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ReferatDiese Arbeit befa�t si
h mit der Koppelung von Vertex-Modellen an die planaren�4-Zufallsgraphen des Zugangs zur Quantengravitation �uber dynamis
he Polygoni-�zierungen. Das betra
htete System hat eine doppelte Bedeutung, einerseits alsdie Koppelung einer konformen Feldtheorie mit zentraler Ladung C = 1 an zwei-dimensionale Euklidis
he Quantengravitation, andererseits als Anwendung von geo-metris
her, \annealed" Unordnung auf ein prototypis
hes Modell der statistis
henMe
hanik. Da das Modell mit Hilfe einer gro�angelegten Reihe von Monte CarloSimulationen untersu
ht wird, m�ussen entspre
hende Te
hniken f�ur die Simula-tion von dynamis
hen Quadrangulierungen bzw. die dualen �4-Graphen entwik-kelt werden. Hierzu werden vers
hiedene Algorithmen und die dazugeh�origen Z�ugevorges
hlagen und hinsi
htli
h ihrer Ergodizit�at und EÆzienz untersu
ht. Zum Ver-glei
h mit exakten Ergebnissen werden die Verteilung der Koordinationszahlen bzw.bestimmte Analoga davon konstruiert. F�ur Simulationen des F -Modells auf �4-Zufallsgraphen wird ein Ordnungsparameter f�ur den antiferroelektris
hen Phasen-�ubergang mit Hilfe einer Plakettenspindarstellung formuliert. Ausf�uhrli
he \�nite-size s
aling"-Analysen des Kosterlitz-Thouless-Phasen�ubergangs des F -Modells aufdem Quadratgitter und auf Zufallsgraphen werden vorgestellt und die Positionender jeweiligen kritis
hen Punkte sowie die dazugeh�origen kritis
hen Exponentenwerden bestimmt. Die R�u
kreaktion des Vertex-Modells auf die Zufallsgraphenwird in Form der Koordinationszahlverteilung, der Verteilung der \Baby-Universen"und dem daraus resultierenden String-Suszeptibilit�ats-Exponenten sowie dur
h diegeometris
he Zweipunktfunktion analysiert, die eine S
h�atzung der intrinsis
henHausdor�-Dimension des gekoppelten Systems liefert.
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tIn this thesis, the 
oupling of i
e-type vertex models to the planar �4 random graphsof the dynami
al polygoni�
ations approa
h to quantum gravity is 
onsidered. Theinvestigated system has a double signi�
an
e as a 
onformal �eld theory with 
en-tral 
harge C = 1 
oupled to two-dimensional Eu
lidean quantum gravity and asthe appli
ation of a spe
ial type of annealed 
onne
tivity disorder to a prototypi
model of statisti
al me
hani
s. Sin
e the model is analyzed by means of large-s
aleMonte Carlo simulations, suitable simulation te
hniques for the 
ase of dynami
alquadrangulations and the dual �4 random graphs have to be developed. Di�erentalgorithms and the asso
iated update moves are proposed and investigated withrespe
t to their ergodi
ity and performan
e. For 
omparison to exa
t results, the
o-ordination number distribution of the dynami
al polygoni�
ations model, or 
er-tain analogues of it, are 
onstru
ted. For simulations of the 6-vertex F model on �4random graphs, an order parameter for its anti-ferroele
tri
 phase transitions is 
on-stru
ted in terms of a \plaquette spin" representation. Extensive �nite-size s
alinganalyses of the Kosterlitz-Thouless point of the square-latti
e and random graph Fmodels are presented and the lo
ations of the 
riti
al points as well as the 
orre-sponding 
riti
al exponents are determined. The ba
k-rea
tion of the 
oupled vertexmodel on the random graphs is investigated by an analysis of the 
o-ordination num-ber distribution, the distribution of \baby universes" and the string sus
eptibilityexponent as well as the geometri
 two-point fun
tion, yielding an estimate for theinternal Hausdor� dimension of the 
oupled system.
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Chapter 1
Introdu
tion
The 
onstru
tion of a quantum theory of gravity is one of the fundamental open ques-tions in theoreti
al physi
s. Einstein gravity being perturbatively non-renormalizableas a �eld theory, this problem 
alls for novel, non-perturbative approa
hes. As it hasturned out in the past few years, the investigation of 
u
tuating, multi-dimensionalmanifolds is a promising theoreti
al framework for this task. Ambitious approa
hesin this dire
tion in
lude the theories of strings, branes et
. [1℄. Despite their su

ess,however, these theories have severe problems of proje
ting the results of the involvedhigh-dimensional models ba
k to the physi
al four-dimensional spa
e-time.Starting from early ideas about the formulation of a dis
retised theory of quan-tum gravity [2℄, the introdu
tion of the framework of dynami
al triangulations byAmbj�rn et al. [3℄, David [4℄ and Kazakov et al. [5℄ has led to a su

essful theory ofEu
lidean quantum gravity, for reviews see [6{12℄. Although the model 
an be for-mulated for an arbitrary number of dimensions, the fo
us of the analyti
al and mostof the numeri
al work in the �eld has been | mostly for te
hni
al reasons | put onthe exploration of the properties of the two-dimensional model. The dynami
al trian-gulations s
heme starts out with the formal attempt to quantize the Einstein-Hilberta
tion of general relativity with the path-integral method. The thus formulated pre-s
ription to integrate over all possible 
hoi
es of the metri
 tensor 
onsistent with
ertain 
onstraints or, equivalently, over a suitable 
lass of random (hyper-)surfa
esis repla
ed by a sum over dis
retised approximations of su
h surfa
es in order toregularize the 
onsidered path integral. In the dynami
al triangulations approa
h,these dis
rete surfa
es are taken to be simpli
ial or 
ombinatorial manifolds [13,14℄,i.e., surfa
es glued together from simpli
ial building blo
ks subje
t to 
ertain reg-1



2 CHAPTER 1. INTRODUCTIONularity 
onstraints. For the 
ase of two dimensions these surfa
es are nothing butrandom triangulations 
omposed of equilateral triangles. In this way, the problemof Eu
lidean quantum gravity is redu
ed to a 
ombinatorial one.For the 
ase of two dimensions, the resulting random-surfa
e model 
an be expli
-itly solved to a quite 
omplete degree. The summation over the triangulations 
anbe performed, alternatively, by early developed graph-theoreti
al methods for the
ounting of triangulations [15℄, or by exploiting the equivalen
e of this 
ountingproblem to a perturbative expansion of 
ertain matrix integrals [16{18℄ originally
onsidered in the 
ontext of the planar approximation to QCD [19℄, whi
h 
ountthe orientable, \fat" �3 graphs dual to the triangulations. For an ex
ellent reviewof the methods applied in this 
ontext see Ref. [10℄. Apart from that, a numeri
altreatment of the model is possible via Monte Carlo simulations of the 
u
tuatingsurfa
es [20{22℄. Applying these methods, the model is found to exhibit a 
ontinuousphase transition as a fun
tion of the fuga
ity 
ontrolling the number of triangles andthe 
orresponding 
ontinuum limit, 
orresponding to a diverging size of the triangu-lations, 
oin
ides with the Liouville theory of two-dimensional Eu
lidean quantumgravity [6, 23, 24℄; however, the information that 
an be extra
ted from the dis
retedynami
al triangulations model goes beyond that of the 
ontinuum Liouville theory.The 
riti
al exponents governing the s
aling in the vi
inity of this phase transition
an be determined exa
tly [10, 16, 25{28℄. A key point in the understanding of theproperties of the model is given by the �nding that the o

urring triangulations 
anbe 
onsidered as self-similar fra
tals, 
omposed of \baby universes" atta
hed to themain body of the latti
e via a small number of links, i.e., via \bottlene
ks" [29℄.The 
orresponding fra
tal or Hausdor� dimension is found to be dh = 4 [26{28℄,thus largely ex
eeding the topologi
al dimension two of the model.The 
ontinuum theory predi
ts a renormalization of the 
riti
al exponents of 
on-formal minimal matter with 
entral 
harge 0 � C < 1 
oupled to the Liouville �eldexpressed by the KPZ/DDK formula [30{32℄. In the dis
rete framework of the dy-nami
al triangulations approa
h, a de
oration of the latti
e with matter variables
an be 
onveniently expressed in terms of suitably adapted matrix models. Some ofthe resulting integrals 
ould be expli
itly performed, in
luding the 
ases of the Isingmodel [33{35℄, the q-states Potts model [36{39℄ and the O(n) loop model [40{44℄
oupled to two-dimensional dis
rete, Eu
lidean quantum gravity. These and furthermodels have been analyzed numeri
ally via Monte Carlo simulations of the 
om-bined system of dynami
al triangulations and 
oupled matter variables, see, e.g.



3Refs. [45{52℄. The 
riti
al exponents resulting from all these model studies 
oin-
ide with those predi
ted by the KPZ formula. The KPZ/DDK solution breaksdown for 
entral 
harge C > 1, su
h that for this region the information about thetheory is still rather in
omplete. Spe
ulations about the behaviour of the dynam-i
al triangulations model on 
rossing this \C = 1 barrier" have 
aused quite somedis
ussions [53, 54℄. For C ! 1 the geometry of the model is known to 
ollapseto a bran
hed polymer phase, i.e., to 
on�gurations of planar tree graphs [53℄ withHausdor� dimension dh = 2. However, the breakdown of the model for C > 1 is stillnot 
ompletely understood [12℄. Thus, the limiting 
ase C = 1 is of obvious spe
ialinterest. ***Vertex models of statisti
al me
hani
s, pla
ed on regular latti
es, exhibit an ex
ep-tionally ri
h phase stru
ture, in
luding lines of �rst- and se
ond-order phase transi-tions as well as 
riti
al and multi-
riti
al points [55℄. A multitude of models knownfrom statisti
al me
hani
s 
an be transformed to or formulated as limiting 
ases ofthe 6- or 8-vertex models, 
f. Refs. [55{58℄. This series of models in
ludes the Isingand q-states Potts models as well as various graph 
olouring problems and quantumspin models. Hen
e, vertex models 
an be 
onsidered as prototypes for models ofphase transitions in two dimensions. The zero-�eld, square-latti
e 8-vertex modelhas been solved exa
tly by Baxter [59, 60℄, revealing a pe
uliar type of 
ontinuousphase transitions with 
ontinuously varying 
riti
al exponents. The 6-vertex modelis found to 
orrespond to a 
riti
al surfa
e in the phase diagram of the 8-vertexmodel. A spe
ial sli
e of the 6-vertex 
ase, the anti-ferroele
tri
 F model [61, 62℄,exhibits an in�nite-order phase transition of the Kosterlitz-Thouless type [63, 64℄,whereas other spe
ializations undergo �rst-order phase transitions.On the basis of the well-known results of universality and s
aling for models ofstatisti
al me
hani
s and 
ondensed matter theory, the analysis of the e�e
t ofdisorder onto the behaviour of those systems has re
eived an in
reasing amountof attention during the last de
ades. The thus des
ribed area 
omprises a widerange of separate subje
ts, in
luding su
h di�erent topi
s as spin glasses [65,66℄, thee�e
t of random �elds on magneti
 systems [66℄, disordered ele
troni
 systems [67℄or the analysis of generi
 random graphs and random networks [68℄, ea
h of whi
his a prominent �eld of resear
h in 
ondensed matter physi
s. For the latti
e spinmodels of statisti
al me
hani
s two major types of disorder are distinguished, namely



4 CHAPTER 1. INTRODUCTIONannealed randomness, where the disorder varies on the same time s
ale as the spinvariables su
h as the 
ases 
onsidered in this thesis, and quen
hed disorder, wherethe random degrees of freedom are frozen on the time s
ale of variation of the spins,whi
h is the 
ase, e.g., for random-bond models and spin glasses. Depending on thesetypes of randomness, di�erent predi
tions regarding possible 
hanges of the orderand 
hara
teristi
s of the o

urring phase transitions on appli
ation of the disorderhave been made [66, 69{71℄. In this 
ontext, an investigation of the properties ofspin models 
oupled to the random surfa
es of the dynami
al triangulations model
onstitutes an analysis of the e�e
t of a spe
i�
 type of annealed geometri
al or
onne
tivity disorder onto the 
onsidered latti
e systems.Vertex models 
oupled to the latti
es of the dynami
al triangulations model allowone to study the e�e
t of this geometri
al type of disorder on prototypi
 models ofstatisti
al me
hani
s. Sin
e the most interesting of these models, the 6- and 8-vertexmodels are de�ned on a four-valent latti
e, the dynami
al triangulations model hasto be generalized to a dynami
al quadrangulations model, i.e., a model of surfa
es
omposed of squares, whose dual \fat" �4 random graphs 
an be de
orated by vertexmodel arrows in the way pres
ribed for the 6- and 8-vertex models. For the 
ase ofthe 6-vertex model the la
k of a global sense of orientation on the random graphsredu
es the range of sensible 
hoi
es of vertex weights to the parameter spa
e ofthe F model of an anti-ferroele
tri
. Its 
riti
al regime 
orresponds to a 
onformal�eld theory of 
entral 
harge C = 1, su
h that the resulting vertex model on randomgraphs 
orresponds to the limiting 
ase of the \C = 1 barrier" of dis
rete Eu
lideanquantum gravity. This model 
an be formulated in terms of a matrix integral and anasymptoti
 solution 
an be found by a saddle-point method [72,73℄, yielding partialinformation about its 
ontent of s
aling dimensions. In this thesis, we analyze thismodel by means of an extensive set of Monte Carlo simulations of the 
ombinedsystem of dynami
al, planar �4 random graphs and the 
oupled vertex model. Ageneral exploration of its phase diagram is followed by a detailed s
aling analysisof the matter- and graph-related observables of the system and a 
omparison ofthe out
omes to the results of Refs. [72, 73℄ as well as the KPZ/DDK framework ofRefs. [30{32℄. ***The outline of this thesis is as follows. Chapter 2 is devoted to an introdu
tion to thedynami
al triangulations model. We review the steps taken from the path-integral



5ansatz for the quantization of gravity and the related string models to the formula-tion of simpli
ial quantum gravity and 
olle
t the most important analyti
al resultsavailable for the two-dimensional model as well as the most prominent methods thathave been employed to a
hieve them. Finally, the predi
tions of KPZ/DDK [30{32℄for the e�e
t of 
oupling matter systems to Eu
lidean quantum gravity in two di-mensions are reported.The methods for a numeri
al, Monte Carlo simulation of dynami
al triangulationsare 
onsidered in Chapter 3. We distinguish di�erent ensembles of triangulationsresp. the dual �3 graphs with respe
t to the extent of allowed singular 
ontribu-tions, 
onsider the 
lassi
 sets of update moves for simulations in the 
anoni
al andgrand-
anoni
al ensembles and dis
uss the aspe
ts of ergodi
ity and detailed bal-an
e. Ideas for a generalization of this simulation s
heme to the 
ase of dynami
alquadrangulations resp. the dual �4 random graphs �rst presented in Refs. [49, 74℄are pi
ked up and elaborated in depths. As it turns out, for most of the 
onsideredensembles the update moves resulting from an ad ho
 generalization of the movesused in the triangulation model have to be augmented by a se
ond type of movesto ensure ergodi
ity. To have exa
t, �nite-graph results at hand for 
omparison tothe simulation out
omes, we 
onstru
t the 
o-ordination number distribution or 
er-tain analogues of it for the triangulation as well as the quadrangulation model fromthe graph 
ounting results of the matrix model approa
h. To alleviate the knownproblem of 
riti
al slowing down of the 
onsidered type of dynami
s, we adapt andgeneralize the \minBU surgery algorithm" put forward in Ref. [75℄ to the 
ase ofdynami
al quadrangulations resp. �4 random graphs. We 
ondu
t a dynami
al s
al-ing analysis of the auto
orrelation times of the di�erent algorithms 
onsidered toevaluate their performan
e.Chapter 4 we start by a survey of the known exa
t results for vertex models onregular latti
es, fo
using on the stru
ture of their phase diagrams and the typeof the o

urring phase transitions. The simulation of vertex models 
an be mosteÆ
iently performed by algorithms of the 
luster type, the most prominent of whi
his the so-
alled loop algorithm [76℄. While its use is well do
umented for the 
aseof regular latti
es, the intended appli
ation for the simulation of vertex models onrandom graphs 
alls for some modi�
ations and adaptions. For the 
ase of theF model 
onsidered, the de�nition of an order parameter for the anti-ferroele
tri
phase transition on a random latti
e requires a reformulation of the vertex model interms of \plaquette spins".



6 CHAPTER 1. INTRODUCTIONIn Chapter 5 we address the problem of the F model 
oupled to planar �4 randomgraphs. After a short exposition of the ex
eptionally important position of vertexmodels in the 
ontext of integrable models and 
onformal �eld theory in two dimen-sions and a 
omparison of the situations on regular and random latti
es, we reportthe analyti
al results found for the system in Refs. [72, 73℄. Noting the surprisingla
k of numeri
al work on the 6-vertex model on the square-latti
e and in order to
alibrate our set of simulation and analysis tools, we analyze the Kosterlitz-Thoulesspoint of the square-latti
e F model via a set of Monte Carlo simulations. With thethus gained insight, we perform large-s
ale simulations of the F model on �4 randomgraphs and analyze the phase stru
ture and the s
aling properties in the vi
inity ofits 
riti
al point. The out
omes are 
ompared to the predi
tions of the KPZ for-mula. The dynami
al properties of the used 
ombined link-
ip, minBU surgery andloop algorithm update are determined by a s
aling analysis of the auto
orrelationtimes of several observables. The ba
k-rea
tion of the matter degrees of freedom onthe properties of the random graphs is investigated by 
onsidering the distributionof \baby universes" and extra
ting the string sus
eptibility exponent as well as ananalysis of the geometri
al two-point fun
tion of the graphs, resulting in an estimateof the Hausdor� dimension of the latti
es.Finally, Chapter 6 
ontains a summary of the results obtained and some outlook onongoing and future work.



