two loops are glued together to form a loop cluster, i.e., one proposes to
flip them together. As a consequence, the statistical weight of the frozen vertex does
not change, since all four of the adjacent arrows are flipped or left unchanged. This
freezing procedure corresponds to the activation of bonds in the Swendsen-Wang
algorithm, which there entails that two spins are always flipped together. Thus,
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taking the concept of freezing into account, each vertex configuration is decomposed

into a set of loop clusters, which then are flipped independently with a given proba-

bility to arrive at the new vertex model configuration. Figure 4.8 shows an example

of such a cluster of loops occurring in a loop algorithm simulation of the 6-vertex

model.

Thus, we have the following recipe for the cluster algorithm for the 6- and 8-vertex

models:

(a)

(d)

For each site of the lattice, choose one of the breakups 1-4 with suitably chosen
probabilities, which solely depend on the vertex configuration at the respective

site.

Decompose the vertex configuration into a set of loop clusters. To do so,
choose a lattice edge at random and walk along the bonds following the arrow
directions. At each site, choose the direction prescribed by the breakups de-
termined in step (a). If freezing occurs at a site, choose one of the breakups
1-3 at random to continue the loop and (after finishing the current loop) grow
another loop at the same site, which is glued to the first loop to a loop cluster.
For the 8-vertex model, when hitting upon a vertex of types 7 or 8, change
the orientation of the loop. Repeat this process, until all bonds are touched

by a loop.

Flip each loop cluster independently with a constant probability of, e.g., one
half. Here, “flipping” means reversing the direction of all the vertex arrows

along the loop.

With the new vertex-model configuration, start again with the breakup step

(a).

4.2.2 Choice of the breakup probabilities

In the general scheme of Refs. [186,187,190] the enlargement of phase space to

include the breakups is expressed by the fact that the weight function of Eq. (4.3),

WV = {v;}) = exp|[— Z E(v;)/kgT), (4.25)
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is replaced by a generalized weight function W (V,G), such that

S WE,6)=W(V), W(V.G) >0, (4.26)

where G = {G;} denotes the set of chosen vertex breakups. This results in a Fortuin-

Kasteleyn type representation of the partition function (4.3),
Z=Y "3 WW,0). (4.27)
vV ¢

Then, a cluster-update Monte Carlo simulation consists of the two steps of choosing

the breakups with probability

oV = (0.0 = e (1.29

selecting a new configuration V' of the spin or vertex variables and accepting the
move V — V', e.g., with the heat-bath probability
W', G)

pl(V.G) = (V',G)] = V.0 - WG (4.29)

where we have already assumed that the graph configuration is not changed by the
flip, i.e., G' = G [186]. Since the breakup process is done independently for each
vertex, the generalized weight function factorizes,

wv,6) =[] w,G), (4.30)

where the index ¢ runs over all sites of the lattice’. In order to be able to flip the
loop clusters independently, one additionally assumes that the local weights are not

changed by the flip operation, i.e.,
w(v,G) =w(',G). (4.31)

Then, the cluster flip probability (4.29) becomes a constant and can be chosen to
be, e.g., p[(V,G) — (V',G)] = 1/2. The condition (4.31) can be obviously realized
by considering a fixed set of vertex breakups G®?, which allow exactly the transition

of a vertex from type « to type 3, such that the corresponding weights are given by

( GO"B) w*®, if v is of type «, (4.32)
w(v, = .
0, otherwise,

"In general, one has to take an overall factor Agonai(V) into account here. However, for the
case of zero-field vertex models, one can choose Agiohal(V) = const [76].
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where the constants w®® = w?® are taken symmetric in their indices to honour Eq.
(4.31).

Suitable constants w® can always be found, see Refs. [76,188]. However, they
are not uniquely defined by the present constraints. Within the range of allowed
values, an optimum can be attained guided by the principle of minimal freezing:
it is intuitively obvious that freezing of vertices, i.e., the assignment of breakups
of the type G*® of Fig. 4.7, which glues two loops together to a loop cluster to be
flipped together, tends to increase the correlation between successive configurations
generated by the loop algorithm. This conjecture is confirmed by numerical results
[174]. Thus, minimizing w** should result in the most efficient algorithms. We
present here the optimal weights for the case of the 6-vertex model. As it turns
out [188], the condition of minimal freezing gives distinct solutions for different
regions of the {a,b,c} parameter space. In fact, these regions coincide with the
phases I-IV of the 6-vertex model discussed above in Section 4.1.2. Depending on

the phase, the optimal weights are given in the following list [76].

(I) Ferroelectric phase I: Here, a > b+ c and the non-zero weights are

ab _ wba — b,
w* =w = ¢ (4.33)
“W = q—c—0b,

i.e., freezing occurs only for vertices of the types 1 and 2.

(IT) Ferroelectric phase II: For b > a + ¢, the weights are given by interchanging

indices b and ¢ from phase I and freezing of b vertices instead of a vertices,

ab — wba = ¢
w =w = b, (4.34)
w? = a—c—b.

(IIT) Disordered phase III: For a,b,c < (a+b+c)/2 one can avoid freezing and has,

w” =w" = (b+a—c)/2,
w*=w" = (a+c—0)/2, (4.35)
w* =w® = (c+b—a)/2.
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(IV) Anti-ferroelectric phase IV: For ¢ > a + b one has,

ac — wca — a,
w = w® = b, (4.36)
w = c¢—a—b,

such that freezing only occurs for vertices 5 and 6.

For each phase, the weights not listed above are taken to be zero in the corresponding

region.

4.2.3 Practical application and tests

For the further discussion we specialize on the case of the 6-vertex model, which is

of main interest in this thesis.

Ergodicity and detailed balance

The issues of ergodicity and detailed balance can be quite straightforwardly settled
for the loop algorithm. Fulfilment of the detailed balance condition follows trivially
from the construction of the weights from Eq. (4.28). Since, as a consequence of
the (generalized) ice rule, any two vertex configurations are related to each other
by a unique set of loop flips [56], ergodicity of the algorithm is obvious if all w®?
are chosen non-zero. For the special choices of weights presented above, where some
of the breakups do not occur, one has to check explicitly that ergodicity is still
guaranteed. This is in general easy to see by inspection [76]. The only region,
where some problems can occur is the anti-ferroelectric phase IV. In terms of the
equivalent quantum spin model in its worldline representation, the magnetization
corresponds to the number of worldlines present as can be seen from Fig. 4.6. It
can only be changed by flipping loops that wind around the lattice in temporal
direction. With the given choice of weights for phase IV, however, the loops change
direction at every site of the checkerboard lattice of Fig. 4.6. Thus, if the lattice
has an odd number of rows (corresponding to a frustrated anti-ferromagnet), loops
with non-trivial temporal winding numbers cannot be constructed with the given
weights. In that case, one has to introduce breakups of the type G with a finite

probability and adapt the other weights correspondingly [76]. However, for the
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simulations on random lattices of the topology of a sphere considered in this thesis,

this “topological” problem can obviously not occur.

Implementation and test

It should be obvious from the previous discussion that the loop algorithm is with
suitable adaptions in the treatment of the lattice part applicable to any four-valent
graph with orientable faces, i.e., with a cyclical ordering of the links. Thus, it can
be easily employed for vertex models on the ¢* graphs discussed in the previous
chapter. We choose a four-bit encoding of the vertex arrows in order to have an
easy access to the directions of the arrows on the links as well as the total type 1-6
of the configuration of the vertex. To check the proper functioning of the algorithm,
we performed simulations for the F' model (cf. Eq. (4.6)) on a 4 x 4 square lattice
with periodic boundary conditions with the same program used for the true random
lattice simulations, but with no lattice-update moves employed. Deviations from the
expected correct results are expected to be most prominent for such small lattice
sizes. The outcomes of these simulations are compared to the exact expression for
the F' model on the considered lattice, found by a brute-force summation of the
partition function (4.3), which can be somewhat simplified by exploiting the special
symmetries of the F' model. As shown in Fig. 4.9 the loop algorithm simulations
with the choice of weights given above give results in perfect agreement with the
exact expressions. From the condition ¢ = a + b for the boundary line between
phases IIT and IV of the 6-vertex model, one finds the KT transition to happen
at . = 1/kgT, = In2, assuming ¢, = ¢, = 1 for simplicity. The location of the
peaks of the specific heat and the polarizability are in qualitative agreement with

this transition point.

Performance

Since the typical extent of the objects considered in a cluster algorithm coincides
with the correlation length when operating at criticality, cluster algorithms promise
the most substantial efficiency gain for a system in the vicinity of a continuous
phase transition. The dynamical critical exponent z is usually largely reduced, and,
in some cases, even compatible with an only logarithmic growth implying 2z = 0, see,

e.g., Ref. [193]. A similar reduction of critical slowing down has been observed for the
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Figure 4.9: Specific heat per site (a) and the polarizability belonging to the stag-

gered polarization of Eq. (4.11) (b) of the F model on a 4 x 4 square lattice with

periodic boundary conditions from loop-cluster Monte Carlo simulations of 5 x 10°

measurements each. The solid lines show the exact results from a brute-force sum-

mation of the partition function exploiting the symmetries of the model. The drawn

error bars are mostly hidden by the plotting symbols.

Kosterlitz-Thouless type phase transition at 5. = In2 ~ 0.693.

The F' model exhibits a
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Figure 4.10: Integrated autocorrelation time of the energy F for a loop-algorithm
simulation of the F' model on a 4 x4 square lattice with periodic boundary conditions.
As typical for cluster algorithms, the performance is optimal in the critical regime
(for a similar presentation for the Swendsen-Wang dynamics of the Potts model,
see Ref. [192]). The autocorrelation times and the related statistical errors were

estimated using the methods presented in Appendix A.4.

loop algorithm. As an example, for the F' model at criticality one finds z = 0.71(5)
as compared to z = 2.2(2) for the local algorithm flipping the arrows around the
elementary plaquettes [174]. Since phase III is massless, one expects dynamical
scaling to work for all < 3, and finds z to decrease with decreasing (3 [174]. We did
not perform a detailed analysis of dynamical scaling for the loop algorithm applied to
vertex models on regular lattices since we are mainly interested in the random lattice
behaviour. However, to illustrate the fact that a major performance improvement
for cluster algorithms as compared to local updates can only be expected in the
vicinity of a critical point, in Fig. 4.10 we present the integrated autocorrelation
time of the internal energy for the loop-algorithm simulation of the F' model on a

4 x 4 lattice discussed above.
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Single cluster variant

It should be noted that the loop algorithm can be easily adapted to the concept of
a single cluster update [168], which often yields even further reductions of z and/or
the corresponding scaling amplitude. This is done by just growing a single loop
cluster and doing the breakups “on the fly”. However, since we finally have to mix
the loop update with the (different) updates of the random graphs, it is desirable to
have a fixed proportion between updates of the graph and matter parts. Therefore,
we prefer to use the described multi-cluster variant. As will be demonstrated in the
next chapter, the autocorrelations related to the graph dynamics are much larger
than those of the vertex model, such that the minor differences between variants of

the loop algorithm do not matter here.

4.3 Vertex Models on Random ¢* Graphs

4.3.1 Additional symmetry

Putting a vertex model onto a random four-valent graph such as the quantum gravity
¢* graphs discussed in the previous chapters imposes some additional restrictions
on the class of vertex weights that can be sensibly considered. The ferroelectrically
ordered phases I and II of the 8-vertex model and the order parameter describing
the corresponding phase transition depend on the existence of a global notion of
direction. The (plain, not staggered) polarization associated with the transition
corresponds to the reaction of the system to an exterior electric field of constant
direction. On a random graph, the notions of such a global orientation and constant
direction are maldefined. The only local orientational structure available is that of
the vertices and faces of the graph and their distances from each other in terms of

the geodesic metric of the graph.

To demonstrate the consequences of this “loss of direction”, consider the KDP 6-
vertex model coupled to planar ¢* random graphs. On the square lattice this model
exhibits a first-order phase transition to a ferroelectrically ordered phase consisting
of vertices 1 and 2, cf. Fig. 4.4. The mechanism driving this transition is a symmetry

breaking between the vertices of types a and b. The transition occurs at the point
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where the vertices a attain the same weight as the sum of the other two types, i.e.,
l=a=b+c=2exp(—p,), (4.37)

where we have re-scaled ¢, = ¢, = 1 for simplicity; this implies 5. = In2. Now, on a
random graph of the described type vertices of the types a and b can obviously not
be distinguished, since they are related to each other by rotations (of an angle of
7/2). Since we only have a cyclic ordering of the links around each vertex, different
rotational orientations of the vertex configurations cannot be distinguished. Thus,
for an 8-vertex model coupled to quantum-gravity random ¢! graphs, one has to
assume that

a=b, (4.38)

while the other vertex types can still be distinguished with only a cyclic ordering of
the links around each vertex. For the 6-vertex model this leaves only two principally
different choices of models to be sensibly considered: the F' model with ¢, = ¢, = 1,
¢. = 0 and the so-called inverse F' (IF') model with ¢, = ¢, = —1, ¢, = 0. The latter,
however, can be shown to have no ordered phase and thus no phase transition. Since
the additional disorder introduced by the random graphs can be hardly expected to
make an ordered phase appear, this model is of little interest for statistical mechanics
and field theory and will thus not be considered further. For the 8-vertex model one
is left with a generalized F' model. On the square lattice it has two anti-ferroelectric
phases dominated by vertices of types ¢ or d, respectively. The square-lattice phase
diagram of this model is illustrated in Fig. 4.11.

In a computer program for the simulation of vertex models coupled to ¢* graphs
the rule @ = b can obviously be broken, since a formal distinction between vertices
a and b is automatically made. Since, however, the dynamics of the random graphs
does not respect this distinction, a ferroelectric order can impossibly occur. As a
demonstration of this we present a short scan of the behaviour of a formally de-
fined “KDP model” coupled to planar random ¢* graphs. As can be seen from Fig.
4.12, the specific heat of the model exhibits a maximum for very low temperatures,
mimicking the behaviour at a physical phase transition. However, this is only a
consequence of the fact that the graph dynamics is subject to freezing as the tem-
perature is lowered. Eventually, no allowed flip moves remain and, consequently,
no energy changes occur, leading to a decrease of the specific heat. This mecha-
nism obviously cannot correspond to a physical phase transition, since an allowed

cyclic re-labelling of the links of some vertices of the graph corresponds to the same
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Figure 4.11: Phase diagram of the 8-vertex generalized F' model on the square
lattice, which is a cut of the phase diagram of the full 8-vertex model resulting from
the condition a = b. The phases IV and V are anti-ferroelectric and vertices of types

¢ and d, respectively, dominate. Phase III is the disordered phase.

physical situation, but would (in general) lead to an energy change since vertices
of the type a are transformed into vertices of type b and vice versa, and a # b is
assumed. As a comparison, in Fig. 4.12 we plot the specific heat of the F' model
on the same graphs, which — as will be shown in the next chapter — exhibits a

physical, continuous phase transition to an anti-ferroelectrically ordered phase.

4.3.2 The order parameter

For the square lattice an order parameter for the anti-ferroelectric transition of
the F' model could be defined by a suitably calculated overlap between the actual
state and one of the two anti-ferroelectrically ordered ground states of the model.
On a random graph, the corresponding ground states are not so easily found and,
moreover, vary between different realizations of the connectivity of the graph. Thus,
this notion of an order parameter cannot easily be generalized to the vertex models

on random graphs.

To enable a generalization of the anti-ferroelectric order parameter to the case of
random graphs, the vertex model has to be transformed to one of its numerous equiv-

alent representations. Structurally, the anti-ferroelectrically ordered state has been
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Figure 4.12: Specific heat of a formally defined “KDP model” coupled to random
planar ¢* graphs with labelled links and N, = 256 vertices as a function of the
inverse temperature 8 = 1/kgT. Its maximum for very low temperatures does not
indicate a phase transition, but is merely an artefact of the labelling of the links.
For comparison, the specific heat of the F' model coupled to the same lattices is

shown, which exhibits a physical phase transition.

described as one of ferroelectric order on two complementary sub-lattices, with the
overall direction of the polarization chosen opposite to each other on the sub-lattices.
A decomposition of the square lattice of this kind corresponds to a bipartition or
two-colouring of its sites, cf. Fig. 4.5(b). This property of the decomposition pre-
vents an immediate generalization to a random ¢* graph, which is, in contrast to
the square lattice, not necessarily bipartite. This follows from the following lemma:
a graph is bipartite if and only if it has no cycles, i.e. closed paths, of an odd length.
Obviously, such an odd-length cycle would not allow a labelling of the vertices met
when traversing it with alternating colours. The proof of the inverse statement,
namely that a graph without odd cycles is bipartite, is a bit more intricate and can
be found, e.g., in Ref. [194]. However, the planar random ¢* graphs considered in
the previous chapter obviously include cycles of odd lengths, for example triangular

faces; this can be explicitly checked by inspection of the co-ordination number dis-
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Figure 4.13: Transformation of the square-lattice 6-vertex model to a “spin” model
on the dual lattice. The four links of each plaquette of the lattice are traversed
counter-clockwise. The “spin” values written in the centres of the plaquettes are
the sum of +1 around the plaquettes, where +1 is chosen for arrows pointing in the
direction of the traversal and —1 for arrows pointing against it. Thus, the occurring

“spin” values are 0, £2, +4.

tributions presented in Fig. 3.20, which have non-zero entries for odd co-ordination
numbers of the quadrangulations, corresponding to odd-length face cycles (loops) of
the ¢* graphs.

As mentioned above, when interpreting the vertex-model arrows as a discrete vector
field on the lattice, the ice rule for the 6-vertex model translates to a zero-divergence
condition for this field. Therefore, it is essentially characterized by its curl. We thus
transform the vertex model from its interpretation as a field on the links of the
original lattice to a representation of the curl of this field on the faces of the lattice
or, equivalently, the sites of the dual lattice. This is done by integrating the vertex
model arrows around the elementary plaquettes; by Stokes’ theorem, the result of
this integral is the curl associated with the enclosed plaquette. By convention, the
plaquette boundaries are traversed in a counter-clockwise orientation. Then, arrows

along the direction of motion contribute +1 to the integral and, correspondingly,
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arrows pointing against the orientation of traversal add —1. On the square lattice
the resulting “spins” on the plaquettes can assume the values 0, £2, +4. This is
demonstrated in Fig. 4.13. In this way, the 6-vertex model can be transformed to a
sort of “spin model” on the dual of the original lattice (which is also square for the
considered case). Note, however, that one still has restrictions for the “spin” values
allowed between neighbouring plaquettes, which would lead to rather cumbersome
interaction terms when trying to write down a Hamiltonian for this “spin” model®.
Obviously, the mapping between both representations is not one-to-one, since there
can be more than one arrow configuration compatible with a given curl around the
plaquettes. As a consequence of the definition, the sum of the plaquette values
inside any cycle of the lattice is equal to the integral of the arrow directions along
the cycle. Especially, for a (finite) closed lattice the sum of all plaquette “spins”

vanishes exactly for each configuration of the vertex model®.

In the new representation, the anti-ferroelectrically ordered state of the model again
has a sub-lattice structure as is depicted in Fig. 4.14. However, in contrast to
the sub-lattice decomposition of the original representation, now the dual lattice is
broken down into sub-lattices, i.e., the plaquettes of the lattice are either shaded or
plain, such that no two plaquettes of the same colour share a link. Then, an order
parameter for the anti-ferroelectric transition can be defined as the thermal average
of the sum of the plaquette “spins”, e.g., for the shaded plaquettes. Reflecting the
construction of the plaquette “spins” in Fig. 4.13 it is obvious that this definition
of the order parameter exactly coincides with the original definition of Section 4.1.2
on the level of configurations. The difference is, however, that the new definition
can be easily generalized to the case of arbitrary lattices, as long as their duals are
bipartite. This is the case for the planar random ¢* graphs we are considering since
any planar quadrangulation is bipartite. This can be seen from the equivalence of
bipartiteness and the non-existence of odd-length cycles. The smallest cycles of such
a lattice are the faces, which are quadrangles. All other cycles can be generated by

gluing face cycles together to closed paths, which in each step either leaves the length

8Note also, that the presented transformation is vaguely similar to the transformation of the
6-vertex model to a BCSOS (body-centred solid-on-solid) model suggested by van Beijeren, see
Refs. [195,196]. The resulting models, however, are not the same. Related is also the pure loop

representation of Refs. [197,198].
9This constraint should be compared, e.g., to the magnetization of the Ising model, whose

thermal average also vanishes for any finite lattice. On the level of configurations, however, non-

zero values occur.
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Figure 4.14: One of the two anti-ferroelectric ground states of the square-lattice F
model in the “plaquette-spin” representation. The system is fully ordered on the
sub-lattices of the shaded and plain plaquettes, with opposite total “magnetization”
of +4 per plaquette. Thus, the total staggered polarization of Eq. (4.39) is +2 per

site, the sign depending on the way =41 is assigned to the two colours.

of the cycle invariant or changes it by +2. Thus, a planar quadrangulation has no
odd-length cycles and is hence bipartite. For lattices with inequivalent cycles, i.e.,
with non-spherical topology, the situation is somewhat more complicated, since then
a cycle winding around the lattice can have an odd length if the lattice has an odd
length in one direction. For the vertex-model simulations we will only be concerned
with planar graphs. Due to the bipartiteness of the corresponding quadrangulations,
we can introduce a two-colouring of the faces (loops) of the graphs. While for the
square lattice the numbers of shaded and plain plaquettes are always the same, the
coloured and plain faces of the ¢* random graphs not necessarily occur at equal
proportions. Thus, one should take the “spins” of both types of faces into account,
however “weighted” with the colour of the loops. Therefore, the configurational
value of the staggered polarization of the F' model on a planar ¢* random graph G
can be defined as

1
P=3 > 6.8, (4.39)

veV(G*)
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where G* denotes the dual of the graph, i.e. the quadrangulation, V' (G*) the set of
vertices of G*, C, = £1 the “colour” of the plaquette of G corresponding to the
vertex v of G* and S, the plaquette “spin” at v. Recalling the construction of the

plaquette “spins”, this can also be written in terms of the ¢* graph G as

P=3 3 S, (4.40)
fEF(G) lsef

where F'(G) denotes the set of faces (loops) of G, [ the links of face f, Cf = +1
the “colour” of f and A(lf) = £1 the direction of the vertex-model arrow on link /;
with respect to the prescribed anti-clockwise traversal of the loops. Note that this
definition coincides with the approach of counting only the shaded plaquettes for the
square lattice, since now each vertex-model arrow is counted twice, which is corrected
for by the additional factor of 1/2. The thermal average (P)/2 is now taken as the
order parameter of a possibly occurring anti-ferroelectric phase transition of the F'
model coupled to planar ¢* random graphs. Note, however, that due to the overall
arrow reversal symmetry of the vertex model the expectation value (P) will vanish at
any temperature for a finite graph. Thus, for finite graphs we consider the modulus
(|P|) instead, in complete analogy to the usual treatment of the magnetization of

the Ising model.

4.3.3 Implementation of the simulation scheme
Order parameter

From the preceding discussion it is obvious that for the measurement of the staggered
polarization of the F' model on random ¢* graphs one needs a two-colouring of the
faces of the graph. Since in the dynamical polygonifications approach, the graphs
themselves are dynamic entities, during the course of a Monte Carlo simulation
such a two-colouring has to be found anew for each graph configuration observed.
While in general graph colouring problems are NP hard and thus computationally
practically intractable (see, e.g., Ref. [164]), finding a two-colouring of the faces of
a graph whose dual is bipartite (or, equivalently, finding a two-colouring of the sites
of a bipartite graph) is simple. Obviously, there are only two inequivalent ways of
two-colouring such a graph. One of these ways can be found by colouring a starting
face at random, colouring the neighbouring faces with the other colour and so on

until all faces have been coloured. This algorithm is guaranteed to lead to a valid
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two-colouring of the lattice [164]. The other colouring is found by inverting the
colours of all faces. Although this algorithm is polynomial in time it is clearly still
undesirable to completely re-colour the faces after each link-flip or minBU surgery
move of the graph.

However, as can be easily seen, this is not really necessary. Consider one of the
one-link flips for ¢* graphs discussed in Section 3.2.4. Here, a proper two-colouring

before the flip stays valid after the flip without changing any colours,
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such that the two-colouring is invariant under the one-link flip move updates. In
this and the following sketches the “@” and “©” symbols denote the colours of the
faces adjacent to the two depicted ¢* vertices. On the other hand, for a two-link

flip around a double link,

the colour of the face enclosed by the double link has to be inverted. Thus, the two-
link flip move is the only move capable of changing the ratio of “®” and “©” faces of
the graph. It is obvious that in general the considered class of graphs includes graphs
with varying proportions of “@” and “&” faces, at least for the non-strict ensembles.
This exceptional property of the two-link flip provides a somewhat belated proof for
the claim that the one-link flip dynamics alone is not ergodic even for the case of
singular ¢* graphs put up above in Section 3.4. Finally, the minBU surgery moves
described in Section 3.5.2 do not change the adjacency properties of the faces, such
that no re-colouring is necessary there. Thus, with a slight intervention for the case

of the two-link flip moves, the face-two-colouring of the graphs can be easily kept
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up-to-date during the graph part of the update and measurements of the staggered

polarization become computationally cheap.

Graph updates in the presence of matter

The graph update moves described in the previous chapter were there discussed for
the case of plain graphs, i.e., of pure quantum gravity without coupling to matter.
In the presence of a decoration of the graphs with matter variables some additional
considerations come into play. First of all, in all cases the change in energy of the
matter part induced by a proposed flip, insertion/deletion or surgery move has to be
computed and taken into account in the acceptance probability, which is, however,
straightforward. For the vertex models, a flip move could in principle produce
disallowed vertex configurations violating the arrow reversal symmetry. Such moves
are prevented by assigning infinite energies to unwanted vertex configurations (also,
e.g., to the vertices 7 and 8 for the case of the 6-vertex model), such that forbidden
moves are never accepted. For the F' model one checks by explicit inspection that
this restriction still leaves some allowed link-flips to perform, which is maybe not

self-evident.

The insertion and deletion moves used in (pseudo) grand-canonical simulations and
to build up the initial graph need some different treatment. For the deletion move
one has to check, whether the resulting vertex-model configuration on the reduced
graph is valid for the considered vertex model. If it is not, the move has to be
rejected. Otherwise, the corresponding energy change has to be taken into account
for the acceptance probability. On the other hand, for the insertion moves one has
some freedom in the decoration of the newly inserted links of the graph. For the 6-
vertex model one can guarantee a valid vertex-model configuration after the insertion
step irrespective of the initial configuration both, for the simple insertion move for
the non-strict ensembles as well as for the more complicated insertion move for the
strict ensemble. The recipe for the decoration is illustrated in Fig. 4.15. Again, the
energy of the additional vertex configurations has to be taken into account when

formulating the detailed balance condition for this type of move.

Finally, the minBU surgery moves discussed in Section 3.5.2 have to pass the addi-
tional check of whether the arrow configuration on the external lines of the minBU
matches that of the marked vertex on the “mother universe” the minBU is re-

connected to. For the F' model, one can additionally exploit the rotational symme-
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(a) t

Figure 4.15: Finite-energy insertion moves for the F' model coupled to planar ran-
dom ¢* graphs. These moves are always allowed, irrespective of the original arrow
configuration, i.e., they involve a finite energy change. The dashed lines indicate
the newly inserted arrows. (a) Insertion move for the strict ensemble. The arrow
directions are simply copied in either of the four directions. The new “ring” is
decorated consistently with arrows in a clockwise or counter-clockwise orientation.
(b) Insertion move producing a double link used for the non-strict ensembles. The
zero-divergence condition ensures that the double link can always be consistently

decorated.

try of the vertex-model weights and check whether the minBU can be pasted at the
position of the marked vertex in one of four possible rotational orientations. Note
that no non-trivial change of energy is possible here; either the move is forbidden
and thus rejected or it does not change the vertex-model energy and is hence always
accepted. Therefore minBU surgery steps have a non-vanishing acceptance rate as
the temperature goes to zero. In contrast, the (one- and two-link) flip-move dy-
namics freezes as T — 0 for the F' model, since a flip in a configuration consisting

entirely of vertices of type 5 and 6 (maybe up to small frustration effects) would



146 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATION

always produce vertices of the types 1-4 and thus has a vanishing acceptance rate

in the zero-temperature limit.