Chapter 2
The Dynami
al TriangulationsApproa
h to Quantum Gravity
The dynami
al triangulations approa
h to quantum gravity is a simpli
ial or latti
eregularization of the path integral formulation of the theory of gravity. Indepen-dently, for the 
ase of two dimensions the same type of expressions o

ur whendis
retising the Polyakov interpretation of the bosoni
 string. While for the 
ase ofgeneral dimensions very few exa
t results are available, the quantum gravity modelin two dimensions, 
orresponding to string theory embedded in D = 0 dimensions,
an be solved exa
tly by several 
omplementary 
ombinatorial te
hniques. Withinthe framework of Liouville theory one 
an �nd semi-exa
t results for the 
ouplingof C < 1 unitary 
onformal matter to the gravitating spa
e time, 
orresponding tothe Polyakov string embedded in 0 � D � 1 dimensions.2.1 Path Integrals and Geometri
 Theories2.1.1 Path integrals and quantum pathsThe path integral approa
h of Dira
 [77℄ and Feynman [78℄ has proved to be a su
-
essful and physi
ally appealing formulation of the quantization problem in physi
s(for an introdu
tion see, e.g., Ref. [79℄). While algebrai
 s
hemes like 
anoni
al orBRST quantization give quantization pres
riptions whi
h look rather arbitrary onthe operator level, the path integral approa
h is based intuitively on the funda-7



8 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYmental prin
iples of quantum me
hani
s. Furthermore, it o�ers various te
hni
aladvantages like the inherent 
ovarian
e of the formulation or the quite natural ex-pression of renormalization theory in terms of path integrals.In quantum me
hani
s, the transition amplitude of a point parti
le to move fromposition x1 to x2 in Rd 
an be expressed in the path integral language asG(x1; x2) = Z x2x1 D[x(t)℄ ei R t2t1 dt L(x; _x)=~; (2.1)where S[x(t)℄ = Z t2t1 dt L(x; _x) (2.2)denotes the 
lassi
al a
tion of the problem in terms of the Lagrangian L. That is,the propagator is given by the fun
tional integral over all possible 
lassi
al paths ofthe parti
le weighted by exp(iS=~). The 
lassi
al limit follows naturally as ~ ! 0sin
e at the 
lassi
al solution one has ÆS = 0, su
h that the phase fa
tors arewildly varying and thus destru
tively interfering everywhere but in the vi
inity ofthe 
lassi
al path. Pro
eeding further, in se
ond quantization the fun
tional integralDx over paths x(t) is formally repla
ed by an integral of �elds �(x), i.e.Dx! D�(x): (2.3)Sin
e the world lines x(t) being summed in the fun
tional integral (2.1) are (simple)geometri
 obje
ts, it is natural to think of Eq. (2.1) as an integral over geometriesand formulate the a
tion (2.2) in terms of the geometri
 properties of the worldlines. Instead of the expli
it parameterization x(t), we 
onsider an abstra
t pathP (x1; x2) 2 P(x1; x2), where P(x1; x2) denotes the set of all smooth paths 
onne
t-ing x1 and x2. The simplest reparameterization-invariant 
hoi
e of a
tion is thenobviously given by S[P (x1; x2)℄ = m ZP (x1;x2) dl; (2.4)i.e., the length of the world line P (x1; x2), where m denotes a 
oupling parameter.In terms of the parameterization x(t) this be
omesS[x(t)℄ = m Z t2t1 dtp( _x�)2; (2.5)su
h that the 
lassi
al equations of motion are those of a free relativisti
 parti
le,ÆSÆx�(t) = ddt � _x�j _xj� = 0; (2.6)



2.1. PATH INTEGRALS AND GEOMETRIC THEORIES 9solved by straight lines _x� = 
onst. Thus, the free relativisti
 parti
le has an elegant
o-ordinate free des
ription via the fun
tional integralG(x1; x2) = ZP(x1;x2)D[P (x1; x2)℄ eim RP (x1;x2) dl=~; (2.7)whi
h is formulated entirely in terms of the geometry of the paths. Obviously, theintegral over paths P (x1; x2) should be over equivalen
e 
lasses of paths instead ofindividual paths, i.e. reparameterizationsx(t)! x(f(t)); _f > 0; (2.8)should not be 
ounted as di�erent paths.2.1.2 Random surfa
es and stringsA natural generalization of this 
on
ept repla
es the zero-dimensional parti
le sweep-ing out 
urves in time by one-dimensional strings sweeping out two-dimensional sur-fa
es, the so-
alled world sheets. For simpli
ity we 
onsider 
losed strings, i.e. worldsheets M(
1; 
2) spanned between two boundary strings 
1, 
2 of topology S1. Theobvious generalization of the a
tion (2.4) then isS[M(
1; 
2)℄ = � ZM(
1;
2) dA; (2.9)with a string 
oupling �, su
h that the a
tion is given by the area of the world sheetand the propagator now is represented asG(
1; 
2) = ZM(
1;
2)D[M(
1; 
2)℄ ei S[M(
1;
2)℄=~: (2.10)Then, di�erent interpretations of su
h a system are in pla
e. First, if the swept outmanifolds M are 
onsidered as parameterized surfa
es X : S1 � [0; 1℄ ! RD , with
o-ordinates (�1; �2) = � 7! x = (x1; : : : ; xD), the a
tion (2.9) be
omesSNG[X;�℄ = � Z dA(�) = � Z d2�pj det hj= � Z d2�s��x���1 �2��x���2 �2 � ��x���1 �x���2�2; (2.11)where h denotes the metri
 on the embedded world sheet indu
ed by the mappingX, i.e., h�� = �x���� �x���� : (2.12)



10 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYThis is the 
elebrated Nambu-Goto a
tion of string theory [80℄. Inserted in the pathintegral (2.10), the formal integral over surfa
es M(
1; 
2) then be
omes an integralover equivalen
e 
lasses of maps X under di�eomorphisms. On the other hand,introdu
ing an internal metri
 g�� on M , Brink, di Ve

hia and Howe [81℄ proposedthe following re-write of the a
tion,SP[X; g;�℄ = 12 Z d2�pj det gj g��(h�� + �g��); (2.13)whi
h is known as the Polyakov string a
tion. As indi
ated by the double argumentof SP, the integration of Eq. (2.10) should now be performed independently withrespe
t to both variables X and g as was proposed by Polyakov [82℄. It 
an beseen by a simple 
al
ulation that the a
tions (2.11) and (2.13) are equivalent at the
lassi
al level; in a quantized theory, however, their equivalen
e is not at all obvious(see, e.g., Ref. [10℄).2.1.3 Quantum gravityOf 
ourse, the Nambu-Goto and Polyakov a
tions are only the simplest possiblea
tions for random surfa
es; for a physi
al theory one might add further terms,probably involving either the extrinsi
 
urvature H in terms of the indu
ed metri
h or intrinsi
 
urvature terms Rk, k = 1; 2; : : :, resulting from the internal metri
 g.For a quantum theory of gravity in d dimensions, the natural a
tion to start with isthe Einstein-Hilbert a
tion of 
lassi
al gravity,SEH[g;�; �℄ = ZM dd�pj det gj(�� �R); (2.14)whi
h, as expe
ted for a gravity theory, does not refer to an embedding spa
e, butis entirely formulated in terms of the internal metri
 properties. The �rst term isstill the area term (generalized to d dimensions), now written as a fun
tion of theinternal metri
 g, while the se
ond term introdu
es the s
alar 
urvature R derivedfrom g. In this 
ontext, � gains the meaning of a 
osmologi
al 
onstant and � denotesthe gravitational 
oupling 
onstant . The a
tion (2.14) is expli
itly invariant underdi�eomorphisms �� 7! ~�� of the 
o-ordinates, sin
e the determinant of g transformsas qj~g(~�)j = det����� ~���pjg(�)j; (2.15)su
h that the additional determinant just 
an
els the determinant stemming fromthe transformation of the measure dd� (R, of 
ourse, transforms as a s
alar). Sin
e



2.1. PATH INTEGRALS AND GEOMETRIC THEORIES 11for the 
ase of quantum gravity we do not any more have the propagation of stringsin mind, the path integral is naturally performed over 
losed surfa
es M instead of\tubes" S1 � [0; 1℄ and we thus de�ne the partition fun
tion of the system asZ(�; �) = Z D[g℄ eiSEH[g;�;�℄=~; (2.16)were the fun
tional integral 
overs all di�eomorphi
ally inequivalent metri
s g of
losed, smooth manifolds.If the quantum gravity path integral (2.16) should be more than a symboli
 ex-pression of a quantization programme, even from super�
ial 
onsideration severalfundamental problems and the need for interpretation of Eq. (2.16) 
ome to mind:1. Eq. (2.16) pres
ribes a state sum over a 
omplex phase fa
tor. Su
h sums,however, are generally divergent, see, e.g. Ref. [83℄. Furthermore, Riemannianmanifolds and thus metri
s o�er a variety of te
hni
al advantages over theLorentzian metri
s we are instru
ted to sum over.2. The integral over equivalen
e 
lasses of metri
 tensors g is not obviously apriori well-de�ned. How is the over-
ounting due to di�eomorphi
ally equiva-lent metri
s a

ounted for? What about di�erent di�erentiable stru
tures anddi�erent topologies of the manifolds?3. Sin
e the 
urvature term of the a
tion (2.14) 
an be
ome arbitrarily large, theEinstein-Hilbert a
tion is in general unbounded from below. This obviouslyrenders the path integral (2.16) ill-de�ned, unless the measure term D[g℄ givesnegligible weight to su
h 
on�gurations.The 
omplex phase fa
tor is 
ommonly 
ir
umvented by the formal substitutiont! i� (2.17)of the time-like 
o-ordinate of the metri
 g. Under this Wi
k rotation the phasefa
tor 
hanges as ei SEH=~ ! e�SEH=~; (2.18)thus making the path integral Eu
lidean and therewith potentially 
onvergent. Afterperforming the integration, a Lorentzian signature of the metri
 is supposed to bere
overed by analyti
 
ontinuation in � or, alternatively, an expli
it ba
k-rotation.



12 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYWhile this pres
ription is a well-established tri
k in quantum �eld theory on a �xed(Minkowski) ba
kground based on the Osterwalder-S
hrader re
onstru
tion theorem(see, e.g., [84℄), it has been noted [85{87℄ that the possibility of a Wi
k ba
k-rotationis far from obvious in quantum gravity. For a dynami
al and spatially varying metri
a Wi
k (ba
k-)rotation 
annot be given by the simple pres
ription (2.17) whi
h isobviously not invariant under di�eomorphisms; from the spa
e of metri
s to beintegrated over almost all will have no geometri
ally apparent notion of time [87℄.In fa
t, the 
lass of metri
s and thus manifolds in the sense of the path integral(2.16) 
ompatible with a Lorentzian signature is di�erent from the 
lass of metri
swith Eu
lidean signature. Thus, the substitution (2.18) is an ad ho
 assumptionthat (as it turns out) 
hanges the theory. We will speak about \Eu
lidean quantumgravity" in 
ontrast to \Lorentzian quantum gravity" when referring to the Wi
krotated theory.As far as the over-
ounting of di�eomorphi
ally equivalent metri
s in the path inte-gral (2.16) resp. its Eu
lidean 
ounterpart is 
on
erned, two possible solutions 
ometo mind [11℄: either only one representative of ea
h equivalen
e 
lass of metri
s is
ounted in the fun
tional integral, whi
h is, however, pra
ti
ally quite impossible.Or the integral should be performed over all metri
s, taking 
are of the over-
ountingby dividing out the \volume" of the di�eomorphism group in the measure, i.e., oneshould make the following repla
ement:Z D[g℄! Z D[g℄Vol[Di�(g)℄ (2.19)The pre
ise meaning of this transformation depends on the methods applied to fur-ther develop the problem. In a 
ontinuum theory this additional fa
tor 
orrespondsto the Fadeev-Popov determinant, whereas in the dis
retised models 
onsideredbelow, the symmetry with respe
t to di�eomorphisms of metri
s transforms to apermutation symmetry of dis
rete obje
ts.A sum over di�erent topologies of manifolds, whi
h should be in prin
iple in
ludedin the path integral (2.16), is quite intra
table for the 
ase of general dimensions,sin
e for d � 3 there is no obvious 
lassi�
ation of topologies in terms of a �nite setof parameters. For d � 4 there additionally o

urs the problem of di�eomorphi
allyinequivalent di�erentiable stru
tures for the same manifold. Also for those reasonswe now turn to the 
ase of two-dimensional quantum gravity.



2.1. PATH INTEGRALS AND GEOMETRIC THEORIES 132.1.4 The 
ase of two dimensionsIn two dimensions the topology of a 
losed surfa
e Mh is uniquely 
hara
terizedby its genus1 h given in terms of the Euler 
hara
teristi
 by � = 2 � 2h. Takingthe dis
ussion of the previous se
tion into a

ount, the partition fun
tion of two-dimensional Eu
lidean quantum gravity readsZ(�; �) = 1Xh=0 Z D[gh℄Vol[Di�(gh)℄ e�SEH[gh;�;�℄; (2.20)with the a
tion of Eq. (2.14). Here, we have set ~ = 1 for simpli
ity. Sin
e the Euler
hara
teristi
 is a topologi
al invariant and related to the integral over the s
alar
urvature as ZMh d2�pj det ghjR = 4�� = 8�(1� h); (2.21)whi
h is the 
elebrated Gau�-Bonnet theorem (see, e.g., Ref. [88℄), the path integral(2.20) 
an be redu
ed to Z(�; �) = 1Xh=0 e4��(h)�Zh(�); (2.22)where the partition fun
tion Zh(�) at �xed genus h is given byZh(�) = Z D[gh℄Vol[Di�(gh)℄e��Vgh ; (2.23)where Vgh = RMh d2�pj det ghj is the volume of the universeMh. Taking into a

ountthe topologi
al triviality of two-dimensional gravity, we note that the Polyakov stringa
tion (2.13) 
an be alternatively interpreted as two-dimensional quantum gravity
oupled to the D independent s
alar �elds h��. The topologi
al triviality of theEinstein-Hilbert a
tion in two dimensions results in a boundedness of the a
tion forany �xed topology; it remains to be 
he
ked, whether a summation over topologies
an be performed after solving the problem at �xed topology. This leads to theso-
alled double-s
aling limit to be dis
ussed below in Se
tion 2.3.7.A �eld-theoreti
 solution of the problem of two-dimensional quantum gravity isbased on the uniformization theorem [89℄ for two-dimensional Riemannian surfa
eswhi
h states that every Riemannian surfa
e is 
onformally equivalent to (see, e.g.,Ref. [23℄)1Here, h should not be 
onfused with the external metri
 h = h�� above.



14 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITY� C P1 , the Riemann sphere, or� H, the Poin
ar�e upper half plane, or� a quotient of H by a dis
rete subgroup � � SL(2;R),su
h that the metri
 g 
an be written asg = e
�ĝ (2.24)with respe
t to some referen
e metri
 ĝ on one of the above spa
es. Thus, two-dimensional gravity 
an be formulated in terms of the single Liouville �eld �; thisLiouville �eld theory 
an be treated analyti
ally on the quantized level, see Refs.[6, 23, 24℄ for reviews. However, the dis
retised theories presented below 
an besolved exa
tly and yield results going beyond those of the 
ontinuum approa
h; theresults from both approa
hes 
oin
ide whenever they overlap.2.2 Simpli
ial Quantum GravityWhile the 
ontinuum Liouville theory sket
hed above develops the problem 
ovari-antly to introdu
e a short-distan
e 
ut-o� only at the end, a dis
retisation of theproblem makes the involved expressions �nite from the beginning. After solvingthe dis
retised theory, the relevant 
oupling 
onstant(s) should be tuned su
h asto de�ne a proper 
ontinuum limit of the theory; this involves a renormalization ofrelevant parameters.However, a dis
retisation of the geometries to be integrated over, either by a latti
emodel or the simpli
ial building blo
ks des
ribed below, has to ensure that the sumover dis
retisations 
overs all metri
s to be summed over in Eq. (2.20). That is, thedis
retised metri
s have to be something like a dense subset of the original spa
e ofmetri
s. Su
h a property 
an be guaranteed for the 
ase of \quantum gravity" inone dimension. The dis
ussion of the next se
tion follows Ref. [10℄.2.2.1 Random walks and the Wiener measureLet f0(x) be the initial distribution of a 
loud of parti
les in RD 
oupled to a heatbath. Its di�usive spread in time is in the simplest approximation des
ribed by the



2.2. SIMPLICIAL QUANTUM GRAVITY 15di�usion equation, �f�t = 124f; (2.25)subje
t to the initial 
ondition f(x; 0) = f0(x), whi
h is solved by [90℄f(x; t) = ZRd dy Gt(x; y) f0(y); (2.26)where the heat kernel Gt(x; y) if de�ned asGt(x; y) = 1(2�t)D=2 e� jx�yj22t : (2.27)From Gaussian integration we have the following de
omposition property of Gt(x; y):Gt(x0; xN ) = Z dx1 � � �dxN�1Gt=N (xN ; xN�1) � � �Gt=N (x1; x0); (2.28)for any N � 1. Now, 
onsider the pie
ewise linear path ! : [0; t℄ ! RD 
onne
tingthe points (x0; : : : ; xN),!(s) = xk�1 + xk � xk�1t=N (s� k � 1N t); k � 1N t � s � kN t; 1 � k � N: (2.29)Then, the expression DNt ! = �2� tN��D2 N dx1 � � �dxN�1 (2.30)may be 
onsidered as a measure on the spa
e 
N;t(x; y) of all su
h paths 
onne
tingx and y. Using the identityNXk=1 jxk � xk�1j2t=N = NXk=1 tN � jxk � xk�1jt=N �2 = Z t0 j _!(s)j2ds (2.31)in Eq. (2.28), the propagator Gt(x; y) 
an be written in a form reminis
ent of a pathintegral as Gt(x; y) = Z(x;y)DNt ! exp��12 Z t0 j _!(s)j2ds� ; (2.32)whi
h is 
alled the random-walk representation of Gt(x; y) on 
N;t(x; y). The expres-sion (2.32), whi
h is a 
onventional integral of a �nite number of variables, 
an beviewed as a dis
rete approximation to a true path integral, i.e., there exists a mea-sure Dt ! on the spa
e 
t(x; y) of all 
ontinuous paths ! : [0; t℄! RD 
onne
ting x



16 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYand y, su
h that [91℄Z(x;y)DNt ! exp��12 Z t0 j _!(s)j2ds� f �!� 1N t� ; : : : ; !�N � 1N t��= Z(x;y)Dt ! f �!� 1N t� ; : : : ; !�N � 1N t�� (2.33)for all bounded and 
ontinuous fun
tions f : R(N�1)D ! R and arbitrary N � 1;i.e., the dis
rete measures are identi
al to Dt ! with respe
t to fun
tions f uniquelyde�ned by their values at the referen
e points kN t. The measure Dt ! is 
alled theWiener measure on 
t(x; y). Thus, we have 
onstru
ted a path integral measurefrom the set of pie
ewise linear paths. Reversing the view, one 
an ask for the be-haviour and 
onvergen
e of di�erent dis
rete approximations to the Wiener measure.Obviously, given a path ! 2 
t(x; y), we 
an de�ne dis
retised paths !N 2 
N;t(x; y)by !N(kt=N) = !(kt=N), k = 0; : : : ; N , su
h that !N ! ! uniformly on [0; t℄ andin view of Eq. (2.33) the measuresDNt ! exp[�S(!)℄ ;S(!) = 12 Z t0 j _!(s)j2ds; (2.34)
an be 
onsidered as approximations to the Wiener measure Dt ! for N ! 1. Infa
t, in 
an be shown that not only for S(!) given above but for rather generala
tions one has 
onvergen
e DNt ! exp[�S(!)℄! Dt ! of the measures; in statisti
alphysi
s terms su
h a property is known as universality with respe
t to \mi
ros
opi
realizations". Thus, a

ording to this theorem of Donsker (see, e.g., Ref. [92℄) forthe 
ase of one-dimensional manifolds, i.e. 
urves, a whole variety of dis
retisationsof the path integral 
an be 
hosen whi
h all properly 
onverge to the 
ontinuumformulation in terms of the integral measures.2.2.2 Dis
retising quantum gravityIn more than one dimension there is no analogue of Donsker's theorem that 
ouldguarantee di�erent dis
retisations to 
onverge to the 
ontinuum formulation. Nev-ertheless, dis
retisations similar to the random-walk representation of the Wienermeasure are possible.A dis
retisation for the Nambu-Goto string of Eq. (2.11) embedded in Rd is perhapsmost naturally de�ned by 
onsidering random surfa
es on a hyper
ubi
 latti
e Zd.
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Figure 2.1: A small pat
h of a random triangulation (thi
k lines) embedded in theplane. The dual graph (thin double lines) of the latti
e is a �3 graph of the sametopology.Here, the latti
e surfa
e is de�ned as a set of plaquettes in Zd, ea
h 
onsisting offour 
y
li
ally ordered verti
es in Zd, i.e. a set of squares of the latti
e, usually
onne
ted to a 
losed surfa
e. Due to the over-exponential growth of the numberof these (self-interse
ting) surfa
es with the number of verti
es, the problem is onlywell-de�ned for �xed topology, usually that of planar graphs. This latti
e randomsurfa
e (LRS) model has been 
onsidered in early approa
hes towards dis
retisingquantum gravity initiated by Weingarten [2℄. We will not dis
uss this model furtherhere, for a review see Ref. [10℄.A suitable dis
retisation of the intrinsi
, not embedded geometry o

urring in the d-dimensional quantum gravity model is given by the 
on
ept of pie
ewise linear (PL)manifolds, i.e. d-dimensional simpli
ial 
omplexes subje
t to suitable regularity 
on-ditions. In the 
ase of two dimensional quantum gravity the simpli
es of maximaldimension are 2-simpli
es glued together along their edges, su
h that the 
omplex
an be depi
ted as a 
losed random triangulation. Fig. 2.1 shows a pat
h of su
ha triangulation embedded in the plane. Su
h dis
rete approximations to quantum



18 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYgravity have originally been proposed by Regge [93℄ for a 
o-ordinate free des
rip-tion of (
lassi
al) gravity. Given these fundamental building blo
ks, the summationover triangulations should in prin
iple in
lude a variation of the edge lengths of thetriangles as well as the 
onne
tivity of the simpli
ial 
omplex2. Simultaneous varia-tion of both of these properties is possible and the 
orresponding ansatz is known asthe \dynami
al Regge approa
h" [94, 95℄. However, histori
ally two limiting 
asesof this general s
heme have been more intensively developed:(a) Starting from the original dis
retisation attempt of Regge [93℄ and Regge andPonzano [96℄ the Regge 
al
ulus approa
h to quantum gravity [97{100℄ per-forms the sum over metri
s by 
onsidering a triangulation of �xed 
onne
tivityand varying the edge lengths of the triangles. The e�e
t of this variation thenhas to be in
orporated in the path integral measure, whi
h led to some dis-
ussion about how this should be done [101, 102℄. This approa
h has beenfollowed mainly by numeri
al methods, in
luding studies of the resulting ge-ometry [103, 104℄, the e�e
t of the 
oupling of matter to the gravitating uni-verse [105℄ and extensions to the four-dimensional 
ase [106℄.(b) Stressing the 
ombinatorial aspe
t of PL manifolds, the theory of dynami
allytriangulated random surfa
es (DTRS) 
onsiders triangulations 
onsisting ofequilateral triangles, integrating over all possible gluings of a given number oftriangles to a (usually) 
losed surfa
e of a given topology. Thus, its dynami
aspe
t 
omes from the 
onne
tivity of the 
omplex instead of from the edgelengths. This model, originally proposed independently as a model for quan-tum gravity in two dimensions by Ambj�rn et al. [3℄, David [4℄ and Kazakovet al. [5℄, 
an be solved exa
tly for the 
ase of two dimensions in the pure 
aseand also for the 
oupling of 
ertain kinds of matter to it, 
f. the dis
ussionbelow.The Regge 
al
ulus approa
h (a) will not be dis
ussed further here. Instead, we
on
entrate on the DTRS approa
h (b) and dis
uss the properties of the 
onsid-ered simpli
ial manifolds and the therewith dis
retised a
tion of two-dimensionalquantum gravity.2Sin
e in quantum gravity we do not 
onsider an embedding of the surfa
es, the mentioned edgelengths should be 
onsidered as properties of the internal metri
.
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Figure 2.2: 0-, 1-, 2- and 3-simpli
es.2.2.3 Dynami
al triangulations and the dis
retised a
tionAn r-dimensional simplex �r = hp0 : : : pri is the point set in Rd de�ned by [88℄�r = (x 2 Rd j x = rXi=0 
ipi; 
i � 0; rXi=0 
i = 1) ; (2.35)with geometri
ally independent points pi 2 Rd . A q-fa
e of �r = hp0 : : : pri isthe simplex �q = hpi0 : : : piqi. Fig. 2.2 shows the simpli
es of lowest dimension.A simpli
ial 
omplex K is a �nite set of simpli
es, su
h that (i) all fa
es of ea
hsimplex of K belong to K and (ii) the interse
tion of any two simpli
es of K is eithera simplex of K or the empty set. The dimension of K equals the maximum of thedimensions of the simpli
es it 
ontains. The star starK(�) of a simplex � 2 K is theunion of all simpli
es of K of whi
h � is a fa
e; the link linkK(�) is the union of allfa
es �f of all simpli
es in starK(�) satisfying �f\� = ;. The point set jKj = [�2K�is 
alled the polyhedron of K, whi
h provides the underlying topologi
al spa
e of the
omplex; the polyhedron jKj is said to be triangulated by K. A subdivision K 0 of Kis a simpli
ial 
omplex su
h that jK 0j = jKj and ea
h r-simplex of K 0 is 
ontainedin an r-simplex of K.Then, a pie
ewise linear or PL manifold M is a polyhedron su
h that ea
h point inM has a neighbourhood whi
h is simpli
ially isomorphi
 to an open set in Rd , where\simpli
ially isomorphi
" means that the 
orresponding map is invariant under sub-divisions. On the other hand, a simpli
ial manifold is a d-dimensional 
omplex Ksu
h that link(�r) ' Sd�r�1 [14℄. Thus, simpli
ialmanifolds are abstra
t, 
ombinato-rial representations (triangulations) of PL manifolds. However, in the DTRS s
hemetriangulations are not dedu
ed a posteriori as triangulations of manifolds, but 
on-stru
ted independently by gluings [13℄. There, a set of simpli
es is endowed withidenti�
ations of fa
es of di�erent simpli
es su
h that ea
h fa
e is subje
t to exa
tly



20 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYone gluing pro
edure. In two dimensions, i.e., when gluing triangles in the indi-
ated way, the resulting simpli
ial 
omplex is a simpli
ial manifold3. In general, thegluing of d-simpli
es to a simpli
ial manifold M has to obey the Dehn-Sommervillerelations, �(M) = dXi=0 (�1)iNi(M); (2.36)dXi=2k�1(�1)i (i+ 1)!(i� 2k + 2)!(2k � 1)!Ni(M) = 0 ; (2.37)if d is even, where 1 � k � d=2. Whereas if d is odd the se
ond equation readsdXi=2k(�1)i (i+ 1)!(i� 2k + 1)!2k!Ni(M) = 0; (2.38)where 1 � k � (d� 1)=2 and Ni(M) is the number of i-simpli
es in M . Eq. (2.36)is the well-known way to 
ompute the Euler 
hara
teristi
 for a simpli
ial surfa
e;for the 
ase of d = 2 the se
ond equation redu
es to the simple property2N1(M) = 3N2(M); (2.39)expressing the fa
t that ea
h link is shared between exa
tly two triangles. Notethat for the d = 2 
ase the 
ombination of Eqs. (2.36) and (2.37) leaves only oneindependent variable, for example the number of triangles N2(M). For d = 3; 4 onehas one additional independent variable, say the number of (d�2)-simpli
es (bones)Nd�2(M).Now, a d-dimensional dynami
al triangulation Ta 
an be de�ned as a triangulation(subdivision) of a simpli
ial manifold M built by gluing Nd(Ta) d-simpli
es with a
ommon, �xed edge length a. Here, a serves as 
ut-o� for the dis
retisation of thepath integral (2.20). As far as the dis
retisation programme is 
on
erned, it 
anunfortunately be shown that not every topologi
al manifold 
an be triangulated ingeneral dimensions [13℄. Thus, as mentioned above there is no analogue of Donsker'stheorem for d > 1. However, one 
an prove an approximation theorem whi
h statesthat for any Riemannian manifold M of bounded geometry there is a 
ut-o� a andnumbers of d- and d� 2-simpli
es Nd(Ta) and Nd�2(Ta) su
h that there exists a dy-nami
al triangulation Ta;Nd;Nd�2 with a distan
e from M in the Gromov-Hausdor�3In dimensions d > 2 the result will in general only be a pseudo-manifold [14℄.
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 smaller than a given arbitrary, positive number [14℄. Stated in other words,any su
h manifold 
an be approximated with arbitrary pre
ision by dynami
al tri-angulations. Note that this result is mu
h weaker than Donsker's theorem in theone-dimensional 
ase.Given the 
on
ept of a dynami
al triangulation, the notions of di�erential 
al
ulusne
essary for the formulation of general relativity should be transferred to the dis-
rete language. This programme has been �rst 
arried out by Regge in the seminalpaper [93℄ and later on adapted to the view of dynami
al triangulations in [98℄. Thebasi
 properties whi
h have to be translated are those of (geodesi
) distan
e, of area(or volume for d > 2) and of 
urvature. The 
lassi
 distan
e de�nition stemmingfrom Regge 
al
ulus [93℄ is the 
ontinuation of the generi
, 
at metri
s of the in-terior of the simpli
es of the simpli
ial manifold to the whole of the 
omplex; theresulting metri
, however, is obviously singular at the verti
es. Instead, 
onsideringthe simpli
ial 
omplexes as 
ombinatorial obje
ts, the metri
 should be de�ned interms of the simpli
ial building blo
ks of the triangulation, i.e. its fa
es, edges andverti
es. The distan
e between verti
es p1 and p2 in Ta 
an be 
onveniently de�nedas d(p1; p2) = a minl(p1;p2) jl(p1; p2)j; (2.40)where the minimum is taken over all dis
rete 
urves l(p1; p2) = (p1 = pi1; pi2 ; : : : ; pin =p2) for arbitrary n � N0(Ta) su
h that hpik ; pik+1i is a link belonging to Ta andjl(p1; p2)j = n. Sin
e the edge length is a 
onstant, we will frequently 
onsiderd(p1; p2)=a. Analogously, one 
an de�ne the distan
e between edges as the mini-mum number of edges of the dual latti
e one has to travel to 
onne
t them and,similarly, distan
es between simpli
es of larger dimension. On the grounds of uni-versality (
f. Se
tion 2.2.1) we expe
t the pre
ise de�nition of distan
e to make nodi�eren
e as long as a 
ontinuum limit 
an be de�ned (i.e., the model exhibits a
ontinuous phase transition). Note that all of those distan
es are geodesi
 for thedis
rete surfa
es and 
an thus be used in the pla
es where the theory of relativityrefers to geodesi
 distan
es.To dis
retise the notion of 
urvature, we 
on
entrate on the 
ase of two-dimensionalsimpli
ial manifolds. Re
all that (one of the versions of) the Gau�-Bonnet theoremstates that for a geodesi
 n-angle t with angles �i on a smooth surfa
e the integralover the s
alar 
urvature R,12 ZtR dA =Xi �i � (n� 2)� � �t; (2.41)
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Figure 2.3: The ex
ess angle �t of the geodesi
 re
tangle (1234) is equal to the de�
itangle �i of vertex i. (a) The geodesi
 triangle (1234) and an interior vertex i. (b)Embedding of the surroundings of i into the plane, after 
utting the triangulationopen along the link (1i).does in general not vanish (as in 
at spa
e); instead, the n-angle t has an ex
essangle �t. Alternatively stated, the parallel transport of a ve
tor around the trianglewill rotate it by the ex
ess angle �t [93℄. On the dis
retised surfa
e, the interiorof simpli
es is 
at; sin
e s
alar 
urvature is an intrinsi
 property whi
h does notdepend on the embedding (this is the \Theorema Egregium" of Gau�), 
urvature
an also not be attributed to the edges, be
ause the simpli
ial surfa
e 
an be bentalong the edges without 
hanging the intrinsi
 properties. Thus, 
urvature has to beasso
iated with the verti
es of the simpli
ial manifold. If for ea
h vertex we de�nethe de�
it angle �i as �i � 2� � Xhpi;pj ;pki2Ta �i[hpi; pj; pki℄; (2.42)we read o� from Fig. 2.3(b) that �i = �t. Thus, from Eq. (2.41) we have12 ZtR dA = Xpi2Ta �i = Xpi2TaRiAi; (2.43)where the area Ai and 
urvature Ri asso
iated to the vertex pi are de�ned asAi = 13 Xhpi;pj;pki2TaA[hpi; pj; pki℄; Ri = 2�iAi ; (2.44)



2.2. SIMPLICIAL QUANTUM GRAVITY 23i.e., the area of ea
h triangle hp1; p2; p3i is equally distributed between its verti
espi. For the 
ase of equilateral triangles o

urring in the DTRS s
heme all anglesequal �=3 and therefore �i = (6� qi)�=3, where qi denotes the 
o-ordination numberof the vertex pi. Eq. (2.44) then readsAi = a23 qi; Ri = 2�(6� qi)qia2 ; (2.45)where a2 = a2p3=4. Now, the integral over 
urvature 
an be evaluated asXpi2TaAiRi = 2�3 Xpi2Ta(6� qi) = 4�[N0(Ta)�N2(Ta)=2℄ = 4��(Ta); (2.46)where we have used the Dehn-Sommerville relation (2.39) in the last step and �(Ta)is given by (2.36). This proves the dis
rete analogue of the Gau�-Bonnet theorem.Writing the total area of the surfa
e asXpi2TaAi = a2N2(Ta); (2.47)the path integral of two-dimensional simpli
ial quantum gravity is given byZ(�; �; a) = 1Xh=0 e4��(h)� 1XN2=1 e��a2N2 XTa2Ta(h;N2) 1C(Ta) : (2.48)In the following, we absorb the \latti
e spa
ing" a formally into the 
oupling 
on-stant �, until in Se
tion 2.3.7 the 
ontinuum limit of the dis
rete theory is dis
ussed.The C(Ta) denote the symmetry fa
tors asso
iated with dynami
al triangulations ofgenus h and with N2 triangles, that is, the volume of the 
orresponding symmetrygroup. Thus, two-dimensional simpli
ial quantum gravity is redu
ed to the purely
ombinatorial problem of determining the number N [Ta(h;N2)℄ of triangulations ofa given topology and size and the 
orresponding symmetry fa
tors C(Ta). Theyen
ode the over-
ounting of metri
s in the path integral measure due to equiva-lent metri
s, i.e., metri
s 
onne
ted by an orientation-preserving di�eomorphism.For labelled triangulation as they naturally o

ur in 
omputer simulations of DTRSmodels (see Chapter 3 below), C(Ta) is simply given by the fa
torial N0(Ta)! re-
e
ting the number of possible re-labellings of the verti
es [11℄. In general, thespa
e of equivalen
e 
lasses of metri
s 
an be 
hara
terized by a �nite-dimensionalTei
hm�uller spa
e (see, e.g., Ref. [88℄) of metri
s ĝ(t1; : : : ; tm), ti 2 C , su
h that anymetri
 g on a manifold M is equivalent toe� ĝ(t1; : : : ; tm); (2.49)
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tion on M . Here, the parameters ti 
orrespond to the 
ombina-torial freedom in the gluing of simpli
es, whereas the 
onformal fa
tor e� en
odesadditional invariants su
h as volume and 
urvature. Without dis
ussion we mentionthat the dis
retised Einstein-Hilbert a
tion of a simpli
ial manifold T in dimensionsd > 2 is given by [107, 108℄ST [�d; �d�2℄ = �dNd(T )� �d�2Nd�2(T ); (2.50)where �d and �d�2 are suitable 
ombinations of the 
osmologi
al and gravitational
oupling 
onstants (see, e.g., Ref. [9℄). Also, the additional term hab in the Polyakova
tion Eq. (2.13) adds a term 12 Xhpipji2Ta(xi � xj)2 (2.51)to the dis
retised a
tion, where the xk are additional 
o-ordinates in RD asso
iated tothe verti
es of the latti
e. This justi�es the 
laim presented above, that the Polyakovstring (at �xed topology) 
an be viewed as two-dimensional quantum gravity 
oupledto D Gaussian �elds.2.3 Analyti
al Results for the Dis
retised TheoryIn the following we 
on
entrate on the 
ase of the DTRS model in two dimensions,su
h that, unless otherwise stated, all results 
ited apply to the 
ase d = 2. Havingde�ned a dis
retised theory of two-dimensional Eu
lidean quantum gravity in termsof dynami
al triangulations, one has to ensure the existen
e of a 
ontinuum limit forthe theory to be
ome a possible 
andidate for the quantum theory of gravity. If su
ha limit exists, we expe
t 
ertain observables to s
ale a

ording to power laws in thevi
inity of the 
riti
al point, thus de�ning universal 
riti
al exponents of the theory.In a 
ursory survey, we present the methods whi
h have been su

essfully applied tosolve the 
ombinatorial problem exa
tly and the main results of the analysis. Firstof all, one has to 
he
k, whether the sum of Eq. (2.48) over dynami
al triangulationsis well-de�ned (that is, �nite) su
h as to have a 
han
e to de�ne a 
ontinuum limit.To entertain the reader and stimulate her imagination regarding the obje
ts to besummed over, Fig. 2.4 shows a sample two-dimensional dynami
al triangulationembedded in R3 .
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Figure 2.4: Embedding of a two-dimensional dynami
al triangulation with N2 =5000 triangles in R3 (proje
ted to R2 for obvious reasons). The 
olour of the trianglesen
odes the lo
al 
urvature of the surfa
e a