Chapter 5

The 6-Vertex Model on Random
$* Graphs

Having developed the necessary tools for Monte Carlo simulations of dynamical ¢*
random graphs and simulations of vertex models, an analysis of the 6-vertex model
coupled to Euclidean discrete quantum gravity or, equivalently, an exploration of the
influence of annealed connectivity disorder on the 6-vertex model, can be attempted.
As will be discussed below, the 6-vertex model is at the heart of all integrable
models of statistical mechanics in two dimensions. Transferring vertex models from
the square lattice to planar ¢* random graphs, they take on a similar role for the
statistical mechanics of matter coupled to Euclidean quantum gravity. An analysis
of the scaling properties of the F' model on the ensemble of planar ¢* graphs dual
to dynamical quadrangulations provides an understanding of an important example

of the marginal case of a C' = 1 theory coupled to quantum gravity.

After a short survey of the densely meshed net of inter-relations between two-
dimensional integrable models on regular and random lattices, we re-consider the
square-lattice F' model and the scaling properties at its Kosterlitz-Thouless tran-
sition point, mainly in order to fine-tune the needed simulational machinery, but
also as an interesting problem in itself. Combining the techniques described in the
previous two chapters, we perform extensive simulations of the F' model coupled
to random ¢* graphs and analyse its behaviour in the vicinity of the Kosterlitz-
Thouless transition point. Having explored the phase structure of the model, the
dynamical behaviour of the simulation algorithm for the combined system of fluc-

tuating geometry and coupled matter will be discussed. Finally, the back-reaction

147



148 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM ¢* GRAPHS

of the matter variables on the fluctuating geometry, expressed in the string suscep-
tibility exponent and the intrinsic Hausdorff dimension of the random graphs, is

explored.

5.1 Analytical Results

The classification of the scaling properties of conformal field theories [199-201] cou-
pled to the dynamical polygonifications model has received considerable interest
in the past decades. The KPZ/DDK ansatz [30-32] predicts a renormalization or
“dressing” of conformal weights for models with central charges C' < 1, which has
been confirmed by exact results from matrix model calculations in all cases treated
so far, including the Ising [33-35], Potts [36-39] and O(n) [40-44] models, cf. Section
2.4.

5.1.1 The case of regular lattices

Vertex models on regular lattices are closely linked with different series of integrable
models, which in turn are related to an exhaustive enumeration of certain conformal
field theories. In fact, it turns out that the 6-vertex model, being the critical version
of the 8-vertex model, includes in suitable generalizations the critical points of all
of the well-known two-dimensional lattice models of statistical mechanics. Alter-
natively, a common point of reference for all these critical models is given by their
asymptotic equivalence to a Coulomb gas. In the following, the net of these inter-
relations is shortly exposed to underline the extraordinary importance of 6-vertex

type of models for statistical mechanics.

SOS and minimal models

On regular lattices, the relation between lattice models, conformal field theories and
integrability has been quite comprehensively explored. A particularly interesting
class of conformal field theories is given by the unitary minimal series of Ref. [141],
where the central charge assumes a discrete set of values labelled by an integer

variable m,

C=1—-— 934 (5.1)
m(m + 1)
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A series of lattice models, which realizes each central charge of this unitary series
[202] is given by the restricted solid-on-solid (RSOS) models of Andrews, Baxter
and Forrester [203]. There, one assigns height variables h; to the sites of a lattice,
whose values are restricted to a finite set of integers, h; = 1,...,m. Moreover,
the heights of neighbouring sites of the lattice are constrained to differ by plus or
minus one unit. The interactions depend of the height values at the corners of the
elementary plaquettes or faces of the considered graph which are assumed to be
squares, whence the RSOS models are also called interaction-round-a-face (IRF)
models [55]. In Ref. [203] it was shown that these models can be asymptotically
mapped onto the 8-vertex model, such that the critical RSOS models correspond
to a 6-vertex model. A more abstract generalization of this class of models, the so-
called ADE series of models provides an even closer correspondence between lattice
systems and the conformal minimal models. These are defined as mappings from the
lattice into the Dynkin diagrams of a simply-laced Lie algebra [204]. These simply-
laced Lie algebras come in two discretely labelled series, A,, and D,,, and the single
exceptional cases Eg, E; and Eg, see, e.g., Refs. [205,206]. Compared to the RSOS
models, the restriction of unity differences in the heights of adjacent sites is relaxed
and replaced by the condition that neighbouring heights should conform to the labels
of neighbouring vertices of the corresponding Dynkin diagram. The RSOS models
can be shown to correspond to the A series of ADE models. Pasquier [204,207]
has shown that each minimal model is realized in one of the ADE models. This
goes beyond the exemplary realisations of the RSOS models of Refs. [202,203], since
there are usually different realizations for a given central charge, differing in the
part of the Virasoro algebra actually occurring. Thus, the ADE model classification

resolves the “fine structure” of models of a given central charge.

The Coulomb gas and loop representations

Before the pioneering papers Refs. [141, 199] on the classification of critical be-
haviour by methods of conformal field theory, a treatment of a variety of models
in two dimensions had been successfully attempted by mapping them (exactly or
asymptotically) to a two-dimensional gas of interacting electric and magnetic point-
like charges, i.e., the Coulomb gas [196], which can also be used for an exhaustive
labelling of critical theories in two dimensions [208]. This scheme was pioneered by
the finding of Kosterlitz and Thouless [63,64] that the infinite-order phase transition

of the two-dimensional XY or O(2) model could be described by vortex excitations



150 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM ¢* GRAPHS

interacting like a gas of charges. A specially tailored version of the XY model with

Hamiltonian,

oo

—BH =Y _V(0;—0;), exp[V(0)] = Y exp[-J(0 —2rk)?], (5.2)

(i) k=2

introduced by Villain [209] can be mapped exactly onto a Coulomb gas. The
Coulomb gas method rests on the fact that the renormalization group equations
of the Coulomb gas can be formulated exactly to leading order and thus yield exact
critical exponents [196]'. The Villain model, whose critical behaviour is numerically
found to coincide with that of the original XY model as expected [210,211], can be
identically transformed to a model of the SOS type [212] by a duality transforma-
tion [213]. This so-called discrete Gaussian model is an unrestricted solid-on-solid
model, i.e., with heights ranging from —oo to oo, and (discretised) Gaussian inter-

actions between neighbouring heights.

An impressive series of models can be mapped onto the Coulomb gas, including the
8-vertex, Ashkin-Teller, ¢-state Potts and O(n) vector models [196]. In all cases
an intermediate step is a mapping to an SOS type model and the corresponding
loop representation. The general RSOS models of Ref. [203] themselves can also be
mapped onto the Coulomb gas [195]. For the F' model, the equivalence with the so-
called BCSOS (body-centred SOS) model has been shown by van Beijeren [214]. The
corresponding transformation consists of mapping the bond arrows of the square-
lattice F" model to arrows on the dual lattice, turning all the arrows by a right-angle
to the left. Interpreting the original arrow configuration as a divergence-free vector
field, this transformation results in a curl-free vector field on the dual lattice. Thus
it can be understood as the gradient of scalar height variables residing on the sites
of this dual square lattice and differing by unit amounts between neighbouring sites,
which decomposes the lattice into sub-lattices with only even and odd heights. This
equivalence suggests that the Kosterlitz-Thouless (KT) transition point of the F
model is indeed equivalent to the corresponding transition of the XY model by
their common equivalence to a Coulomb gas. It should be noted that the vortices of
the XY model, triggering the Kosterlitz-Thouless phase transition there, naturally
correspond to the source and sink configurations 7 and 8 of the 8-vertex model and

become identified in the Coulomb gas limit.

'Note, however, that in general some exact input found by other means is needed to fix the
value of the renormalized coupling.
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Loop or polygon representations [215] can also be given for the discussed models,
including the general RSOS model [216]. For the 6- and 8-vertex models this poly-
gon representation coincides with the loop representation discussed in the previous
chapter in the context of the loop-cluster algorithm. To mention another example,
it has been shown [217] that a suitably adapted version of the O(n) vector model
(sometimes denoted as the O(n) loop model) is identical to a model of closed polygon
rings with partition function

Z=> K'n (5.3)

graphs

where ¢ is the number of present loops and L denotes their total length. The loops
correspond to the contour lines of the spin clusters occurring in a high-temperature
expansion. Thus, the model is equivalent to a Coulomb gas and its critical exponents
can be evaluated [218]. Such loop models have attracted much attention due to
their obvious relation to configurations of polymers such as protein chains etc. [219].
Note that the loops of this O(n) model do not normally cover the whole lattice
and, instead, the model has “dilute” and “dense” phases, whereas the loop model
considered in the context of vertex models is a “fully packed” loop model [220] with
the loops covering each site of the lattice. In the context of SOS type models, such

loops occur as domain walls between regions of equal height.

Combining the described equivalences, the 8-vertex model is found to be the “swiss-
army jackknife” of statistical mechanics. Its critical version, the 6-vertex model,
can be considered as the basic element of two-dimensional critical systems and the

associated conformal field theories [57,58].

5.1.2 Vertex models coupled to quantum gravity

The KPZ/DDK formula shows that rational conformal field theories stay in the
sector of minimal models on coupling them to two-dimensional Euclidean quantum
gravity, the corresponding critical exponents merely being renormalized due to the
presence of a fluctuating background. From the sketched various equivalences be-
tween models of statistical mechanics not all survive the transformation to random
lattices. A loop representation in the spirit of the Coulomb gas treatment, however,
has turned out to be the starting point for most of the solutions found so far. It
allowed for an evaluation of critical-point properties of the ADE interaction-round-
a-face models [221-223], being still related to the corresponding RSOS models, and
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Figure 5.1: (a) Unique breakup of a vertex of type a = b into upper-left and lower-
right corners. (b) One of the possible breakups of a vertex of type ¢ into upper-left
and lower-right corners. (¢) The other possible breakup of a vertex of type ¢ into

upper-right and lower-left corners.

a treatment of the O(n) loop model [40,41,224].

The F model on a random lattice

The F' model on a (regular or random) four-valent graph can be represented as
a gas of oriented loops [55,225]. To see this, one applies the breakup operations
defined in the context of the loop algorithm in Section 4.2, restricting oneself to the
“corner-type” breakups 1 and 2 of Fig. 4.7. Thus, vertices of type a and b allow
exactly one breakup into corners, while vertices of type ¢ can be broken up in both
ways, cf. Fig. 5.1. As has been shown in Section 4.2, choosing such a breakup for
each vertex of the graph (uniquely for vertices of types a and b and at random for
vertices of type c), decomposes it into a set of fully packed, oriented loops, cf. Fig.
5.2. Conversely, summing over all possible close-packed loop arrangements and the
two orientations of the loops yields all possible configurations of the F' model on the
considered graph. The original weights of the 6-vertex model translate into weights
for the oriented loops by assigning a phase factor exp(ium/2) to each left turn and
a phase factor exp(—ium/2) to each right turn of an oriented loop [55,225]. Here,
the coupling p is related to the weights of the F' model as?,

a/c="b/c=[2cos(mu)] *. (5.4)

On the square (or any other regular) lattice the phase factors around each loop

always sum up to a total of exp(diu2m) due to the absence of curvature. On a

2Note that, in terms of the parameter A of Eq. (4.10), this choice of weights covers only the
range —1 < A < 1, which corresponds to the disordered phase of the square-lattice F' model.
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Figure 5.2: A piece of a random quadrangulation and a configuration of a fully
packed gas of oriented loops on the dual ¢* graph, corresponding to a configuration

of the 6-vertex model. This figure is reproduced from Ref. [73].

random graph, however, a loop [ in general receives a non-trivial weight exp[iul'(1)]

with ['(I) denoting the integral of the geodesic curvature along the curve [, i.e.,
INOES g (# left turns — # right turns), (5.5)

cf. Section 2.2.3.

This loop expansion is related to the loop representation of the O(n) model men-
tioned above. On a regular lattice, due to the absence of curvature all loops receive
the same constant fugacity n = 2exp(iu27) of Eq. (5.3), leading to the critical
O(n) model. On the considered random graphs this picture only remains valid for
the limiting case p = 0, where the curvature dependence cancels. Thus, the =0
point of the F' model on random planar ¢* graphs is equivalent to the critical O(2)
loop model [41,72,226] and thus, by universality, the original XY model®>. Note
that this corresponds to the same critical point a/¢ = b/c = 1/2 as on the regular
square lattice, which is natural since the symmetry breaking is induced by the choice
of the vertex weights. The KT point itself has been considered before within the
framework of the XY model [227-229] and the O(n) loop models [40-44] coupled

3Note that the loops occurring in the expansion of the O(n) model are not in general close
packed on the lattice as are the loops of the presented loop expansion of the F' model. However,
the critical O(2) model lies at the boundary of the dense phase of the O(n) model, where loops are
close packed [224].
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to dynamical polygonifications. Also within the framework of ADE models consid-
ered in Refs. [221,222] the symmetric 6-vertex model is naturally included and some
exact results were given at criticality. Finally, it should be noted that the critical
F model coupled to the random graphs is equivalent to the critical point of a free

massless boson compactified on a circle and coupled to quantum gravity [226].

The matrix model solution

An exact solution of the F' model coupled to planar random ¢* graphs in its formu-
lation as a matrix model has been found independently by P. Zinn-Justin [72] and
I. Kostov [73]. As was first noted by Ginsparg [124] the model can be formulated as

the perturbative expansion of the matrix integral

W(a,e,N) = / dgdg! exp [~NTr (66" —ag?6" — S(66)?)|,  (56)

such that the partition function of the F' model on planar graphs is the leading term
of the 1/N expansion of

W{(a,c, N)

Zla.c.N) = In o\ 26N
(a,¢, N) "W(0,0,N)

(5.7)
cf. Eq. (2.94). Here, in contrast to the Hermitian matrix models considered in
Section 2.3.4 above, ¢ is taken to be a general N X N complex matrix, thus endowing
the links of the ¢* graphs represented by the propagators (Tr ¢¢') with a sense of
direction, which in turn can be interpreted as the decoration of the graph edges with
the arrows of a vertex model, see also Refs. [128,230]. The pairing of two “heads”
¢ and two “tails” ¢! at each vertex in the matrix model potential ensures that the

generated configurations satisfy the ice rule.

Introducing an additional auxiliary Hermitian matrix, the resulting matrix model
can be interpreted as a deformation of the O(2) loop matrix model and the inte-
gration over the complex ¢ matrices can be performed [73]. Employing the usual
saddle point technique, the planar N — oo limit of the model can be solved. What
is found is that for each value of the coupling i of Eq. (5.4) the model has a critical

point* with central charge C' = 1. In terms of the vertex model coupling a these

4Note that, as mentioned above, real values of i only cover the parameter range of the disordered
phase of the square-lattice F' model. Thus, also the square-lattice model is critical for all p.
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critical points are parameterized as [72],

1 sin(mp/2) 1
32 mwp/2  cosP(mp/2)

Qerit = (5-8)
Note that in contrast to the regular lattice model, where only the ratio a/c = b/c
had physical significance, the couplings a = b and ¢ of the F' model can be varied
independently here, since a takes on the role of the cosmological constant, i.e.,
the fugacity controlling the cost of adding a new site to the graph. Exploring the
vicinity of this critical point, it is found that the string susceptibility exponent v, = 0
for all y, leading to only logarithmic divergences of the free energy [72,73]. This
behaviour is indeed expected from the C' — 1 limit of the KPZ/DDK prediction
Eq. (2.137). The spectral density of the matrix integral has a singularity with an
exponent (1 — u)/(1 + p) varying continuously along the critical line, which leads
to an also continuously varying exponent for the scaling of the typical length of
loops on the worldsheet, which is a generally considered observable within the loop
model scheme [41,73,224]. Finally, the vortex operators, which correspond to the
deformation of the 6-vertex model to an 8-vertex model by insertion of sinks and

sources, i.e., vertices of the types 7 and 8, are found to have dimension 1 — p [73].

Thus, the general phase structure of the F' model coupled to planar random ¢*
graphs in the grand-canonical ensemble of a varying number of vertices has been
found in Refs. [72,73]. The existence of a Kosterlitz-Thouless type phase transition
at ;1 = 0 was obvious beforehand from the equivalence to the O(2) loop model at
this point. Details of the behaviour of matter-related observables in the vicinity
of this point, such as the scaling of the staggered anti-ferroelectric polarizability,

however, could naturally not be extracted from the matrix model ansatz.

Further vertex models

From the given interpretation of the matrix model (5.6) it is obvious that a complex

matrix model with potential,

V(6,00 0d) = 560! —ado” — S0 - {6+, (9

introduces the source and sink configurations 7 and 8 and thus describes an §-vertex
model coupled to random ¢* graphs. For the special choice of weights ¢ = d, this

matrix model, written as a two-matrix model of real matrices, can be solved by a
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character expansion method [231]. As expected, the model is found to have a critical
point as it crosses the parameter space of the 6-vertex model at d = 0, implying
¢ = 0, which corresponds to the point u = 1/2 of the above parameterization (5.4)
of the F' model. Along its critical line the model exhibits central charge C' = 0
behaviour with 7, = —1/2, the only exception being its critical point, where is has

central charge C' = 1 and, correspondingly, a string susceptibility exponent v, = 0.

Varying the potential of the complex matrix integral, one can easily construct matrix
model formulations of further vertex models, including matrix models on three-
valent ¢* graphs [128,230]. In the limit N — 1, the matrices become replaced by
scalar variables and one describes generic, “thin” random graphs without a defined
topology. The corresponding scalar integrals can be generally solved by a saddle-
point calculation. For the vertex models on thin ¢* and ¢* graphs, a clever choice
of the parameters of a simple linear transformation of the matrices maps the models
onto known (and solved) problems such as Ising and Potts models in the mean-field
limit [128]. For planar, “fat” ¢ and ¢* graphs, while a general solution is lacking,
it is still possible to formulate well-known solved two-matrix models, especially the
Ising model, as special cases of vertex models [128]. Also, the solution of a so-called
bond vertez model for the ¢* case, where the links of the graph do not carry arrows
but are rather occupied or unoccupied, could be found by transformation to an Ising
model in a field [230].

5.2 The Anti-Ferroelectric Phase Transition

Obviously, the infinite-order phase transition to an anti-ferroelectrically ordered
phase predicted to occur at the particular choice of weights a/c = b/c = 1/2 of
the F' model coupled to planar random ¢* graphs is the main point of interest
in analyzing this model. The scaling and finite-size scaling theories associated with
such a phase transition of the Kosterlitz-Thouless type are quite different from those
at finite-order phase transitions and will thus be reviewed shortly. Even though the
KT point of the F' model is known to be equivalent to the critical point of the XY
model, the two models do not exhibit completely identical scaling behaviour due
to differences in the relevant observables. Since we will find a numerical scaling
analysis of the KT point of the F' model on random lattices extremely difficult due
to the combined effect of the logarithmic corrections associated with every C' = 1

theory and the smallness of the accessible effective linear extensions of the lattices
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resulting from their large Hausdorff dimension, the machinery of analysis is tested
and refined for the case of the F' model on the square lattice, where at least the

second correction effect is absent.

5.2.1 Scaling at an infinite order phase transition
Essential singularities and the XY model

Even though a transition of infinite order was found by Lieb [56,62] in the phase
diagram of the F' model before Kosterlitz and Thouless formulated their famous
theory for the phase transition of the two-dimensional XY model [63,64], the oc-
currence of essential singularities at a phase transition point is invariably linked to
the latter two names®. As a consequence of a theorem by Mermin, Wagner and
Hohenberg [233, 234], the two-dimensional XY model cannot develop an ordered
phase with a non-vanishing value of a locally defined order parameter for non-zero
temperature. Instead, the transition is described as the binding or unbinding of vor-
tex pairs superimposed on an effective spin-wave behaviour of the low-temperature

phase. Above the critical temperature, spin-spin correlations decay exponentially,
G(r)~e "M T >T, (5.10)
while below T, long-range correlations are encountered,
G(r)y~r " T<T, (5.11)

such that the correlation length £(T) = oo for all T < T, and the massless low-
temperature phase corresponds to a critical line terminating in the critical point
T. [63,64,235]. The critical exponent 7 varies continuously along this critical line.
Approaching the critical point 7, from above, the correlation length diverges ezpo-

nentially instead of algebraically as for a usual continuous phase transition®,

&(T) ~ exp(a/tr), t>0, (5.12)

5Tt should be noted that the notion of topological excitations triggering the phase transition of

the XY model was introduced before the works of Kosterlitz and Thouless by Berezinskii [232].
6For the KT point of the square-lattice F' model it can be shown that in fact all temperature

derivatives of the free energy exist and are continuous across the transition point [55].
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where t = (T' — T,)/T. and” p = 1/2. The behaviour of further observables at the
transition point can be conveniently expressed in terms of this singularity of the

correlation length. In particular, the magnetic susceptibility diverges as
X(T)~ & =g T>T, (5.13)

where 1, = n(T.) = 1/4. The specific heat, on the other hand, is only very weakly
singular, behaving as
C, ~ &2 (5.14)

Finite-size scaling

Finite-size scaling (FSS) analyses of the KT transition of the XY model are ham-
pered by the occurring essential singularities and the presence of a critical phase. As
a consequence of the latter, magnetic observables such as the susceptibility do not
exhibit maxima in the vicinity of the critical point, which otherwise could be used
for an estimation of the transition temperature from finite systems. As will be shown
below, the situation is different for the KT point of the F' model, where the analogue
of the magnetic susceptibility, the staggered anti-ferroelectric polarizability, shows
a maximum for finite lattices. Nevertheless, the general arguments for finite-size
shifting and rounding remain valid, such that suitably defined pseudo-critical points
T*(L) for systems with linear extent L scale to the critical point T, as [236]

[T*(L) = T)/T, ~ (In L) ~/7, (5.15)

cf. Eq. (5.12). Sufficiently close to the critical point the growth of the correlation
length becomes limited by the linear extent L of the system and, correspondingly,
& can be replaced by L to yield the finite-size scaling law

X(L,T,) ~ LY = L* ", (5.16)

which for n, = 1/4 predicts a rather strong divergence. On finite lattices, the
specific heat is found to exhibit a smooth peak, which is however considerably shifted
away from the critical point into the high-temperature phase and does not scale as
the lattice size is increased [236]. Thus, with the main strengths of FSS being

"Note that the exponent p is often called v. However, to underline the fact that this exponent,
albeit being related to the singular behaviour of the correlation length like v for an ordinary phase
transition, does not describe a power-law singularity, we prefer to use a different symbol.
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not exploitable for the KT phase transition, the focus of numerical analyses of the
XY and related models has been on thermal scaling, see, e.g., Refs. [210,237-239].
In addition, renormalization group analyses predict logarithmic corrections to the
leading scaling behaviour [240,241], as expected for a C' = 1 theory, which have been
found exceptionally hard to reproduce numerically due to the presence of higher

order corrections of comparable magnitude (for the accessible lattice sizes) [211].

5.2.2 The square-lattice F' model

As mentioned above, an analysis of the square-lattice F' model is put in front of the
investigation of the random graph problem to allow for a detailed comparison and
to calibrate the needed numerical machinery. To begin, we present some specific
exact results and conjectures for the square-lattice F' model, which have not yet

been reported in Section 4.1.2 above.

Analytical results

We assume a parameterization of the F' model coupling parameters, which involves
a temperature variable and thus sticks more closely to the language of statistical
mechanics than to that of field theory. It thus differs from the parameterization
(5.4) used in the context of the matrix model solution, which only covers the critical

disordered phase of the F' model. Assuming ¢, = ¢, = 1 in Eq. (4.6), we have
a=b=c¢P =1, (5.17)

where 5 = 1/kgT, such that the KT point occurs for . = In2. From Lieb’s exact
solution of the square-lattice F' model [62], the correlation length and the free energy
are expected to exhibit the essential singularities found for the XY model, cf. Section
4.1.2. Additionally, the exact solution provides the amplitudes and correction terms.

In the thermodynamic limit, one finds [55]

ETYN) ~ dexp(—72/2)),

fsing()\) ~ 4kBTceXp(—7T2/)\), (518)

where A is related to the reduced coupling A of Eq. (4.10) as A = — cosh A, which
covers the anti-ferroelectrically ordered phase A < —1 for real values of A. In

general, the coupling A is related to the coupling u defined in (5.4) as A = 2wip. As
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the critical point is approached from the low-temperature side, A behaves as A ~ t1/2
to leading order®, i.e., p = 1/2 as for the XY model. Here, fng denotes the singular
part of the free energy per site. The specific heat diverges as £~2 as expected. For
later reference, we also note the critical values of the internal energy U and specific
heat C,, which are given by [56]

U(T.) = 1/3,

C,(T.) = 28(In2)2/45. (5.19)

Concerning properties related to the order parameter, the situation for the F' model
is somewhat different from that of the XY model. The order parameter defined in
Eq. (4.11) for the square lattice resp. in Eqgs. (4.39) or (4.40) for general (including
random) lattices, is non-vanishing for finite temperatures in the ordered phase®.

Thus, the corresponding staggered anti-ferroelectric polarizability,
x =N ((F5) = (IPol)?), (5.20)

where N, as usual denotes the number of vertices of the considered graph, shows
a clear peak in the vicinity of the critical point for finite lattices. However, in the
limit Ny — oo the polarizability diverges throughout the whole high-temperature
phase, which is critical as mentioned in Section 4.1.2. Note that compared to the
XY model the roles of high- and low-temperature phases are exchanged in this
respect, as expected from duality [213]. Although the F' model has not been solved
in a staggered electric field for general temperatures, the spontaneous staggered

polarization is known exactly for all temperatures [242],

o 2
Py(\) = [H tanh(n)\)] : (5.21)
n=1
which in the vicinity of the critical point scales as

Py(A) ~ Al exp(—m?/4)). (5.22)

8Note that the deviation ¢ from the critical point is defined in terms of the weights a, b and ¢
instead of the temperature T' in Ref. [55]. For small ¢, however, both definitions asymptotically

coincide.
Note that the Mermin-Wagner-Hohenberg theorem [233,234] does not apply to the F model
with its discrete symmetry.
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Assuming the Widom-Fisher scaling relation o+ 23+~ = 2 to be valid'?, from Egs.
(5.18) and (5.22) Baxter conjectured the following scaling of the zero-field staggered
polarizability [242],

X(A) ~ A Zexp(1?/2)) ~ (In €)%, (5.23)

which implies /v = 2 — 5, = 1. The apparent discrepancy with the XY model
results should not be interpreted as an indication of differing universality classes of
the models (which are equivalent at their critical points), but reflects the fact that
the F' model staggered polarizability is not equivalent to the magnetic susceptibility
of the XY model. Since the whole high-temperature phase is critical, scaling of the
polarizability is expected throughout this phase. In fact, the F' model in a staggered
field can be solved exactly at the point a/c = 1/v/2 (corresponding to A = 0 or
A = im/2), where its parameter space crosses that of the free-fermion model, cf.
Eq. (4.19) [243]. At this point, a logarithmic divergence of the polarizability is
found, implying 2 —n = 0, such that, obviously, the divergence of x becomes weaker
within the critical phase, in contrast to the XY model, where 7 is found to decrease
from its critical value 1, = 1/4 when moving further into the critical phase, see,
e.g., [237].