ording to Eq. (2.45); blue regions have
urvature R > 0, red pat
hes denote R < 0. The embedding was generated with anadaptive algorithm des
ribed in Appendix B.2.3.1 Existen
e of the dis
retised partition fun
tionAdopting the interpretation of the Polyakov string a
tion (2.13) as two-dimensionalquantum gravity 
oupled to D Gaussian �elds, we 
onsider the dis
retised m-loopfun
tion at �xed topology,Gh�(l1; : : : ; lm) = 1XN2=1 e��N2 XTa2Ta(h;N2; li) 1~C(Ta) Z Ypi2Ta dxi e� 12 Phiji(xi�xj)2 : (2.52)Here, the li denote �xed boundary loops 
onsisting of ni = n(li) links of the triangu-lation. The G�(l1; : : : ; lm) are quite general fun
tionals, whi
h in
lude the m-point
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tions G�(pi; : : : ; pm) when 
ontra
ting the loops li to points pi and the parti-tion fun
tion Z� for m = 0. The symmetry fa
tors ~C(Ta) in general depend on thenumber m of �xed loops or points and are thus not identi
al to the fa
tors C(Ta) ofEq. (2.48). If we in
lude the sum over topologies,G�(l1; : : : ; lm) = 1Xh=0 e4��(h)�Gh�(l1; : : : ; lm); (2.53)where � = 0 for the Polakov string, the number of su
h triangulations 
an be shownto have a lower bound of the form [10℄(
N2)!; (2.54)whi
h grows faster than any exponential. Sin
e the �elds xi will result for a �xedtriangulation in a free energy F � fN2 for some f > 0, it is obvious thatGh�(l1; : : : ; lm) � 1XN2=1(
N2)! e
onst�N2 ; (2.55)whi
h is divergent. Thus, in
luding the sum over topologies, the m-loop fun
tionsare ill-de�ned for any value of the 
oupling � due to the entropy of the triangulations.We thus 
on
entrate on the problem at �xed topology. A possible in
lusion of thesum over topologies using matrix models is dis
ussed below in Se
tion 2.3.7.For the 
ase of triangulations of �xed genus h the situation is fortunately more pleas-ant: it 
an be shown that the number jTa(h;N2)j of su
h inequivalent triangulationsis exponentially bounded with respe
t to the number of triangles [8℄, i.e.,jTa(h;N2)j � e
onst�N2 : (2.56)Then, for a spanning tree on a given triangulation Ta the Gaussian integral in Eq.(2.52) 
an be easily performed due to the absen
e of 
losed loops to yield the bound[10℄ Z Ypi2Ta dxi e� 12 Phiji(xi�xj)2 � (2�)N2(Ta)D=2; (2.57)su
h that Gh�(l1; : : : ; lm) is �nite for � > D2 log 2�. Thus, for given h and a givennumber of boundary loops l1; : : : ; lm there is a �0(l1; : : : ; lm) > 0 su
h that them-loop fun
tions are �nite and analyti
 for � > �0(l1; : : : ; lm) and divergent for� < �0(l1; : : : ; lm) (this in
ludes, of 
ourse, the partition fun
tion of the model).Furthermore, it 
an be proved that �0(l1; : : : ; lm) = �0 does not depend on the
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hoi
e of boundary loops li and is even independent of the genus h [3, 109, 110℄.Sin
e for � right above the limiting value �0 the sum over N2 in (2.52) is dominatedby the large-N2 terms, the limit � # �0 is the obvious 
andidate for the 
ontinuumlimit of the model.For the 
ase of simpli
ial quantum gravity in dimensions d > 2 a similar prop-erty 
ould only quite re
ently be proved [111{113℄; also there, the number of non-isomorphi
 triangulations with a given number of d-simpli
es is exponentially boundedwith Nd.2.3.2 String sus
eptibility, mass gap and string tensionIntegrating over the marked verti
es in the m-point fun
tion, the sus
eptibilities arede�ned as �h(m)(�) = Z dx2 � � �dxmGh�(0; x2; : : : ; xm): (2.58)In the thermodynami
 limit N2 ! 1 their singular part 
an also be expressed asderivative of the partition fun
tion,�h(m)(�) � (�1)m dd�mZh(�); (2.59)sin
e in view of Eq. (2.52) di�erentiating with respe
t to � will pull down a fa
torof �N2, whi
h is, in the limit of a large number of triangles, the same e�e
t as�xing an additional vertex in the triangulations in going from Gh�(0; x2; : : : ; xm�1)to Gh�(0; x2; : : : ; xm). The di�eren
es for small N2 stem from the di�erent symmetryfa
tors asso
iated with the triangulations. Sin
e Zh(�) is singular at the spe
ialpoint � = �0, the sus
eptibility is expe
ted to s
ale with the string sus
eptibilityexponent 
s as �h(�) � �h(2) � (�� �0)�
hs : (2.60)It turns out that the 
riti
al exponent 
hs indeed does depend on the genus h of thetriangulations.By separating out the minimum of the Gaussian a
tion,Smin(Ta) � min(x1;:::;xD) 12Xhiji (xi � xj)2; (2.61)
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an be written asZ Ypi2Ta dxi e� 12 Phiji(xi�xj)2 = e�Smin(Ta) (2�)N2(Tan�Ta)detC0T 0a !D=2 : (2.62)Here, CT 0a is the adja
en
y matrix of the triangulation T 0a 
onstru
ted by removingall boundary links from Ta and identifying all boundary sites with one vertex giventhe label 0 and (CT 0a)ij = ( �qij if i 6= jqi if i = j ; (2.63)where qi is the 
o-ordination number of vertex pi and qij is the number of links
onne
ting verti
es pi and pj (i.e., either 0 or 1 for simpli
ial manifolds). Themodi�ed adja
en
y matrix C0T 0a is de�ned by deleting the row and 
olumn indexed by0. The representation (2.62) allows a 
ontinuation of the theory to non-integer andeven negative embedding dimensions D; espe
ially to the 
ase D = �2, whi
h 
anbe solved analyti
ally, see Refs. [5, 21, 114{116℄. Inserting (2.62) into the de�nitionof the sus
eptibility (2.59), �h(�) 
an be expressed in terms of the determinantdetC0Ta. Using the fa
t that this determinant is additive with respe
t to \gluings"of two spheri
al universes along two of their boundary lines li, for h = 0 one 
anprove the inequality [117℄ 
0s � 12 ; (2.64)whi
h is one of the most general results for the DTRS models; this mean-�eld likebound is supposed to hold for any random surfa
e model with lo
al intera
tions.Espe
ially, via the extension of Eq. (2.62) to non-integer and negative dimensionsD, this result is valid for the 
oupling of 
onformal matter of any 
entral 
hargeto two-dimensional Eu
lidean quantum gravity. The mean-�eld limit in statisti
alme
hani
s is usually found to be equivalent to the limit of in�nite dimensionalityof spa
e. Considering D ! 1 in the DTRS model, from Eq. (2.62) obviously
on�gurations minimizing the determinant detC0T 0a will dominate; as it turns out,this minimal weight is atta
hed to 
on�gurations of bran
hed polymers, i.e. planartree graphs. The bran
hed polymer model (see, e.g., Refs. [118, 119℄) 
an be solvedexa
tly and not surprisingly yields the limiting value 
0s = 1=2. In Se
tion 2.3.3 wewill see that for pure gravity, i.e. the 
ase D = 0, a value di�erent from mean-�eldbehaviour, namely 
0s = �1=2 is realized. Bounds similar to (2.64) 
an be found forhigher-genus surfa
es, see Ref. [10℄ and referen
es therein.
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e behaviour of the m-loop or m-point fun
tions, wede�ne the inverse 
orrelation length or mass gap m(�) as the limit4mh(�) = � limr!1 lnGh�(r)r ; (2.65)where Gh�(r) = Gh�(0; x), jxj = r. The proof of the existen
e of the indi
ated limitis te
hni
ally somewhat intri
ate [7,10℄. It follows from a sub-additivity property ofthe two-point fun
tion, namelyGh�(r1 + r2) � Gh�(r1)Gh�(r2): (2.66)Qualitatively, the origin of this relation is quite obvious if we 
onsider the (suitablynormalized) 2-loop fun
tionGh�(l1; l2) as the probability of the propagation of a stringfrom l1 to l2, where jl1j = jl2j. Then, the probability of the string to propagate froml1 to l2 through a �xed intermediate position, 
orresponding to the rhs of Eq. (2.66),is naturally smaller than the probability for it to propagate through any possibleintermediate position, represented by the lhs of (2.66) [8℄. It 
an also be shown thatmh(�) � 0 for � > �0 and mh(�) is a de
reasing fun
tion of �. It is not proved(for the most general 
ase), but almost 
ertainly true, that mh(�) really vanishes at� = �0, i.e. that the 
orrelation length 1=mh(�) diverges at the 
riti
al point �0.From the de�nition (2.65) of the mass gap we infer the following long distan
ebehaviour of the 
orrelatorGh�(r) � e�mh(�)r; r � 1=mh(�): (2.67)If the mass s
ales to zero, whi
h is essential for the existen
e of a well-de�ned
ontinuum limit, we asso
iate this s
aling with the 
riti
al exponent �:mh(�) � (�� �0)�h: (2.68)The exponent � is expe
ted to be independent of the genus h. As will be demon-strated in Se
tion 2.3.5 � is related to the fra
tal stru
ture of the latti
es 
hara
ter-ized by the Hausdor� dimension dH as � = 1=dH. The exponents � or dH are notknown exa
tly for the general 
ase, i.e., two-dimensional quantum gravity 
oupledto 
onformal matter with 
entral 
harge C = D. On the other hand, the shortdistan
e behaviour of the 2-point fun
tion de�nes the anomalous dimensions �h asGh�(r) � rd�1 1rd�2+�h ; r � 1=mh(�); (2.69)4For the quantum gravity (and not the string theory) point of view, the two-point fun
tion willbe expli
itly de�ned in terms of geodesi
 distan
e, see below Se
tion 2.3.5.
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tor rd�1 stems from the average over spheri
al shells impliedin 
onsidering Gh�(r). In view of the s
aling of the mass mh(�) to zero at the 
riti
alpoint � = �0, the limits of long and short distan
e 
onsidered in Eqs. (2.67) and(2.69) 
an be alternatively interpreted in terms more natural for statisti
al physi
ists:sin
e the region r � 1=mh(�) eventually 
overs the whole triangulation as �! �0,(2.69) des
ribes the 
orrelator in the vi
inity of the 
riti
al point (the s
aling region),whereas the exponential de
ay (2.67) is valid o� 
riti
ality. Combining the de�nition(2.58) of the sus
eptibility with the s
aling properties (2.60), (2.68) and (2.69) we�nd(�� �0)�
0s � Z dr G0�(r) = Z 1=m0(�)0 dr r1�� / (1=m0(�))2�� � (�� �0)��(2��);(2.70)i.e. the Fisher s
aling relation 
0s = �0(2� �0): (2.71)Finally, 
onsidering the exponential de
ay of the 1-loop fun
tion G0�(l) for a largeplanar loop l en
losing an area A,G0�(l) � A�0e��0(�)A; (2.72)de�nes the string tension for spheri
al surfa
es, �0(�), whi
h 
an be interpreted asthe surfa
e tension of a membrane atta
hed to the \frame" l. It 
an be shown [120℄that the string tension �0(�) � 1, su
h that it does not s
ale to zero as �! �0. Aswill be shown below in Se
tion 2.3.7 this implies that the physi
al, re-s
aled stringtension de�ned from the 
ontinuum limit be
omes in�nite.2.3.3 The 
ombinatorial solutionThe problem of the Polyakov string (2.13) embedded in D = 0 dimensions, i.e. pureEu
lidean quantum gravity in two dimensions 
an be solved exa
tly with a gener-ating fun
tion te
hnique known as the loop equation. An alternative formulation ofthis system in term of a matrix integral , whi
h 
an also be performed analyti
ally,will be sket
hed in the next se
tion.To dynami
ally 
ontrol the presen
e and weight of boundaries in the triangulations,we add a boundary term to the dis
retised Einstein-Hilbert a
tion of Eq. (2.48) at



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 31�xed topology h, i.e. ST [�; �1; : : : ; �b℄ = �N2 + bXi=1 �ini (2.73)should denote the a
tion of a simpli
ial manifold T with b pun
tures en
losed byboundary polygons of geodesi
 lengths ni = n(li); the �i thus play the rôle ofboundary 
osmologi
al 
onstants. Using the abbreviationswhN2;n1:::;nb = XTa2Ta(h;N2;ni) 1~C(Ta) (2.74)for the number of triangulations of genus h with b boundaries of lengths ni andde�ning fuga
ities of triangles and boundary links,m = e��; ki = e�i; (2.75)the loop fun
tions (2.52) for 
u
tuating loop lengths ni and at D = 0 now readGhm(k1; : : : ; kb) =XN2 Xn1;:::;nbwhN2;n1:::;nbmN2k1�n1 � � � kb�nb; (2.76)whereas the loop fun
tions for �xed boundary lengths5 ni, the Hartle-Hawking wavefun
tionals [121℄, are given byGhm(n1; : : : ; nb) =XN2 whN2;n1:::;nbmN2 : (2.77)Obviously both kinds of loop fun
tions are related by a Lapla
e transform asGhm(k1; : : : ; kb) = Xn1;:::;nb k1�n1 � � � kb�nbGhm(n1; : : : ; nb) (2.78)From a 
ombinatorial point of view, the Ghm(k1; : : : ; kb) 
an thus be 
onsidered as thegenerating fun
tions of the numbers whN2;n1:::;nb.Considering the e�e
t of simple surgery operations on the triangulations that 
hangethe number of triangles or the number of boundary links by units of one, 
orrespond-ing to a multipli
ation by fa
tors of m, m�1, k or k�1, one 
an derive the followingre
ursion relation for the generating fun
tion for planar triangulations (h = 0) [15℄6:g0(m; k) = mk g0(m; k) + 1k g20(m; k); (2.79)5Note that the n(li) are di�eomorphism invariant quantities.6The relation originally derived by Tutte [15℄ is for a slightly di�erent 
lass of triangulationsand in
ludes 
orre
tions for the smallest triangulations; it thus look slightly more 
ompli
ated thanthe relation given.



32 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYwhere gh(m; k1; : : : ; kb) = Ghm(k1; : : : ; kb)k�11 � � � k�1b : (2.80)Eq. (2.79), known as the loop equation (a form of the Dyson-S
hwinger equation),should be understood order by order in the variables m and k. This type of equation
an be used to iteratively generate the numbers whN2;n1:::;nb. In the limit of large N2
losed-form expressions 
an be given (for a review see, e.g. Ref. [10℄); for the 
ase of
losed triangulations of general genera h one �nds [25℄whN2 � N �h2 e�0N2 [1 +O(N�12 )℄; (2.81)where �h = 5h� 72 : (2.82)The number of 
losed triangulations with N2 triangles grows exponentially as indi-
ated in Se
tion 2.3.1 with a power-law 
orre
tion 
hara
terized by the exponents�h. These exponents are related to the string sus
eptibility exponents 
hs as follows.Consider the partition fun
tion at �xed topologyZh(�) = 1XN2=0 e��N2Zh(N2); (2.83)where Z(N2) = whN2 denotes the 
anoni
al partition fun
tion at �xed volume. In-serting the expression (2.81) into this equation, we have7Zh(�) � 1XN2=0 e�(���0)N2N �h2 � (�� �0)�(�h+1): (2.84)Re
alling that via Eqs. (2.59) and (2.60) Zh(�) � (� � �0)2�
hs , it follows that�h = 
hs � 3 and thus 
hs = 5h� 12 : (2.85)Espe
ially, for planar surfa
es h = 0, one �nds 
0s = �1=2 in 
ontrast to the mean-�eld result 
0s = 1=2. Along the same lines also the 
ounting of surfa
es 
onsistingnot only of triangles, but of arbitrary polygons, is possible [122, 123℄.7Con
erning the last equality, 
onsider the 
ontinuum expressionZ 10 dN2 e�(���0)N2N�h2 = �(�h + 1)(�� �0)�h+1 :



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 332.3.4 Matrix modelsAn alternative path of derivation of the 
entral result (2.81) for the number oftriangulations of a given number of triangles is given by the analysis of matrixintegrals (for reviews see, e.g., Refs. [6, 23, 124℄), originally 
onsidered by 't Hooftfor the large-N limit of QCD [19℄; in fa
t, the 
on
ept of \loop equations" has beenoriginally developed in the 
ontext of matrix models.Consider the Taylor expansion of the zero-dimensional �eld theory integralZ d� e� 12�2+ g3�3 = 1Xk=0 Z d� e� 12�2 1k! �g�33 �k � 1Xk=0 1k! �g3�k 
�3k� ; (2.86)where � is a simple, real-valued variable. Introdu
ing an external sour
e J , theo

urring terms 
an be written asZ d� e��2=2�n = (�i)n �n�Jn Z d� e��2=2+iJ�����J=0 = �n�Jn e�J2=2����J=0 : (2.87)Sin
e ea
h derivative �=�J brings down a fa
tor of J , after setting J = 0 onlypairs of su
h derivatives give 
ontributions without fa
tors of J , whi
h thus do notvanish. Therefore, one has a zero-dimensional version of Wi
k's theorem (see, e.g.,Ref. [125℄), h�1 � � ��ni = Xperm(i1;:::;in)h�i1�i2i � � � h�in�1�ini: (2.88)Asso
iating with ea
h fa
tor �3=3 a vertex with three external lines,
�the expansion of (2.86) 
orresponds to the pairwise 
onne
tion of verti
es via links.The resulting �3 Feynman graphs are generi
, \thin" graphs without an orientationof the plaquettes; this is obviously not enough stru
ture for the triangulation ofRiemannian surfa
es (even though these graphs are interesting in their own right,see e.g. Refs. [126{128℄). Therefore, 
onsider the more general integralW (g;N) � Z d� e� 12Tr�2+ g3pN Tr�3 � 1Xk=0 1k! � g3pN�k 
Tr�3k� ; (2.89)
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Figure 2.5: The Wi
k expansion of the matrix integral (2.89) 
orresponds to thegluing of oriented triangles mediated by the matrix indi
es.where now � is a N �N Hermitian matrix andd� �Y��� dRe��� Y�<� d Im���: (2.90)Then, again, the expansion is given by the 
ombination of all possible Wi
k 
on-tra
tions of (Tr�3)k and the two-point fun
tion ish�����0�0i = Z d� e� 12 P�� j��� j2�����0�0 = Æ��0Æ��0 (2.91)Then, via the pairing of the indi
es of �, the 
orresponding verti
es re
eive a rib-boned, \fat" stru
ture,

�leading to orientable plaquettes of the surfa
e. In terms of the triangulation, i.e. thedual latti
e of the �3 graph, the \fat" stru
ture 
an be understood as follows: toea
h fa
tor Tr�3 we asso
iate a triangle and to ea
h term �����
�
� 
ontributingto Tr�3 a labelling of the verti
es of the triangle by �, �, 
 in 
y
li
 order; thus,the element ��� 
orresponds to the oriented link between verti
es � and �. Thenthe Krone
ker Æ symbols of Eq. (2.91) ensure that ea
h link (�; �) is identi�ed withan oppositely oriented link (� 0; �0). This is illustrated in Fig. 2.5.In this way, the integral (2.89) 
orresponds to a sum over 
losed, orientable triangu-lations of N2(T ) = k triangles, whi
h are, however, possibly dis
onne
ted. Making
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ommon tri
k in �eld-theory [125℄, taking the logarithm of (2.89) kills all dis-
onne
ted 
ontributions, leaving only 
onne
ted surfa
es. Summing over Eq. (2.91)it is obvious that ea
h vertex of the triangulation pi
ks up a fa
tor of N , su
h thatthe overall weight of a triangulation T is given bygN2(T )NN0(T )�N2(T )=2 1C(T ) = gN2(T )N�(T ) 1C(T ) : (2.92)Note that the fa
torial k! in (2.89) is partially 
an
elled against the number ofpermutations of the triangles, resulting in the symmetry fa
tor 1=C(T ). In view ofEq. (2.48), the identi�
ations N = e4��; g = e�� (2.93)let us 
on
lude that Z(�; �) = lnW (g;N)W (0; N) (2.94)is the partition fun
tion of the two-dimensional Eu
lidean quantum gravity problem.Note that the Hermiti
ity of the 
onsidered matri
es is essential for the orientabilityof the triangles and thus the surfa
es; using real symmetri
 matri
es instead makesthe two indi
es � and � indistinguishable, thus generating both orientable and non-orientable triangulations. From the weights (2.92) it is obvious that the planar limitN ! 1 leaves only triangulations with minimal � = 2 � 2h, i.e. with h = 0. Onthe other hand, in the limit N = 1 we re
over the 
ase of generi
, \thin" graphs,where all genera 
ome with equal weights. From the dis
ussion up to this point itshould be 
lear that the partition fun
tion Z(�; �) de�ned in this way | as a sumover topologies | is divergent and should therefore be 
onsidered as a symboli
representation of the 
olle
tion of all orders of a large-N expansion,Z(� = � ln g; � = lnN4� ) = 1Xh=0N2�2h Zh(�) = 1Xh=0N2�2h 1XN2=0 gN2Zh(N2): (2.95)The leading term of this expansion, i.e. the limit N !1 (the planar theory), 
anbe 
omputed exa
tly via the saddle-point method to give [16℄Z0(N2) = 8N2�(32N2)(N2 + 2)! �(12N2 + 1) N2!1� N�7=2 eN2 ln 12p3: (2.96)Comparing with the result (2.81) we �nd agreement for the planar 
ase and theadditional information that the 
riti
al value of the 
osmologi
al 
onstant for thisparti
ular model is given by �0 = ln(12p3): (2.97)



36 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYAs mentioned above, the matrix model approa
h is very 
losely related to the
ombinatorial ansatz leading to the loop equations. For example, the numbersgh(g = m; k1; : : : ; kb) 
an be dire
tly 
omputed within the matrix model s
heme.If we denote (in 
ontrast to the above notation) by h�i an average with respe
t tothe measure W�1(g;N) e� 12Tr�2+ g3pNTr�3d�; (2.98)the generating fun
tion gh is given bygh(g; k1; : : : ; kb) = N b�2 Xk1;:::;kb 
Tr�k1 � � ��kb�
onnkk1+11 � � � kkb+1b ; (2.99)where h�i
onn denotes the 
onne
ted part of the 
orrelation fun
tion.With the same te
hnique further models 
an be 
onsidered by 
hanging the matrixpotential. Re-writing (2.89) more generally asW (g;N) = Z d� e�NTrV (�;g); V (�; g) = 12�2 � g3�3 (2.100)whi
h involves a re-s
aling � ! pN� for te
hni
al purposes, it 
an be easily seenthat, for example, the quarti
 potential,V (�; g) = 12�2 � g4�4; (2.101)generates the ensemble of \fat" �4 graphs, i.e. the dual latti
es of quadrangulations.Matrix potentials with more than one matrix or with non-Hermitian matri
es 
or-respond to a dressing of the random graphs with matter variables, see Se
tion 2.4.3.2.3.5 Fra
tal stru
ture of the latti
esConsidering the features of geometri
al observables on random triangulations ofthe introdu
ed type, it qui
kly be
omes 
lear that the intrinsi
 geometry of thelatti
es is far from smooth; instead they have a very ragged and highly detailedstru
ture reminis
ent of fra
tals. This 
an most eye-
at
hingly be demonstrated by
onsidering an embedding of the two-dimensional latti
es in R3 trying to faithfullyreprodu
e the property of equal edge lengths of the triangles, 
f. Fig. 2.6.The prevailing parameter 
hara
terizing the \fra
tality" of a stru
ture is the Haus-dor� dimension with respe
t to a given metri
, whi
h de�nes how a suitably de�ned
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Figure 2.6: Embedding of a two-dimensional dynami
al triangulation with N2 =5000 triangles in R3 . The triangulation is taken from the same ensemble as themore smooth looking example of Fig. 2.4. The embedding was generated with anadaptive algorithm trying to avoid edge interse
tions while uniformizing the edgelengths, 
f. Appendix B.measure of linear length of the stru
ture s
ales in terms of its volume. For the
ase of the Polyakov string embedded in RD the mean square extent with respe
t todistan
es in the embedding spa
e and in the grand-
anoni
al ensemble of a varyingnumber of triangles N2 is de�ned ashx2i� � R dx x2Gh�(0; x)R dxGh�(0; x) : (2.102)Then, de�ne the average number of triangles in this ensemble ashN2i� � �R dx ���Gh�(0; x)R dxGh�(0; x) ; (2.103)



38 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYsin
e di�erentiating (2.52) with respe
t to � brings down a fa
tor of �N2. If thelimit dH = 12 lim�!�0 lnhx2i�lnhN2i� (2.104)exists, it is 
alled the external Hausdor� dimension of the 
onsidered ensemble ofrandom surfa
es; otherwise, we set dH =1. Alternatively, it 
an be de�ned in the
anoni
al ensemble of a �xed number of triangles N2 asdH = 12 limN2!1 lnhx2iN2lnN2 : (2.105)Thus, the average area of the surfa
es asymptoti
ally s
ales ashN2i� � hx2idH=2� ; �! �0: (2.106)For the 
ase of pure quantum gravity, no embedding in a target spa
e (apart fromillustrative purposes) is available. Re
all from (2.52) that the two-point fun
tion inD = 0 is de�ned asGh�(r) = 1XN2=1 e��N2 XTa2Ta(h;N2; p1;p2) Æ (d(p1; p2)� r) ; (2.107)where d(p1; p2) denotes the internal geodesi
 distan
e of Eq. (2.40). Then, we de�nethe analogue of the mean square extent ashr2i� � P1r=0 r2Gh�(r)P1r=0Gh�(r) ; (2.108)and the average number of triangles byhN2i� � �P1r=0 ���Gh�(r)P1r=0Gh�(r) : (2.109)Then, the internal Hausdor� dimension8 dh is given bydh = 12 lim�!�0 lnhr2i�lnhN2i� : (2.110)Obviously, a similar de�nition of an intrinsi
 Hausdor� dimension 
an also be givenfor the 
ase of the Polyakov string. Both dimensions are not ne
essarily equal;instead, it 
an be shown that dh � dH , whi
h is intuitively obvious sin
e in the8Note the use of upper 
ase and lower 
ase subs
ripts H resp. h to distinguish the external andinternal Hausdor� dimensions.
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e one does not have to follow the surfa
e to travel between twopoints, su
h that distan
es are shorter there.It should be emphasized that there are several slightly di�erent de�nitions of internalHausdor� dimensions whi
h have been used in the literature (see, e.g. Refs. [7, 10,11℄). It is possible, for instan
e to drop the summation over r in (2.109) and 
onsiderhN2(r)i� = � ���Gh�(r)Gh�(r) = ��� lnGh�(r) � rdh ; r !1; m(�)r = 
onst: (2.111)From the de�nition of the mass m(�) Eq. (2.67) and its s
aling as �� ! 0 Eq.(2.68), we have hN2(r)i� � �m(�)�� r � m(�) ��1� r / r1=�; (2.112)where we have used the s
aling assumption m(�)r = 
onst above. Thus we have thes
aling relation � = 1=dh; (2.113)whi
h together with the Fisher s
aling relation (2.71) determines the number ofindependent exponents.Numeri
ally, the intrinsi
 Hausdor� dimension of two-dimensional simpli
ial quan-tum gravity is observed to be mu
h larger than the topologi
al dimension d = 2; infa
t, from the transfer-matrix approa
h des
ribed below, it is known that dh = 4for pure quantum gravity in two dimensions. This is related to the stru
ture ofthe latti
es as depi
ted in Fig. 2.6. The triangulation appears as 
omposed from\blobs" of all length s
ales atta
hed to the main surfa
e through ne
ks of only afew links; in this way, the whole \universe" 
an be de
omposed into a tree of babyuniverses, whi
h are (apart from the 
ut-o� a) similar to the whole graph [29℄. Therelation between the \baby universes" and the fra
tal dimension 
an be understoodby means of the real spa
e renormalization group approa
h [11, 129, 130℄. De�ningan elementary blo
king transformation by 
utting from the original ensemble a alllast generation minimal ne
k baby universes (minBUs), i.e. those at the leafs of the\baby universe" tree, to result in a renormalized ensemble b, the s
ales of lengthsand areas are related asymptoti
ally as [11℄hN2ibN2;a � � hr2ibhr2ia�dr=2 ; N2 !1; (2.114)where the averages are here performed in the 
anoni
al, �xed N2 ensemble. Thedimension dr is numeri
ally found to approa
h dh = 4 for large graphs; thus, the



40 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITY\baby-universe" stru
ture of the triangulations is 
losely related to their fra
talstru
ture.Two further dimensions are 
ommonly 
onsidered in 
onne
tion with random sur-fa
es, see e.g. Refs. [11, 12℄. Let nTa(r) be the number of verti
es pi of a giventriangulation Ta whi
h have a distan
e d(0; pi) � r from a marked point 0. Thenthe bran
hing dimension db des
ribes the s
aling of the average of the number ofdis
onne
ted 
omponents n0(r) of the boundary of the ball of volume nTa(r),hn0(r)i � rdb; N2 !1: (2.115)Numeri
al simulations give results of db & 2:5, signalling indeed a large rate ofbran
hing. Finally, to de�ne the spe
tral dimension ds 
onsider, in the 
ontinuumtheory, the di�usion of a test parti
le on the surfa
e; in the short-time limit, theaverage probability density for the parti
le to return to its initial point s
ales ashP (t)i � t�ds=2; t! 0: (2.116)Surprisingly, it 
an be shown that, despite of the rather large Hausdor� dimension,the spe
tral dimension stays at the 
at-spa
e value ds = 2 for quantum gravitywith C � 1 [131℄. However, the fra
tal stru
ture of the triangulations (i.e., thedimension dh) 
an still be seen also in the di�usion pro
ess, namely in the s
alingof the travelled distan
e of the parti
le with time,hrit � t1=dh ; t!1: (2.117)2.3.6 Further results and the transfer matrixConsidering the s
aling relations (2.71) and (2.113) and the exa
t values of the stringsus
eptibility exponent of Eq. (2.85), one needs one further exponent, either dH , � or� for a 
omplete des
ription of the 
riti
al behaviour of the two-dimensional quantumgravity problem. This missing information 
an be extra
ted from a di�erentialequation for the generating fun
tions of the b-loop fun
tion mentioned above inSe
tion 2.3.3 [28℄ or, alternatively, from a transfer-matrix formulation of the problem[26, 27℄.Starting from the general generating fun
tion (2.76), one 
an again derive a re
ursionrelation of the S
hwinger-Dyson type with respe
t to elementary operations at theentran
e and exit loops of the 
orrelators known as the \peeling" and \sli
ing"
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omposition of the triangulations, see, e.g., Ref. [10℄. Then, writing down andsolving a di�erential equation mimi
king the elementary steps used, the 
orrelatorin the s
aling limit is found to be [28℄,G0�(r) � 
osh ��(��)1=4r�sinh3 [�(��)1=4r℄ ; (2.118)where � = p6 exp(�0). In the two limits 
onsidered in Se
tion 2.3.2 this redu
es toG0�(r) � e�2(��)1=4�r; r � 1=m(�); (2.119)and G0�(r) � r�3; r � 1=m(�); (2.120)su
h that from the de�nitions (2.67), (2.69) and (2.68) we read o� the exponents� = 1=4 and �0 = 4. From the s
aling relation dh = 1=� we infer an internalHausdor� dimension dh = 4.Using the above-mentioned sli
ing de
omposition, whi
h divides a triangulation inspheri
al shells of triangles of equal geodesi
 distan
e from a given point or loop,it is possible to write down a transfer-matrix formulation of the problem. Besidesderiving the result (2.118), this method even yields the so-
alled loop distributionfun
tion �0(r; l) for spheri
al topology, that is: �(r; l)dl is the average number ofloops of lengths between l and l+dl at the boundary of a ball with radius r on thetriangulations. In the thermodynami
 limit N2 ! 1 of the 
anoni
al ensemble ofplanar latti
es (h = 0) it is given by [26℄�0(l; r) = 37p�r2 �x�5=2 + 12x�3=2 + 143 x1=2� e�x; (2.121)where x = r2=l is a s
aling variable. From this very detailed result, it is alsopossible to derive the s
aling dimensions dh = 4 and db = 3 whi
h are related to thesingular behaviour of the distribution. In view of the possibility of a transfer-matrixformulation, the question arose, whether one 
ould �nd the quantum Hamiltonian
orresponding to the 
ontinuum limit of the transfer matrix whi
h would yield a
ompletely new des
ription of two-dimensional quantum gravity. There, proper timeis identi�ed with the geodesi
 distan
e of the sli
ing de
omposition. Approa
hes inthis dire
tion 
an be found in Refs. [132, 133℄.



42 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITY2.3.7 The 
ontinuum limitAs usual in latti
e �eld theory, for the de�nition of a proper 
ontinuum limit the massm(�) (the inverse 
orrelation length) has to s
ale to zero as � approa
hes �0, sin
eonly then the resulting 
ontinuum expressions be
ome independent of the 
hosen
ut-o�. As mentioned above, the s
aling of the mass 
annot be proven analyti
allyfor the string model and thus has to be assumed there; for the quantum gravitymodel, on the other hand, from the 
ontinuum expression of the two-point fun
tionEq. (2.118), the s
aling of the mass is obvious. For the 
ase of the string model,the edge length a of the simpli
ial manifolds 
orresponds to a length s
ale 
ut-o� �in the physi
al embedding spa
e RD . For a non-vanishing physi
al mass mphy withdimension 1=[length℄ to appear, the 
oupling � has to be sent to �0 depending on �su
h that m(�(�)) = mph�; (2.122)i.e., we take the limit � ! 0 and � ! �0 in a 
orrelated way, keeping mph �xed.Alternatively, the 
ontinuum limit 
an be 
onsidered in terms of the intrinsi
 
ut-o�a ! 0 of the triangulations. The relation between the s
aling of both quantitiesis found from inserting the physi
al area of the surfa
e A = N2a2 and the physi
aldistan
e xphy = x� into Eq. (2.106) to givea2 � �dH : (2.123)The physi
al string tension �phy as a surfa
e tension has the dimension of 1=�2, su
hthat it should obey �(�(�)) = �phy�2: (2.124)Sin
e, as mentioned in Se
tion 2.3.2 �(�) � 1, this equation 
an only be ful�lledfor �phy =1. Physi
ally, this means that the imagined membrane atta
hed to theframe of a loop l is 
at up to spiky outgrowths of almost no area. This 
orrespondsto the pi
ture of a bran
hed polymer model, whi
h is known to be the right de-s
ription in the mean-�eld limit of large target dimensionality D. In terms of theequivalent model of quantum gravity 
oupled to D Gaussian �elds, this 
orrespondsto the observed 
ollapse of the geometry to a bran
hed polymer phase for 
entral
harge C = D > 1. Obviously, a physi
ally sensible string theory would 
onsiderphysi
al dimensions D > 1. However, a s
aling of the string tension 
an be possiblyestablished by adding higher (extrinsi
) 
urvature terms Hk, k = 1; 2; 3; : : : to thea
tion (2.13), see Ref. [10℄.



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 43In the quantum gravity model, we want a physi
al 
osmologi
al 
onstant �phy, whi
hhas dimension 1=[length℄2. Thus, the renormalization 
ondition is�� �0 = �phya2; (2.125)whi
h from the s
aling of the mass implies thatm(�(a)) = mphya2� = mphya2=dh ; (2.126)equivalent to Eq. (2.122)9. Then, in terms of the intrinsi
 
ut-o� a, the 
ontinuumdistan
e is rphy = ra2� and the 
ontinuum propagator Gh(rphy; �phy) should bede�ned as Gh(rphy; �phy) = lima!0 a2�(1��h)Gh�(a)(rphya�2�); (2.127)whi
h from Eqs. (2.69) and (2.67) yields the intended asymptoti
 behaviourGh(rphy; �phy) � r1��hphy ; rphy � m�1phy;Gh(rphy; �phy) � e�mphyrphy ; rphy � m�1phy: (2.128)The summation over topology Eq. (2.53) is divergent without further modi�
ations.Thus, there is no na��ve s
aling with respe
t to the gravitational 
oupling �. Withinthe matrix model formulation (2.89), the sum over topologies translates into thelarge-N expansion in the dimension of the matri
es given in Eq. (2.95). It turnsout that the 
riti
al points gh0 = e�h0 of the �xed-topology partition fun
tions do notdepend on the genus h [10℄. From the dependen
e (2.85) of the string sus
eptibilityexponent on the genus,(2� 
hs ) = (2� 
0s)(1� h) = (2� 
0s )�(h)=2; (2.129)and the s
aling of the �xed genus partition fun
tions,Zh(�) � fh(�� �0)2�
hs ; (2.130)it is obvious that the 
ontribution of the higher genus surfa
es in
reases as �! �0.Thus it might make sense to take the limits � ! �0 and N ! 1 in a 
orrelatedmanner. Renormalizing the gravitational 
oupling 
onstant ase�phy = N(�� �0)(2�
0s )=2; (2.131)9Note, however, that here in 
ontrast to Eq. (2.122), the intrinsi
 Hausdor� dimension has tobe used.



44 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYthe s
aling limit of the all genus partition fun
tion Eq. (2.95) 
an be written asZ(�; �) � 1Xh=0N�(h) (�� �0)(2�
0s )�(h)=2 � 1Xh=0 e�phy�(h)fh: (2.132)This limit, i.e. � ! �0 and N ! 1 with �phy = 
onst is known as the doubles
aling limit of the matrix model Eq. (2.89) [134{136℄. To give an interpretationto this representation, one 
an, for example, de�ne a matrix model whi
h has thesame perturbation expansion as the one given above, but is 
onvergent. It turns out,however, that there are no real solutions to the resulting Painlev�e I equation [10℄.Thus, the problem of a non-perturbative de�nition of the sum over topologies is stillunsolved.2.4 Dressing Dynami
al TriangulationsAs mentioned several times, the D-dimensional Polyakov string 
an be interpretedas two-dimensional quantum gravity 
oupled to 
onformal matter of 
entral 
hargeC = D. Most of the results presented above, however, only apply to the 
ase of puregravity, i.e. D = 0. As dis
ussed in Se
tion 2.3.2, the limit D ! 1 
orrespondsto the mean-�eld limit of the model, whi
h has 
0s = 1=2 indi
ating the 
ollapse ofgeometry to bran
hed polymers. On the other hand, the opposite limit D ! �1
orresponds to the 
lassi
al or Liouville limit of the theory with surfa
es regularup to a �nite number of points with defe
ts, whi
h has 
hs = �1. Additionally,the non-unitary 
ase D = �2 
an be solved exa
tly due to a 
an
ellation in thedeterminant (2.62) to give 
0s = �1, dH = 1 [21℄10. The behaviour in betweenthese two extremal 
ases and the question, where transitions between the di�erenttypes of behaviour o

ur, will be dis
ussed now.2.4.1 Annealed and quen
hed disorderCon
erning disorder in systems of statisti
al me
hani
s, two fundamentally di�er-ent s
enarios are 
ommonly distinguished. Symboli
ally expressing the probabilitydistribution of the disorder degrees of freedom by P and the partition fun
tion for10Note that dH =1 makes a proper 
ontinuum s
aling impossible due to the relation (2.123).



2.4. DRESSING DYNAMICAL TRIANGULATIONS 45a given realization of the disorder by Z(f�ig;P ), the partition fun
tion for the fulldisordered system is given byZ(f�ig) = [Z(f�ig;P )℄P ; (2.133)where the square bra
kets indi
ate averaging with respe
t to P and the �i are some
oupling parameters. Expe
tation values 
an usually be expressed as derivatives ofthe free energy, i.e. hAiannealed � �k lnZ(f�ig)��i1 � � ���ik : (2.134)Thus, the thermal and disorder averages are performed on the same level; thiss
enario is 
ommonly referred to as that of annealed disorder . On the other hand,one 
an 
ompute expe
tation values on the level of the partition fun
tion Z(f�ig;P )and perform the disorder average afterwards, i.e.hAiquen
hed � ��k lnZ(f�ig;P )��i1 � � ���ik �P ; (2.135)de�ning the notion of quen
hed disorder . Physi
ally, both s
hemes 
orrespond tolimiting 
ases with respe
t to the time s
ales of 
u
tuation of thermal and disorderrelated properties. While in the annealed s
enario both types of variables 
u
tuateon the same time s
ale, quen
hed disorder 
an be 
onsidered as an approximationto the situation that the disorder degrees of freedom 
u
tuate so mu
h slower thanthe thermal variables that they 
an e�e
tively be 
onsidered as �xed on the times
ale of thermal 
u
tuation.The relevan
e of the appli
ation of quen
hed disorder to a system of statisti
alme
hani
s undergoing a 
ontinuous phase transition in terms of a 
hange of theuniversal 
riti
al properties su
h as 
riti
al exponents depends on the rate at whi
hthe 
u
tuations of the pseudo-
riti
al 
ouplings indu
ed by the disorder die out in thethermodynami
 limit. A systemati
 analysis of this observation leads to the Harris[69℄ and Harris-Lu
k [71℄ 
riteria for the relevan
e of quen
hed disorder. For the
ase of a �rst-order phase transition of the model on regular latti
es, one 
an expe
ta disorder-indu
ed weakening to a 
ontinuous transition. Numeri
al simulationsof Potts models on the quen
hed ensemble of random planar �3 graphs indi
ate a
hange of the 
riti
al exponents in the 
ases with a se
ond-order phase transitionand a softening to 
ontinuous phase transitions of the �rst-order 
ases [137, 138℄.An attempt to 
al
ulate the exponents for the quen
hed 
ase from those observedin the annealed 
ase via use of the repli
a tri
k (see, e.g., Ref. [139℄) 
an be foundin Ref. [140℄.