Monte Carlo analysis

In contrast to the exactly solvable Ising model in two dimensions, which has served
as a playground and reference point for the Monte Carlo method right from its first
beginnings (see, e.g., Ref. [155]), the exactly solved 6-vertex model has received
considerably less attention as far as numerical work is concerned. The only Monte
Carlo analyses of the square-lattice F' model we found are reported in Refs. [244,245]
in the context of the equivalence of the F' model to the BCSOS surface model, whose

roughening transition corresponds to the KT point of the F' model!.

To calibrate our set of simulation and analysis tools, we performed simulations of the

square-lattice F' model and investigated the scaling behaviour of the specific heat and

10 Although the KT transition is characterized by essential singularities and thus the conventional
critical exponents are meaningless, one can re-define them by considering scaling as a function of
the correlation length ¢ instead of the reduced temperature ¢, cf. Section 4.1.2. The exponents
a, # and v used here and in the following should be understood in that sense. The exponent p,

however, has its special meaning defined by (5.12).
"Note that in contrast to the “static” F model considered here, various dynamic extensions of

the 6-vertex model have been extensively explored as models of surface growth, see, e.g., Ref. [246].
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Figure 5.3: Non-scaling of the specific heat C, of the square-lattice F' model from
Monte Carlo simulations. The square lattice is considered wrapped around a torus.
From the simulated lattice sizes ranging from N, = 162 = 256 up to N, = 2562 =

65 536 sites, only three are shown for the sake of clearness of the diagram.

the staggered anti-ferroelectric polarization and polarizability. The focus was laid
on the influence of different correction terms as well as the considered lattice sizes on
the fit results, such as to develop an intuition for the analysis of the random graph
case, guided by the available exact results for the much simpler square-lattice model.
Simulations were performed for square lattices with periodic boundary conditions
using the same simulation program as later on for the random graph systems (but
with the graph flip and surgery moves omitted) to ensure maximal comparability
between the regular and random graph results. Since the loop algorithm is found
to be very efficient in eliminating the critical slowing down at the F' model KT
point [174,188], measurements were taken after each multi-cluster loop-update step.
Lattice sizes up to Ny = 10242 ~ 10° sites were simulated, which is by far larger
than the accessible sizes for the random graph case, taking between 1 x 10° and

2 x 10° measurements.
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N2,min Be Ap Q
256 | 0.73822(48) ) 10.00
576 | 0.73270(59) ) | 0.00
1024 | 0.73033(74) 2.007(50) 0.00
2116 | 0.72635(110 ) 0.46
( 4
(
(

4096 | 0.72409(172) | 2.581(154) | 0.88
8464 | 0.72322(261) | 2.667(249) | 0.78
16384 | 0.72077(463 469) | 0.79

)
)
)
)

Table 5.1: Parameters of least-squares fits of the functional form (5.24) to the
simulation estimates for the peak locations of the staggered polarizability of the
square-lattice F' model. From the set of simulated lattice sizes from N, = 256 to
Ny = 65536 sites, the smallest sizes are successively excluded from the fits, which
are performed for the data points between Ny = N min and Ny = 65536. () denotes
the quality-of-fit parameter, see Ref. [170].

Non-scaling of the specific heat

The specific heat of the square-lattice F' model exhibits a broad peak shifted away
from the critical point into the low-temperature phase [56]'2. The essential singu-
larity predicted by Eq. (5.14) cannot in general be resolved, since it is covered by
the presence of non-singular background terms. Thus, a non-scaling of the broad
specific-heat peaks (together with a scaling of the susceptibility or polarizability to
be considered below) is commonly taken as a good indicator for a phase transition
to be of the KT type [236]. Indeed, this is what is found from the simulation data
as is shown in Fig. 5.3. Neither does the width of the peaks shrink nor do their
heights scale as the lattice size is increased. In fact, for the broad range of lattice
sizes from N, = 162 = 256 up to Ny = 256 = 65536 sites, all data almost collapse

onto a single curve with only small deviations for the smallest lattices.

The critical coupling

To determine the critical coupling, we exploit the fact that the maxima of the stag-

gered polarizability for finite lattices should be shifted away from the critical point

12Note that the specific heat of the 2D XY model exhibits a peak in the high-temperature phase,
as expected from duality.
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Figure 5.4: Peak positions of the staggered anti-ferroelectric polarizability of the
square-lattice F' model from MC simulations, as a function of the number of sites
N, of the considered lattices. The solid lines show fits of the functional form (5.24)
to the data, the range of the fits indicating the window of lattice sizes included in
the fit.

according to the scaling relation Eq. (5.15). The peak locations were determined
from simulations at nearby couplings § by means of the reweighting technique, cf.
Appendix A.5. Transforming the scaling ansatz (5.15) to the coupling /3 instead of

the temperature 7', we have to first order,
By (Na) = B, + As(In Np) 2, (5.24)

where scaling is formulated in terms of the number of sites N, of the lattice, an-
ticipating the notation of the random graph case, and S, (N2) denotes the location
of the maximum of the staggered polarizability x for a v/Ns x /Ns square lattice.
The determined peak locations of the polarizability together with several fits of the
functional form (5.24) to the data, omitting more and more of the smaller lattice
results, are shown in Fig. 5.4. The corresponding fit parameters are compiled in
Table 5.1. Apparently, the presented curves fit the data rather poorly, at least for
the smaller lattice sizes. Compared to the exact transition point S. = In 2, the esti-

mates are clearly too large, dropping only very slowly as points from the small-N,



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 165

(@) | Nomin Be Ap 1/p Q
256 | —155.34 156.21 0.00033 0.00
576 | —17.033 17.92 0.0032 0.82
1024 | —14.42 15.31 0.0038 0.72
2116 0.63(21) |  0.357(33) | 0.48(82) | 0.96
4096 0.69(11) |  0.481(835) | 0.88(157) | 0.91

(b) N3 min Be Ag Bg Q
256 | 0.6957(25) | 13.8(7) | —2.64(2) | 0.51

576 | 0.7020(42) | 11.7(14) | —2.56(5) | 0.88

1024 | 0.6974(64) | 13.4(22) | —2.63(8) | 0.93

2116 | 0.7050(117) | 10.4(44) | —2.47(31) | 0.97

Table 5.2: (a) Parameters of non-linear fits of the functional form (5.25) to the
simulation estimates for the peak locations of the staggered polarizability of the
square-lattice F' model. For small Ny pmin the fit routine gives huge or even undefined
error estimates, which are thus omitted. (b) Parameters of fits with log-log correction
term of the functional form (5.26) to the simulation estimates for the peak locations

of the staggered polarizability.

side of the list are successively omitted. Thus, the expected logarithmic corrections
to the leading scaling behaviour (5.24) have to be taken into account to yield reliable
results. Note that this effect here occurs for rather large lattices, where for a finite-
order continuous phase transition the presence of corrections would not be much of
an issue for the determination of the leading scaling behaviour. The linear extents
of the lattices considered here are in fact much larger than the sizes accessible for

the random graph case to be discussed below.

Since for the polarizability an exact, closed-form expression is not available even for
the square-lattice model, corrections cannot be taken into account with their exact
form. Instead, an effective description will have to be employed. One possible ansatz
is to relax the constraint on the exponent of the logarithm of Eq. (5.24), introducing

as an additional fit parameter an exponent p as
By (No) = Be + Ag(In Ny) =172, (5.25)

resulting in an effective exponent p # p = 1/2, incorporating the present correction

terms in a phenomenological way. This approach yields very unstable results, since
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to a wide extent an increase in the amplitude Az can be compensated by an increase
of the effective exponent p and vice versa, cf. Table 5.2(a). Only for the two largest
starting sizes Njmin a sensible result is obtained. A different choice of correction

term yields much more reliable results, namely a log-log correction of the form

(5.26)

By(Nz) = B+ Ag(In Ny) 2 [1 + Bﬂln In NQ] ,

In NQ

which has the advantage of still being a linear fit, thus promising much more stable
fit results. This is indeed the case, as can be seen from Table 5.2(b) and Fig. 5.5.
This choice of functional form is somewhat ad hoc; however, similar corrections have
been observed for the case of the XY Villain model [211,240,241]. In principle, one
would at least want to admit the log-log correction term to have an additional,
variable exponent. However, we find the data not precise enough to reliably fit to
them a non-linear function with more than two independent parameters. Using thus
the ansatz (5.26) and taking, e.g., the result with N5, = 1024, our estimate for
the critical coupling is . = 0.6974(64), in good agreement with the exact answer
B. =1In2 ~ 0.693.

FSS of the polarizability

From Baxter’s conjecture (5.23) for the scaling of the staggered anti-ferroelectric
polarizability of the square-lattice F' model one deduces the following critical-point

finite-size scaling behaviour of Y,
X(Ny, B2) ~ N3/ (In Ny)?, (5.27)

where d denotes the dimensionality of the lattice and, from Eq. (5.23), v/dv = 1/2.

Taking only the leading term into account, i.e. fitting the form
X(Na, Be) = ANy, (5.28)

to the simulation data, again a very slow drift from slightly too large values for ~/dv
towards the correct result is observed, just as for the case of the peak positions. Fig-
ure 5.6 shows the simulation results for the critical polarizability together with a fit of
the functional form (5.28) to the data, resulting in an estimate v/dv = 0.53892(85),
which is clearly too large. Here, the results from lattice sizes between Ny = 642 and
N, = 10242 sites have been taken into account. Thus, again, corrections to scaling

have to be taken into account, even though the lattice sizes have now been increased
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Figure 5.5: Peak positions of the staggered anti-ferroelectric polarizability of the
square-lattice F' model from MC simulations, as a function of the number of sites
Ny of the considered lattices. The solid line shows a fit of the log-log correction
form (5.26) to the data, where the range of included lattice sizes was taken to be
Ny =1024,...,65536.

up to Ny =~ 10 sites. Fitting to the exact form given in Eq. (5.27), we find poor fit
results with exponents /dv around 0.3 and quality-of-fit parameters ) vanishing
to machine precision. However, letting the correction exponent vary, i.e., fitting the

functional form

X(Na, Be) = AN/ (In Ny)*, (5.29)

with an additional heuristic fit parameter w yields stable and good-quality fit results.
Fitting the range Ny = 242 ...,10242 to (5.29), we find the following fit parameters,

A, = 1.27(06),

v/dv = 0.5083(45), (5.30)
w = 0.32(04),

Q = 0.78,

in reasonable agreement with the exact result v/dv = 1/2.
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Figure 5.6: Finite-size scaling of the critical staggered polarizability x of the square-
lattice F' model for lattice sizes from N, = 162 up to N, = 1024? in a log-log plot.
The solid line shows a least-squares, power-law fit of the functional form (5.28) to
the data.

FSS of the spontaneous polarization

The scaling form (5.22) of the spontaneous staggered polarization translates into
F'SS as
Po(No, Be) ~ Ny /% In (531)

where §/dv = 1/4 from Eq. (5.22). As for the previously discussed observables, a
simple fit to the leading term,

Po(Ny, Be) = Ap, Ny P/, (5.32)

yields exponents (/dv approaching the expected value logarithmically slow on suc-
cessively omitting data points from the small-/NV; side of the list. For instance, for
the range Ny = 922,...,1024% we find 3/dv = 0.23290(98), which is still far from
the exact value in terms of the quoted statistical error. On the other hand, including
the logarithmic correction term of (5.31) as it stands, leads to estimates for 3/dv

even farther away from the true answer, with values around 0.3 and standard error
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around 1073, Again taking higher-order corrections into account via an effective

correction exponent w as
Py(Ny, B.) = Ap, Ny P/ (In Np)*, (5.33)

leads to stable fits and a satisfactory agreement with the exact result for the con-

sidered lattice sizes, the parameter estimates being

Ap, 2.002(78),

Bl/dv = 0.2436(38), (5.34)
w = 0.109(33),
Q = 0.4,

where lattice sizes from N, = 242 to N, = 10242 were included.

Thermal scaling

The discussed F'SS of the critical polarization and polarizability is independent of the
value of the critical exponent p. Thus, to directly verify the exponential type of the
observed divergences and to estimate the parameter p, one has to consider thermal
instead of finite-size scaling. Figure 5.7 shows an overview of the thermal behaviour
of the staggered polarizability for different lattice sizes. The clear scaling of x for the
high-temperature region 5 < . = In 2 indicates the presence of a critical phase. In
contrast, for the low-temperature phase to the right of the peaks, the polarizability
curves essentially collapse and only start to diverge as the correlation length reaches
the linear extent of the considered lattice. Therefore, a thermal scaling analysis must
be performed in the low-temperature vicinity of the critical point, the behaviour in
the high-temperature phase being completely governed by finite-size effects.

Here, we do not consider the scaling of the correlation length itself, since for the
case of random lattices to be discussed below it is a non-trivial and not completely
resolved question, how to reliably determine connected correlation functions (and
thus the correlation length) in an ordered phase [247]. Instead, we consider the
thermal scaling of the staggered polarizability for a single lattice size of N, = 2562 =
65 536 sites. Simulations were performed for a closely spaced series of temperatures
in the low-temperature vicinity of the critical point. From the scaling conjecture

(5.22), we expect the following scaling relation,

In(8) ~ Ay + By (8 — B.) + CyIn(8 - B,), (5.35)
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Figure 5.7: Scaling of the polarizability peaks of the square-lattice F' model from
Monte Carlo simulations. The lines simply connect the data points and are drawn for
illustrative purposes. The curves show a clear scaling of the polarizability in the crit-
ical high-temperature phase (to left of the peaks), whereas in the low-temperature
limit 8 — oo the curves collapse, only diverging as the correlation lengths reach the

respective linear extents of the lattices when approaching the critical point.

which should be valid as 8 — 8 in the thermodynamic limit Ny — co. Note that
this relation is essentially independent of the value of the critical exponent 7, which
only enters the amplitude A,. The window of validity of (5.35) for the thermal
scaling of y for a finite lattice is limited for small deviations § — (. by finite-size
effects and for large deviations § — (3. by higher-order corrections to scaling. Ideally,
one would want to monitor the effect of the finite lattice size by comparing the
value of the correlation length ¢ at a given 8 > [, with the linear extent L of the
lattice and ensuring the ratio £/L not to exceed a given threshold, say 1/15 [210].
However, since we do not want to consider correlation lengths in view of the more
complicated random graph problem, the onset of finite-size effects is estimated by
the beginning of the rounding of the exponential increase of x as (. is approached.
Furthermore, with the given accuracy of our data we find it impossible to reliably

fit the five-parameter family of functions (5.35) to the data. Thus, we first drop
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Figure 5.8: Thermal scaling of the polarizability of the square-lattice F' model on a
N, = 2562 = 65536 lattice. The solid line shows a fit of the functional form (5.35)
to the data, where the parameters C, = 0 and 3. = In 2 were kept fixed. The extent

of the curve indicates the window of data points included in the fit.

the logarithmic correction term, i.e., we enforce C, = 0. The resulting non-linear
four-parameter fit yields 5. = 0.56(24) and p = —2.4(33), which is consistent with
the exact result, but obviously not very useful. Thus, we additionally either fix the
critical coupling (3, at its exact value . = In2 and determine p from the fit, or we
fix p = 1/2 and determine .. The simulation results together with a fit with f.

fixed are shown in Fig. 5.8. The fit parameters are,

A, = —2.18(39),

B, = 2.37(27), (5.36)
p = 0.519(27),

Q = 0.12

indicating good agreement with the expected result p = 1/2. The other type of fit,
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i.e., with p = 1/2 fixed, yields,

A, = —2.38(13),
B, = 2.531(67),
B. = 0.6944(19),
Q = 0.12,

(5.37)

for the same set of simulation points, which should be compared to 8. = In2 ~ 0.693.

5.2.3 The F model on planar ¢* random graphs

While it is already rather non-trivial to resolve the Kosterlitz-Thouless nature of
the phase transition of the square-lattice F' model via MC simulations due to the
presence of logarithmic correction terms, an analysis of the F' model on planar
random ¢* graphs is additionally complicated by the strongly reduced linear extents
of the lattices resulting from their large fractal dimension. We performed simulations
of the combined system exclusively for lattices of spherical topology, i.e., planar
graphs, of sizes up to Ny, = 65536 sites. The graph geometry is being updated with
the combined (one- and two-) link-flip and minBU surgery dynamics described in
Chapter 3 and the loop algorithm of Section 4.2 is applied for the vertex model part.
Unless otherwise stated, all simulations were performed for the regular ensemble of
¢* graphs. A profiling analysis of the execution times of the simulation program
shows that more than half of the total run time is spent for finding the minimal
necks of the minBU surgery part. This procedure is much more time consuming, if
the problem is formulated in terms of the ¢* graphs, as it is when considering the
dynamical quadrangulations. The simulations were performed partly on the Cray
T3E 1200 of the “John von Neumann-Institute for Computing” (NIC) in Juelich (ca.
12000 CPU hours) and on the heterogeneous cluster of i386 PC’s of the Institute
for Theoretical Physics of the University of Leipzig (ca. 50 000 CPU hours) as well
as its 40 Athlon MP1800+ cluster computer “Hagrid” (ca. 60000 CPU hours).

The specific heat

As for the case of the square-lattice F' model, for the random graph case we find
no signal of a scaling of the specific heat. Instead, it exhibits a broad peak in the

low-temperature phase, which is found to be independent from the lattice size up
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Figure 5.9: Non-scaling of the specific heat of the F' model coupled to planar random
¢* graphs. The solid curves are line sections connecting the data points and are
drawn for illustrative purposes only. Note the much stronger shift of the peak
positions towards lower temperatures as compared to the square-lattice F' model of
Fig. 5.3.

to small finite-size corrections, cf. Fig. 5.9. Comparing Figs. 5.3 and 5.9, note that
this peak appears for much lower temperatures around (¢, ~ 1.2 for the ¢* random
graphs as compared to (¢, ~ 0.85 for the square-lattice model. This behaviour of
the specific heat is commonly considered as a first good indicator for the presence

of an infinite-order phase transition [236].

Location of the critical point

As for the square-lattice model, we determine the location of the KT point from the
scaling of the maxima of the staggered anti-ferroelectric polarizability, now defined
from the generalized polarization of Eqs. (4.39) or (4.40). Again, the peak locations
are expected to scale logarithmically to the true critical point; to leading order we
have,

By (Ny) = B. + Ag(In Ny) /e (5.38)
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Figure 5.10: Scaling of the peak locations of the polarizability of the F' model on
planar ¢* random graphs from MC simulations. The solid lines show fits of the
simple analytic form (5.38) to the simulation data, where p = 1/2 was kept fixed.

The ranges of the curves indicate the windows of included graph sizes Ns.

cf. Eq. (5.24). For the determination of the peak positions we made use of the
temperature-reweighting technique described in Appendix A.5. Note that the quoted
errors do not cover the potential bias induced by the reweighting procedure. We
performed simulations for graph sizes between Ny = 256 and N, = 25 000 sites, tak-
ing some 10% measurements after the systems had been equilibrated. Measurements
were taken after every tenth sweep of the combined link-flip and minBU surgery dy-
namics, confining the graphs to the reqular ensemble of Section 3.1. All statistical
errors were determined by the combined binning/jackknife techniques described in
Appendix A.3.

Figure 5.10 shows the FSS of the peak locations resulting from the simulations.
Comparing to the corresponding presentation for the square-lattice model, Fig. 5.4,
we first note that the accessible part of the scaling regime is strongly shifted towards
lower temperatures, being rather far away from the conjectured critical coupling
B =1n2 =~ 0.693. We start with fits of the simple form Eq. (5.38) without including

any correction terms. Additionally, we assume p = 1/2 here as in the square-lattice
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N2 min Be Ap Q
256 | 1.0011(18) | 2.049(77) | 0.00
512 | 0.9810(24) | 3.28(13) | 0.00
1024 | 0.9676(32) | 4.22(19) | 0.00
2048 | 0.9361(59) | 6.69(44) | 0.53
4096 | 0.9265(84) | 7.49(66) 0.82

Table 5.3: Parameters of fits of the analytic form (5.38) to the simulation data for
the peak locations of the staggered anti-ferroelectric polarizability of the F' model
on random ¢* graphs. The exponent p was kept fixed at the value p = 1/2 for the

fits. Here, Ny min denotes the minimum graph size included in the fit.

case, which has to be justified a posteriori by the thermal scaling analysis. Within
this scheme, the influence of correction terms is taken into account by successively
omitting lattice sizes from the small-/N, side. As can be seen from the fits of this
type presented in Fig. 5.10 and the corresponding fit parameters listed in Table 5.3,
this ansatz does not lead to good fits when the small lattices are included. The
fit with Nomin = 2048 yields a reasonable fit quality, resulting in an estimate of
B = 0.9361(59) for the critical coupling. However, in analogy with the square-
lattice case and guided by the matrix model conjecture, we interpret the slowly
decreasing values of . as more and more of the small-/Ny graphs sizes are excluded
from the fit as an indicator of a bad fit form for the considered graph sizes and
conclude that the resulting estimate for [, is still clearly too large. Thus, we revert

to fits including effective correction terms.

Adding the exponent p to the fit parameters amounts to a fit with an effective

exponent p as in Eq. (5.25), i.e.,
By (No) = Be + Ag(In Ny) =177, (5.39)

The parameters resulting from the corresponding non-linear three-parameter fits
are listed in Table 5.4(a) as a function of the minimum included graph size No min.
Obviously, the available accuracy of the data hardly allows such a non-linear fit,
which yields rather non-sensical results for small values of N pin. Additionally, we
find that the fit results for small N3 min partly depend on the choice of the starting
values for the fit parameters, i.e., that the fit routine gets stuck in local minima
of the y? distribution. Thus, at least the results for small Ny min cannot be taken
seriously. Only for the choices Njpin = 2048 and Ny pin = 4096 the fits yield
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(a) No min Be Ap 1/p Q
256 | —0.4 1.6 0.06 0.00
512 | —0.4 1.7 0.08 0.00
1024 | —0.2 1.6 0.1 0.00
2048 | 0.3(40) | 1.2(30) | 0.3(15) | 0.76
4096 | 0.83(58) | 1.7(62) | 1.0(31) | 0.69

(b) NQ,min Bc Aﬁ Bﬁ Q
256 | 0.856(11) | 42.6(27) | —2.737(10 0.13
512 | 0.823(18) | 49.3(53) 0.17

(10)
—2.774(22)
104) | —2.862(28) | 0.63
42.9(229) | —2.659(414) | 0.80

1024 | 0.758
2048 | 0.834(65

Table 5.4: (a) Parameter results of least-squares fits of the functional form (5.39) for
the FSS of the peak locations of the staggered polarizability of the /' model on ¢*
random graphs to the simulation data. p denotes an effective exponent and N min
symbolizes the minimum graph size included in the fits. (b) Parameter results of
linear three-parameter fits of the form (5.40) to the simulation data with more and

more of the small- N, data points omitted.

reasonable parameters, which are in principle in agreement with the expected value
B. = In2 for the critical coupling, but are endowed with statistical errors which are
far too large for the estimate to be of much practical use. As in the square-lattice
case, the result for the exponent p cannot be taken as a serious estimate for p, since

it incorporates correction terms in an effective way.

Since for the square-lattice case we found a linear fit incorporating an additive log-log
correction of the form

(5.40)

B Inln No
By (Ny) = B, + Ag(In Ny) ™2 [1+Bﬁ A ]

to be the best of the considered descriptions for the available finite-size data (and a
corresponding correction is found for the KT phase transition of the XY model on
regular lattices [211,240,241]), we also consider this fit for the random graph data.
This functional form fits the data rather well already for small values of Ny min, as can
be seen from the collection of fit parameters in Table 5.4(b). Nevertheless, the fits
still show some inherent instability as can be seen from the result for Ny i, = 1024,

where obviously a slightly different local minimum of the x? distribution is favoured
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Figure 5.11: Fits of the functional forms (5.40) resp. (5.39) with the constant fixed
to 8. = In2 =~ 0.693 to the simulation data for the peak locations of the staggered
polarizability of the random graph F' model.

over the minimum obtained for the other values of Nji,. However, the critical
coupling /3, estimated for, e.g., the Ny min = 2048 case is still noticeably larger than
the expected value of S, = In2. Nevertheless, it can be considered still marginally
consistent with the conjectured value, the deviation being about 2.2 times the quoted
standard error of the estimate. On the other hand, if we fiz the critical coupling at
the expected value In 2, reducing the number of fit parameters to two, we still get a

proper fit result of reasonable quality (), the parameters being,

Ag = 92.51(167),
By = —2.920(19), (5.41)
Q = 027,

where Ny pin = 2048 was chosen. This fit is shown in Fig. 5.11 to convince the
reader of our opinion that the simulation data are well compatible with the expected
asymptotic behaviour, the accuracy of the data and, especially, the reachable graph
sizes just being not sufficient to properly resolve the finite-size approach to criticality.
It should be noted that also the other type of fits presented here still yield good
quality-of-fits when fixing the parameter 3. at In2. For example, a fit of the form
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(5.39) to the data with Ny min = 2048 gives,

Ag = 1.071(81),
1/p = 0.541(35), (5.42)
Q = 0.84.

The corresponding curve is also shown in Fig. 5.11.

Universality of the critical coupling

One might be tempted to suspect that the observed rather large distances of the
finite-size positions of the polarizability maxima from the expected value 5. = In2 =~
0.693 are due to the fact that we use graphs of the regular ensemble, whereas the
matrix model calculations of Refs. [72, 73] naturally concern graphs of the singular
ensemble. Indeed, quite generally one does not expect the critical coupling of a model
of statistical mechanics to be universal. Instead, one finds that the location of the
transition points of problems such as percolation, Potts or O(n) models depends
on the type (e.g., the valency) of the considered lattice. Similarly, for the Ising
model coupled to dynamical polygonifications or the dual graphs, the location of
the observed third-order phase transition depends on whether one considers spins
located on the vertices of triangulations, quadrangulations, ¢* or ¢! graphs [34,49,
74]'3. Additionally, depending on the considered ensemble of graphs with respect
to the inclusion or exclusion of certain types of singular contributions as defined in
Section 3.1, one arrives at different values for the critical coupling [34,35,152, 248].
However, the situation is quite different for the case of the F' model coupled to
random lattices. As has been mentioned above in Section 5.1.2, in the matrix
model description of the problem, Eq. (5.6), the matrix potential becomes equivalent
to that of the O(2) model in the limit 4 = 0 [73]; according to Egs. (5.4) and
(5.17), this limit corresponds to the choice a/c = b/c = 1/2 or . = In2. Thus,
renormalizing the matrix model for restricted singular or regular ¢* graphs merely
changes the critical point acy; of Eq. (5.8), which takes on the rdle of the cosmological
constant in the grand-canonical ensemble. But the KT point still occurs for the

ratio a/c = b/c = 1/2 of coupling constants'*. This universality aspect is maybe

BHowever, it is found that the location of the critical point does not depend on the topology of

the lattices [146].
This universality can already be expected from the fact that the location of the critical point

is the same for the square-lattice and random ¢* graph models.
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Figure 5.12: Finite-size approach of the peak locations of the staggered polarizability
of the F model on ¢* random graphs of the singular and regular ensembles. The
solid lines show fits of the functional form (5.40) to the data. The lower limits in

Ny of the curves are identical to the choice of Ny min for the fits.

most strikingly demonstrated by the loop representations of the F' and O(2) models
as described in Section 5.1.2: the loop expansion of the F' model assigns curvature
dependent weights exp[iuI'(1)] to the loops on the ¢* graphs; for 4 = 0, the curvature
dependence disappears and one is left with the loop weights of the O(2) model.
Obviously, the structure of this construction does not depend on the detailed type of
the considered graphs, i.e., whether they do or do not contain singular contributions
such as self-energy and tadpole terms. Thus, the correspondence of the p = 0 point
of the F" model and the KT point is not influenced by lattice details, hence endowing

the critical coupling 5. = In 2 with an universality aspect.