46 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYThe s
enario of annealed disorder in the framework of dynami
al triangulations
orresponds to the 
oupling of matter to the gravitating universe su
h that thegeometry indu
es e�e
ts on the matter, whi
h in turn has a ba
k-rea
tion onto thegeometry of spa
e-time. The 
orresponding partition fun
tion at �xed topology isvery similar to the expression for the loop 
orrelator (2.52) and readsZ(�; f�ig; a) = 1XN2=1 e��a2N2 XTa2Ta(h;N2) 1C(Ta) Z N2Yi=1 d�i e�Smatter[f�ig;f�ig℄; (2.136)where the �i are matter variables lo
ated on the triangles of the simpli
ial manifoldand the �i are matter-related 
oupling parameters11. For annealed disorder, thegeneral relevan
e 
riteria of Harris and Lu
k do not apply. However, it is foundthat the 
oupling of C � 1 
onformal matter to two-dimensional gravity is alwaysrelevant and, even more, it 
an be demonstrated, how the s
aling dimensions of thematter part renormalize due to the 
oupling to gravity.2.4.2 The KPZ/DDK solutionA

ording to Polyakov, the bosoni
 string 
an be interpreted as two-dimensionalquantum gravity 
oupled toD bosoni
 �elds. Sin
e the a
tion (2.13) does not 
ontainany 
oupling 
onstants to tune, it des
ribes a 
riti
al theory of 
entral 
harge C = D.Thus, solving the Polyakov string model or an approximation to it is dire
tly relatedto the problem of quantum gravity 
oupled to matter. By 
onsidering the problemin the light-
one gauge and making some ad ho
 assumptions, Knizhnik, Polyakovand Zamolod
hikov [30℄ 
ould evaluate the partition fun
tion of the 
oupled systemfor the planar 
ase h = 0. This solution was later on re-derived in the 
onformalgauge and extended to higher genera by David [31℄ and Distler and Kawai [32℄. Forthe string sus
eptibility exponent 
hs they �nd12
hs � 2 = �(h)D � 25�p(25�D)(1�D)24 : (2.137)Furthermore, if we 
onsider a primary �eld � of the matter theory whi
h has 
on-formal weight � before 
oupling it to the gravitating surfa
e, the operator pi
ks up11It is, of 
ourse, also possible to pla
e the matter variables on other types of fundamentalbuilding blo
ks of the simpli
ial 
omplex su
h as the verti
es or the edges.12Note, that the number 25 (and in the following 24) o

urring in this formula is related to thefa
t that the Polyakov string is 
riti
al in D = 26, where the gravity theory essentially de
ouplesfrom the matter part.



2.4. DRESSING DYNAMICAL TRIANGULATIONS 47a gravitational dressing leading to a new weight ~� satisfying the KPZ equation [30℄,~��� = �12�2 ~�( ~�� 1); (2.138)where � = � 12p3(p25�D �p1�D): (2.139)Solving for ~�, we have ~� = p1�D + 24��p1�Dp25�D �p1�D : (2.140)Note that from the formulae (2.137) and (2.140) 
hs and ~� pi
k up imaginary partsas D > 1, su
h that the 
onsidered 
al
ulation breaks down in this limit. The 
aseD = 1 is marginal and therefore logarithmi
 
orre
tions to s
aling are expe
ted.This e�e
t is known as the C = 1 barrier of two-dimensional quantum gravity. Notethat due to this e�e
t this 
al
ulation does not shed mu
h light on the string theoryoriginally 
onsidered sin
e, of 
ourse, there dimensions D > 1 
onstitute the 
aseof interest. However, from the point of view of 
oupling matter to quantum gravityit is highly valuable, sin
e most of the interesting \toy models" of matter have
entral 
harge C � 1. Espe
ially, 
onsider the unitary 
onformal minimal models ofRef. [141℄ with 
entral 
hargeC = 1� 6m(m + 1) ; m 2 N ; m � 2; (2.141)whi
h in
lude the 
riti
al versions of, e.g., the Ising model (C = 1=2) and the 3-statePotts model (C = 4=5). Within the minimal series of models, a theory is 
ompletelydes
ribed by the 
entral 
harge C. In 
ontrast, for the limiting 
ase C = 1 there areseveral inequivalent realizations su
h as the 4-state Potts model, a single masslesss
alar �eld or the 6-vertex model. For the minimal series, from Eq. (2.137) we have
0s = �1=m.On the same lines of argumentation, i.e. within the Liouville s
heme of quantumgravity, by 
onsidering di�usion on a 
u
tuating geometry an expression for theintrinsi
 Hausdor� dimension of the 
oupled system 
an be derived [142℄,dh = 2p25� C +p49� Cp25� C +p1� C ; (2.142)where 0 � C � 1. However, an alternative 
onje
ture was made based on matrixmodel 
al
ulations reading [143℄dh = 24p1� C(p1� C +p25� C) : (2.143)



48 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYBoth formulas agree for C = 0, i.e. pure gravity, but yield di�erent results for theother 
ases. In 
ontradi
tion to both results, numeri
al simulations are 
onsistentwith a 
onstant dh = 4 for all 0 � C � 1 [51, 144℄. For non-unitary matter C < 0the predi
tions of Eq. (2.142) agree with numeri
al results for C = �2 [116℄. Also,the 
lassi
al limit C ! �1 yields dh = 2 as expe
ted. Thus Eq. (2.142) 
ould be
orre
t for C < 0.What happens beyond the C = 1 barrier? Numeri
ally, in all 
ases studied thestring sus
eptibility exponent is found to be
ome positive [54℄, a

ompanied bya divergen
e of the sizes of the \baby universes" in the thermodynami
 limit13.For C & 4 the value of 
0s seems to approa
h the bran
hed polymer value 1=2.However, the question whether the 
ollapse to bran
hed polymers takes pla
e exa
tlyat C = 1 or at some larger \
riti
al" 
entral 
harge is still unsettled. However, arenormalization group study of the problem revealed that the systems probably
ollapse to the bran
hed polymer phase as C ex
eeds 1 [53℄; but the attra
tionto the new �xed point is only logarithmi
, explaining that numeri
ally one hasto go to rather large 
entral 
harges C & 4 to see the bran
hed polymer phase.The me
hanism leading to the geometry of bran
hed polymers, is physi
ally veryplausible for the 
ase of multiple 
opies of spin models generating C > 1. First,the intera
tion between geometry and matter is strongest in the vi
inity of the
riti
al point, sin
e only there the spins are 
orrelated on a ma
ros
opi
 s
ale. Now,in the 
riti
al region typi
al spin 
on�gurations 
onsist of 
lusters of di�erentlyoriented spins of all sizes, su
h that a 
onsiderable amount of the total free energyof the system is \stored" in the surfa
es (i.e., 
losed 
urves in two dimensions)separating pat
hes of di�erent spin alignments. Sin
e the 
orresponding free energyis approximately proportional to the area (or length) of the phase boundaries, itis energeti
ally favourable to have minimal length boundaries between pat
hes ofequal spin alignment. On a regular latti
e, the minimal surfa
e of a pat
h of �xedvolume 
annot be
ome arbitrarily small, but is just given by the shape of a sphere.On a dynami
al triangulation, however, at ea
h point there 
an grow a baby universeof arbitrarily large volume 
onne
ted to the mother universe only via a very smallnumber of links. Thus, if only the energies asso
iated to the matter intera
tionsare strong enough (i.e., if C is large enough), the free energy of the 
riti
al systemwill be minimal for latti
es 
omposed of \blobs" (\baby universes") de
orated with13Note that, sin
e the 
entral 
harge is additive, large C 
an be generated by 
oupling several
opies of, say, Ising models to the latti
es.



2.4. DRESSING DYNAMICAL TRIANGULATIONS 49spins of equal alignment and 
onne
ted to ea
h other by a minimal number of links.This is exa
tly the geometry of bran
hed polymers.2.4.3 Matrix model examplesAs mentioned above in Se
tion 2.3.4, 
hanging the matrix potential of Eq. (2.89)allows for the representation of de
orated random graphs. For the 
ase of an Isingtype de
oration this was �rst noted by Kazakov [33, 145℄, who 
onsidered a two-matrix model with the potentialV (�1; �2; 
; g) = 12(�21 + �22)� 
�1�2 � g4(�41 + �42); (2.144)where the matrix integral (2.100) should now be performed with respe
t to bothHermitian N � N matri
es �1 and �2. Obviously, the quarti
 terms �41=2 generate\fat" graphs with verti
es of 
o-ordination number four instead of three, the duallatti
es of whi
h 
orrespond to dynami
al quadrangulations instead of triangulations.Remembering that the propagators Tr�2 
orrespond to the links of the graphs, thereare now two types of su
h bonds,hTr�21i = hTr�22i = 11� 
2 ;hTr�1�2i = 
1� 
2 : (2.145)Setting 
 = exp(�2�), we havehTr�21=2i = p
1� 
2 exp(�);hTr�1�2i = p
1� 
2 exp(��); (2.146)su
h that one 
an interpret the two types of verti
es as the two alignments of Isingspins pla
ed on the �4 verti
es and the bond (or propagator) weights 
orrespond tothose of the Ising model up to the 
ommon fa
tor p
=(1�
2) whi
h is just an overallshift of the energy s
ale. Using the methods developed in [17, 18℄ one 
an derivea set of parametri
 equations in the planar limit N ! 1 whi
h, to ea
h order inthe number of verti
es, allows to 
ompute the partition fun
tion of the Ising model
oupled to planar �4 graphs [145℄. In the limit of diverging graph size, the model isfound to exhibit a 
ontinuous, third-order phase transition at the 
riti
al 
oupling�
 = ln 2; (2.147)



50 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYand with matter-related 
riti
al exponents � = �1, � = 1=2 and dh� = 3 [34℄,whi
h di�er from the Onsager exponents for the Ising model on a 
at latti
e of� = 0, � = 1=8 and dh� = 2.14 The exponents found agree with those predi
tedfrom the KPZ equation (2.140). The string sus
eptibility exponent is found to stayat the pure gravity value 
0s = �1=2 everywhere ex
ept at the 
riti
al point � = �
,where it is shifted to 
0s = �1=3. Thus, only at the 
riti
al point the ba
k-rea
tionof the matter part on the 
u
tuating latti
es is strong enough to in
uen
e theiruniversal properties. It turns out that the slightly generalized matrix potentialV (�1; �2; ; 
; g; h) = 12(�21 + �22)� 
�1�2 � g4(eh �41 + e�h �42); (2.148)whi
h obviously 
orresponds to the additional appli
ation of a magneti
 �eld h to theIsing spins, still 
orresponds to a solvable matrix integral, leading to the remarkablefa
t that the two-dimensional Ising model in the �eld 
an be solved exa
tly when
oupled to 
u
tuating planar random latti
es, in 
ontrast to the usual stati
 squarelatti
e 
ase. From the above dis
ussion it should be obvious that a very similartreatment is possible for the 
ase of the Ising model 
oupled to planar �3 graphs,i.e., the duals of dynami
al triangulations. The 
riti
al exponents found there donot di�er from the �4 
ase as expe
ted [34℄. When 
onsidering a torus of genush = 1, the 
riti
al exponents of the matter part remain un
hanged and 
1s = 2 asexpe
ted from (2.137) [146℄. Note that 
1s = 2 is valid for all inverse temperatures �sin
e a

ording to (2.137) for h = 1, 
s does not depend on the 
entral 
harge. Thise�e
t is 
onne
ted to the spe
iality of h = 1 that it has a logarithmi
ally divergingpartition fun
tion.More 
ompli
ated systems 
an be expressed in terms of non-Hermitian matrix mod-els. For instan
e, the 6-vertex model 
oupled to \fat" �4 graphs is des
ribed by thematrix potential [72, 73℄V (�; �y; b; 
) = ��y � b �2�y2 � 
2(��y)2: (2.149)This will be dis
ussed further in Chapter 5 below.
14It has been noted that the new exponents a
tually 
oin
ide with those of the spheri
al modelin three dimensions. It is not 
lear, however, whether this has a physi
al explanation.



Chapter 3
The Simulation of Dynami
alGraphs
The 
ombination of methods presented in the previous 
hapter led to a rather 
om-plete solution of the pure two-dimensional Eu
lidean quantum gravity problem.Quite a few of these results 
ould only be a
hieved by the guidan
e of numeri
alwork, i.e., Monte Carlo (MC) simulations of dynami
al triangulations. Furthermore,the exa
t information about the 
oupling of matter to random latti
es is by far notas 
omplete as in the pure 
ase, su
h that numeri
al simulations are still very wellin pla
e.Sin
e the �nal obje
tive of this thesis are simulations of the 6-vertex model, whi
hne
essarily lives on a four-valent latti
e, the well-known methods for simulations ofdynami
al triangulations and the dual �3 graphs have to be generalized and adaptedto the 
ases of dynami
al quadrangulations resp. the dual �4 graphs. As it turnsout, the main issue in this 
ontext is the ergodi
ity of the 
hosen set of updatemoves. This will be tested against known exa
t results for the 
ases of pure gravityand an Ising model 
oupled to the graphs. An analysis of the auto
orrelation timesof the algorithm 
alls for more sophisti
ated update pro
edures found in the baby-universe surgery method. If not stated otherwise, all dis
ussions of the present
hapter ex
lusively apply to the 
ase of dynami
al polygoni�
ations and their dualgraphs in two dimensions. 51
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Figure 3.1: Singular 
ontributions of the self-energy type in a non-
ombinatorialtriangulation. Bla
k solid lines show the triangulation part, red dashed lines indi
atethe 
orresponding �3 graphs. (a) The three points p1, p2 and p3 de�ne two distin
ttriangles; the two points p1 and p3 de�ne two distin
t links. The dual �3 graph hasa lo
al self-energy 
ontribution. (b) The points p1 and p4 de�ne two distin
t links,but all triangles are 
ombinatorially unique. The dual �3 has a non-lo
al self-energy
ontribution or non-trivial two-point subgraph.3.1 Graph Ensembles3.1.1 Triangulations and �3 graphsIn the theoreti
al dis
ussions of the previous 
hapter we have omitted some ne
essary
omments on how the 
onsidered triangulations or the dual �3 graphs look likein detail. The notion of simpli
ial manifolds presented in Se
tion 2.2.3 des
ribesthe \na��ve" pi
ture of a triangulation 
omposed entirely of regular, non-degeneratetriangles, whi
h is in agreement with the representation of Fig. 2.1. Formally, theregularity of the triangulations was des
ribed in Se
tion 2.2.3 by the fa
t that thereferen
e points de�ning an r-simplex should be geometri
ally independent in Rd andtheir 
onsidered linear 
ombination (2.35) should be 
onvex. On the other hand,similar assumptions were obviously not made when 
onsidering the matrix integralsof Se
tion 2.3.4; there, all orientable graphs of a given topology that 
an be formedby 
onne
ting a given number of verti
es with three links ea
h were 
onsidered,in
luding possibly o

urring degenera
ies.Consider the 
ase of two-dimensional dynami
al triangulations. In 
ombinatorialterms, the question of singular 
ontributions 
an be split into two parts. First, ina regular triangulation the simpli
ial building blo
ks of the manifold, i.e. the linksand triangles, are uniquely de�ned by two (links) or three (triangles) verti
es. The
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PSfrag repla
ements(a) (b)p1 p2 p3p4Figure 3.2: Singular 
ontributions of the tadpole type in a non-
ombinatorial trian-gulation. (a) A triangle is de�ned by only two points p1 and p2; p1 
orresponds totwo identi�ed points, the link hp1p2i represents two identi�ed links. The dual graphhas a tadpole 
ontribution. (b) The point p1 
orresponds to two identi�ed points,but no links are identi�ed. The dual �3 graph 
ontains a one-point subgraph.degenerate 
ases of two verti
es de�ning two distin
t links or three verti
es de�ningtwo distin
t triangles 
an o

ur in the same situation, whi
h is depi
ted in Fig.3.1(a). It 
orresponds to the possibility that two triangles share two links insteadof one. The dual graph of this situation is 
alled a self-energy 
ontribution, that is,a loop of length two in the �3 graph. More generally, 
onsidering only degeneratelinks of the triangulation, these singularities are des
ribed as double links of thetriangulation or (non-trivial) two-point subgraphs of the dual �3 graph, 
f. Fig.3.1(b). A two-point subgraph is a 
omponent of a graph whi
h 
an be dis
onne
tedby deleting two edges.The se
ond singular 
ontribution stems from the possibility of verti
es to loose notonly their geometri
al independen
e, but to be
ome a
tually identi�ed , whi
h leadsto an originally degenerate triangle as depi
ted in Fig. 3.2(a), where also two linkshave be
ome identi�ed. In the �3 graph this situation 
orresponds to a tadpoleinsertion, alternatively des
ribed as a loop of length one. Relaxing the 
ondition ofidenti�ed links, a general singularity of this type is given by a degenerate triangle(without identi�
ation of links) or, in the dual graph, a one-point subgraph, 
f.3.2(b). By \one-point subgraph" we mean a subgraph that 
an be 
ut o� from therest of the graph by deleting one vertex.From the point of view of the �3 graphs, the most general singular 
ontributions 
anbe 
onsidered as \dressings" of the elementary self-energy and tadpole diagrams.Thus, a non-trivial two-point subgraph 
an be depi
ted as a dressed self-energy,



54 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS�and a one-point subgraph 
orresponds to a dressed version of the tadpole graph,�In the following, the short terms \self-energy" and \tadpole" will be often usedsynonymously for the 
ontributions depi
ted above.Note that degenerate triangles or one-point subgraphs 
an only o

ur when the graphalso 
ontains non-trivial two-point subgraphs1, whereas the latter are independent ofthe existen
e of one-point subgraphs. Thus, it makes sense to 
onsider the followinghierar
hy of three ensembles of triangulations and dual �3 graphs:(a) The ex
lusion of all singular 
ontributions to the triangulations de�nes theregular ensemble of dynami
al triangulations and their dual �3 graphs. Allsimpli
ial building blo
ks of the triangulations are 
ombinatorially distin
t,no double links or degenerate triangles o

ur. In the dual �3 graphs, non-trivial two-point insertions and one-point subgraphs are forbidden.(b) Allowing two verti
es of the triangulation to de�ne two distin
t links and threeverti
es to de�ne two distin
t triangles, but still ex
luding degenerate trian-gles, de�nes a set of triangulations whi
h we 
all restri
ted singular ensemble.There, the triangulations 
an 
ontain double links, and the dual �3 graphsin
lude non-trivial two-point subgraphs as depi
ted in Fig. 3.1.(
) In addition in
luding degenerate triangles, i.e., triangles de�ned by only twopoints, one arrives at the singular ensemble of dynami
al triangulations. The
orresponding �3 graphs are unrestri
ted and 
ontain non-trivial two-pointsubgraphs as well as the one-point subgraphs depi
ted in Fig. 3.2.Obviously, the regular ensemble 
orresponds to the 
lass of triangulations 
onsideredin the 
ontext of simpli
ial manifolds in the previous 
hapter. On the other hand,1This is obvious from Fig. 3.2(b), where the right vertex of the �3 graph has to be 
onne
tedto a two-point subgraph to be
ome a 
o-ordination point of the graph.
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ements(a)(b)p1 p2 p3p4Figure 3.3: Singular 
ontributions in a non-
ombinatorial quadrangulation (bla
ksolid lines) and the dual �4 graph (red dashed lines). (a) The points p1 and p4de�ne two distin
t links; the points p1; : : : ; p4 de�ne two distin
t quadrangles. The�4 graph 
ontains a self-energy subgraph. (b) The points p1, p2 and p3 de�ne adegenerate quadrangle. The dual �4 graph 
ontains a tadpole insertion.the matrix models of Se
tion 2.3.4 naturally generate graphs of the singular ensem-ble. Espe
ially, the result (2.96) for the partition fun
tion of pure, two-dimensionalEu
lidean quantum gravity and the 
riti
al value �0 = ln(12p3) of the 
osmologi
al
onstant are for triangulations of the singular ensemble. The restri
ted singularensemble 
an be 
onsidered as an interpolation between the other two extremal
ases.3.1.2 Quadrangulations and �4 graphsThe notion of 
ombinatorial uniqueness is easily generalized to the 
ase of moregeneral polygoni�
ations of manifolds. Here, we 
onsider the 
ase of quadrangu-lations and their dual �4 graphs. Figure 3.3 shows the lo
al versions of singularinsertions of the self-energy and tadpole types2. The general, non-lo
al versions ofthese subgraphs 
hange slightly. The dressed self-energy subgraph is the same asbefore, �but the dressed tadpole graph now has two external lines,�2The tadpole-type 
ontribution for the �4 
ase is sometimes also 
alled seagull graph.
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Figure 3.4: A double link in a random �4 graph (red dashed lines) does not 
orre-spond to a singularity of the 
orresponding quadrangulation (bla
k solid lines), butindi
ates that two quadrangles share two edges instead of one. These 
on�gurationsare forbidden in the \stri
t" ensemble.Note from Fig. 3.3(a) that the lo
al self-energy 
ontribution is now no longer rep-resented by a double link, but a triple link in the dual graph. Double links in the�4 graphs 
an nevertheless o

ur and 
orrespond to quadrangles sharing two sidesinstead of one as depi
ted in Fig. 3.4. Thus, in the quadrangulation they do not
orrespond to singular 
ontributions in the sense of a loss of the 
ombinatorial dis-tin
tness of the fundamental building blo
ks. However, it turns out that in 
ertainsituations it is favourable to also ex
lude double links from the �4 graphs. Thus, forthe 
ase of quadrangulations or �4 graphs we de�ne an additional ensemble:(a') Quadrangulations of the stri
t ensemble are those quadrangulations of theregular ensemble that do not 
ontain neighbouring quadrangles sharing morethan one side. The dual �4 graphs do not have any multiple links and noone-point or non-trivial two-point subgraphs.The notion of universality of 
riti
al phenomena implies that results for the 
on-tinuum limit of the theory do not depend on the details of the 
hosen dis
retisa-tion, i.e., universal quantities su
h as 
riti
al exponents and universal amplituderatios should not depend on whether one uses triangulations or quadrangulationsand whi
h restri
tions on the in
lusion of singular 
ontributions are imposed. Thishas been expli
itly 
he
ked by matrix model 
al
ulations for the 
ase of pure two-dimensional quantum gravity [16, 21℄ and, among other 
ases, for the 
oupling ofan Ising model to dynami
al triangulations and quadrangulations [34,35℄. Even therather 
rude restri
tion of the dynami
al triangulation model to verti
es with 
o-ordination numbers 5, 6 and 7 does not 
hange its 
riti
al behaviour [147℄; the sameis true when adding an additional R2 (higher 
urvature) term to the a
tion [148℄. As



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 57ensemble �3 �4regular ln 25627 � 2:249 ln 274 � 1:910restri
ted singular ln 272 � 2:603 ln 19627 � 1:982singular ln 12p3 � 3:034 ln 12 � 2:485Table 3.1: Criti
al value �0 of the 
osmologi
al 
onstant for the pure two-dimensionaldynami
al polygoni�
ations model for the 
ases of triangulations resp. �3 graphsand quadrangulations resp. �4 graphs for various graph ensembles. The numbersare taken from Ref. [151℄. For the 
ase of the stri
t ensemble of �4 graphs there isno exa
t result available.mentioned above, the na��ve matrix model ansatz 
ounts �3 resp. �4 diagrams in
lud-ing all possible singular insertions, that is, it 
orresponds to the singular ensembleof the above 
lassi�
ation. Results for the less singular ensembles 
an be found byexpli
it renormalization te
hniques that kill the tadpole and self-energy 
ontribu-tions [16,149{151℄. Alternatively, it 
an be shown on quite general grounds that thein
lusion or ex
lusion of singular graph 
ontributions does not 
hange the 
riti
albehaviour of matrix model theories [152℄. Non-universal properties, on the otherhand, naturally depend on the ensemble 
onsidered. Espe
ially, the 
riti
al value �0of the 
osmologi
al 
onstant for the 
ase of pure quantum gravity in two dimensionsis only given by the value of Eq. (2.97) for the singular ensemble of �3 graphs. Forreferen
e, the values for the other 
ases are given in Table 3.1.3 Nevertheless, sim-ulations in
luding (at least some) singular 
ontributions in the polygoni�
ations ordual graphs 
an have some advantages over those in the regular or stri
t ensembles,sin
e situations have been observed where the �nite-size e�e
ts de
reased with thein
lusion of singular 
ontributions [50℄. This will be dis
ussed further in Se
tion3.3.2.3.2 Simulation of Dynami
al Polygoni�
ationsAs for regular latti
es also for the 
ase of dynami
al polygoni�
ations and randomgraphs a statisti
al, but exa
t method for the determination of expe
tation values3A value for the stri
t ensemble in the �4 
ase is not available sin
e in the Dyson-S
hwingerapproa
h of Ref. [151℄, double links are only part of the 
ontribution of dressed four-point verti
eswhi
h are removed in one step.



58 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSand the analysis of phase transitions is given by the Monte Carlo integration te
h-nique. There, from a given probability distribution, states are sampled by settingup a Markov 
hain in the 
on�guration spa
e of the model. Su

essive states ofthe Markovian pro
ess are 
onne
ted by a given set of (often lo
al) 
hanges to thesystem state, whi
h are 
ommonly 
alled the moves asso
iated with a spe
i�
 MonteCarlo dynami
s. A proper 
onvergen
e of this sampling s
heme 
an be guaranteed,when the 
onditions of ergodi
ity and detailed balan
e are ful�lled. The most im-portant formulae are 
olle
ted in Appendix A.1. For general introdu
tions see, e.g.,Refs. [153{155℄. In the next two se
tions we 
onsider the aspe
ts of ergodi
ity anddetailed balan
e for the dynami
al triangulations (or �3) model only. The general-ization of these results to the 
ase of dynami
al quadrangulations of �4 graphs ispresented in Se
tion 3.2.3.3.2.1 Moves and ergodi
ityWhile ensuring detailed balan
e is just a matter of 
orre
tly setting up the transitionprobabilities asso
iated to the 
onsidered moves, ergodi
ity is a property of the 
lassof applied moves itself. Stated a bit sloppily, a set of update moves is ergodi
, i�starting from an arbitrary point in the state spa
e all of the other points are tou
hedby the Markov 
hain with �nite probability and in �nite time4. For the simulationof the dynami
al triangulations problem, a set of update moves thus must ensurethat, for a �nite number of simpli
es, all topologi
ally equivalent triangulations 
anbe generated from ea
h other by a �nite series of update moves. This implies thatwe 
onsider the problem at �xed topology , whi
h will be the 
ase for the rest of thisthesis.The notion of equivalen
e of triangulations is not unique. First, triangulations
an be 
onsidered homeomorphi
ally equivalent, i.e., 
onne
ted by a topologi
alhomeomorphism. On the other hand, two triangulations are 
alled 
ombinatoriallyequivalent, i� they 
an be subdivided into the same triangulation (up to a re-labellingof the simpli
es), see Se
tion 2.2.3. The 
laim that both notions itself are equivalentis the \Hauptvermutung" of topology and has been proved true for two and threedimensions, but false for d � 5. It is true in general dimensions, however, for the
ase of smooth triangulations; on the other hand, for dimensions four and above,4For systems with 
ontinuous variables this 
ondition 
an obviously not be the ful�lled. There,one has to 
onsider probability densities instead of probabilities.
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PSfrag repla
ements pipi

pjpj q
Figure 3.5: Appli
ation of the Alexander move [157℄ to a two-dimensional simpli
ialmanifold (bla
k solid lines) and its dual �3 graph (red dashed lines). The vertex q isinserted along the link hpipji and its surroundings are triangulated. In the reversedmove q is deleted together with the sub-division it generated.not every topologi
al manifold admits a smooth triangulation, for details see Ref.[156℄ and referen
es therein. Sin
e we are mainly interested in the 
ase of twodimensions, we 
an safely 
on
entrate on the notion of 
ombinatorial equivalen
e.Thus, a set of Monte Carlo update moves will be 
onsidered ergodi
, if it generatesall 
ombinatorially equivalent triangulations.Su
h a set of moves has been proposed (in a di�erent 
ontext, though) by Alexander[157℄ for d-dimensional simpli
ial manifolds. For ea
h fa
e � of a simpli
ial manifoldM we symboli
ally write M = �P +Q; (3.1)su
h that �P denotes all 
omponents of M that 
ontain the fa
e � and Q the
omplement of �P in M . Then, with respe
t to a fa
e � of M = �P + Q, theAlexander move is de�ned by �P +Q! q ��P +Q; (3.2)where q is an additional vertex originally not 
ontained in M and �� denotes theboundary of �. It turns out [157℄ that one 
an 
on
entrate on the 
ase of a link� = hpipji without loss of generality. Here and in the following, we use the notationhp0 � � � pri to symbolize an r-simplex, 
f. Se
tion 2.2.3 for a pre
ise de�nition of this
on
ept. Then, the rule (3.2) instru
ts one to insert a new vertex q on the linkhpipji and re-triangulate the surroundings of the new point. Correspondingly, in thereverse move q and the 
reated parts of the sub-division have to be deleted. Thisis depi
ted for the 
ase of two dimensions in Fig. 3.5. It has been shown that all
ombinatorially equivalent simpli
ial manifolds 
an be generated from ea
h other by
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ements p1
p2p3q1 q2PSfrag repla
ementsp1p2p3q1q2PSfrag repla
ements p1
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(b)PSfrag repla
ementsp1 p2
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q1q2

PSfrag repla
ementsp1p2p3q1q2PSfrag repla
ementsp1 p2
p3q1q2Figure 3.6: The (k; l) moves in two dimensions applied to a simpli
ial manifold(bla
k solid lines) and the dual �3 graph (red dashed lines). (a) The (2; 2) or 
ipmove. The produ
t hp1p2ihq1q2i = hp1p2q1i+ hp1p2q2i is repla
ed by hp1p2ihq1q2i =hp1q1q2i + hp2q1q2i and vi
e versa for the reversed move. (b) The (3; 1) (insertion)and (1; 3) (deletion) moves. In the (3; 1) move the produ
t hp1p2p3ihq1i = hp1p2p3iis repla
ed by hp1p2p3ihq1i = hp1p2q1i+ hp2p3q1i+ hp3p1q1i.a series of these Alexander moves [157℄. However, for 
omputer simulations thesemoves are not very 
onvenient, sin
e it is 
omputationally demanding to lo
ally �ndlinks and verti
es where the moves 
an be applied, espe
ially in dimensions d > 2.Apart from that, they do not allow simulations in the 
anoni
al ensemble of a �xednumber of triangles.Therefore, a di�erent set of moves is mu
h more 
ommonly used in numeri
al sim-ulations. The (k; l) or Pa
hner moves proposed in Ref. [156℄ are in d dimensionsgiven by the substitutionhp1 � � �plihq1 � � � qki ! hp1 � � � plihq1 � � � qki; (3.3)where k + l = d + 2, k = 1; : : : ; d + 1. Here, overlining of a simplex denotes theappli
ation of the boundary operator to it, where the boundary of an oriented r-



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 61simplex hp0 � � � pri is given by,hp0 � � � pri � rXi=0 (�1)ihp0 � � � p̂i � � � pri; (3.4)where the vertex pi under \̂" is omitted. The (k; l) move (3.3) is, obviously, onlyde�ned if hp1 � � � plihq1 � � � qki is and hp1 � � � pli is not originally part of the simpli
ialmanifold. Thus, a (k; l) move repla
es the produ
t of an l � 1-simplex and theboundary of a k � 1-simplex with a 
on�guration where the boundary operator isex
hanged between the two parts. The inverse of a (k; l) move is an (l; k) move. Intwo dimensions, one arrives at a (2; 2) move whi
h is its own inverse and a set ofmutually inverse moves (3; 1) and (1; 3). These are depi
ted in Fig. 3.6. The (k; l)moves are known to be equivalent to the Alexander moves in dimensions 2, 3 and4 [156℄. An argument for general dimensions has been given in Ref. [158℄. The 
aseof two dimensions is spe
ial in the respe
t that the (2; 2) or 
ip move alone is knownto be ergodi
 for simulations of the 
anoni
al ensemble of a �xed number of trianglesN2 [21,157℄. This ensemble is mu
h more 
onvenient for numeri
al simulations and,apart from that, provides the possibility of making use of the powerful �nite-sizes
aling (FSS) te
hniques.Although the presented dis
ussion 
on
entrated on updating the triangulations, itshould be obvious from Figs. 3.5 and 3.6 that the Alexander and Pa
hner movestranslate in a natural way to moves in the dual �3 graphs. Considering the graphsin their own right, by duality the presented statements about ergodi
ity hold true.For the present work all simulations were performed dire
tly in the language of thegraphs.Note that the mentioned proofs of ergodi
ity apply to simpli
ial manifolds only, i.e.,in the language of the previous se
tion only for simulations in the regular ensemble ofdynami
al triangulations ergodi
ity of the (k; l) moves is proven. To proof ergodi
ityat �xed N2 for the restri
ted singular and singular ensembles also, it suÆ
es to showthat every triangulation 
ontaining degenerate links or triangles 
an be transformedto a regular, 
ombinatorial triangulation via a series of 
ip moves. The possibilityto do this 
an be most easily seen in the dual �3 graph language. There, a one-pointsubgraph 
an be redu
ed to a regular 
ontribution by a 
ip move on the verti
esadja
ent to the external line,� �!�



62 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSthus removing the singularity. The right vertex of the original graph belongs to theone-point subgraphs, but is drawn outside of it for illustrative purposes. Of 
ourse,it 
an happen that the two external lines of the diagram are themselves 
onne
ted tothe same point, thus produ
ing another one-point subgraph after the 
ip. However,the 
ips 
an always be 
ontinued, until the subgraph is 
onne
ted by at least twolines. For the 
ase of non-trivial two-point subgraphs a similar transformation 
anbe found, � �!�whi
h 
onne
ts the subgraph by at least three lines to the \mother universe". Notethat the 
ip move applied in this way 
annot produ
e tadpole insertions, su
h thatone does not leave the restri
ted singular ensemble if one starts from it. Thus the(2; 2) 
ip move is ergodi
 for dynami
al triangulations of a �xed number of trianglesand the dual �3 graphs in all of the de�ned ensembles.3.2.2 Detailed balan
e and pseudo grand-
anoni
al simula-tionsAs far as the 
ondition of detailed balan
e is 
on
erned it is obvious, e.g., fromEq. (2.48) that for a �xed number of triangles the weight fa
tors for single tri-angulations are trivial. Up to overall fa
tors, the only remaining weights are thesymmetry fa
tors C(Ta) of the triangulations. However, for labelled triangulationswhi
h naturally o

ur in the 
ontext of 
omputer simulations, these are just givenby C(Ta) = N2!, whi
h is a 
onstant for �xed N2. Therefore, all weight fa
torsare equal, unless additional matter is 
oupled to the triangulations. The detailedbalan
e 
ondition is then trivially ful�lled for the (2; 2) 
ip move, su
h that for sim-ulations in the 
anoni
al ensemble ea
h proposed move 
ompatible with the 
hosenensemble is a

epted.For simulations in the grand-
anoni
al ensemble of a varying number of triangles,however, a detailed balan
e 
he
k has to be implemented. The Boltzmann weightof a labelled triangulation T is given byW (T ) = 1N2(T )! exp[��N2(T )℄Z(�) : (3.5)
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onsider a (3; 1) insertion move to a triangulation T 0 
onsisting of N2(T 0) =N2(T ) + 2 triangles. The detailed balan
e 
ondition for this move readse��N2N2!Z(�)P (T ! T 0) = e��(N2+2)(N2 + 2)!Z(�)P (T 0 ! T ): (3.6)The transition probability P (T ! T 0) 
onsists of two parts,P (T ! T 0) = Papriori(T ! T 0)Pakz(T ! T 0); (3.7)where Papriori is the probability to randomly sele
t a spe
i�
 move and Pakz is thea

eptan
e probability for the proposed update. For the insertion move we 
hoose atriangle at random, whi
h then is split into three triangles as shown in Fig. 3.6(b);thus, Papriori(T ! T 0) = 1N2(T ) : (3.8)For the opposite (1; 3) deletion move we randomly 
hoose a vertex with 
o-ordinationnumber three, and the adja
ent triangles are repla
ed by a single triangle. In the dualgraph language this 
orresponds to �nding a loop of length three and 
ontra
ting itto a point; if there are n3(T 0) of su
h loops, we havePapriori(T 0 ! T ) = 1n3(T 0) : (3.9)Thus, for the detailed balan
e 
ondition (3.6) to hold, the a

eptan
e probabilitiesshould ful�l Pakz(T ! T 0)Pakz(T 0 ! T ) = e�2�[N2(T ) + 2℄[N2(T ) + 1℄N2(T )n3(T 0) : (3.10)Note that this expression is not symmetri
 with respe
t to the original and reversedmoves. Therefore, the usual Metropolis rule for the a

eptan
e probabilities 
annotbe applied; instead, we 
hoose Pakz = r = 
onst for one of the moves and adapt theprobability of the opposite move a

ordingly.In this thesis we will mainly apply 
anoni
al simulations, exploiting their 
on
eptualand te
hni
al advantages. However, as will be
ome obvious in Se
tion 3.3, we havesome interest in the determination of ratios Z(N2)=Z(N2�2) of 
anoni
al partitionfun
tions. These 
an be sampled with a di�erent and simpler variant of simulationswith varying number of triangles whi
h we 
all pseudo grand-
anoni
al simulations.Suppose that we allow variations of N2 only in a window N2;min � N2 � N2;max.Then, we 
onsider the sampling of dynami
al triangulations in a non-Boltzmanngrand-
anoni
al ensemble at � = 0 with weights~W (T ) � 1Z 0(0) ; (3.11)