We have not performed extensive simulations of graphs of the singular ensemble to
demonstrate this behaviour numerically. This is due to the fact that our implemen-
tation of the simulation scheme for the case of singular graphs is rather inefficient
since it does not incorporate the minBU surgery moves and, additionally, the “on-
line” updating of the dual lattice information used for the other ensembles cannot

be easily adapted to the case of singular graphs since it would entail a separate
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Figure 5.13: FSS of the square-root m of the mean square extent of the square-
lattice on a torus and planar ¢* random graphs at the peak positions of the polar-
izability of the coupled F' model. The solid lines show fits of the simple power-law
form m ~ N;/dh to the data. The range of the curves indicates the lattice sizes
included in the fit.

treatment of numerous special cases; thus, the dual lattice has to be constructed
anew for each measurement cycle. Hence, simulations for graphs of the singular
ensemble are by orders of magnitude less efficient for the considered graph sizes
than simulations of the other graph ensembles. Nevertheless, we performed some
simulations for smaller graph sizes and analyzed the FSS of the peak locations of the
staggered polarizability just as for the the case of regular graphs. The corresponding
FSS data are shown in Fig. 5.12 together with the results for regular graphs. A fit
of the log-log form Eq. (5.40) to the data including all five points from N, = 128 to
N5 = 2048 yields the following parameters,

B. = 0.76(19),

Ag = 114.9(364), (5.43)
Bs = —2.676(22),

Q = 0.95,

in agreement with the expectations. Note that from Fig. 5.12 the finite-size correc-
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Figure 5.14: Collapse of the FSS approach of the scaling of the peak locations of
the staggered anti-ferroelectric polarizability of the F' model on random ¢* graphs

(left scale) and on the square lattice (right scale).

tions for the singular graph case are much larger than those for the regular graph
model. This is in contrast to previous observations for the case of the Potts model
coupled to random triangulations [50] and the resulting common belief that the
inclusion of singular graph contributions reduces FSS effects, at least for the con-
sidered small lattice sizes. Exploratory simulations for the other graph ensembles
defined in Section 3.1 imply that the polarizability peak locations occur in the order
By (strict) < f, (regular) < g, (restricted singular) < f, (singular), at least for small

graph sizes.

As has been previously mentioned, the reason for the observed very slow approach
to the expected asymptotic behaviour lies in the double effect of the presence of
logarithmic corrections to scaling and the small linear extent of the highly fractal
lattices. In principle it should be possible to resolve the resulting scaling corrections
by including higher-order correction terms in the fit ansatze. However, it must
be admitted that, refraining from any artificial “good-will” tinkering with the fit
parameters, the accuracy of the present data is not sufficient for reliable multi-

parameter, possibly non-linear fits. The strength of this combined effect is nicely
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demonstrated numerically by the fact that the fits to the FSS of the polarizability
peak locations with /. fixed to its true value 5, = In2 shown in Fig. 5.11 come as
close as f8,(N;) = 0.7 to the critical value only for graph sizes Ny ~ 10° for the
form (5.40) or even Ny &~ 10°°% for the form (5.39). Instead of figuring out more
elaborate fits, we try to disentangle the two correction effects by a comparison to
the square-lattice model, where only the logarithmic corrections are present, but the
considered lattices are not fractal. For this purpose, we plot the polarizability peak
locations as a function of the square-root of the mean square extent of the considered
lattices as defined by Eq. (3.37), which is the relevant measure for the linear extent
of the graphs. The mean extents m scale very differently for the two types of
considered lattices as can be seen from Fig. 5.13. Here, the values for the square

lattices are exact up to machine precision. From the simple scaling ansatz
(r?) ~ N2, (5.44)

without considering any correction terms for the random graph case, we find d;, =
2.000(20) for the square lattice, the deviation stemming from discretisation effects for
the smallest lattices. For the case of ¢* random graphs the fit yields dj, = 3.336(11).
Note, however, that the result for d, is slowly increasing as more and more of
the small- N, lattices are excluded and we expect the true value of the Hausdorff
dimension to be somewhat larger, see Refs. [115,249,250] and Section 5.4.3 below.
From Fig. 5.13 one reads off that, in order to obtain results for the F' model at
comparable linear extents of the square and random lattices, one has to consider
rather small volumes for the square-lattice case. For the comparison we use L x L
square lattices with edge lengths L chosen such that the resulting mean square extent
comes as close as possible to the (r?) values for the ¢* random graphs of volumes

between Ny = 256 up to Ny = 8192, increasing in powers of two.

In Fig. 5.14 we present a comparison of the FSS approach of the peak locations of
the polarizability for the ¢* graph and square-lattice models plotted as a function
of the linear extent m of the lattices. Here, the abscissae of the plot have been
scaled such as to account for the difference in the overall correction amplitude, but
assuming the same value In2 for the offset. From the two simulation points near
v/ (r?) = 10 we find the ratio of the correction amplitudes as'®

BNy = 1024) — In 2
~ BN, =324) —In2

5These two simulation points have been chosen since there the difference in /(r2) between the

Ag 4.23, (5.45)

square and random lattices is minimal within the set of considered lattice sizes.
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where 37 denotes the peak position for the random ¢* graph model and f5! the
value for the square-lattice case. The thus achieved collapse of the FSS data is
obvious from Fig. 5.14. Consequently, we come to the clear conclusion that the larger
deviations of the peak locations for random graphs are simply due to an about four
times larger overall amplitude of the correction terms as compared to the square-
lattice model, the details of the FSS approach being otherwise surprisingly similar
between the two considered lattice types. Especially, the fact that for the ¢* graph
case the asymptotic value 3. = In 2 cannot be clearly resolved by the considered fits
to the data is an obvious consequence of the comparative smallness of the accessible
lattice sizes in terms of their effective linear extents m . To underline this finding,
we performed fits of the simple form (5.38) to the data for both types of lattices
(there are not enough data points for fits with correction terms), including sizes
starting from the points near 1/(r2) a2 10, which result in estimates 8, = 0.7554(18)
for the square lattice resp. 8. = 0.9416(89) for the random graphs. In terms of
the quoted statistical errors these are obviously both far away from the asymptotic
result. The deviation from S, = In2 is, however, just about four times larger for
the random graph case than for the square-lattice model, in agreement with the

previous discussion of the scaling collapse of Fig. 5.14.

Critical energy and specific heat

We note in passing that for the largest lattice we have simulated, i.e., for Ny = 65 536,
at f = . = In2 we find the following values of the internal energy and specific heat

per site,
U(B=1In2) = 0.333355(11),
Cy(B=In2) = 0.2137(12).

Comparing these results to the values (5.19) found analytically for the square-lattice

(5.46)

F model, we see that U(3 = In 2) is very close to the value 1/3 found for the square
lattice, whereas C\, (3 = In 2) is far away from the square-lattice result 28(In 2)%/45 ~
0.2989. On the basis of these results, we conjecture that the critical value of the
internal energy of the F' model is not affected by the coupling to random graphs,
while the critical specific heat is. Thus, as one would expect, the critical distribution
of vertex energies naturally changes its shape on moving from the square-lattice to
the random graph model, but, curiously, its mean is not shifted by this procedure.
Interestingly, this situation seems to be specific to the critical point . = In 2 of the

model, whereas for other inverse temperatures the square-lattice and random graph
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Figure 5.15: Temperature dependence of the internal energy U of the square-lattice
and random ¢* graph F' models. Simulations have been performed for a N, = 462 =
2116 square lattice and random graphs with Ny = 2048 sites. The lines drawn only
connect the data points.

energies diverge, see Fig. 5.15. This probably indicates the presence of an additional

symmetry common to the critical square-lattice and random graph models.

FSS of the polarizability

On coupling the vertex model to quantum gravity we expect a renormalization of the
critical exponents as prescribed by the KPZ/DDK framework described in Section
2.4. The work of KPZ/DDK [30-32] considers conformal minimal models with C' < 1
coupled to the Liouville field, however it should also marginally apply to the limiting
case C' = 1 of the model considered here. As described above in Section 2.4, the
critical exponents of the random graph model can be found from the KPZ formula
in terms of the conformal weights of the scaling operators of the theory. To find the

usual critical exponents from the weights, one assumes that the well-known scaling
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relations stay valid (see, e.g., Refs. [46,140]) and thus arrives at,

g = 1724
1—A,."
A
B = —I_PAE,
v = %, (5.47)
v = ﬁ

Here, A, denotes the weight of the energy operator and Ap symbolizes the weight
of the scaling operator corresponding to the spontaneous staggered polarization P,
which here takes on the role of the magnetization operator o of magnetic models.
As before, dj, is the internal Hausdorff dimension of the random graphs. For the
special case of an infinite-order phase transition considered here, the usual exponents
written above are not well-defined in the sense of describing power-law singularities,
as has been mentioned above. Especially, the energy operator does not carry a
conformal weight A, in the usual sense. However, the corresponding finite-size
scaling exponents, i.e.,

Bldyww = Ap,

5.48
"}//th = 1—2Ap, ( )

have a well-defined meaning in the sense of Egs. (5.27) and (5.31). Note that we
cannot solve for /v resp. v/v since the Hausdorff dimension of the graphs in the
presence of the vertex model is not known a priori. From the exponents 5/d,v = 1/4
and v/dv = 1/2 cited above for the square-lattice F' model, we find the correspond-

ing anti-ferroelectric “spin” operator to have conformal weight
Ap =1/4, (5.49)

leading to the intended critical exponents 3/d,v = 1/4 and v/dyv = 1/2 via Eq.
(5.48). Note that the weight Ap = 1/4 is different from the weight A, = 1/16 found
for the magnetization of the critical XY model in two dimensions, see e.g. Ref. [201].
For the present limiting case of conformal charge C' = 1, the KPZ formula (2.140)

reduces to the simple relation

A = VA, (5.50)
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such that one has Ap = 1/2 and the dressed critical exponents become

P

Bldw = Ap=1/2 (5.51)

v/dy = 1-2Ap =0,
implying a merely logarithmic singularity of the staggered polarizability'. Note,
that the dimension xp = 2Ap = 1/2 does not appear in the list of scaling dimensions
of the primary operators of the Coulomb gas, which are given by [58,196,201,251]

1 [/ ¢€? 5 9
%MZQG?+Rm>,@m:ihﬂww (5.52)

where R denotes the compactification radius and is given by R = 1/2 for the square-
lattice F' model [73], in contrast to R = 2 for the two-dimensional XY model [201]
(the lowest present vortex operator has m = +4, see below). This fact, however,
should not be taken too seriously, since it has been observed that the identification
of operators of the Gaussian line of fixed points (i.e., the Coulomb gas) and of the
corresponding 8-vertex model (resp. its critical version, the 6-vertex model) is a
rather delicate task, which cannot be reduced to reading off the dimensions from
Eq. (5.52) [252-255]. As far as the application of the KPZ formula for the prediction
of the “dressed” exponents is concerned, one should additionally keep in mind that,
although the Coulomb gas picture in principle survives the transformation to a ran-
dom graph model, one has always the possibility of additional differences between
the regular and random graph models with respect to the spectrum of operators
actually realized (i.e., having non-vanishing amplitude)'”. One rather obvious dif-
ference between both models is that for the square-lattice case the lowest vortex (or
magnetic) operator with non-vanishing amplitude is that with vorticity m = +4,
corresponding to an insertion of a vertex of type 7 resp. 8. On a random graph,
vortices with smaller vorticity can be realized due to the irregularity of the faces [73].
However, this is not important for the considered case of the F' model, since there

the fugacity of all vortices is strictly zero (d = 0).

For a numerical check of the exponents conjectured by the KPZ formula, there are
the two principal possibilities of considering the F'SS of the staggered polarizability
at its maxima for the finite graphs or at the fixed asymptotic transition coupling

Be = In2. While in the asymptotic regime both approaches are expected to lead to

16Tn the following we will drop the tilde (7) from the dressed exponents to improve readability.
7Note that there are even different opinions about whether the KPZ scheme should be applied

at all for the case of the XY model coupled to random lattices, see Refs. [45,256].
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(a) N2 min Ay v/dnv Q
256 | 0.9110(41) | 0.7255(7) | 0.00
512 | 1.0582(78) | 0.7048(11) | 0.00
1024 | 1.238(16) | 0.6853(17) | 0.00
2048 | 1.581(44) | 0.6575(32) | 0.00
4096 | 1.864(87) | 0.6395(52) | 0.15
(B) | Nomin Ay v/dpv w Q
256 | 0.1975(97) | 0.4749(31) | 1.698(55) | 0.00
512 | 0.116(14) | 0.406(16) | 2.22(12) | 0.00
1024 | 0.039(12) | 0.281(37) | 3.24(30) | 0.24
2048 | 0.047(37) | 0.301(79) | 3.07(68) | 0.16

Table 5.5: Results of fits of the functional form (5.53) to the simulation data for the
peak values of the staggered polarizability of the F' model on random ¢* graphs. (a)
Fits with the effective correction exponent fixed at w = 0, i.e., fits without correction

term. (b) Fits including w as an additional fit parameter.

identical results, this is not at all obvious in the presence of large, not completely
controlled correction effects for the accessible graph sizes. In both cases, we start
from an FSS form including a leading effective correction term as in the square-
lattice case, namely,

X(No) = A N (In Ny, (5.53)

where x(N,) is taken to be either the peak value as a function of 3 or the value
at B = (. = In2. We consider the peak value case first, taking the simulation
results for the graph sizes quoted in the previous section for the determination
of the critical coupling, i.e., Ny = 256,...,25000. Omitting the correction term,
i.e., forcing w = 0, and trying to control the effect of corrections to scaling by
successively omitting data points from the small-N; side, results in quite poor fits
with an exponent estimate /d,v &~ 0.7 steadily decreasing with increasing lower
cut-off Ny i, cf. Table 5.5(a). Allowing the effective correction exponent w to vary,
the resulting leading exponent estimate v/dv is considerably reduced, still showing
a tendency to decline as No min increased, cf. Table 5.5(b). However, the fit quality
is still not very good and the resulting exponent estimate for, e.g., Nomin = 2048,
v/dpv = 0.301(79) is not consistent in terms of the statistical error with the purely
logarithmic singularity expected from the KPZ/DDK prediction. Figure 5.16 shows
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Figure 5.16: FSS of the peak values of the staggered polarizability of the random-
graph ' model together with a fit to the functional form (5.53) including the points
with N2 2 NQ’min = 2048.

the simulation data for the peak heights together with this last fit.

For the data at fixed coupling 5. = In 2 simulations up to slightly larger graph sizes
could be performed since no reweighting analysis is necessary there. Hence, results
are available for graph sizes between Ny = 256 and Ny, = 32 768 sites, increasing by
powers of two. Again, the functional form (5.53) is fit to the resulting finite-size data
for the polarizability at f = In 2. For the constrained fits with w = 0 we do not find
a quality-of-fit of at least 10=2 for Ny min up to 4096 and thus do not consider this
form further. The parameters of fits including the logarithmic term are collected in
Table 5.6. Note that the fact that the data scale at all cannot in itself be taken as
an indirect justification of the claim that §. = In2 is the critical coupling since, as
mentioned several times, the whole high-temperature phase of the model is critical
and thus shows scaling behaviour. As is obvious from Table 5.6, the functional form
including a logarithmic correction fits the data rather well already for quite small
values of No min, leading to exponent estimates /d,v at least marginally compatible
with the conjecture v/d,v = 0 in terms of the quoted statistical errors. In fact, if

we assume a purely logarithmic increase of x(Ny), i.e., if we fix v/d,v = 0, the data
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N3 min A, v/dpv w Q
256 | 0.491(19) | 0.0194(55) | 2.117(40) | 0.66
512 | 0.543(42) | 0.0304(91) | 2.026(72) | 0.91
1024 | 0.569(75) | 0.035(14) 1.98(12) | 0.85

Table 5.6: Parameters resulting from fits of the functional form (5.53) to the simu-
lation data for the staggered polarizability at § = . = In 2 of the random-graph F'

model as a function of the minimum graph size Ny i, included in the fit.

yield good-quality fits for Ny pmin 2 512; for Ny pmin = 2048 the parameters of this

purely logarithmic fit are

A, = 0.3960(96),
w = 2.295(11), (5.54)
Q = 0.39.

The simulation data at f = In2 together with this last fit are shown in Fig. 5.17.
Note that for the peak height data discussed before, such a purely logarithmic fit is
not possible with acceptable values of (). To enable a somewhat better judgement
of the observed discrepancy between the scaling at the peak maxima and at the
asymptotic critical coupling for the random graph model, we shortly consider the
same two lines for the square-lattice model, using a range of lattice sizes comparable
to that of the random graph case in terms of the effective linear extents as it has
been discussed in the previous section. Fitting the functional form (5.6) to these
two data sets, we find ~v/d,v = 0.475(46) for the scaling at 5 = In 2 also considered
above, but an estimate of v/d,v = 0.598(36) from the scaling of the peak values of
x- Thus, also for the square-lattice model, the scaling of the peak values yields an
exponent estimate lying off the expected result (y/d,v = 1/2 in this case), while
fits at the critical coupling are in good agreement with the expectations. However,
this effect is much less pronounced for the regular-lattice model and, in fact, at
the given level of accuracy at the verge of statistical significance. This observation,
on the other hand, fits well into the general picture drawn in the context of the
scaling of the polarizability peak positions above, implying a general enhancement
of correction amplitudes on moving from the regular lattice to the random-graph

model.
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Figure 5.17: Finite-size simulation data of the polarizability of the F' model on
random ¢* graphs at the asymptotic critical coupling 3. = In2. The solid curve
shows a fit of the form (5.53) to the data, where ~/d,v = 0 was kept fixed.

FSS of the spontaneous polarization

For the scaling of the spontaneous polarization the situation is found to be very
similar to the above discussed case of the polarizability. Hence, we do not present
the results in such detail as for the latter observable. We assume the same FSS form

as in the square—lattice case, i.e.,
0 2 PyiV2 n 2) ) ( : )

where, again, Py(N3) is taken to be either the value at the peak position of the po-
larizability or, alternatively, the result at the asymptotic critical coupling 5, = In 2.
Fits without the logarithmic correction term show unacceptable quality throughout
the whole region of choices of the cut-off N 1,i, and are thus not explicitly presented
here. Table 5.7(a) shows the parameters resulting from fits of the functional form
(5.55) to the spontaneous polarization at the peak positions of the polarizability. For
all choices of Ny i, shown in Table 5.7(a) the quality-of-fit parameter () assumes

values below 1072, This, however, seems not to be due to a principally bad choice
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(@) | Nomin Ap, B/dnv w Q
256 | 1.031(17) | 0.1378(24) | 0.468(17) | 0.00
512 | 0.850(32) | 0.1615(4) | 0.653(37) | 0.00
(
1

1024 | 0.681(58) | 0.1855(96) | 0.853(78) | 0.00

2048 | 2.15(42) | 0.076(20) | 0.12(17) | 0.00

4096 | 1.46(109) | 0.064(40) | 0.23(37 0.00
(b) | Namin Ap, B/dpv w Q
256 | 1.583(35) | 0.4633(30) | 0.726(22) | 0.74
512 | 1.658(68) | 0.4581(50) | 0.684(39) | 0.91
1024 | 1.58(11) | 0.4633(79) | 0.728(64) | 0.98
2048 | 1.48(23) | 0.469(15) | 0.779(134) | 1.00

Table 5.7: Parameters resulting from fits of the form (5.55) to the finite-graph
spontaneous polarization at (a) the peak position of the staggered polarizability

and (b) the infinite-volume critical coupling 5, = In 2.

of the functional form of the fit, but rather is the effect of one or two outliers, which
are rather far away from the fitted curve in terms of their statistical error. Apart
from pure chance, a plausible explanation for this finding is the presence of system-
atic reweighting errors (bias) which are much more important for the spontaneous
polarization than they were for the polarizability due to the much smaller statistical
errors. The situation is illustrated by the plot of such a fit in Fig. 5.18. As far as
the results for the exponent (/d,v are concerned, as a function of Ny ,;, we observe
two regions corresponding to two different local minima of the y? distribution; the
jump between both minima occurs for Nomin = 2048, cf. Table 5.7(a). At least for
the minimum corresponding to the smaller values of Nomin, the results for 3/d,v
are slowly increasing as a function of Ny i, but are still far away from the value
f/dpv = 1/2 conjectured within the KPZ/DDK framework discussed above. Again,
an analysis of the FSS of the spontaneous polarization at the polarizability peak po-
sitions for the square-lattice model reveals a similar behaviour for comparable graph
sizes in terms of the effective linear extent, however with the size of the deviations

from the expected result being much smaller.

Table 5.7(b) shows the parameters resulting from least-squares fits of Eq. (5.55) to
the simulation data at the fixed coupling # = . = In2. The overall quality of the

fits is much better than for the data at the polarizability peak locations discussed
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Figure 5.18: Scaling of the finite-size spontaneous polarization of the random-graph
F model at the peak locations (3, (N2) of the polarizability. The curve shows a fit
of the functional form (5.55) to the data, including all graph sizes starting from
Nopmin = 2048.

before. This is at least partially due to the fact that for the results at fixed coupling
no bias effects induced by a reweighting procedure are present since the simulations
were performed directly at 5 = In2. We do not observe a clear overall drift of the
exponent estimate /d,v resulting from the fits as a function of the cut-off Ny i,
and the quality-of-fit is found to be exceptionally high already for small values of
N min, cf. Table 5.7(b). Figure 5.19 shows the simulation data at § = In 2 together
with the fit corresponding to Nomin = 2048. The fits yield values for 3/d,v close
to the expected result §/d,v = 1/2. The result for Ny i, = 2048 is consistent with
the KPZ/DDK conjecture within about two times the quoted standard deviation.

Thermal scaling

In order to extract information about the critical exponent p and possibly to find
additional evidence for the location of the critical point, we try to perform a ther-

mal scaling analysis and consider the dependence of the staggered anti-ferroelectric
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Figure 5.19: Scaling of the spontaneous polarization of the F' model on ¢* random
graphs at the asymptotic critical coupling . = In 2 and a fit of the functional form

(5.55) to the data, including graph sizes starting from N i, = 2048 (solid curve).

polarizability on the inverse temperature /3 in the vicinity of the critical point. Since
the high-temperature phase of the F' model coupled to ¢* random graphs is expected
to be critical as for the case of the square-lattice F' model, such a scaling analysis
has to be performed on the low-temperature side of the polarizability peak. Figure
5.20 shows a survey of the thermal and FSS scaling properties of the staggered po-
larizability of the random graph F model. As for the square-lattice model (cf. Fig.
5.7), we find scaling throughout the high-temperature phase to the left of the peaks.
However, the contrast of a non-scaling polarizability in the low-temperature phase
cannot be demonstrated here as easily as for the regular lattice model. Due to the
exponential slowing down of the link-flip and minBU surgery dynamics of the ¢*
graphs above . to be discussed in Section 5.3 below, simulations cannot proceed
arbitrarily deep into the ordered phase. Comparing the regions to the right of the
peaks of Figs. 5.7 and 5.20, we see that the finite-size effects in the low-temperature
phase are extremely strong for the random graph model, much stronger than for
the square-lattice case. Thus, up to the inverse temperature § = 1.4 shown in Fig.

5.20, there is no sign of a convergence of the curves for different lattice sizes as it is
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Figure 5.20: Scaling of the polarizability peaks of the F' model on planar ¢* random
graphs from Monte Carlo simulations. The lines are drawn for illustrative purposes

only.

already found for 8 ~ 0.8 in Fig. 5.7. This effect is, again, attributed to the relative
smallness of the linear extents of the random graphs as compared to those of the

square lattice.

The requirements of a proper thermal scaling analysis of the polarizability resulting
from these observations are almost impossible to fulfil: one has to keep enough dis-
tance from the critical point for the linear extent of the graph to be large compared
to the correlation length of the matter part to keep finite-size effects under control
and, on the other hand, one should not proceed too deep into the ordered phase
such as not to leave the thermal scaling region in the vicinity of the critical point.
Thus, one would have to go to huge graph sizes to get rid of these constraints to a
practically acceptable extent. Nevertheless, we attempt a thermal scaling analysis
of the polarizability from simulations of graphs of size N, = 30000 with inverse tem-
peratures ranging from § = 0.9 up to § = 1.6 taking about 800 000 measurements
at each . The expected scaling form is given by Eq. (5.35), i.e.,

lnX(B) ~ Ax + BX(B - Bc)ipa (556)
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which should hold for 5 — 8} as Ny — 0o and where logarithmic corrections have
already been omitted. We find it impossible to reliably fit all four of the parameters
involved in Eq. (5.56) to the available data. Varying the starting values we find a
multitude of local minima of the y? distribution, such that virtually any result can
be “found” for . and p in this way. Fixing one or the other of both parameters
at the expected values . = In2 resp. p = 1/2, the fits become more stable. The
dependency on the range of included values of g is found to be rather small and for

B > 1.25 we arrive at the following fit parameters,

A, = —101(4662),

B, = 106(4662), (5.57)
p = 0.02(103),

@ = 0.03,

for [, fixed at In 2 resp.

A, = —86(1083),

B, = 324(5744), (5.58)
Be = —11(147),
Q@ = 0.04,

with p fixed at 1/2. Obviously both fits are not very useful, such that we are finally
forced to fix both parameters at their expected values to find,

A, = 0.91(41),
B, = 4.20(33), (5.59)
Q = 0.03.

This fit is shown in Fig. 5.21 together with the simulation data. Thus, the best
we can conclude about the thermal scaling behaviour of the polarizability of the F'
model coupled to ¢* random graphs is that there is no obvious contradiction with
the expectations concerning the parameters 3. and p. However, in view of the fact
that already for the regular lattice model thermal scaling fits were not at all easily

possible, this finding is probably not a too astonishing one.

Long-range order

To complete the picture, we try to visualize graphically how the anti-ferroelectric
order parameter, i.e., the staggered polarization, changes on passing from the dis-

ordered high-temperature to the ordered low-temperature phase. For this purpose
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Figure 5.21: Thermal scaling of the polarizability of the random graph F' model for
graphs with Ny = 30000 sites. The curve shows a fit of the function (5.56) to the
data, where 5, =In2 and p = 1/2 have been kept fixed.

we use the graph embedding and 3D visualization scheme described in Appendix B,
which yields 3D computer graphics of an embedding of the dynamical polygonifica-
tions into three-dimensional Euclidean space without edge crossings. For the case of
¢* graphs and the corresponding quadrangulations considered here, the square faces
are divided into two triangular parts for technical reasons. To visualize the local
value of the order parameter we use the “plaquette spin” representation defined in
Section 4.3.2, where to each face of the ¢* graph a scalar variable is attributed,
which represents the integral over the arrow directions around the face with respect
to the reference direction defined by the two-colouring of the faces of the graph. In
the language of polygonifications this corresponds to scalar “spin” variables residing
on the sites of the quadrangulation. These variables we symbolize with colours,
positive “spins” being drawn in red and negative “spins” in blue. The faces of the
quadrangulations are filled with colour gradients interpolating between the colours
of the quadrangulation sites. In this way a smooth impression of the local behaviour

of the order parameter can be created.

Figures 5.22 and 5.23 show the outcome of such a visualization attempt starting
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Figure 5.22: Configuration snapshots of the F' model coupled to ¢* random graphs
at 5 = 0.4 (a) and 8 = 0.75 (b). Depicted is the dual quadrangulation with each
square face divided into two triangles. Red and blue regions denote positive and

negative values of the “plaquette spins” defined in Section 4.3.2.
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Figure 5.23: Configuration snapshots of the F' model coupled to ¢* random graphs
at f = 0.8 (a) and f = 0.9 (b). Depicted is the dual quadrangulation with each
square face divided into two triangles. Red and blue regions denote positive and

negative values of the “plaquette spins” defined in Section 4.3.2.
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from ¢* graphs with N, = 1000 sites. Figure 5.22 shows configuration snapshots of
the high-temperature phase and the vicinity of the critical point §. = In 2, whereas
Fig. 5.23 represents configurations for inverse temperatures, which in the thermo-
dynamic limit belong to the low-temperature phase. Obviously, as the temperature
is decreased from the high-temperature phase, the snapshots show the expected or-
dering behaviour with patches of equal “spin” orientations of all sizes around the
critical point and a clear long-range ordering in the low-temperature phase. Note
that the presented snapshots also give a good impression of the overall variation
of the extent and fractal structure of the graphs during the link-flip and surgery
updating process, which to most of the extent visible from Figs. 5.22 and 5.23 is
independent from the variation of the inverse temperature 5 and would be seen for

different snapshots at the same temperature in quite the same way.

5.3 Dynamical Scaling and Autocorrelation Times

The dynamical behaviour of the graph-update dynamics for the case of pure Eu-
clidean quantum gravity has been studied in Section 3.5. For the two cases of the
purely local (one- and two) link-flip update and the combined dynamics of link-
flip and minBU surgery moves the dynamical critical exponents z(,2)/d; belonging
to the integrated autocorrelation time of the mean square extent have been deter-
mined. Coupling a spin model to the dynamical graphs introduces an additional
type of updates related to the matter variables (i.e., the loop algorithm for the case
of the vertex model). Since both types of variables fluctuate on the same time scale
(annealed disorder), the coupling of the geometry and matter subsystems naturally
induces changes in the dynamical behaviour of both kinds of observables, those re-
lated to geometry (such as the mean square extent) and those referring to the matter

degrees of freedom (such as the energy and polarization of the vertex model).

In this section, dynamical scaling analyses will be presented for the purely local and
the combined link-flip/surgery updating schemes at the asymptotic critical coupling
B. = In2 of the model. An analysis of the behaviour at the pseudo-critical points
of systems of finite size is not easily possible since the reweighting scheme does
not properly transform the autocorrelations of the involved time series. This is
obvious from the fact that these temporal correlations are not themselves described
by the Boltzmann distribution of the model, which only covers the static, equilibrium

properties of the system. Additionally, some attention will be paid to the dynamical
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behaviour of the considered updates beyond the KT point in the high- and low-

temperature phases.

5.3.1 Local update

As has been mentioned above in Section 3.5, the mean square extent of the ran-
dom graphs is generically found to constitute the slowest mode of relaxation of the
geometric sector of the theory. Thus, for the geometric part we again concentrate
on this observable, defined as described in Section 3.5.1. Among the observables of
the coupled F model we consider the internal energy of Eq. (4.1) and the staggered
anti-ferroelectric polarization defined by (4.39) resp. (4.40). For the determination of
the dynamical critical exponent zo/dp = zint,0/dp, of the observable O the following

functional form is fitted to the the finite-size results,
Tint (O) = Ao N3O/, (5.60)

i.e., no correction terms are taken into account in this exploratory study. From the
usual universality arguments, the exponents zp/d; are not expected to depend on
the ensemble of graphs considered. On the other hand, in contrast to the case of
dynamical exponents associated to the exponential autocorrelation times, zo/dp, in
general can depend on the considered observable O [169]. As for the case of the pure
polygonifications model, local (one- and two-) link-flip simulations were performed
for graph sizes Ny between 64 and 4096 sites, where the number of measurements
was increased with N,, ranging between 50000 and 300000 samples. As for all
simulations of random graph models presented in this thesis, measurements were
taken every ten sweeps of the respective graph update under consideration. The
loop-cluster update of the vertex model part, on the other hand, was performed
only once per measurement, since the dynamics of the loop-cluster update is found
to be much faster than that of the graph-related updates.

Table 5.8 shows the integrated autocorrelation times 7in(r?) corresponding to the
mean square extent of graphs of the strict, regular and restricted singular ensembles
coupled to the F' model. The simulations were performed at the asymptotic critical
coupling . = In 2. Simulations for the singular ensemble have not been performed
due to the computational inefficiency of the update for this ensemble, which has
been mentioned several times. As for the case of pure dynamical polygonifications

analyzed in Section 3.5.1, we find clearly larger autocorrelation times for graphs of
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Ny strict regular restr. sing.
64 || 3.78(76) 2.03(56) 2.96(64)
128 || 6.40(135) | 4.32(120) | 4.44(60)
256 || 8.86(59) 6.34(87) 7.51(75)
512 || 14.6(17) 10.3(11) 12.04(90)
1024 || 24.8(34) 17.7(16) 18.0(11)
2048 || 38.8(64) 27.6(34) 29.5(39)
4096 || 58.7(73) 47.6(61) 44.8(56)

Table 5.8: Critical integrated autocorrelation times 7i (7?) of the mean square extent
(r?) for the local link-flip dynamics of planar random ¢* graphs of the strict, regular
and restricted singular ensembles coupled to the F' model. The autocorrelation
times are given in units of ten sweeps of flip moves. They were evaluated using the
direct integration method for the normalized autocorrelation function described in
Appendix A.4. The results from the combined binning/jackknife technique agree

with those quoted within the estimated statistical errors.

the strict ensemble than for graphs of the other two ensembles, but no dramatic
difference between the regular and restricted singular cases. Also, independent from
the considered ensemble, coupling the vertex model to the random graphs strongly
increases the autocorrelations between successive measurements of the mean square
extent, indicating a strong reaction of the coupled matter back onto the graph
geometry, cf. Table 3.2 and Fig. 5.24. On the configuration level, these enlargement
of autocorrelation times can be traced back to the ice-rule restriction of the vertex
model, which leads to a strong reduction of the flip-move acceptance rate. Figure
5.25 shows FSS plots of the autocorrelation times of the mean square extent for the
strict, regular and restricted singular ensembles. For the fits of the power-law form
(5.60) to the data, the graph sizes No = 64 and N, = 128 were omitted since there
clear deviations from linearity can be recognized from the logarithmic plots of Fig.

5.25. For graphs of the strict ensemble we find,

A2 = 0.194(56),
Zp2/dy, = 0.691(45),
Q = 0.95.

(5.61)
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Figure 5.24: Comparison of the critical integrated autocorrelation times Tint(TQ)
of (one- and two-) link-flip simulations of pure ¢* random graphs of the regular
ensemble and the same graphs coupled to the F' model. The times are given in units
of ten sweeps of link flips. The lines show fits of the functional form (5.60) to the
data.

The case of reqular graphs yields the following fit parameters,

A = 0.114(46),
z2/dy, = 0.724(58), (5.62)
Q = 0.98,

whereas for the restricted singular ensemble of graphs we arrive at

A2 = 0.218(73),
e /dy = 0.640(50), (5.63)
Q = 0.97.

Obviously, the dynamical critical exponents found for the different graph ensembles
are statistically consistent with each other as expected from universality, cf. Section
3.5. Comparing these results to the fit parameters found in Section 3.5.1 for the

pure polygonifications model, we find an overall increase of z,2/d, from z,2/dj, =~ 0.6
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Figure 5.25: Critical integrated autocorrelation times Tint(TQ) of the mean square ex-
tent of local (one- and two-) link-flip simulations of ¢* random graphs of the strict,
regular and restricted singular ensembles coupled to the F' model. The autocorre-
lation times are given in units of ten sweeps of link flips. The solid lines show fits
of the power-law form (5.60) to the data.

to z,2/d =~ 0.7, reflecting the effect of the ice-rule restriction of the vertex model

on the link-flip graph dynamics.

As far as the autocorrelations of the matter-related observables are concerned, we
find almost no size dependence of 7, (E), i.e., the integrated autocorrelation time
associated with the internal energy of the vertex model. This is illustrated in Fig.
5.26, which also shows that the values for 7, (F) are only very slightly above the
theoretical minimum of 1/2, cf. Eq. (A.16). The same effect has been observed
for simulations of the F' model on the square lattice via the loop algorithm and
other cluster algorithms, cf. Refs. [174,257]. There, this effect is attributed to the
sub-lattice structure of the anti-ferroelectric model. For the square lattice, one can
easily define sub-lattice energies associated with the vertex configurations on the two
square sub-lattices. These are found to exhibit temporal correlations for different
considered updates, however with a strong anti-correlation between the two sub-

lattice energies induced by the ice-rule constraint [174,257]. Thus, for the total
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Figure 5.26: FSS plot of the critical integrated autocorrelation times 7, (E) of the
internal energy of local link-flip simulations of ¢* random graphs of the regular
ensemble coupled to the F' model. The autocorrelation times are given in units of

ten sweeps of link flips.

energy significant temporal correlations are expected to show up only for extremely
large lattices. For the case of ¢* random graphs, on the other hand, sub-lattice
energies cannot be easily defined since the graphs are not bipartite (although their
duals are). Hence, we do not further consider the energy-related observables here,
but concentrate on the spontaneous staggered polarization FP,. Figure 5.27 depicts
the FSS of the integrated autocorrelation times 7, (Fy) at 5 = 5. = In2 for graphs
of the strict, regular and restricted singular ensembles. Fits of the power-law form

(5.60) to the finite-size data yield the following parameters,
Ap, = 0.205(54),

0

zpy/dr, = 0.190(28), (5.64)
Q = 0.86,
for graphs of the strict ensemble,
Ap, = 0.320(58),
zpy/dr, = 0.155(27), (5.65)
Q = 0388,
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Figure 5.27: Finite-size scaling of the critical integrated autocorrelation times of the
spontaneous staggered polarization of the F' model on planar ¢* random graphs of
the strict, regular and restricted singular ensembles from MC simulations with the
local link-flip dynamics. The solid lines show power-law fits according to Eq. (5.60)
to the data.

for the case of the regular ensemble and

Ap, = 0.281(55),
2py/dn = 0.173(29), (5.66)
Q = 085,

for simulations in the restricted singular ensemble. Here, the points corresponding
to Ny = 64 and N, = 128 have been omitted from the fits to accommodate for their
apparent deviation from linearity (in the log-log plot). Again, the estimates of zp, /d},
are consistent between the different graph ensembles, the remaining deviations indi-
cating the size of the corrections to the leading scaling behaviour. Comparing zp, /dp,
to the exponent z,2/d, found for the mean square extent, however, we find a large
disagreement of the dynamical exponents associated with both types of variables,
which is, however, not unexpected for dynamical critical exponents defined from

integrated autocorrelation times, see the discussion above in Section 3.5.1.
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An overview of autocorrelation times off the critical point is given in Fig. 5.28, where
a temperature scan of Tin(r?), i (E) and Tin(Pp) is shown for the case of regular
graphs. For all of the high-temperature regime § < . = In2 we expect scaling
since the corresponding phase is critical. The absolute values of the autocorrelation
times of the matter-related observables, however, decrease largely as one moves
further into the disordered phase, such that for the practical purposes considered
here autocorrelations become less and less important in this regime. For f > In2,
on the other hand, we find a systematic increase of autocorrelation times of differing
intensity. The autocorrelations of the mean square extent increase only quite slowly
(albeit starting from a high level) and 7, (E) starts to significantly exceed its trivial
value &~ 1/2 as f is increased above (.. On the other hand, 7, (Fp) explodes
exponentially above f = In2 (mind the logarithmic scale of the abscissa in Fig.
5.28). This reflects the ergodicity breaking of the dynamics between the two anti-
ferroelectrically ordered states in the low-temperature phase of the model. Once
again, on the configuration level it is obvious how the dynamical properties of the
vertex model part act back onto the graph dynamics: to the extent that vertices
of types a and b disappear from the configurations due to the suppression of their
Boltzmann weights as 3 is increased above ., the acceptance rate of the link-flip
moves is reduced, thus slowing down the relaxation of, e.g., the mean square extent.
In fact, it is easy to see that the acceptance rate of the link-flip moves vanishes as
g — 0.

5.3.2 Surgery update

The combined link-flip and minBU surgery dynamics utilized for the main part of
the F' model simulations has only been implemented for the case of the reqular
ensemble of ¢* graphs, cf. Section 3.5.2. For all simulations presented, link-flip
and surgery updates were mixed at a ratio of three to one, such that a sweep now
denotes No/4 attempted surgery moves and 3N,/4 one- and two-link flip updates.
Again, loop-cluster updates of the vertex model part were performed only once per
measurement due to the much higher efficiency of this cluster update as compared
to the graph update. For the determination of autocorrelation times, simulations
at f = B, = In2 were performed for graphs between Ny = 64 and N, = 8192 sites,
taking between 50 000 and 300 000 measurements after equilibration and increasing

the length of the time series with the number of sites. As for the local update, the
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Figure 5.28: Temperature scan of the integrated autocorrelation times of the internal
energy, the spontaneous staggered polarization and the mean square extent of link-
flip simulations of the F' model on ¢* random graphs of the regular ensemble. The
presented data correspond to graphs with Ny = 2048 sites. Note the logarithmic
scale of the abscissa.

simple power-law form (5.60) was fitted to the finite-size data in order to extract

the dynamical critical exponents.

Figure 5.29 shows the autocorrelation times for the mean square extent of the graphs
as compared to the results for the purely local link-flip update. From the power-law
fit (5.60) to the data, again omitting the results for Ny = 64 and N, = 128, we find
the parameters
A,: = 0.0097(24),
zp2/dp, = 0.863(33), (5.67)
QR = 0.86.

Thus, in agreement with the case of pure graphs considered in Section 3.5.2, com-
pared to the purely local update we find a considerable reduction in the overall size
of autocorrelations and thus the scaling amplitude, but no reduction of the dynam-
ical critical exponent z.2/d,. Instead, the exponent found for the global update

marginally agrees with that found for the local update above, with a tendency to
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Figure 5.29: Autocorrelation times 7y, (r?) at 8 = In2 of the mean square extent of
¢* random graphs coupled to the F' model resulting from simulations utilizing the
combined, “global” link-flip and surgery move dynamics. The results for the purely
local link-flip update are shown for comparison. The lines show fits of the power-law

Eq. (5.60) to the data. The times are given in units of ten sweeps of graph updates.

be even larger. This last fact, however, only hints at the size of the present system-
atic errors (i.e., corrections to scaling), since obviously the additional application of
surgery moves can asymptotically only decrease the value of z/d; or leave it con-
stant. As a rule of thumb for the considered graph sizes, at 5. = In 2 the combined
link-flip and surgery update reduces the autocorrelation time of the mean square

extent to about a fifth of the value for the purely local update'®.

Considering the matter-related observables, the energy is again found to lack any
sign of critical slowing down at § = In2. The integrated autocorrelation times
of the spontaneous polarization are collected in Table 5.9 in comparison to those
of the local update simulations for the case of regular graphs. This comparison is
additionally illustrated by the FSS plot of Fig. 5.30. The power-law fit (5.60) applied

18Note, however, that the local link-flip dynamics is about three times faster than the combined
“global” update in terms of computer time.
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Ny local global

64 || 0.692(41) | 0.605(14
128 || 0.774(45) | 0.631(15
256 || 0.760(34) | 0.652(23
512 || 0.841(77) | 0.666(17
1024 || 0.905(52) | 0.687(22

) (
) (
(

2048 || 1.091(91) | 0.762(36
4096 || 1.160 0.901(47

)
)
)
)
)
)
)
8192 1.050(58)

Table 5.9: Integrated autocorrelation times of the spontaneous staggered polariza-
tion of the random graph F' model from “local” simulations (link-flip moves only)
and from “global” simulations (combined link-flip and surgery move dynamics) at
B = B, = In2. The times are given in units of ten sweeps of link-flip or combined
link-flip/surgery moves. Both types of simulations were restricted to the regular

ensemble of graphs.

to the range Ny = 512,...,8192 yields the following fit parameters,

Ap, = 0.249(31),
2p/dn = 0.153(17), (5.68)
Q = 0.27.

Again comparing to the result for the purely local dynamics discussed in the previous
section, we find no significant change of the dynamical critical exponent. In fact, the
measured autocorrelation times at § = In 2 are still so close to the lower bound of 1/2
that even in the amplitude no differences between the two updates can be detected'?.
However, considering the exponential increase of 73, (Py) above f = In2, we find an
appreciable reduction of autocorrelations by the application of the combined link-
flip and surgery update, cf. Fig. 5.31. For the shown example of Ny = 4096, the
autocorrelation times for the purely local update are about four times larger than
those for the combined, global dynamics. This is of some importance since, as has
been discussed above in Section 5.2.3, most of the FSS analysis of the static critical
behaviour had to be performed in the region 5 > In2 were the finite-size peaks of
the staggered polarizability are located. For the mean square extent above [, a

similar situation is found.

19Recall the fact that all autocorrelation times have been measured in units of ten sweeps of
update moves.
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Figure 5.30: Comparison of the F'SS of the critical integrated autocorrelation times
of the spontaneous polarization of the random graph F' model from local update
and global update simulations. The solid lines denote fits of the form (5.60) to the
data.

5.4 Geometrical Properties

The annealed nature of disorder applied to the vertex model via its placement onto
dynamical ¢* random graphs induces a back-reaction of the matter variables onto the
underlying geometry and thus a possible change in the (local and global) geometrical
properties of the graphs. Since the general mechanism of matter back-reaction onto
the graphs is the tendency to minimize interfaces between pure-phase regions of the
matter variables, a “strong” coupling between matter and graph variables is only
expected if the combined system of spin model and underlying geometry is critical,
i.e., when clusters of ordered configurations exist on all length scales. Thus, one
expects the universal graph properties such as the graph-related critical exponents
to remain at the values of pure Euclidean quantum gravity, unless the coupled matter

system has a diverging correlation length, see, e.g., Ref. [258].

From the graph properties discussed in Chapters 2 and 3, we consider the co-

ordination number distribution as a typical local property as well as the string
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Figure 5.31: Temperature dependence of the integrated autocorrelation times of the
spontaneous staggered polarization of the random graph F' model from simulations
utilizing the link-flip only (“local”) and the combined link-flip and surgery move
(“global”) update. The data points correspond to a graph size of N, = 4096 sites.

susceptibility exponent describing the tendency of the area of the graphs to diverge
in the grand-canonical ensemble and the fractal or Hausdorff dimension as global
geometrical properties. As for the analysis of the KT transition in Section 5.2.3

above, we return to exclusively using graphs of the regular ensemble.

5.4.1 The co-ordination number distribution

The distribution of ring lengths of the random graphs or, equivalently, the co-
ordination number distribution of the dual polygonifications has been rather ex-
tensively studied for the case of pure Euclidean quantum gravity in Chapter 3.
When coupling matter to the graphs, it is obvious that the back-reactions of the
matter variables on the graphs in principle are able to alter this local graph char-
acteristic. Especially, for the case of the vertex model considered here, the ice-rule
forbids certain link-flip update moves and thus potentially changes the distribution

Py, (q) of co-ordination numbers. Note that the ice-rule restriction of the vertex
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Figure 5.32: Co-ordination number distribution of ¢* random graphs (resp. the dual
quadrangulations) with Ny = 512 sites coupled to the F' model from MC simulations.
The error bars are of the size of the plotting symbols. The solid curve shows the

distribution for pure ¢* random graphs of the same size.

model leads to a coupling between matter variables and geometry which is quite
different from that of, say, an Ising model placed on random graphs. While for the
latter case the energy differences of the spin model configurations become irrelevant
in the infinite-temperature limit § — 0, thus leading to a complete decoupling of
spin and graph variables, the forbidden configurations of the F' model correspond
to contributions of infinite energy such that even in the limit 5 — 0 there is a
back-reaction of the vertex model configurations on the underlying graphs. To put
it differently, the matter back-reaction is of entropic instead of energetic nature for

the case of the vertex model.

Figure 5.32 shows the distribution of co-ordination numbers for ¢* random graphs
of the regular ensemble and with Ny, = 512 sites coupled to the F' model at the
three different inverse temperatures § = 0.001, f = In2 and S = 1.5. Obviously,
on the scale of the whole distribution Py,(¢) no dramatic differences between the
temperature extremes can be distinguished and all three distributions look very

similar to the case of pure ¢* random graphs of the same size also shown in Fig.
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Figure 5.33: Fraction n, of loops (faces) of length two of planar ¢* random graphs
with a coupled F model as a function of the inverse temperature . The drawn
error bars are mostly covered by the size of the symbols. The solid line shows the
value of ny for the case of pure ¢* random graphs of the regular ensemble and with
Ny = 2048 sites.

5.32. As it turns out, however, the distribution of co-ordination numbers can be
determined very precisely from the simulations. Thus, concentrating on a single
point of the distribution, namely the fraction of quadrangulation sites with co-
ordination number two or, equivalently, the fraction ns of length-two loops of the
¢* graphs, which already has been considered in Chapter 3, a clear variation with
the inverse temperature § can be resolved, cf. Fig. 5.33. Also, in terms of the
quoted statistical errors, which are of the order of 1075 for the measurements of
ns, the pure graph result of ny = 0.296365(32) is very far away from the whole of
the shown variation of the F' model case. We find a pronounced peak of n, around
B &~ 0.7 with only rather small variations with the size of the considered graph.
A similar peak of the fraction of three-loops for different spin models coupled to
dynamical triangulations has been observed before, see Refs. [45, 46, 259]. Since
the co-ordination number distribution is normalized and (for the regular ensemble)

monotonous, such an increase of ny is necessarily accompanied by a decrease of the
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Ny Brs n2(6n2)
256 || 0.6941(27) | 0.3151620(81)
512 || 0.6904(25) | 0.3149714(76)
1024 || 0.6961(55) | 0.3148749(93)
(46) (68)
(54) (68)

2048 || 0.6926(46) | 0.3148528(68
4096 || 0.6894 0.3148274(68

Table 5.10: Maxima of the fraction of loops of length two of ¢* graphs coupled to
the F model as a function of the inverse simulation temperature  for different sizes

of the graphs.

probability to find very large loops in the graph. The latter, on the other hand,
typically occur in the vicinity of bottlenecks connecting “baby universes” to the
main body of the graph. Thus, at criticality one would expect slightly less “baby
universes” to occur, thereby resulting in a dominance of more compact configurations
of the graphs. However, if this effect is indeed present, it is too small to be detected
by measurements of the mean square extent of the graphs, which are much less
precise than measurements of the co-ordination number distribution, see Fig. 5.40

below.

Since, as has been mentioned above, a pronounced back-reaction of the matter vari-
ables onto the underlying graphs is only expected at criticality, we interpret the
location of the observed peak of ny(/3) as a pseudo-critical point (3,,, which should
scale? to the asymptotic critical coupling 3. = In2. As before, the precise loca-
tion of the maxima can be determined from the simulation data via the reweighting
technique described in Appendix A.5. This has been done for the data from simu-
lations of graphs of sizes between Ny = 256 and Ny = 4096 sites with time series of
lengths between 8 x 10° and 4 x 10° measurements. The results of this analysis are
compiled in Table 5.10. As is additionally illustrated in Fig. 5.34, we find only very
small changes of this peak position on variation of the size of the graphs, such that
within the present statistical errors 3,, can be considered constant. Thus, we do
not perform a finite-size fit to the data of the peak locations, but instead quote the

result from the largest considered lattice as an estimate for the asymptotic critical

20Note, however, that this is in contrast to the interpretation of Refs. [45,46,259] for the cor-
responding peak of ng in the triangulation model, which was that it should stay away from the

critical point even in the thermodynamic limit.
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Figure 5.34: Inverse pseudo-critical temperatures /3,,, defined by the maximum of
the fraction ny of loops of length two of ¢* random graphs coupled to the F' model
as a function of the graph size Ny. The solid line shows the error-weighted mean of
the estimates, which is 3,, = 0.6934(20).

coupling, namely

Ba, = 0.6894(54), (5.69)

resulting from the simulations for Ny = 4096. This is in nice agreement with the
expected value of B, = In2 &~ 0.693 and almost two orders of magnitude more
precise than the results found above from the scaling of the polarizability peak
locations. From simulations of Potts models, it has been argued in Ref. [46] that
the maximum value ny(f3,,) of the fraction of two-loops itself (resp. the maximum
value of the fraction of three-loops for the dynamical triangulations model considered
there) could be a universal property which only depends on the central charge of the
matter coupled to the lattices. An analysis of the XY model coupled to dynamical
triangulations by the same authors [45], however, showed a clear discrepancy to this

conjecture.
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5.4.2 The string susceptibility exponent

In the grand-canonical ensemble of the dynamical polygonifications model the string
susceptibility exponent v, governs the leading singularity of the partition function
Z (1) via?!

Z(1) ~ (1= po)*™, (5.70)
cf. Egs. (2.59) and (2.60). Thus, a direct measurement of 7, requires computation-
ally demanding simulations with a varying number of polygons or graph vertices.
Additionally, since (as for all the graph properties) a shift of v, due to the presence of
some matter variables coupled to the polygonifications model can only be expected
at criticality, a numerical setup for the detection of such a change needs to tune two
coupling constants, namely p and (3, to criticality. Due to the combination of these
two problems a reliable estimation of s from grand-canonical MC simulations has
proved difficult, see e.g. [109,110].

The method

As it turns out, the string susceptibility exponent is related to the baby-universe
structure of the dynamical polygonifications [29]. This observation can be turned
into a method for the determination of , from simulations at a fixed number of
polygons or graph vertices [258]. The distribution of volumes B contained in the
minBUs of the dynamical polygonifications model can be expressed in terms of the
canonical partition function of the model in the following way; for simplicity, we
start with the case of dynamical triangulations. Consider the situation of a minBU
of volume B connected to the “mother universe” of volume Ny — B via its neck
of length three. This whole triangulation can be imagined as constructed in the
following way: take two “universes” of volumes B + 1 and N, — B + 1 with one
triangle marked on each “universe”, remove the marked triangles and glue both
parts together to give the triangulation discussed before. Thus, the total number of

such configurations is given by the following product of partition functions,
3Z"(B+1)Z'(Ny— B+1), (5.71)

where the factor of three accounts for the three possible ways to glue both parts

together along the omitted triangles and Z'(B) denotes the canonical partition func-

21Since we always consider planar graphs here, 5 corresponds to the genus zero exponent 79 of
Chapter 2.
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tion of dynamical triangulations with B triangles and one marked triangle, i.e.,
Z'(B) = BZ(B), (5.72)

where Z(B) denotes the usual canonical partition function of Section 2.3.3. Now,
the average number (ny,(B)) of minBUs of volume B for triangulations of volume
N, is given by the absolute number (5.71), normalized by the total partition function
Z(NQ)a

(n, (B)) o

Z() (B+1)Z(B+1)(Ny — B+1)Z(N, — B+1). (5.73)

From Eq. (2.81) the canonical partition function to leading order scales as
Z(Ny) ~ etV NJo 3, (5.74)

Inserting this expression into Eq. (5.73) the leading exponential part cancels and we

arrive at,

(B+1)""2(Ny — B+ 1)"72
<nN2 (B)> ~ NgS_Q

~ N; "[B(Ny— B)]"7?, (5.75)

where from (5.74) one has to demand that B > 1 and Ny — B > 1 for this relation
to be valid. A very similar argument can be given for “baby universes” with larger
(than minimal) neck length [29]. For the case of minBUs of the dynamical quadran-
gulations model the argument is obviously unchanged apart from the replacement
3 — 4 in Eq. (5.71). Also, it can be shown that the same relation should hold for
the case of C' < 1 conformal matter coupled to the polygonifications or dual graphs
with 7, then denoting the corresponding dressed string susceptibility exponent [29].
For the limiting case C' = 1, on the other hand, it is argued in Ref. [29] that the

distribution of minBUs should acquire logarithmic corrections and look like,
(nn,(B)) ~ NJ~"[B(N; — B)]"*~2[In B In(N, — B)]", (5.76)
with Kk = —2.

An estimate 7y, (p) for the volume distribution of minBUs of the dynamical polygoni-
fications model can be easily found numerically from a decomposition of the graphs
into “baby universes”. When the minBU surgery algorithm described in Section

3.5.2 is applied, such an estimate can even be produced as a simple by-product
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of the updating scheme, since there the relevant information has to be gathered
anyway for the update process. Then, an estimate for v, can be found from a fit
of the conjectured functional form (5.75), resp. (5.76) for the C' = 1 case, to the
estimated distribution fy,(p) [258]. In order to honour the constraints B > 1 and
Ny — B> 1 of Egs. (5.75) and (5.76) one has to introduce cut-offs By, and Biax,
such that only data with B, < B < Bpnay are included in the fit. Here, the choice
of the lower cut-off B, is found to be much more important for the outcome of
the fit than the choice of Bj.c. As a consequence of this observation we use the
following recipe for the determination of the cut-offs: as a rule of thumb, we choose
Binax = No/8, which has turned out to be a good choice for most situations. With
Binax fixed, the lower cut-off B, is steadily increased from B, =~ 0, monitoring
the effect of those increases on the resulting fit parameters, especially the estimated
string susceptibility exponent v,. Finally, with the resulting value of B, fixed, a
second adaption of B,y is attempted, usually changing By,., by factors of two resp.
one half. Additionally, the quality-of-fit parameter () is utilized as a further indi-
cator of whether neglected corrections to scaling are important for the considered
window of minBU volumes B. As far as corrections to the leading scaling behaviour
are concerned, it is speculated in Ref. [258] that a good effective description of the

leading correction term results from the replacement

B2 _y B¥s—2 <1 + % + 0(1/32)> ) (5.77)

Hence, the actual fits were performed to the functional form
_ ‘D'Ys
Inny,(B) =A,, +(vs —2)In[B(N, — B)] + -5 (5.78)

for C' < 1, resp. to the form

Infiy,(B) = A,, + (s — 2) In[B(Ny — B)] + £ In[ln BIn(N, — B)] + DB?S, (5.79)

for the limiting case of C' = 1. Here, the dependency on the total volume N5 has
been condensed into the constant A, . Note that both of these fits are linear and the
number of data points is of the order of 103 for the lattice sizes we have considered,
such that a fit with four independent parameters is not utterly unrealistic. In Eq.
(5.79) we keep k as a free parameter since its presumable value k = —2 is only
a conjecture and, additionally, further corrections to scaling can be covered in an

effective way by letting x vary.
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Figure 5.35: Distribution Infiy, (B) of minBUs of the dynamical quadrangulations
model with Ny, = 1024 quadrangles. Note the precision down to a probability of
107"2,

Results for pure ¢* graphs

For the case of pure dynamical triangulations and planar topology the string sus-
ceptibility exponent is exactly known to be v, = —1/2, cf. Section 2.3.3. In order
to check the correct functioning of the described analytical machinery and to ex-
plicitly check for the expected universality of v, with respect to the change from
triangulations to quadrangulations, we performed simulations for pure ¢* random
graphs and measured the distribution ny,(B) of minBUs. Since the measurements
are taken as a by-product of the minBU surgery update, a large number of events
is built up rather automatically. As can be seen from the presentation of the mea-
sured distribution for graphs with N, = 1024 sites of Fig. 5.35, this results in
high-precision results even down to the very improbable events of minBU volumes
around B =~ N,/2. Table 5.11 shows the gradual decrease of the estimated v, as
the lower cut-off B, is increased to accommodate for higher corrections to scaling.
Note that the quoted error estimates, being the usual error estimates resulting from

a least-squares fit routine, cannot be taken seriously since they do not account for
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Buin Vs Q
0 | —0.24879(11) | 0.00
10 | —0.43439(64) | 0.00
20 | —0.4613(18) | 0.45

30 | —0.4722(37) | 0.72
40 | —0.4722(72) | 0.62
50 | —0.463(13) | 0.58
60 | —0.474(25) | 0.79

Table 5.11: Influence of the choice of the lower cut-off B, on the string suscep-
tibility exponent estimate resulting from fits of the functional form (5.78) to the
measured minBU distribution 7y, (B) for pure ¢* random graphs of size N, = 1024.
The upper cut-off has been chosen to be By,., = 128. Note that the given error es-
timates do not fully reflect the statistical fluctuation due to the correlation between

the individual points of the distribution B;,.

the apparent correlations of the points of 7y, (B) for different sizes B of the minBUs.
These correlations generically lead to an underestimation of variances. The drift of
vs as a function of Bp,;, shown in Table 5.35 is found to become small against the ap-
parent statistical fluctuations between different choices of the cut-off for B, ~ 60,
which then was chosen as the final lower cut-off for the graph size Ny = 1024. The
authors of Ref. [258] have proposed to additionally extrapolate the results vs(Bmin)
with an ad hoc exponential ansatz towards B — oo. Apart from the fact that it
is in general arguable, whether one should try extrapolations of noisy data, in the
present situation we find the combination of wrongly estimated errors from the fits
to fin, (B) and the apparent strong correlations of successive values of v, (Byin) as
well as the lack of justified assumptions of the functional form of the approach of

vs(Bmin) towards 7, sufficient arguments to refrain from using such additional fits.

We note that statistically reliable error estimates for 5 could be found when taking
into account the full covariance matrix of the individual entries of ny,(B). This,
however, in practice would be a huge matrix and one could hardly take enough MC
samples to reliably estimate each of its entries. Instead, we revert to a more tractable
jackknifing technique: first the upper and lower cut-offs in B are determined as
described using the full estimate ny, (B). Then, of the order of ten jackknife blocks
are built from the times series the estimate 7y, (B) is based on and fits with the same

constant cut-offs are performed for each block to yield jackknife-block estimates of
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N2 Bmin Bmax A'ys Vs D'ys Q
1024 | 60| 128 |18.36(49) | —0.474(40) | —2.9(30) | 0.79
2048 70 256 | 20.34(14) | —0.495(10) | —3.8(12) | 0.56

4096 | 70 | 512 | 22.030(90) | —0.4915(63) | —3.78(74) | 0.05
8192 | 100 | 1024 | 23.853(72) | —0.4977(47) | —4.80(87) | 0.04

Table 5.12: Parameters of fits of the functional form (5.78) to the simulation data for
the distribution 7y, (B) of minBUs for pure ¢* random graphs. The parameter error
estimates were found by jackknifing over the whole fit procedure, keeping the cut-
offs Bumin and B, fixed. Note that the small values of the quality-of-fit parameter
Q@ for the two largest graph sizes are simply an effect of the under-estimation of

errors resulting from the cross-correlations in 7y, (B).

vs and the other fit parameters. Using the formulas of Appendix A.3, then reliable
error estimates for the fit parameters can be given. For the pure gravity case we have
performed simulations for graphs of sizes No = 1024 up to Ny = 8192 increasing by
factors of two, taking about 10° x N, minBUs into account for each graph size. Table
5.12 collects the resulting estimates of v, together with the remaining fit parameters
for the different graph sizes. As far as finite-size effects with respect to N, are
concerned, we conclude that the estimates for v, for Ny > 2048 are compatible with
each other and, consequently, effects of finite N, can be neglected at the given level
of accuracy. Thus, as our best estimate of v, we quote the result for N, = 8192,
which is v, = —0.4977(47). Obviously, this is in very good agreement with the exact
result v, = —1/2.

Results for the ' model case

For the case of the F' model coupled to ¢* random graphs we expect a variation of
the string susceptibility exponent 7, with the inverse temperature  of the F' model.
Since the whole high-temperature phase is critical, in the thermodynamic limit
should vanish for all § < . = In2, whereas in the non-critical ordered phase the
exponent should stick to the pure quantum gravity value of v, = —1/2. To get
an impression of the temperature dependence of v, we measured the distribution
N, (B) of minBUs over an inverse temperature range of 0.2 < 8 < 1.3 for graphs
of size Ny = 2048 and performed fits of the functional form (5.78) to the data to

extract 75. The lower and upper cut-offs By, resp. Bpnax were adapted according
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Figure 5.36: Estimates of the string susceptibility exponent 7, from fits of the
functional form (5.78) to the measured distribution 7iy, (B) of minBUs for ¢* random
graphs of size Ny = 2048 coupled to the F' model as a function of the inverse
temperature 3. As is explained in the main text, the displayed error bars do not

represent, the full statistical error.

to the procedure described above for the case of pure dynamical ¢* graphs. The
resulting estimates for v, presented in Fig. 5.36 show a plateau value of v, ~ —0.25
within the critical phase f < In2 and a slow drop down to v, &~ —0.5 at § = 1.3
in the low-temperature phase. Note that the error bars displayed in Fig. 5.36 are
those resulting from the fit procedure itself and are thus not representing the full
statistical variation due to the above mentioned cross-correlations between the values
of fiy,(B) at different B. As shall be shown below, the fact that 7, is found to be
still considerably smaller than zero in the high-temperature phase is due to a finite-
size effect. In principle, this could be reduced by performing fits of the form (5.79)
including the logarithmic corrections expected at central charge C' = 1. For the
quite small graph size of Ny = 2048, however, this type of (four parameter) fit is in

general found to be too unstable to yield reliable results.

More precise estimates for 7, are found from a finite-size scaling study of three series

of simulations, one at the critical point 5. = In 2, one in the critical high-temperature
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Ny | Buin | Bmax Ay, Vs D,,
2048 | 70 | 256 | 20.48(23) | —0.496(18) | —5.9(18)
4098 | 70 | 256 | 22.48(34) | —0.515(25) | —8.2(26)
8192 | 100 | 512 | 23.75(51) | —0.482(35) | —5.9(41)
16384 | 100 | 2048 | 25.39(27) | —0.478(17) | —3.5(31)

Table 5.13: Parameters of fits of the form (5.78) to the distribution of minBUs of
¢* random graphs coupled to the F' model at 8 = 1.4. Larger graphs could not be
properly relaxated due to the exponential slowing down of the MC dynamics found

in the low-temperature phase.

phase at 5 = 0.2 and one deep in the ordered phase at 3 = 1.4, using ¢* graphs
of the regular ensemble. For the latter case, the exponential slowing down of the
combined link-flip and surgery dynamics of the graphs reported in Section 5.3 limited
the maximum accessible graph size to Ny = 16 384, while for the simulations at the
critical point and in the high-temperature phase graphs with up to Ny = 65 536 sites
were considered. The fit results at § = 1.4 are collected in Table 5.13. Obviously,
within the present accuracy of the data no relevant finite-size effects are visible, all
results being compatible with the conjectured value of v, = —1/2. Thus, as our
final estimate for 8 = 1.4 we report the value found for N, = 16 384,

A, = 25.39(27),
. = —0478(17),
7 (17) (5.80)
D, = -3.5(31),
Q = 1.00,

where B, = 100 and By, = 2048 have been used. For the quoted statistical error
estimates the jackknifing procedure described above for pure dynamical ¢* graphs

has been used, thus taking full account of the present fluctuations.

At the critical point . = In 2 fits of the form (5.78) without logarithmic corrections
show considerable finite-size effects, cf. Table 5.14(a). For the largest graph size
considered, the thus found estimate v, = —0.2075(17) is still far away from the
expected result v, = 0. Taking the logarithmic corrections into account, these results
can be considerably improved. The parameters of fits of the corresponding functional
form (5.79) are collected in Table 5.14(b). The relatively large statistical errors of
the estimates for the smaller graph sizes are explained by the fact that the fits show

a competition of two distinct local minima of the 2 distribution, such that for some
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(a) Ny | Bumin | Bmax Ay, Vs Dy,
2048 | 80| 256 17.80(17) | —0.259(13) | 1.1(15)
4098 | 100 | 512 | 19.25(13) | —0.2498(92) | 2.0(13)
8192 | 140 | 1024 | 20.70(23) | —0.2426(15) | 4.1(32)
16384 | 150 | 2048 | 21.87(17) | —0.2193(10) | 10.7(25)
32786 | 170 | 4096 | 23.525(59) | —0.2263(34) | 9.9(15)
65536 | 180 | 8192 | 24.73(30) | —0.2075(17) | 15.6(53)
(b) Ny | Bmin | Bmax Ay, Vs K D,,
2048 | 60| 256 ]19.7(37) | —0.06(41) | —1.2(24) | —5.5(116)
4098 | 65| 512 22.3(13) | 0.04(13) | —1.81(81) | —9.4(45)
8192 | 90 | 1024 | 23.6(19) | —0.01(19) | —1.6(12) | —9.7(73)
16384 | 100 | 2048 | 25.7(15) | 0.05(13) | —1.97(89) | —10.9(69)
32768 | 110 | 4096 | 27.08(93) | 0.013(70) | —1.80(50) | —12.6(47)
65536 | 120 | 4096 | 27.5(14) | —0.05(12) | —1.27(82) | —6.9(71)

Table 5.14: Parameters of fits to the distribution 7y, (B) of minBUs for ¢* random
graphs coupled to the F model at 8 = . = In2. (a) Fits to the functional form
(5.78), i.e., without inclusion of logarithmic corrections expected for C' = 1. (b) Fits

to the form (5.79) including logarithmic corrections.

of the jackknife blocks the fit yields v, &~ —0.2. This effect, however, vanishes for
the larger graphs. Apart from this finding, no relevant finite-size dependence of the
estimate 7, could be detected. The occurring values for the “correction exponent” s
are not too far away from and indeed statistically compatible with the conjectured
(however not exactly known) value of kK = —2. Since for the case of Ny = 65536
only a much shorter time series than for the smaller graph sizes was recorded, we

present, as our final estimate of the critical value of 7, the result at N, = 32 768,

A, 27.08(93),

v, = —0.013(70),

k = —1.80(50), (5.81)
D, = —12.6(47),

Q = 1.00,

where the cut-offs have been chosen at B, = 110 and Bp.x = 4096.

Finally, in the high-temperature phase at § = 0.2 the simulation results behave very
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Figure 5.37: Estimates of v from fits to the functional form (5.78), i.e., without
the inclusion of logarithmic corrections expected at C' = 1, for the random graph
F model at f = 0.2 as a function of the graph size N,. The statistical errors were

evaluated using the jackknife technique described in the main text.

similarly to the critical point case. When applying fits of the form (5.78) without
logarithmic corrections, considerable finite-size effects are found, the resulting expo-
nent estimates v, only very slowly approaching the expected value of v, = 0. This
situation is depicted in the FSS plot of Fig. 5.37. On the other hand, the estimates
resulting from fits of the form (5.79) to the data are compatible with v, = 0 for
the larger of the considered graph sizes. For graphs of sizes up to Ny = 4096 the
“other” minimum of the x? distribution wins against the “true” minimum relevant
for the larger graphs. We report here the estimate resulting from graphs of size
Ny, = 32768:

A, = 26.25(79),

ve = —0.041(73),

k = —1.38(47), (5.82)
D, = -8.1(30),

Q = 0.05,
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with cut-offs Bmin = 100 and Bpnax = 2048.22 To complete the picture, it should
be mentioned that the functional form (5.79) does not fit the data in the low-
temperature phase at 5 = 1.4 well and does not give estimates of v, compatible
with v, = 0.

5.4.3 The Hausdorff dimension

The non-trivial (internal) Hausdorff dimension dj, of the lattices of the dynamical
polygonifications model, defined by the relations of Section 2.3.5, is one of its most
striking features. Apart from the present physical implications, this fact results in
a quite inconvenient obstacle for the numerical analysis of the model, namely the
comparable smallness of the effective linear extent of the graphs at a given total
volume Ny as compared to flat lattices.

As matter variables are coupled to the dynamical graphs, the strong coupling be-
tween graph and matter variables at criticality could lead to a change of the fractal
dimensionality of the lattices. In a phenomenological picture, such a strong cou-
pling of matter and geometry should set in as soon as the intrinsic length scale of
the graphs or polygonifications, usually defined as their mean square extent, becomes
comparable to the correlation length of the matter system. For conformal minimal
matter, there has been quite some debate about how dj, should depend on the central
charge C' of the coupled matter system, see, e.g., Refs. [51,116, 166,172,249, 250].
For C' = 0 the result d, = 4 is exactly known [26-28] as has been mentioned in
Chapter 2. On the other hand, the branched polymer model [109] describing the
C — oo limit [53] yields d, = 2 (see, e.g., Ref. [119]), cf. the discussion of Section
2.4. For the intermediate region 0 < C' < 1 two differing conjectures have been made
for dj, cf. Egs. (2.142) and (2.143). All numerical investigations up to now, on the
other hand, are consistent with a constant dj, = 4 for 0 < C' < 1 [51,144,172,250].
Naturally, the limiting case C' = 1 also considered here is of special interest for the

investigation of the transition to the branched polymer regime C' > 1.

Numerically, it has proved exceptionally difficult to extract the Hausdorff dimensions

from the statistics of the numerically accessible graph sizes, see, e.g., Refs. [22,161,

22Note that due to the present correlations, as has been mentioned above, the quoted values
of the quality-of-fit parameter cannot be really taken seriously as far as their absolute values are
concerned. However, they still serve a helpful purpose in comparing the quality of different fits to
the same data.
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Figure 5.38: Measured geometrical two-point function G12(r) for pure ¢* random
graphs of the regular ensemble with N, = 4096 sites. For comparison, we also

show the two-point function of a perfect sphere of the same size, i.e., the function
G2 (r) = Ny /(2/Ny/4r) sin(r/\/No/4m) with Ny = 4098.

172]. Before the exact result dj, = 4 for the case of pure Euclidean quantum gravity
had been found, an analysis of very large, recursively constructed pure dynamical
triangulations even implied an only logarithmic growth of the mean square extent
with the area of the mesh, corresponding to the limit d;, — oo [161]. Only in the last
several years, the development and application of suitable FSS techniques allowed

for a more successful and precise determination of dj, [166,249,250].

Scaling and the two-point function

Information about the fractal structure of the graphs or polygonifications is encoded
in the loop-loop correlator or geometrical two-point function of the lattices. It can
be defined in terms of different geometrical entities, i.e., the vertices or faces of the
polygonifications or the dual graphs and employing different notions of geodesic dis-
tance of these geometrical entities as discussed above in Sections 2.2.3 and 2.3.5. The

asymptotic, large-volume behaviour of the two-point functions should not depend
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Figure 5.39: FSS plots of the peak locations rp. (left scale) and peak heights
G2 (rmax) (right scale) of the two-point function of pure dynamical ¢* random
graphs as a function of the number of sites N,. The solid lines show fits of the
functional form (5.89) to the data. The extent of the lines indicates the range of N
included in the fits.

on these microscopical details of its definition (apart from trivial re-scalings). Here,
as in Section 3.5.1 above, we define the geometrical two-point function G (r) as the
average number of vertices of the polygonifications at a distance r from a marked
vertex, where “distance” denotes the minimal number of links one has to traverse to
connect both vertices. In terms of the dual graphs considered here, G2 (r) denotes
the number of loops or faces of the graphs at a distance r from a marked face, with

the distance measured in dual links.

Since the intrinsic length of the model scales as N;/dh by definition of the intrinsic
Hausdorff dimension dj, from the usual F'SS arguments one can make the following

scaling ansatz (see, e.g., Ref. [166]),
GI2(r) ~ N F(r/Ny/™), (5.83)

. N- . . . .
i.e., G12(r) is a generalized homogeneous function and one can define a scaling

function F'(z) of the single scaling variable x = rN{l/dh and a critical exponent c.
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Figure 5.40: Mean extent 1/(r?) of regular ¢* random graphs coupled to the F
model as a function of the inverse temperature . The considered graphs have
N, = 2048 sites. The horizontal line indicates the mean square extent of pure ¢*

random graphs of the same size.

As a simple calculation shows, due to the obvious constraint
No =Y GE(r), (5.84)

resp. its continuous analogue with the sum replaced by an integral, the exponent «
is not independent, but simply related to d; as « =1 —1/dj. As it has turned out,
for practical purposes the scaling variable has to be shifted to yield reliable results,
see, e.g., Refs. [116,247,249]. The necessity of such a shift can be most easily seen

by a phenomenological scaling discussion of the mean extent defined by

1

= 5 LG ~ RNy, (5.85)

r

<T>N2

with Fy = ) F(r). As usual in FSS theory, one expects analytical corrections to
this leading behaviour, i.e. correction terms containing negative integral powers of

the linear length scale L of the considered lattice. For the random lattices considered
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No min A, a dp, Q
256 | 1.4476(93) | 1.063(23) | 3.6347(76) | 0.00
512 | 1.501(13) | 1.219(35) | 3.675(10) | 0.0
1024 | 1.535(21) | 1.326(63) | 3.700(16) | 0.15
2048 | 1.549(33) | 1.37(11) | 3.709(24) | 0.09
4096 | 1.669(61) | 1.78(20) | 3.789(41) | 0.98

Table 5.15: Parameters of fits of the functional form (5.89) to the peak locations
Tmax Of the geometrical two-point function of random ¢* graphs coupled to the F

model at 8 = 0.2 as a function of the minimum included graph size N min.

here, the mean extent (r) itself takes on the role of L, such that one can write [249]

(ryn, a b
Combining the terms proportional to 1/N21/dh on both sides, one arrives at
1
1/d
(r+ayy, ~ FoNy/™ 4 O (5.87)

2

Thus, to incorporate first-order corrections to scaling, the ansatz (5.83) is replaced
by

GN2(r) ~ N F[(r + a) /Ny, (5.88)

i.e., the scaling variable is now defined to be z = (r + a)/N;/dh. Although one can
give physically more profound arguments speaking in favour of the inclusion of such
a shift parameter, see Ref. [247], we will restrict ourselves to the phenomenological

explanation given above.

Scaling of the maxima

A typical form of the measured two-point function G12(r) for pure dynamical ¢*
graphs of size Ny = 4096 is shown in Fig. 5.38. It exhibits a pronounced peak and
declines exponentially for » — oo. The two-point function of a sphere also shown
in Fig. 5.38 illustrates the comparably small linear extent of the random lattice
as compared to a regular geometry. From the scaling ansatz (5.88) one infers the

following leading scaling behaviour of the position and height of the maxima of the
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peak locations
B | Namin Ay a dp, Q
0.2 4096 | 1.669(61) | 1.78(20) | 3.789(41) | 0.98
In2 | 4096 | 1.641(79) | 1.73(26) | 3.769(53) | 0.25
1.4 2048 | 1.611(84) | 1.53(25) | 3.754(60) | 0.21

peak heights
B | Namin A, B, dp, Q
0.2 | 4096 | 0.740(44) | 6.7(36) | 3.446(68) | 0.76
In2 | 4096 | 0.753(63) | 6.2(51) | 3.426(92) | 0.55
1.4 | 2048 | 0.567(84) | 12.7(60) | 3.94(23) | 0.55

Table 5.16: Parameters of fits of the form (5.89) to the data for the peak locations
and heights of the geometrical two-point function G2 (r) of dynamical ¢* graphs
coupled to the F' model at the inverse temperatures § = 0.2,  =1n2 and § = 1.4.
For 8 = 0.2 and 8 = In 2 graph sizes between Ny pin and Ny = 65536 were included
in the fits; for § = 1.4 the maximum graph size was N, = 32 768.

two-point function G2 (r),

Tmax + 0 = ATNQI/dha

5.89
G (rmax) = AuNy Y™ 4+ B,. (5.:89)

Since the location and height of these maxima can be determined numerically from
simulation data, these relations can be used to estimate the intrinsic Hausdorff
dimension d, of the lattices. A technical difficulty is given by the fact that r can
only take on integer values for the discrete graphs considered. This problem is
circumvented by a smoothing out of the vicinity of the maximum by a fit of a finite-
order polynomial to Gﬁz (r) around its maximum. For practical purposes, we find a
fourth-order polynomial sufficient for this fit. The position and height of the maxima
are then taken to be the corresponding properties of the fitted polynomial. To arrive
at reliable error estimates for the position and height estimates, the simulation
data for GI?(r) are combined into jackknife blocks to which the fitting procedure is
applied separately, with a subsequent application of the jackknife variance estimator
to the set of thus determined jackknife block estimates of the peak positions and
heights, cf. Appendix A.3. The fits themselves are done with equal weights given
to the points of G?(r) around the maximum included in the fit. This choice of

weights is found appropriate since only a very small number of between five and
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peak locations
5 NQ,min Ar Br a dh Q

0.2 | 2048 | 2.34(43) | 9.2(39) | 5.5(21) | 4.13(20) | 0.86
In2 | 2048 | 1.96(39) | 5.6(43) | 3.7(20) | 3.93(21) | 0.11
1.4 | 1024 | 2.18(49) | 6.0(37) | 4.4(22) | 4.07(26) | 0.44

Table 5.17: Parameters of fits of the form (5.92) to the peak locations of the two-
point functions of ¢* random graphs coupled to the F' model at different inverse

temperatures . The maximum graph size was Ny = 65536 for § < In2 resp.
Ny = 32768 for § = 1.4.

fifteen adjacent points around the maximum are included in the fit, whose individual
statistical errors are found to be almost identical. Thus, one arrives at estimates for
the peak locations 7.« and heights Gﬁz(rmax) as a function of the graph size Ny, to
which then the functional forms of Eq. (5.89) are fitted.

Figure 5.39 shows FSS plots of the peak locations and heights for the case of pure
dynamical ¢* random graphs and the corresponding fits of (5.89) to the data. As
usual, we tried to account for the effect of neglected scaling corrections by succes-
sively dropping data points from the small-N, side. We find the value of dj to
steadily increase on omitting more and more points. The fits of Fig. 5.39 include
the lattice sizes Ny = 4096 up to No = 32 768 with the following final fit parameters,

A, = 1.705(42),

a = 1.84(14), (5.90)
d, = 3.803(28),
QR = 0.22
for the peak locations and,
A, = 0.606(27),
B, = 12.0(26), (5.91)

d, = 3.814(63),
Q = 0.44,

for the peak heights. Thus, in terms of the statistical errors both estimates are
still quite far away from the exact result d;, = 4 for the pure gravity case, which is,
however, in agreement with previous attempts to determine dj, with similar methods,
see e.g. Ref. [166]. It should be noted, on the other hand, that the results are already
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much improved by the introduction of the shift parameter a; enforcing a = 0, the
fit to the peak locations yields d;, = 3.4313(20). We note that by varying the
definition of the two-point function one can probably reduce the amount of finite-
size corrections, but we will not attempt to do this here [166]. Instead, in view of
the success of introducing a first-order scaling correction via the shift parameter a,
we add the next analytic correction term to the fit, i.e., for the peak locations we

make the ansatz
Fmax + @ = ANy 4+ BN, % (5.92)

which, again, is found to improve the estimate for d;, considerably. Including graphs
with Ny = 512 up to Ny = 32768 sites, we find the following fit parameters,

A, = 2.007(77),

B, = 4.50(61),

a = 3.55(35), (5.93)
d, = 3.964(42),

Q = 0.24,

which gives now good agreement with d;, = 4 at the price of an increased statistical

error.

For random ¢* graphs coupled to the F' model, we find a small dependence of the
mean square extent on the inverse temperature 3 of the coupled F' model and also a
slight shift of \/@ as compared to the case of pure ¢* random graphs, cf. Fig. 5.40.
Thus, it is at least not impossible for the Hausdorff dimension d; to be temperature
dependent, too. We performed the same analysis as described above for the case
of pure dynamical graphs for three specific inverse temperatures of the F' model,
namely § = 0.2, f = In2 and § = 1.4, covering the critical high-temperature
phase, the critical point and the non-critical low-temperature phase, respectively.
Simulations were performed for graphs of sizes between N, = 256 and Ny = 65536
for f = 0.2 and § = In 2 resp. between Ny, = 256 and N, = 32768 for § = 1.4. The
results for dj, from fits of the functional form (5.89) to the data steadily increase on
omitting more and more points from the small-N, side. This is exemplified for the
case of the peak locations of the § = 0.2 data in Table 5.15. A similar situation
is found for the scaling of the peak heights and the data at the other simulated
couplings 5. The final results from fits of the form (5.89) to the data are collected
in Table 5.16. Obviously, the estimates of d;, extracted from the scaling of the peak

locations are significantly smaller than d;, = 4 in terms of the statistical errors,
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N2 min Ay a dp, Q
256 | 1.601(41) | 1.49(11) | 3.657(30) | 0.01
512 | 1.592(54) | 1.47(15) | 3.651(39) | 0.00
1024 | 1.85(10) | 2.23(28) | 3.821(66) | 0.30
2048 2.14(21) 3.08 3.99(12) 0.81

Table 5.18: Parameters of fits of the form (5.94) with By = 0 to the simulation
estimates for the mean extent (r) of pure ¢* random graphs as a function of the
cut-off Ny pin. Graphs with up to Ny = 32768 sites were included in the fits.

however in good agreement with the results found from the same fits to the data
for pure ¢* random graphs. The estimates of dj, resulting from the scaling of the
peak heights, on the other hand, are much lower than they were for the case of
pure ¢* graphs. The rather different result for 3 = 1.4 as compared to the other
inverse temperatures again indicates the presence of competing local minima of the
x? distribution — an effect which is always rather likely to occur in non-linear fitting

procedures.

As for the pure gravity model, we try to improve on the found estimates for d, by
including the next sub-leading correction term into the fits to the peak locations of
the two-point function, using the fit ansatz (5.92). With this type of fit we find no
significant dependency of the results on the lower cut-off Ny i, in the graph sizes.
The parameters of fits of this form are shown in Table 5.17. The resulting estimates
of d;, are compatible within statistical errors with d; = 4, such that from this data
we have no reason to suspect that d, differs from its pure gravity value d; = 4 for

any inverse temperature J of the F' model.

Scaling of the mean extent

As an alternative to the scaling of the maxima of the two-point function, one can also
consider the behaviour of mean properties of the distribution G2 (r), especially the
scaling of the mean extent (5.85). Taking the next sub-leading analytic correction

term into account, we make the scaling ansatz
(r+a)n, = Apy N/ ™ 4 By Ny /. (5.94)

Estimates for (r) can be easily found from the simulation data for G (r) together

with statistical error estimates evaluated by a jackknife blocking of the time se-
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(a) No min Qopt dp, X /dof
256 | 1.47(41) | 3.67(11) | 2.5
512 | 1.57(63) | 3.69(16) | 3.0
1024 | 2.22(49) | 3.83(11) | 0.7
2048 | 2.97(100) | 3.97(21) | 0.1
(b) | Namin Gopt, dy, x*/dof
256 | 1.46(10) | 3.657(28) | 2.3
512 | 1.52(14) | 3.672(37) | 2.7
1024 | 2.20(23) | 3.818(55) | 0.7
2048 | 2.98(60) | 3.97(12) | 0.1

Table 5.19: Estimates of the shift ¢ and the internal Hausdorff dimension d;, from
the adaption method proposed by the authors of Ref. [249]. (a) Estimates resulting
from the original prescription of Ref. [249]. (b) Results from the same method,
however with the average (5.98) replaced by (5.100) and error estimates evaluated
by a jackknife technique. In the adaption process graph sizes from Ny = Nj pin up
to Ny = 32768 sites were included.

ries. Setting B,y = 0 first and adapting the lower cut-off N5 i, of the graph sizes
successively as before, for the case of pure dynamical ¢* graphs we find the esti-
mates listed in Table 5.18. As for the results from the scaling of the peaks of the
two-point function, the resulting estimates of d;, are significantly too small in terms
of the statistical errors with an obvious tendency to increase as more and more of
the points from the small-N, side are omitted. On the other hand, including the
correction term of Eq. (5.94) largely reduces the dependency on the cut-off No min.
For Njmin = 256 we find the following fit parameters,

Ay = 2.01(27),
By = 3.1(18),

a = 3.3(11), (5.95)
d, = 3.90(15),
Q = 0.01,

with an estimate of dj, in nice agreement with d, = 4. Obviously, in view of the
results already found without inclusion of the correction term, the use of this addi-
tional correction is more questionable here than it was for the scaling of the peak

locations above. Also, the fits become very unstable as less points are included;
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B | Nowmin | Ap a dp Q
0.2 | 4096 | 1.54(20) | 1.60(74) | 3.57(12) | 0.04
2| 4096 | 1.23(19) | 0.50(80) | 3.35(14) | 0.84
1.4 | 2048 | 1.95(33) | 2.67(94) | 3.89(21) | 0.31

Table 5.20: Parameters of fits of the functional form (5.94) with By = 0 to the
mean extents of ¢* random graphs coupled to the F' model at inverse temperatures
B =0.2,=1In2and g = 1.4. The fits for §# = 0.2 and $ = In2 include graph sizes
up to Ny = 65 536 sites, whereas the fit at § = 1.4 includes graphs up to N, = 32 768

sites.

this explains the use of the cut-off Ny i, = 256 above, although the quality-of-fit is

rather poor.

The authors of Ref. [249] have proposed a different and less conventional method to
extract a and dj, from data of the mean extent, which they claim to be especially well

suited for obtaining high-precision results. They consider the following combination,

(r + a)n,

RﬂqN2 (dh) = NQI/dh

, (5.96)

and evaluate it for a series of simulations for different graph sizes N,. Then, for
a given a and for each pair (Ni, NJ) they define d(a) such that Ra,N;(de) =
N AN
R, N (d}), ie., | |
In N; —In N3
n((r)n; +a) = In((r)y; +a)’

where we have used that (r + a)n, = (r)n, + a. By a binning technique, an error

(5.97)

B =

estimate o(d}/) is evaluated and the estimates di/(a) are averaged over all pairs

(Ni, N3) of volumes,

_ 1 g
d = d’ (a). :
(1) = e Z i (a) (5.98)
Then, the optimal choice a,p; of the shift is found by minimizing
d7(a) — dp(a)]?
XQ(a) — Z [ h( ) h( )] (599)

= ol (a)]
being accompanied by an optimal estimate dj,(aop;). The authors of Ref. [249] sug-
gest to estimate the statistical error of this final estimate by considering the variation

of (a,d,) in an interval of a around a,p; defined by x2(a) < min[1, 2x2(aopt)]-
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B | Nowmin | Apy By a dp Q
0.2 | 512 ] 2.58(48) | 11.4(33) | 7.0(22) | 4.08(21) | 0.10
m2 | 512 | 1.37(22) | 0.4(20) | 1.1(12) | 3.45(14) | 0.41
14| 512 ]2.6(10) | 9.1(58) | 6.2(42) | 4.15(47) | 0.20

Table 5.21: Parameters of fits of the form (5.94) including the correction term to
the mean extent of dynamical ¢* graphs coupled to the F' model at different inverse

temperatures 3.

We implemented this whole procedure to compare its outcomes to the results of
the fits to Eq. (5.94); the resulting estimates for a and d, are compiled in Table
5.19(a). First of all, we find the ad hoc assumption for the estimation of the errors
of (a,dy) not adequate. We apply a second-order jackknifing technique as described
in Appendix A.3 to be able to give error estimates for d(a) as well as the final
estimate (a, dj,) and find error estimates largely differing from that resulting from the
rule x%(a) < min[l,2x%(aopt)]. For the set of simulations considered, the jackknife
estimated errors are about three to four times smaller than those estimated by the
rule for x?(a); however, for the simulations of the F' model coupled to the random
graphs we also find situations where the jackknife errors are up to ten times larger
than the errors estimated from y2. As far as the estimate of dj, itself is concerned,
we find indeed slightly increased values as compared to the fit method, cf. the data
compiled in Table 5.19(a). However, this increase can be traced back to the fact
that the individual estimates d;’ (a) all receive the same weight in the average (5.98),
irrespective of their precision. This gives an extra weight to the results for larger
graphs, which cannot be justified on statistical grounds. If, instead, we replace the

average (5.98) by the variance-weighted average

i = S @/ @)

h - i1 )
Dici L/0?ldy (a)]

the resulting estimates for dj and a are statistically equivalent to those found from

the fits to (5.94), cf. the parameters listed in Table 5.19(b). Thus, we do not find

any special benefits of this computationally rather demanding method as compared

(5.100)

to a plain fit to (5.94) with B,y = 0 and hence do not present further detailed results
for this method.

For the case of the F' model coupled to the ¢* random graphs we proceeded as

before, again using simulation data for 5 = 0.2, # =1n2 and § = 1.4. The results
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Figure 5.41: Collapse of the two-point functions G172 (r) of ¢* graphs coupled to the
F model at 5 = 0.2, re-scaled according to Eq. (5.88) with d;, = 3.57 and a = 1.60.

from fits of the mean extent (r)y, to the form (5.94) with By = 0 show very much
the same behaviour as the results from the scaling of the maxima of the two-point
function, with estimates of dj, clearly below d;, = 4 and slowly increasing as more
and more points from the small-N; side are omitted from the fits. In Table 5.20
we only show the final estimates with Ny min already adapted. The outcomes of the
method of Ref. [249] described above, with the average (5.98) replaced by (5.100)
and the x?(a) rule replaced by a jackknife error estimate, are again very close to the
fit results. Only occasionally it gives a result being marginally different in terms of
the statistical errors; we interpret this as different local minima of the corresponding
x? distribution being found by different methods resp. from different starting values.
Including the correction term of (5.94), i.e., relaxing the constraint B,y = 0, on the
other hand, yields estimates consistent with d;, = 4 for § = 0.2 and # = 1.4, however
with rather large statistical errors, cf. the parameters collected in Table 5.21. Note
that, as mentioned before, the results for 5 = 1.4 are in general less precise than
those for the other two inverse temperatures, which is due to the exponential slowing
down of the combined link-flip and surgery dynamics in the low-temperature phase,

cf. Section 5.3. The fit for § = In 2 settles down at a completely different minimum of
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the x? distribution, yielding a non-sensical result for dj, which is almost unchanged
as compared to the outcome of the corresponding fit without correction term. This
underlines the fact that the complexity of the chosen fit is at least at the verge of
being too large for the available data. Nevertheless, combining the data for d; from
the presented methods and including the comparison to the pure gravity case, we
find no reason to assume that d;, differs from d;, = 4 for the case of the F' model

coupled to ¢* random graphs.

Finally, we note that the parameters a and d; determined from the fits discussed
above lead to a nice scaling collapse of the two-point functions G2?(r) when re-
scaled according to the scaling ansatz of Eq. (5.88). Figure 5.41 shows this collapse of
distributions for the case of 5 = 0.2 and the choice of parameters listed in Table 5.20,
i.e., d, = 3.57(12) and a = 1.60(74). The visible deviations around the distribution
peaks indicate the presence of higher-order corrections not incorporated into the
scaling ansatz (5.88).



Chapter 6
Conclusions and Outlook

In this thesis, we have reported the results of large scale Monte Carlo simulations of
the F' model of statistical mechanics coupled to planar ¢* quantum gravity graphs.
This system is of significance as a model of annealed connectivity disorder applied to
a prototypic spin model of statistical mechanics and as a realization of a conformal
field theory with central charge C' = 1 coupled to discrete Euclidean quantum gravity

in two dimensions.

For the case of dynamical triangulations or, equivalently, “fat” ¢* random graphs,
a set of ergodic update moves for simulations in the canonical and grand-canonical
ensembles is given by the Pachner or (k,[) moves of Ref. [156]. For simulations of dy-
namical quadrangulations and the dual ¢* random graphs a flip move for canonical
simulations was proposed in Refs. [49,74]. To this flip move we add suitable general-
izations of the insertion and deletion moves for triangulations to the quadrangulation
model. According to the extent of singular contributions in the polygonifications
or dual graphs (such as self-energies and tadpoles), we distinguish different graph
ensembles, which we label as strict, reqular, restricted singular and singular; al-
though the original ergodicity proof of Ref. [156] for the Pachner moves for the
triangulation model considered combinatorial triangulations corresponding to the
reqular ensemble of our classification, this proof can be easily extended to the other
ensembles considered here. Comparing the simulation results for ¢* graphs to ex-
act results from the graph counting via matrix models, we find the “one-link flip”
of Refs. [49,74] to be sufficient to ensure ergodicity for canonical simulations at a
fixed number of graph vertices for the case of the strict ensemble, which forbids

the occurrence of any multiple links in the graphs. For the other three ensembles,

240
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however, this update can be shown to be not ergodic. Introducing a second type of
flip move, which we call “two-link flip”, the visible effects of ergodicity breaking for
the regular, restricted singular and singular ensembles disappear, and we conclude
that the combination of one- and two-link flip is ergodic for all of the considered
ensembles for simulations of ¢* graphs at a fixed number of graph vertices. On the
other hand, for simulations in the grand-canonical ensemble of a varying number of

graph vertices, the additional two-link flip move it found to be not necessary.

We attempt to formulate exact expressions for the co-ordination number distribu-
tion of the polygonifications or, equivalently, the distribution of loop lengths of the
dual graphs in the spirit of a proposal put forth in Ref. [21]. This is found to
be possible for the regular and restricted singular ensembles of the triangulation
model. For singular triangulations and the quadrangulation model this approach
fails due to a change in the symmetry factors associated to the graphs induced by
the occurrence of multiple links. The values of the co-ordination number distribu-
tion for small co-ordination numbers are shown to be related to ratios of canonical
partition functions; these ratios can be determined exactly for finite sizes of the
polygonifications or graphs and all of the considered ensembles of the triangula-
tion and quadrangulation models. Setting up a grand-canonical simulation scheme
with non-Boltzmann weights which we call “pseudo grand-canonical simulations”,
these partition function ratios are estimated numerically. Alternatively, they can
be measured by considering suitable observables in canonical simulations of a fixed
number of polygons resp. graph vertices. With the help of these tools, very sensitive

comparisons between exact and simulation results can be performed.

A scaling analysis of the integrated autocorrelation times of the mean square extent
of pure ¢* and ¢* random graphs shows that the considered canonical link-flip dy-
namics as a local update suffers from critical slowing down which affects only global
properties of the graphs, whereas local characteristics such as the co-ordination
number distribution are not concerned. To improve the dynamical performance of
the simulations, the minBU surgery algorithm proposed in Ref. [75] is adapted for
simulations of quadrangulations and ¢* graphs. A dynamical scaling analysis of an
algorithm combined from local link-flip and non-local minBU surgery steps shows a
considerable reduction of autocorrelation times of non-local observables, however no
reduction of the dynamical critical exponents z/dj,, which is in contrast to previous
claims [75,172]. Additionally, the performance of the algorithm for ¢* graphs is

hampered by the higher computational cost of the search for minBU necks for the
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case of quadrangulations as compared to the triangulation model.

For simulations of the 6-vertex model coupled to ¢* random graphs, we adapt the
loop algorithm of Ref. [76] to the needs of random lattices. Due to the lack of a
global sense of direction on the random graphs, the definition of the staggered anti-
ferroelectric polarization as an order parameter of the Kosterlitz-Thouless phase
transition of the F' model cannot be trivially transferred to the random graph model.
However, since the dynamical quadrangulations considered are bipartite lattices, a
two-colouring of the quadrangulations together with a “plaquette spin” representa-
tion of the vertex model allows for a generalization of the order parameter to the
random graph model, which coincides exactly on the configuration level with the

conventional definition when applied to the square-lattice model.

In view of the lack of numerical work on square-lattice vertex models and to cal-
ibrate the applied simulational and analytical machinery, a finite-size and thermal
scaling analysis of the square-lattice F' model is performed. Although the Kosterlitz-
Thouless point of the model is known to be equivalent to the critical point of the
two-dimensional XY model, observables related to the order parameters of both
models show different scaling behaviour. Additionally, due to duality, the high-
and low-temperature phases of both models appear exchanged with respect to each
other. The scaling analysis is found to be considerably complicated by the nature
of the infinite-order phase transition as well as the presence of logarithmic correc-
tions expected for a critical point of central charge C' = 1. Nevertheless, we find
good agreement between the simulation results and the exact solution of Lieb for
the zero-field model [62] as well as further results and conjectures of Baxter [242]

for the observables related to the staggered anti-ferroelectric polarization.

For the F model coupled to planar ¢* random graphs, we performed large-scale
simulations and a finite-size scaling analysis guided by the results for the square-
lattice case. In addition to the present logarithmic corrections, the finite-size scaling
analysis is hampered by the large fractal dimension of the random graphs, which
leads to very small effective linear extents at a given volume as compared to the
square lattice. Thus, finite-size effects are found to be very strong. The appar-
ent non-scaling of the specific heat together with a clear divergence of the staggered
anti-ferroelectric polarizability are taken as indicators for the presence of an infinite-
order phase transition of the Kosterlitz-Thouless type. The results of Refs. [72,73]
and further symmetry arguments imply that the critical coupling of the random

graph model is identical to that of the square lattice. However, we find the peaks
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of the polarizability for the numerically accessible graph sizes to be shifted very far
into the low-temperature phase as compared to the asymptotic critical coupling.
Thus, finite-size scaling fits to the shifts of the polarizability peaks are at best in
marginal agreement with the conjectured value of the asymptotic critical coupling.
A comparison of the peak positions re-scaled according to the mean linear extents
of the lattices between the random graph and square-lattice models, however, shows
that the finite-size approaches of both models are indeed very similar, but with
larger correction amplitudes for the random graph model. Thus, the identity of the
critical couplings between both models can be made very plausible numerically. A
cursory comparison of the scaling behaviour of the model for different ensembles re-
garding the inclusion of singular contributions in the graphs reveals that corrections
to scaling increase as more and more singular contributions are included. This is
in contrast to the behaviour of the pure polygonifications model found here and by
other authors [50]. As far as the critical exponents related to the order parameter
are concerned, a finite-size scaling analysis of the values of the spontaneous polariza-
tion and the polarizability at the asymptotic critical coupling yields critical indices
in agreement with the predictions from the KPZ formula. An attempted thermal
scaling analysis of the polarizability around its peak remains inconclusive due to
the huge size of present finite-size corrections. This, however, was to be expected
in view of the problems already encountered in the analysis of the square-lattice
model (and, similarly, the difficulties in the analysis of the two-dimensional XY
model encountered by many authors before) and the additional complication of the
much smaller linear extents accessible for the random graph model as compared to
models on regular lattices. As before for the square-lattice model, we find signs of
scaling throughout the whole high-temperature region of the model, indicating a
critical phase. As a curiosity, we report the finding of a critical internal energy of

the model, which is identical between the square-lattice and random graph cases.

A dynamical scaling analysis of the combined Monte Carlo update of graph-related
and matter-related moves at the asymptotic critical point of the model reveals in-
creased autocorrelation times for the global, graph-related properties, exemplified
by the mean square extent, for the local link-flip as well as the global minBU surgery
dynamics as compared to the pure polygonifications model. Although the global,
minBU surgery algorithm is found to perform overall better than the pure local link-
flip dynamics, as for the pure graph model we find no change in the corresponding

dynamical critical exponents. This identically applies to the behaviour of matter-
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related observables such as the spontaneous polarization. On proceeding into the
ordered phase, however, the gain of using the minBU update is found to increase,
since the link-flip dynamics is there found to be subject to “freezing” induced by
the ice-rule constraint of the vertex model, leading to vanishing acceptance rates for
the link flips there.

Several aspects of the back-reaction of the matter variables onto the properties of the
#* random graphs are analyzed as a function of temperature. The distribution of co-
ordination numbers of the quadrangulations can be determined very accurately. The
fraction of quadrangulation sites of co-ordination number two is found to be sharply
peaked around the asymptotic critical coupling, thus defining a pseudo-critical point
which determines the infinite-volume critical coupling quite accurately and in good
agreement with the analytical predictions. A scaling analysis of the distribution of
“baby universes” of the graphs in the spirit of Refs. [29,258] allows to extract the
string susceptibility exponent of the model. It is found to coincide with the value
vs = 0 expected for a C' = 1 theory throughout the critical high temperature phase.
The pure-gravity value 75 = —1/2 is found in the non-critical low-temperature
phase. Exploiting finite-size scaling relations, we analyze the geometrical two-point
function of the graphs and extract the fractal Hausdorff dimension. We find it
to be consistent with the pure gravity value d, = 4 for all temperatures of the
coupled vertex model. Determining all these graph properties also for the case of
pure ¢* random graphs, we find agreement with the results previously found for the
dynamical triangulations model, thus confirming the expected universality of the

dynamical polygonifications model with respect to the form of the polygons.

Using an adaptive algorithm and a 3D computer graphics package, the lattices of the
dynamical polygonifications model can be visualized by an embedding into three-
dimensional Euclidean space. For the pure gravity model, this yields a valuable
impression of the fractal structure of the lattices as well as a visualization of the large
variation of the graph properties in the considered ensembles. For the vertex model
coupled to random graphs, it provides helpful snapshots revealing the interaction
between the matter variables and the underlying geometry as the system passes from

the disordered to the ordered phase.

From the point of view of statistical mechanics an obvious generalization of the
considered model is given by the generalized 8-vertex type F' model discussed in
Section 4.3, which — on the square lattice — exhibits two different ordered phases

and a rich phase diagram. This model has been considered in a matrix model
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formulation in Ref. [231] and a special, one-dimensional slice of the parameter space
could be solved analytically. The general phase diagram of this model coupled to
¢* random graphs, however, is as yet unknown. From the quantum gravity point
of view, a very promising application of the coupling of vertex models to random
graphs could be given in an alternative formulation of discrete Lorentzian quantum
gravity proposed in Ref. [230]. There, the arrows of the vertex model on links
connecting neighbouring sites allow to distinguish between space-like and time-like
edges (¢ case) or, alternatively, forward and backward light cones (¢* case) and
thus provide a Lorentzian signature of the configurations in the spirit of spin network
evolution [260]. This approach could lead to a formulation of discrete Lorentzian

quantum gravity starting out with less initial assumptions than the formulation of
Ambjorn et al. [12,85,86,261].



Appendix A

Methods of Simulation and Data
Analysis

A.1 The Monte Carlo Process

A.1.1 Simple sampling

The Monte Carlo (MC) method is a general technique for the statistical evaluation
of (typically) high-dimensional integrals. Consider, e.g., a thermal average of an

observable A for a system of statistical mechanics,

(A) = 7 3" Alfs ) expl-0H({s)]. (A1)
{si}

where S = {s;} denotes the state-space variables (e.g., spin degrees of freedom), H
is the Hamiltonian of the model and Z denotes the partition function. Here, the
sum symbolizes either an integral for systems with continuous degrees of freedom
or a true summation for discrete variables. The number N of variables s;, e.g. the
number of spins of a lattice model, is typically huge and, eventually, a consideration
of the thermodynamic limit N — oo is intended. For the vast majority of the
cases, the integral (A.1) cannot be performed analytically, such that one has to
revert to a numerical integration (or other approximation methods). Unlike for
low-dimensional integrals, however, a numerical integration using a regular (e.g.
hyper-cubic) grid of evaluation points in the phase space S is not very well suited.

The standard rationale for this failure rests on the observation that the fraction of
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interior points of a regular grid vanishes as the grid dimension N tends to infinity
(see, e.g., Ref. [153]). That is, in this limit all points are located on the boundary
of the considered phase-space region, which is a surface of vanishing N-dimensional
volume. To guarantee a proper convergence of the numerical integration one needs a
more sensible, e.g. uniform, distribution of evaluation points. This can be achieved
by choosing phase-space points at random instead of regularly leading to a statistical

or Monte Carlo evaluation of the integral (A.1).

In this scheme, a time sequence of integration points S(t), i.e. a realization of a
discrete stochastic process, is chosen according to some probability density! Py (S)

and an estimate of (A) is then given by

o S AIS()]Peg[S(1)]/ Paim[S(#)]
A S RSO PanlS®] (A.2)

where P, (S) denotes the integration measure of the integral (A.1), i.e., the Boltz-

mann equilibrium distribution of statistical mechanics,

Pea(8) = — expl - FH(S)]. (A3)

Choosing a uniform distribution Py, (S) of evaluation points results in the so-called
simple sampling MC scheme. Then, successive integration points S(t) can be chosen
completely independent of each other, corresponding to a true random sampling.
This is a sensible procedure for cases where the Boltzmann factors in Eq. (A.1) are
constant, such that all regions of phase space contribute equally to the integral, i.e.,
when [ tends to zero or the temperature to infinity. Typically, however, this is not
the case and, instead, the Boltzmann factors give large weight to a comparably small
region of the state space. This largely unequal distribution of “importance” over
the phase space should then be taken into account when choosing the integration

points, leading to the importance sampling MC method.

A.1.2 Importance sampling

Obviously, the optimal probability density Pin,(S) for the choice of integration
points is the integration measure of Eq. (A.1) itself, i.e., the case Psm(S) = Peq(S).

'For systems with discrete phase-space variables the densities have to be replaced by simple
probabilities.
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If this choice of integration points can be achieved, every region of phase space re-
ceives attention exactly according to its importance for the integral (A.1) and the

estimate (A.2) reduces to a simple arithmetic time-series average,

A= % S AlS()], (A4)

where T" denotes the length of the time series. In order to realize this goal, a
discrete Markov process (or Markov chain) S(t) is utilized. There, the transition or

conditional probabilities are independent of all but the last predecessor states,
Pim[S(t +1)|8(t),...,8(1)] = Pim[S(t + 1)|S(t)], (A.5)

i.e., at each time the choice of the next integration point S(t + 1) depends only on
the current state S(¢) of the system. Additionally, one requires the Markov chain to
be homogeneous, i.e., the transition probability W (S — &') = Pyn[(S', t + 1)|(S, t)]
should not depend on ¢. It can be easily shown (see, e.g., Ref. [262]) from this Markov
property and the normalization of probability densities that the probabilities of the

chain have to fulfil the so-called Master equation,

Pin(S,t+ 1) — Py (S, t) = Z [Psim(S", )W (S — 8) — Psm(S, )W (S — §')],

(A.6)
which is simply a continuity equation for the conserved quantity Py, (S); on the rhs
of Eq. (A.6) the first term denotes the amount of probability entering the state S
and the second term the amount of probability leaving & in the time step t — ¢+ 1.
Thus, a sufficient, though not necessary, condition for the Boltzmann distribution
to be a stationary probability density P(S,t) = P(S) of the chain is given by the

postulate of detailed balance for the transition probabilities W,
W(S = 8" Py(S) = W(S' — S)Py(S). (A.7)

To guarantee not only stationarity of the Boltzmann distribution, but the conver-
gence of P, to Peq, is more intricate. However, this convergence can be proved
under the additional condition of ergodicity of the Markov chain. For a finite num-
ber of states, ergodicity means that with a finite probability the chain will adopt any
of these states after a finite number of steps, irrespective of the initial conditions.
For an infinite number of discrete states or a continuum of states this notion has to

be suitably generalized. For the case of a finite number of states, the convergence
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property is known as Markov’s ergodicity theorem [262]. A recent compilation of
proofs of the convergence of the MC process can be found in Ref. [263].

Therefore, an importance sampling Monte Carlo simulation scheme satisfying the
conditions of detailed balance and ergodicity is guaranteed to converge to the Boltz-
mann distribution and thermal averages are given by the simple time-series average
(A.4). While ergodicity is a property of the set of considered update moves S — &'
(such as, e.g., single spin flips for a spin model), which have to be ensured to connect
any two states of the system within a finite number of steps (at least for the case
of a finite number of states), detailed balance is a condition to be fulfilled by the
chosen transition probabilities W (S — &’). The most commonly adopted choice is
given by the Metropolis formula [264],

W(S — &) = min {1, exp (—B[H(S") — H(S)]}, (A.8)

which satisfies Eq. (A.7) as can be easily checked.

A.2 Autocorrelations and Dynamical Scaling

The Markovian nature of the stochastic process involved in the importance sam-
pling Monte Carlo scheme entails the fact that subsequent system states generated
in the chain are not statistically independent. The degree of correlation between
subsequent realizations of a random variable A at times s and ¢ is measured by the

connected, unnormalized autocorrelation function
Ca(s,t) = (AsA;) — (A)(Ay), t>s. (A.9)

The stationarity of the process implies translation invariance (A;) = (4;) = (A)
and (A A;) = (AgAi—s), so that we can consider Cy(t) = C4(0,t). One can also

define the normalized autocorrelation function of A,
pa(t) = Ca(t)/Ca(0), (A.10)

such that p4(0) = 1 and lim;_,», pa(t) = 0. The autocorrelation function is generi-

cally expected to decline exponentially, i.e.

CA(t) ~ CA(O)eit/T(A), (A.ll)
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which defines the exponential autocorrelation time 7(A) which is specific to the
considered process (i.e., MC dynamics) and the random variable (i.e., observable)
A. Obviously, C4(0) is identical to the variance o?(A4) of A. In general the dynamics
of a Monte Carlo process will be characterized by a set of different correlation times
To > ... > T, Where, potentially, n — oco. By the exponential correlation length
7(A) of an observable A we refer to the largest correlation length 7(A) present with

non-vanishing amplitude in the dynamic spectrum of A, i.e. [169]

7o(A) = limsup (A.12)

tsoo  —Inpy (t)
Note, however, that due to the possibility of a very small amplitude of the leading

exponential, this correlation length could be suppressed as compared to the non-

leading terms even for long, but finite time series.

The degree of dependence in time of successive states of a Markov chain generated
by local moves (like single spin flips in a lattice spin model) is obviously linked
to the strength of correlations of the system’s degrees of freedom in space, i.e.,
the autocorrelation times are expected to grow with the spatial correlation length
&, In the vicinity of a critical point, where clusters of pure phase states of all
sizes constitute the typical configurations, autocorrelation times (in units of lattice

sweeps) are observed to grow algebraically (critical slowing down),
7 o min(&, L)?, (A.13)

where the dynamical critical exponent z is now on the basis of universality arguments
expected to be independent of the observable under consideration. In a simplified
dynamical model for a general local algorithm, the information about a local exci-
tation within a pure phase region is assumed to travel diffusively, thus implying a
random-walk exponent of z = 2. In real-world models, however, z like static criti-
cal exponents takes on a non-trivial value, which is for local dynamics close to but
different from 2z = 2.

The precision of a time-series average A = (>, 4;)/N from a Monte Carlo simulation
is maximal for uncorrelated measurements A;; here, N denotes the length of the
time series. The variance of the mean 0%(A) = (A2?) — (A)? for the case of correlated

measurements is given by

o?(A) = 3 Cals,t) = 2440

s,t=1

% + prA(t) <1 - %)] L (A4
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Abbreviating the factor in square brackets as Tin,n(A), this expression can be re-
arranged with C'4(0) = 0%(A) to give
o?(A) o?(A)

o*(A) = _ ~ . ., N> 1. A.15
( ) N/QTint,N(A) N/QTint,oo(A) ( )

For historical and technical reasons (stemming from spectral analysis, cf. Ref. [265]),

the integrated autocorrelation time is not defined as Ting,»0(A), but omitting the factor
(1—-1t/N) as

o0

1
Tint (A) == 7-int,c>o(14) == 5 + t_zlpA(t)a (A16)
which, for an exponentially decaying autocorrelation function p(t) only differs by an
exponentially small amount from 7, o (A), such that, for practical purposes, both

definitions are equivalent. Thus, if we define,

N
27—int (A) ’

Neg = (A.17)
the variance still vanishes inversely linear with the number of measurements, but

with NV replaced by the effective number of independent measurements Neg.

The relation between the exponential and integrated autocorrelation times, 7o(A)
and 7y (A), is obvious for the purely exponential form of p4(t) of Eq. (A.11); then,

we have

| (1 4 =1/

For a spectrum of p4(t) containing higher order excitations 7;(A), i > 0, one can
show that Eq. (A.18) has to be replaced by [266]

Tint (A) < 79(A). (A.19)

Also, then, one can ask, whether the dynamical critical exponents of Eq. (A.13)
associated with the two types of autocorrelation times coincide. This is not generally
the case; instead from Eq. (A.19) it is obvious that

Zint < 20, (A.20)

and cases where 2,y < 2o have been observed [267].
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A.3 Binning and the Jackknife

A.3.1 The binning technique

As discussed in Appendix A.2 above, the fact that the importance sampling method
utilizes a stochastic Markov process for the generation of the Monte Carlo integra-
tion points, entails autocorrelations between successive configurations of the system.
As far as the analysis of the resulting time series A; of observable measurements is
concerned, these autocorrelations are rather unpleasant, since the statistical anal-
ysis of time series is much simpler for uncorrelated data, see, e.g., Refs. [265, 268|.
For instance, to evaluate the variance of the mean value A of an autocorrelated
time series, according to Eq. (A.15) one has to estimate the integrated autocorrela-
tion time Ty (A) first, which is not completely straightforward and computationally
quite expensive, cf. Appendix A.4. Apart from that, advanced analysis tools such as
the “jackknife” method to be described below can only be applied to a set of “iid”
(identically and independently distributed) random variables. The blocking process
discussed in the following re-arranges the simulation data in a way such as to gen-
erate an effectively uncorrelated time series, thus alleviating the above-mentioned

problems.

The binning approach exploits the observation that the combination of neighbouring
entries of the time series of length N to sub-averages,
1 N

Ap = §(A2t—1 + Ay), N'= o (A.21)
results in a less correlated new time series A} of (smaller) length N’ as long as the
correlations of the original time series decay fast enough. This has some important
consequences for the estimation of the variance of the mean from the transformed
time series. Obviously, the mean value A and its variance o2(A) are not affected by
this transformation. However, the variance 0?(A) = C4(0) of a single measurement

transforms as [269],
o2(A') = %[C’A(O) +Ca(1)], (A.22)

where C4(t) denotes the autocorrelation function of A defined by Eq. (A.9). That
is, a part of the autocorrelations, namely the one-step-distance part C4(1), is being
incorporated into the variance o?(A’) of the transformed variable A’. Now, from Eq.
(A.14) it is obvious that C4(0)/N is a lower bound of the variance o?(A) and for
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the transformed variables one finds,

o?(A) = o?(A") > C%‘V(,O) = C/;\S.O) + C?\El), (A.23)

such that the sequence Cj(qk)(O) /N®) resulting from k successive applications of the
binning transformation (A.21) is bounded and monotonous as long as the autocorre-
lation function C4(t) decays faster than 1/t [269]. Thus, the sequence C’I(le)(O)/N(’“)
is convergent, and its fixed point value C*(0)/N* is the variance 0%(A) of the mean.
On the other hand, from Eq. (A.14) this implies that the higher order autocorre-
lations C%(t)/N*, t > 0 vanish at this fixed point. Therefore, the fixed point time
series is uncorrelated and for the estimate of the variance of its mean, the naive

formula can be employed [268],

() = o) = (= CAO0) = (s o~ A9 (A20)

In practice, the estimates CA'SC)(O) J(N®) — 1) are evaluated after each application
of the binning transformation. According to the preceding discussion, they are
expected to grow monotonously and to settle down on the plateau value C%(0)/(N*—
1) as soon as “enough” binning transformations have been performed. While in
theory this requires infinitely many of such transformations, in practice it suffices
to do this k = klog, 7ins(A) times with a factor x of the order of 10" to shift the
effect of autocorrelations below the noise of the statistical fluctuations. This is due
to the fact that for the usual Monte Carlo dynamics autocorrelations in fact decline

exponentially and not only algebraically, cf. Appendix A.2 above.

A.3.2 Jackknife bias and variance estimates

In this section we consider a Monte Carlo time series A; which is uncorrelated,
i.e., which either comes from a simple sampling MC simulation or is already the
result of a re-blocking of the original time series via the binning scheme of the
previous section. The length n of the time series then corresponds to the number of
blocks used in the binning transformation. The analysis of stationary, uncorrelated
time series can be generally described as the estimation of some parameter f(F') of
the underlying probability density F'(A) of the random variable (observable) A by
consideration of the sampled density F' = [Y, 6(A — A;)]/n. The two main issues

related to this estimation are the question of its bias, i.e. how far on average the
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estimate is from the expected value, and the need to determine the accuracy of the
estimate in terms of the present statistical fluctuations. For reviews of the jackknife

and other resampling schemes see Refs. [270,271].

Bias reduction

The bias of the estimate f(F) of the parameter f(F) is given by
BIAS = (f(F)) — f(F). (A.25)

For the parameters f commonly considered in MC simulations, the bias depends

analytically on the length n of the time series, so one can expand?
- a a
FI) = FIF) +—+ 4. (A.26)

For time series analyses of MC data, the parameter f will most often be a function of
the expectation value (A), i.e. f(F) = f({A)), and the estimate is given by replacing
the expectation by the mean, i.e. f = f(ﬁ’) = f(A). We will discuss this case here,
the generalization to more general situations being straightforward. Obviously, the
identity f({A)) = (A) can be estimated without bias by f(A) = A. For non-linear
functions f, however, in general a bias will occur that, to first order, vanishes as 1/n
for large lengths n of the time series. Denoting the expectation value (f(A4)) from
a time series of length n as E,, from Eq. (A.26) one reads off that, to first order in

1/n,

E, — Ey 1
- /n , (A.27)
E,1—E, 1/(n—=1)—-1/n
such that the true expectation value Ey, = f({A)) can be estimated by
Eyw=nE,— (n—1)E,_;. (A.28)

Thus, if one can construct an estimate for the expectation values FE,_; for time
series of length n — 1 from the original series of length n, a bias-reduced estimator
for ., = f((A)) can be easily found. The simple trick on which the jackknife
resampling scheme is based, is the observation that n time series of length n — 1
can be constructed from a series of length n by omitting in each series a single

measurement Ag. That is, one considers the jackknife empirical densities

d 6(A-A), s=1,...,N. (A.29)

2Note, that in contrast to many of the textbook formulae of statistics we do not have to assume
a Gaussian distribution here.
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From the corresponding jackknife block averages,

] 1
Aw=—7D A (A.30)

jackknife estimates for the expectation value E,_; and their average are given by

: 1
fo = = fo (A.31)

From Eq. (A.28) the jackknife bias-reduced estimator of f((A)) is therefore given
by
f=nf-— (n — 1)f(.), (A.32)

and, correspondingly, the jackknife or Quenouille estimator of bias is given by [270],
BIAS(/) = (n — 1)(fo) — ). (A.33)

From the expansion (A.26) it is obvious that the improved estimator f now merely
has a bias proportional to 1/n? instead of 1/n. In principle, this process of bias
reduction can be iterated to also remove higher-order bias contributions. It should
be clear, however, that the variance of f will in general be larger than that of the
original estimator f . Thus, a reduction of bias is paid for by an increase in statistical
fluctuations. Therefore, a (further) reduction of bias is only sensible if the bias is (at

least) of the same order of magnitude as the variance of the considered observable.

Variance estimation

A quantification of the statistical accuracy of a parameter estimation is given by its
variance. While, again, an estimation of this parameter is straightforward for the

trivial case f = f(A) = A, where an unbiased estimate of variance is given by

N
_ 1 ~
~2 2
6°(A) = ——= ) (A4 —A)°, (A.34)
n(n —1) ;
for non-linear functions f(A) an unbiased variance estimate can in general not be
constructed. This problem is often solved by the application of well-known error
propagation formulae [170]. These assume a Gaussian distribution of the observable

A, which is approximately the case for long enough time series thanks to the central
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limit theorem. However, there is no simple way to quantify the systematical error
entailed by this approximation. Furthermore, the analytic form of the function f is
needed for the error propagation, which is not always known, for example when f
denotes the operation of finding the location of the maximum of the specific heat as
a function of temperature found by a reweighting analysis of a time series of energy

measurements.

A brute-force ansatz for the evaluation of variances of parameter estimates would
be to perform & independent MC simulations of length n/k each and to evaluate
the desired parameter estimates ﬁ-, t = 1,...,k. Then the analogue of the naive

variance estimate (A.34) can be applied to this set of time series,

k
D=y S (4.35)
with a bias of at most O(k/n) and a variance of O(1/k). In contrast, applying (A.34)
directly on the level of the measurements of a single time series would result in a
bias which is O(1). Eq. (A.35) corresponds to the plain blocking or binning scheme
presented in the previous section applied to an uncorrelated time series. However,
one can improve on this and find an estimator with bias and variance O(1/n) using
the jackknifing idea. Interpreting the jackknife blocks of Eq. (A.31) as the outcomes
of n simulations with time series of length n—1 one can write down an estimate of the
type (A.35). This, however, would neglect the large but trivial correlations between
these n series, which differ only by one measurement each. Yet, as it turns out [270],
the effect of these correlations is simply an under-estimation of the variance by a
factor of 1/(n —1)?, which can be easily amended. Therefore, the jackknife estimate

of variance of f is given by

— —1 X A
VAR(f) = —— > lfio = Jol* (A.36)

s=1

with a bias which is O(1/n). The fact that the effect of the correlations between the
jackknife blocks can simply be corrected for by a multiplication with (n —1)? can be
easily checked for the trivial case of f = A. For more general parameter estimates,
one has to assume certain analyticity properties of the parameters f as a function
of n [270]. In general, it can be shown [270] that the jackknife variance estimate is

conservative in the following sense,

(

©_VAR(S) > o2_,(f), (A.37)

n—1
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where 072171(]?) denotes the true variance of the estimate f from time series of length

n—1.

Finally, it should be noted that the jackknife bias reduction and variance estimation
techniques can be combined to assess the variance of the bias-reduced estimates
f of Eq. (A.32). For this purpose, the jackknife blocking scheme has to be iter-
ated to second order, leading to a matrix of jackknife blocks of length n — 2. The

corresponding formulae are given in Ref. [272].

A.4 Estimation of Autocorrelation Times

Given a realisation of the time series A; of length /N the autocorrelation function
Eq. (A.9) can be estimated as

N—t

CA(t) = m Z(As - A)(As—l—t - /_1), (A-38)
where v
A= % > AL (A.39)

However, the estimate Eq. (A.38) is not unbiased; in fact, it can be shown [268] that
its bias is approximately given by —o?(A)7n:(A)/N, so that it is still asymptotically
unbiased for N > 7,4(A), which is anyway a necessary condition for reliable and
accurate parameter estimates from finite-length time series. Alternatively, C4(¢)
can be estimated by

N LI 42 A.40

CA(t)_N—_t;ASAsH—A, (A.40)
which is also not unbiased due to the bias of the second term. For time series
with, e.g., N 2 100007, typically occurring in Monte Carlo simulations, the
two estimates (A.38) and (A.40) are nearly indistinguishable. The second estimate
Eq. (A.40) is computationally somewhat more convenient since the estimate A can
be computed within the same loop as the estimate for (A;A;.;). From this, the

normalized autocorrelation function can be estimated by
pa(t) = Ca(t)/Ca(0), (A.41)

which is also a biased estimate; for the rather long times series needed for the

estimation of autocorrelation times, however, this bias can be rather safely neglected.
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An estimate of the exponential autocorrelation time 74(A) follows from a three-

parameter fit of C4(£) to the functional form

Ca(t) = C4(0) exp(—t/75(A)) + const, (A.42)
where the additive constant should be included to account for the statistical uncer-
tainty in the estimation of the disconnected part (A)? [273]. An alternative set of
estimates that eliminate variance and bias connected to the additive and multiplica-

tive constants is given by [274]

Ca(t) = Ca(t — A)

2 nt-Y (A.43)
CA(t + A) — CA(t)

7o(A;t) = Alln

where the free parameter A can be used to tune the signal-noise ratio to an optimum.
For a final estimate of 79(A) an average over different distances ¢ in Eq. (A.43) should
be performed, taking the covariances of the estimates 7y(A;t) for different offsets ¢

into account [274].

Of more interest also for the analysis of static behaviour of model systems is the

integrated autocorrelation time 7, (A). Unfortunately, the obvious estimator,

ey (4) =5+ 3 dalt), (A1)

which would also be used to approximately estimate Tin(A) = Tint00(A4), is very
badly-behaved statistically. Since the number of data points used for the estimate
pa(t) of Eq. (A.41) decreases with the distance ¢ as (N — t), the estimate p4(¢)
becomes very noisy for large separations ¢. These variances of p4(t) sum up to a
total variance of 7iy n(A) of Eq. (A.44) that does not vanish with N — oo [265],
thus destroying the reliability of the estimate 7 (A). To circumvent this problem,

one introduces a cut-off M < N — 1 in the distances t, i.e.,

M

. 1 .

Tt (A) = B + Z pa(t), (A.45)
=1

which, on the other hand, introduces an additional bias. Since an increase of M
increases the variance of 7y a7 (A), but reduces the bias, the choice of M is a tradeoff
between bias and variance. In practice, a self-consistent determination of the cut-off

turns out to be useful [169], i.e. M is successively increased to the point where

M 2 K Fing 1 (A). (A.46)
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For the usual lengths of time series in Monte Carlo simulations of N > 10000 7y, a
cut-off parameter of k &~ 6 turns out to be a sensible choice [210]. The variance of
the estimate 7y a7 (A) can be approximately found from straightforward but tedious
calculations [169, 265, 268] for 7, < M < N to be

R 202M +1
o [ (A)] ~ 2O 2 (), (A7)
A more accurate determination of the estimator variance can be constructed with
the jackknife technique, cf. Appendix A.3. Define jackknife block estimates for n

blocks of the autocorrelation function as

2
1 n 1 n
V=5 ZAASH (Nn_Q ) t < N/n (A.48)

56771 sE€ETa

where a = 1,...,n and
T.={0<i<(a—1)N/n}U{aN/n<i<(n—1)N/n)}, 1€ N (A.49)

Then, from the resulting jackknife block estimates of 7, (A),

M
~(a 1 (o Ao
Fa(4) = 5+ P 0/C00),
t=1
R I o
ar(A) = S DN (A), (A.50)
a=1

the jackknife estimate of variance for 7ip ar(A), M < N/n, is given by

2

— . n—1s=T. o (-
VAR fninr(A)] = == 37 [#(4) = 70, (4)] (A.51)

An alternative estimate of 7,(A) can be found from Eq. (A.15),

1 o%(A)

2 A ~ - 7
7—111‘5,71( ) QUQ(A)/N,

(A.52)

where the “~” accounts for the difference between 7., (A) and the factor in square

brackets of Eq. (A.14) that is negligible for all practical purposes. Considering the
usual n-block jackknife estimate of the variance of A,

— n—1

VAR, (4) =

> A — Apl (A.53)
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a jackknife estimate of the integrated autocorrelation time is given by
1 — . —_
Tintn(A) = QVARn(A)/VARN(A), (A.54)

where, as usual, n has to be chosen such that the jackknife blocks are approximately
independent statistically; this is commonly achieved by monitoring the value of
\TAT%n(A) on increasing n, until a plateau value is reached. An estimate for the
variance of 7y ,(A) can be found from iterating the jackknife procedure to second

order, i.e., in the usual notation,

VAR, (VAR,(4)) = “—L ST[VARL, (4) - VARL, (A2, (A.55)
n
s=1
such that o
o — 1 VAR, (VAR, (A
Pl (D) = + RO ) (A.56)
VAR, (A)

where the variance of \TAT%N(A) has been neglected due to its suppression by 73, (A) /N
compared to the variance of \TA?{,L(A)

A.5 Histogram Reweighting

As it has been described in Section A.1, a single importance-sampling Monte Carlo
simulation yields statistically exact information about thermal averages of a system
of statistical mechanics only at a single point of the coupling parameter space. For
simplicity, we restrict ourselves to the case of the (inverse) temperature /3 as the only
present, coupling. Implicitly, however, the gathered data contains temperature in-
dependent information about the system. Within the importance sampling scheme,

the probability density of the system energies at the inverse temperature [y,

- 1
Zﬂo

Dgo (E) Q(E)eiﬁOEa (A57)
is sampled by the normalized energy histogram Hyp (F), i.e., (Hz,(E)) = pg,(E).
Here, QQ(E) denotes the density of energy states of the system. Since the temperature
dependence of pg,(E) is explicit, i.e., the non-trivial term Q(E) does not depend on

Bo, one has the following basic relation,

exp[— (8 — Bo) E]

ps(E) = Wp5,(E) ps,(E) = S 952 (E) expl—(5 — o) E]

Pso(E), (A.58)
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which is the starting point for the reweighting procedure in the importance sampling
scheme [275,276]. Thus, obtaining information about the system at the coupling
[ from a simulation at [, amounts to the application of the reweighting factors
Ws_s,(E). Therefore, from the estimate Hg, (F), the distribution at a different

inverse temperature [ can be evaluated as

HolI) = W () () = Hﬁf[;(ﬁp‘[ 5(; ] g e (A5

Consequently, estimates of expectation values of temperature dependent observables

A(FE) at ( are given by
Ag =) Hy(E)A(E). (A.60)
E

In terms of the time series (F}, A;) of energy and observable measurements at [,
this can be written as

exp[—(8 — Bo) Ei]
Aﬁ_ZWﬂ (DA = Zztexp 5_ﬁ0)Et]At. (A.61)

For the reweighting of observables A, whose value for a given system configuration is
not uniquely defined by the configurational energy (such as, e.g., the magnetization),
one has to construct micro-canonical (fixed-energy) averages (A)g, which then can
be treated as the observables A(FE) above.

While the given relations are statistically exact for arbitrary choices of 3, in practice
the quality of the estimates strongly depends on the separation § — [y. Since in
the importance sampling process events are sampled only in the vicinity of the
rather narrow peak(s) of the energy histogram, whose positions strongly depend on
the inverse temperature 3, for too large separations 3 — (3, the histogram I-:Tﬁo(E)
eventually contains no entries for the region of F receiving large weights from the
reweighting factors Ws_g, (F). The reliability of the reweighting process for a given
inverse temperature (3 is conveniently assured by monitoring the overlap O (8 — o)

of the corresponding energy histograms at the couplings 3y and g, i.e.,
5(8—By) = me Hg,(E), Hs(E)] =Y _min[1/T, Ws_g,(t)], (A.62)
t

where 1" denotes the length of the time series. For the reweighting to work reliably,
the overlap should exceed a certain threshold, say 2/3. Thus, reweighting is mostly
useful in the vicinity of critical points, where the corresponding energy distributions

are rather broad, ensuring a non-trivial size |3 — [3y| of the region where reweighting
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works reliably. Note that suitably evaluated statistical errors of the reweighted
estimates do not (or only partially) reflect the error stemming from a lack of overlap
of the relevant histograms, since the (undefined) relative variance of energy bins with
no entries is usually assumed to be zero. For the reweighting of observables related to
the magnetization, it is sometimes convenient to also consider the overlap Oy (83— 5o)
of the magnetization histograms, which can be easily defined in terms of the two-
dimensional histogram H(FE, M). Note that in general an absolute threshold for the
overlap can not guarantee reliability of the reweighting process, since observables
can be defined to use more and more data from the far wings of the energy (or
magnetization) distributions by including terms with large-order moments (E*) or
(M*), k> 1. In addition to the fluctuations, the reweighting process entails a bias
of the reweighted estimates, which also results from missing histogram entries and
vanishes as 1/T with the length of the time series.



Appendix B

Graph Embedding and

Visualization

In contrast to embedded string and lattice random surface models, the dynamical
triangulations (or, more generally, dynamical polygonifications) model as defined in
Chapter 2 describes abstract graphs without any reference to an embedding space.
Obviously, this is what one would expect from a discretised theory of quantum
gravity, which should be formulated entirely in terms of intrinsic variables such as
the intrinsic metric tensor. However, for practical purposes and, especially, for the
visualization of the resulting abstract surfaces, the possibility of an embedding of the
two-dimensional graphs into three-dimensional Euclidean space is highly desirable.
In connection with suitable software for three-dimensional visualization such as the
OpenGL APT [277], an embedding allows for quite decorative and, more importantly,
physically very instructive representations of graphs of the considered ensembles. For
the pure gravity model, the corresponding representation provides a visualization
of the fractal structure of the graphs, being described as that of a self-similar tree
of baby universes [29]. Furthermore, encoding discrete matter variables coupled
to the vertices or faces of the graphs by a suitable colouring of these entities, the
interactions between space-time and matter can be directly “observed”. Especially,
the influence of the tendency of (partially) ordered spin models to minimize the
boundaries between pure-phase regions on the branching properties of the baby

universe tree is directly visible, see also Section 2.4.

For visualization purposes, one should concentrate on the polygonifications, since

the faces are planar there (the types of polygons being restricted to triangles or

263
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squares). Thus, when considering ¢* or ¢! graphs, they should be transformed to
the dual triangulations resp. quadrangulations. Additionally, the square faces of
the quadrangulations are divided into two triangles for the visualization with the
OpenGL package. Since the faces of the polygonifications are assumed to be equi-
lateral, the embedding problem is in principle a combinatorial one: the number of
equilateral polygons meeting at a given vertex (i.e., its co-ordination number) de-
termines the configuration of such a “dome” or “trough” of polygons uniquely up
to a finite number of discrete transformations. Thus, for any finite, planar polygo-
nification there are only a finite number of representations satisfying the constraint
of equilaterality, which could be successively tested to find an embedding without
edge intersections. Practically, however, we find this not very convenient since the
number of possible configurations still grows exponentially with the number of graph

vertices. Thus, instead, we revert to an adaptive embedding algorithm.

Although the considered graphs are planar and can thus be drawn in the plane,
this is obviously impossible if the equilaterality constraint should be observed at
the same time. Also, the fractal structure is much better visible for a spherical

representation. Hence, the embedding procedure is split into three sub-steps:

1. Find a planar embedding of the triangulation or quadrangulation, i.e., draw

it in the plane ensuring that no two edges intersect.
2. Project this embedding stereographically onto the unit sphere.

3. Approximately satisfy the equilaterality constraint by the simulation of a gen-

eralized spring embedder.

The problem of planarity testing and the construction of plane embeddings of planar
graphs has received much attention in algorithmic theory and several efficient, but
mostly quite complex, solutions have been put forward. For the first time, it has
been shown by Tarjan et al. [278] (see also Refs. [164,279]) that planarity of a graph
can be tested in O(V + E) time, where V' denotes the number of vertices and E
the number of edges of the graph. We use this algorithm, which produces a valid
planar embedding in the course of the test (for a planar graph). However, it does
not pay any attention to the length of the edges, which are thus arbitrarily adapted
to eliminate edge crossings. In the second step, the resulting plane embedding is

stereographically projected onto a sphere, i.e., from the co-ordinates (x,y) in the
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Figure B.1: Force trying to unify the lengths of the edges adjacent to a single vertex

of a dynamical triangulation.

plane, co-ordinates (z',y', 2') on the unit sphere are found as

(xlv ylv ZI) = (l‘/TQ, y/’I“Q, 1/2 - 1/T2)7

r? = 1+2%+9y% (B.1)

This transformation has the advantage of not producing any edge intersections since
the mapping preserves angles. Finally, to bring the postulate of equal edge lengths
into play, a generalized spring embedder is iteratively solved, i.e., we assume two-
body forces (“springs”) between the vertices of the polygonification embedded on
the sphere trying to unify the edge lengths,

F, - F [rijl — o 7y

ro  |ryl’ (B2)
where 7;; denotes the difference vector between vertices ¢ and j, ry is the desired
common edge length and Fj denotes the force strength, i.e., a free parameter to be
adjusted. These forces are iteratively evaluated until the system has relaxated into a
steady state, adjusting the time steps such as to prevent edge and face intersections
from occurring. Additionally, a second type of interactions is assumed, which moves
a single vertex with respect to all its neighbours, trying to unify the lengths of the
involved edges, cf. Fig. B.1. Both types of forces are applied alternatingly, until the

system has converged into a steady state.
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Note that this combined algorithm cannot guarantee the absence of edge or face
intersections for the final embedding. However, a suitable adaption of the inherent
parameters ensures this with only a few local exceptions. Furthermore, full equality
of edge lengths is not achieved, but the overall structure of the resulting graphs is
clearly resolved, as can be seen from the corresponding figures presented in the main

text.
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