64 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSwhere Z 0(0) = N2;maxXN2=N2;minZ(N2): (3.12)In this ensemble, the probability of the appearan
e of a triangulation with N2 tri-angles is P (N2) = XT2TN2 ~W (T ) = Z(N2)Z 0(0) ; (3.13)su
h that ratios of partition fun
tions 
an be estimated byhĤ(N2)ihĤ(N 02)i = P (N2)P (N 02) = Z(N2)Z(N 02) ; (3.14)where Ĥ(N2) denotes the sampled frequen
y (or histogram) of the o

urren
e oftriangulations with N2 triangles in the sampling pro
ess. Obviously, in this ensem-ble one has to delimit N2 at least from above, sin
e otherwise N2 would diverge(until hitting some 
omputer memory 
onstraints) in the Monte Carlo pro
ess ofthe proposed ensemble. The detailed balan
e 
ondition for this ensemble reads1N2(T )Pakz(T ! T 0) = 1n3(T 0)Pakz(T 0 ! T ); (3.15)whi
h is solved by Pakz(T ! T 0) = r, r < 1, andPakz(T 0 ! T ) = rn3(T 0)N2(T ) = r n3(T 0)N2(T 0)� 2 ; (3.16)su
h that the insertion move is a

epted with a 
onstant probability r and thea

eptan
e probability of the deletion move 
an be 
omputed entirely in terms ofthe properties of T 0. If N2 = N2;max and an insertion move is tried or N2 = N2;minand a deletion move is attempted, the moves are reje
ted (but nevertheless 
ountedas links of the Markov 
hain). Sin
e the reversed variants of these moves 
annoto

ur either, detailed balan
e is not violated. A method related to the approa
hpresented here has been proposed in Ref. [159℄.3.2.3 Generalization to quadrangulationsWhile simulations of dynami
al triangulations have been widely applied (see, e.g.,Refs. [21,159{161℄), also for the more spe
ial 
ases of modi�ed gravity a
tions [147,162℄ and the 
oupling of various types of matter to the latti
es (see, e.g., Refs.
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Figure 3.7: Generalization of the (2; 2) link 
ip move for dynami
al triangulationsto the 
ase of a random quadrangulation (bla
k solid lines) and the dual �4 graph(red dashed lines). Note that, in 
ontrast to the triangulation 
ase, there are twoinequivalent ways to 
ip the link between the two squares.[45, 46, 48, 50{52, 163℄), other dynami
al polygoni�
ations have attra
ted mu
h lessattention. The only simulations of dynami
al quadrangulations we know of arereported in Refs. [49, 74℄.As with the simulation of dynami
al triangulations, the main issue for the quadran-gulation 
ase is the ne
essity of update moves that ergodi
ally sweep out the spa
eof quadrangulations and the dual �4 graphs. The rather obvious generalization ofthe (2; 2) 
ip move was �rst proposed in Ref. [49℄ and is depi
ted in Fig. 3.7. InRef. [74℄ Baillie and Johnston give a justi�
ation for this 
hoi
e of moves in termsof a break-up of the squares of the quadrangulation into triangles. Obviously, ea
hvertex of the dual �4 graph 
an be broken up into two 
onne
ted �3 verti
es,�! .Taking into a

ount the two possibilities to do su
h a break-up, one ends up withfour possible break-ups of the dual diagram of two adja
ent squares as shown in Fig.
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Figure 3.8: The four possible ways to break the dual �4 graph of two adja
entsquares up into a �3 graph. The red dashed lines denote the newly introdu
ed linksalong whi
h the verti
es have been broken up.3.8. Now, one 
an apply the usual �3 
ip move to the resulting graphs. Doing so,one notes that some of the 
ips 
onne
t two of the newly introdu
ed, dashed linksto the same vertex. To retain the possibility of 
ontra
ting the �3 graph ba
k to a�4 diagram again, these moves should obviously be forbidden. The remaining moveson the diagrams of Figs. 3.8(a)-(d) either leave them un
hanged or produ
e exa
tlythe �4 
ip moves shown in Fig. 3.7 after 
ontra
ting ba
k to the �4 language. Fur-thermore, both orientations of the resulting �4 
ip move 
ome with equal frequen
y.Thus, the 
ip move for quadrangulations or �4 graphs 
an be tra
ed ba
k to the(2; 2) 
ip move for triangulations.Let us 
onsider the question of ergodi
ity of su
h 
ip moves in the di�erent ensemblesof quadrangulations and �4 graphs. Obviously, every �4 graph 
an be transformedto a �3 graph in the way des
ribed above. If the �4 graph was taken from the stri
tensemble, the resulting �3 graph will not 
ontain any singular 
ontributions. Sin
ethe (2; 2) link 
ip for �3 graphs is ergodi
 in the spa
e of regular triangulations, onemight argue that thus the 
orresponding �4 link 
ip is ergodi
 in the ensemble ofstri
t graphs. This is the view advo
ated in Ref. [74℄. While numeri
al simulationsshow that this is very probably true (see Ref. [74℄ and the results presented below),we would like to point out that to our opinion this argument 
annot be 
onsidereda proof of ergodi
ity. This is due to the fa
t that in the language of the broken-up



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 67diagrams of Fig. 3.8 some of the �3 
ip moves are disallowed in order to guaranteethe possibility of a 
ontra
tion to a �4 graph after the 
ip. In a regular �3 graphwith only one kind of links, however, these moves would be possible. Theoreti
ally,it is very well possible, though, that the ex
lusion of these 
ips raises barriers in the
on�guration spa
e of those �3 graphs that 
an be 
ontra
ted to stri
t �4 graphs,thus breaking the ergodi
ity of the proposed 
ip move. Ergodi
ity 
ould be shownif one 
ould set up a one-to-one 
orresponden
e between �4 graphs of the stri
tensemble and �3 graphs of the regular ensemble. This question is naturally relatedto the question of the existen
e of a perfe
t mat
hing of the �3 graphs. A perfe
tmat
hing of a graph is a subset of its edges, su
h that no two of these edges meet ata vertex, but ea
h vertex of the graph is an end of one of the edges of the mat
hing.This question in turn is related to a three-
olouring problem for the links of the �3graphs; if su
h a three-
olouring is possible, one 
an 
ontra
t all pairs of �3 verti
es
onne
ted by a link of, say, 
olour one to end up with a proper �4 graph. In fa
t, as a
onsequen
e of the 
elebrated proof of the four-
olouring 
onje
ture it 
an be shownthat every planar �3 graph from the regular ensemble is three-link-
olourable (thisis the so-
alled \Petersen-Tait theorem", see, e.g., Ref. [164℄). However, it turnsout that the 
ontra
tions de�ned in this way 
an lead to singular 
ontributions inthe resulting �4 graph even though the �3 is regular. Thus, the problem is that ofa mixing of the di�erent ensembles, su
h that it seems not to be obvious how toprove ergodi
ity of the �4 
ip move for a given (more or less restri
ted) ensemble.The problem of ergodi
ity of the �4 moves will be analyzed more thoroughly bynumeri
al means below.The insertion and deletion moves of the triangulation 
ase have their obvious general-ization in the moves depi
ted in Fig. 3.9. Move (a) is appli
able to quadrangulationsand �4 graphs of all ensembles, whereas move (b) 
annot be applied in the stri
tensemble. However, as far as the deletion move is 
on
erned, it is obviously ratherimprobable to �nd a 
on�guration as the one shown in Fig. 3.9(a), su
h that thistype of move su�ers from very small a

eptan
e rates. Sin
e we will not perform(pseudo) grand-
anoni
al simulations in the stri
t ensemble, we 
on
entrate on themoves shown in Fig. 3.9(b). The detailed balan
e 
ondition for simulations in thepseudo grand-
anoni
al ensemble, Eq. (3.16), is almost un
hanged for the 
ase ofquadrangulations, Pakz(T 0 ! T ) = r2 n2(T 0)N2(T ) = r2 n2(T 0)N2(T 0)� 1 ; (3.17)
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Figure 3.9: Two variants of insertion and deletion moves for dynami
al quadran-gulations (bla
k solid lines) and �4 graphs (red dashed lines). (a) Insertion of anadditional square that adds four verti
es to the �4 graph and its inverse deletion.These moves are appli
able in all of the de�ned ensembles. (b) Insertion of a singlevertex on the diagonal of the square, whi
h adds only one vertex to the graph. Thismove and its inverse are not allowed in the stri
t ensemble.where now n2(T 0) is the number of two-loops of the quadrangulation T 0. The addi-tional fa
tor 1=2 appearing here as 
ompared to (3.16) stems from the fa
t that thereare two 
ombinatorially distin
t possibilities to insert a point on the diagonal of thesquare, 
f. Fig. 3.9(b), whereas the insertion move for triangulations was unique upto re-labellings of the verti
es.3.2.4 Ne
essary 
he
ks and implementation detailsUp to now, we have not dis
ussed how one ensures that the 
ip move dynami
sfor 
anoni
al simulations always generates polygoni�
ations or graphs of the same
onsistent ensemble. That this is guaranteed, however, was taken for granted inthe dis
ussion of the ergodi
ity properties at least in the 
ase of triangulations. Itis obvious that, starting from a polygoni�
ation of the stri
t or regular ensemblessome of the 
ips 
an produ
e multiple links; furthermore, as soon as those appear,
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an be produ
ed by 
ip moves. We will dis
ussthe 
ase of triangulations �rst and then generalize to quadrangulations.Triangulations and �3 graphsIn the regular ensemble of triangulations or �3 graphs it suÆ
es to prevent theappearan
e of double links in the triangulation or, equivalently, the appearan
e ofnon-trivial two-point subgraphs in the dual diagram. Degenerate polygons resp. one-point subgraphs 
an only be produ
ed by link 
ips from an ensemble that already
ontains degenerate links resp. non-trivial two-point subgraphs. In terms of the 
ipmove for triangulations, one has to ensure that the verti
es q1 and q2 of Fig. 3.6(a)are not already 
onne
ted by a link before the 
ip move. Con
erning the dual graph,we distinguish two ways of the 
ip move,
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ements
ab a1

a2b1
b2whi
h we label with a \
hirality" variable � to indi
ate the dire
tion of rotating thelinks of the verti
es a and b as � = +1 (left diagram) and � = �1 (right diagram).Here, and in the following, the bla
k solid lines denote the graph before the 
ip andthe blue dashed lines indi
ate the 
ipped diagram. For un-labelled graphs, these two
ips are identi
al, sin
e they 
an be mapped onto ea
h other by an ex
hange a$ b;sin
e the 
omputer 
ode has to work with labelled triangulations, we neverthelessdistinguish them. Then, on 
omparing the above diagrams with the 
orrespondingpair of triangles of Fig. 3.6(a), it be
omes obvious that the 
he
k for the 
reation ofa double link of the triangulation translates into the graph language as the 
he
k,whether the fa
es (or loops) adja
ent to the links hbb1i and haa1i have a 
ommonlink before the 
ip5. This tou
hing link test is illustrated in Fig. 3.10. Note thatin terms of the �3 graph this 
he
k is non-lo
al sin
e the 
onsidered fa
es 
an bearbitrarily large. In 
ontrast, the 
orresponding 
he
k for the triangulation is lo
al.If the tou
hing link test fails (or one of the other tests des
ribed below), the move5Note that, by de�nition, we always traverse the fa
es or loops of the graphs along their links
ounter-
lo
kwise; that is, at ea
h vertex we turn left.
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PSfrag repla
ements ab a1a2b1 b2Figure 3.10: The loops (fa
es) adja
ent to the links hbb1i and haa1i (red dashedlines) a
quire a 
ommon link by applying the � = �1 link 
ip move to a �3 diagram.If both loops already have a 
ommon link before the 
ip, a non-trivial two-pointsubgraph 
hara
terized by two loops sharing more than one link, is generated. Inthe triangulation this 
orresponds to a double link. The 
he
k for the � = +1 moveis identi
al to the presented one.is reje
ted, but the un
hanged 
on�guration is nevertheless 
ounted as new state ofthe Monte Carlo Markov 
hain.On
e we allow degenerate links in the triangulation or non-trivial two-point sub-graphs in the dual graph, but still want to ex
lude degenerate triangles resp. one-point subgraphs, i.e. for simulations in the restri
ted singular ensemble, another
he
k has to be applied. A one-point subgraph is produ
ed by a 
ip move, if one ofthe points a and b would be
ome a 
o-ordination point of the graph after the 
ip;this is demonstrated in Fig. 3.11. The 
he
ks are identi
al for both of the �3 
ipmove variants � = �1 given above. In pra
ti
e, one 
he
ks whether any loop (fa
e)emerging from hbb1i and haa2i or their reversal links arrives ba
k at one of thosefour links, i.e., whether hbb1i and haa2i are uniquely 
onne
ted to ea
h other (andsimilarly for the links hbb2i and haa1i).Finally, for the singular ensemble no spe
i�
 
onditions have to be ful�lled for a
ip move to be allowed, su
h that the 
ip move a

eptan
e rate is 100% there. Tosummarize, we present a C++ 
ode snippet from the simulation program 
oded forthe simulations of �3 and �4 graphs of this thesis, that 
ontains fun
tion 
alls forthe ne
essary 
he
ks on the link 
ip move performed on a randomly 
hosen link lof a �3 graph:template<> bool Graph<3>::
he
k_flip_move(
onst Link<3>& l, int 
hir){ // ex
lude 2-point subgraphs (and thus 1-point subgraphs)if(umode() < restri
ted_singular && tou
hing_link(l+1, rl+1) )return false;
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ementsaba1a2b1b2PSfrag repla
ements ab a1

a2b1
b2Figure 3.11: If one of the shown loops (red dashed lines) is ex
lusively 
onne
tedto the rest of the graph via the links hbb1i and haa2i (upper loop) resp. hbb2i andhaa1i (lower loop), the shown 
ip move transforms it to a one-point subgraph, sin
eremoving one of the verti
es a or b would dis
onne
t it from the rest of the \universe".In the triangulation this 
orresponds to a degenerate triangle.else if(umode() == restri
ted_singular) {// ex
lude 1-point subgraphsif( uniquely_
onne
ted(l-1, rl+1) ) return false;if( uniquely_
onne
ted(l+1, rl-1) ) return false;}return true;}Here, umode() denotes the used graph ensemble, rl is the reverse link of l and the\+" and \-" signs symbolize 
ounter-
lo
kwise and 
lo
kwise traversal of the linksadja
ent to a vertex, respe
tively6. Thus, in the notation of the previous �gures, lis given by the link habi, l+1 by haa1i et
.Quadrangulations and �4 graphsUsing labelled quadrangulations or graphs we have four distin
t variants of 
ipmoves in the �4 graph language, namely (
f. Fig. 3.7),6Note that due to the \fat" stru
ture of the graphs we 
an always assign su
h a 
y
li
 order tothe links emerging from a vertex.
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ab a1 a2a3b1b2 b3referred to by � = +2 (left) and � = �2 (right). The latter two 
orrespond to anex
hange of the labelled verti
es a$ b. In the singular ensemble they are equivalentto the double appli
ation of the � = �1 
ips. Furthermore, it 
an be easily seen byinspe
tion that the ne
essary 
he
ks on the 
ip moves for the di�erent ensemblesalways give the same result for � = �2 as for a � = �1 move. Thus, the in
lusionof the � = �2 moves 
annot generate graphs di�erent from those generated by the� = �1 moves alone; also, numeri
ally we �nd no improvement in the de-
orrelationof the links of the Markov 
hain. Therefore, we restri
t ourselves to the � = �1moves.The ne
essary geometry tests to rule out disallowed 
ips for the regular , restri
tedsingular and singular ensembles for the �4 
ase are almost identi
al to those of the
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ase; the only di�eren
e is given by the fa
t that the loops to be
onsidered for the \tou
hing link" test now depend on the 
hosen variant of move7� = �1. The stri
t ensemble, whi
h additionally ex
ludes the appearan
e of doublelinks in the �4 graph, needs an additional 
he
k whi
h is depi
ted in Fig. 3.12. Notethat, in 
ontrast to the other three ensembles, this additional 
he
k is not suÆ
ientto also rule out the appearan
e of the next singular 
ontributions, i.e., non-trivialtwo-point subgraphs. Again, the ne
essary 
he
ks on the 
ip moves are summarizedin the following 
ode segment for the 
ase of simulations of �4 graphs:template<> bool Graph<4>::
he
k_flip_move(
onst Link<4>& l, int 
hir){ if(umode() == stri
t) {// ex
lude double link a3=b1/a1=b3if( target(l+1) == target(rl-1) ) return false;if( target(l-1) == target(rl+1) ) return false;// ex
lude 2-point subgraphs (and thus 1-point subgraphs)if( tou
hing_link(l+1+(
hir>0), rl+1+(
hir>0)) ) return false;}else if(umode() == regular)if( tou
hing_link(l+1+(
hir>0), rl+1+(
hir>0)) ) return false;else if(umode() == restri
ted_singular) {// ex
lude 1-point subgraphsif( uniquely_
onne
ted(l-1, rl+1) ) return false;if( uniquely_
onne
ted(l+1, rl-1) ) return false;}return true;}We note the te
hni
al point that it is 
ru
ial for an a

eptable performan
e of theprogram 
ode that both, the �3 or �4 graph and the polygoni�
ation, given by thefa
es or loops of the graph joined by the 
orresponding links, are held up-to-dateduring the Monte Carlo pro
ess. This is due to the fa
t that the information of thefa
es or loops is needed for the \tou
hing link" and \uniquely 
onne
ted" type oftests during the update.7The details 
an be seen from the pie
e of 
ode shown below.



74 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSFinally, it should be noted that also the grand-
anoni
al moves have to be subje
tto some geometry tests in order not to leave the 
hosen ensemble of graphs. Theinsertion moves in both the �3 and �4 
ases do not need any additional 
he
ks. Thisholds true for the deletion move of Fig. 3.6(b) for the �3 
ase. The �4 deletion moveof Fig. 3.9, however, 
an produ
e one-point subgraphs whi
h have to be ex
ludedunless simulating in the singular ensemble. The 
orresponding geometry test issimilar to those presented for the 
ip moves. It will not be dis
ussed in detail here,sin
e (pseudo) grand-
anoni
al simulations are only used for auxiliary purposes inthis thesis.3.3 The Co-Ordination Number DistributionGiven the rather non-trivial 
omplexity of the restri
tions on the 
ip moves for thesimulation of dynami
al graphs or polygoni�
ations, it is highly desirable to haveexa
t results for the models at hand to 
ompare them with the simulation out-
omes. An obvious 
andidate for this 
omparison are the exa
tly known 
riti
alexponents of the dynami
al triangulations model presented in the previous 
hapteror, alternatively, the 
riti
al exponents of the Ising model 
oupled to dynami
al poly-goni�
ations found in Refs. [34, 35℄. However, in view of the observed pronoun
edrobustness of the model, i.e. the universality of the 
riti
al behaviour between the�3 and �4 
ases and even with respe
t to su
h drasti
 
hanges as the restri
tion of
o-ordination numbers to the values 5, 6 and 7 reported in Ref. [147℄, the 
riti
alexponents are not expe
ted to rea
t very sensitively on \bugs" in the program 
ode,unless they are really of paramount importan
e.There are mainly two areas, where defe
ts in the simulation of dynami
al graphs
ould show up. First, a faulty implementation of the ne
essary 
he
ks on the 
ipmoves in the ensembles with restri
tions 
ould lead to the appearan
e of disallowedgraph 
ontributions. This possibility is easily ruled out by 
he
king the whole graphfor su
h disallowed 
ontributions after ea
h update move. Also, the possibility ofthe graph to 
hange topology from the (usually) planar 
ase8 to higher genera by adestru
tion of the 
y
li
 order of the links around verti
es in the updating pro
ess,
an be easily 
he
ked for and ex
luded by the appli
ation of graph planarity tests8Obviously, the notions of planarity and spheri
al topology of a graph are identi
al, sin
e one
an always blow up one of the fa
es of a spheri
al graph to en
lose the whole diagram and thenembed it in the plane.
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ombination of the Euler and Dehn-Sommervillerelations Eqs. (2.36) and (2.37) is very useful. While this kind of diÆ
ulty 
an arisein any suÆ
iently 
omplex simulation program, there is an additional and moresubtle problem, whi
h is not so familiar from, e.g., spin model simulations on regularlatti
es, namely the question of ergodi
ity of the update moves. Espe
ially for the
ase of �4 graphs, where no ergodi
ity proofs are available, su
h problems of non-ergodi
ity of the updating s
heme 
an arise. Depending on how \mu
h" non-ergodi
the moves are, the resulting deviations from the true results 
an be very small andare thus extremely hard to dete
t, unless the appropriate observable is 
onsidered.Therefore, a very sensitive, lo
al property of the graphs or polygoni�
ations hasto be used. An ex
ellent 
andidate for su
h a quantity is given by the probabilitydistribution of the 
o-ordination numbers of the polygoni�
ations, whi
h 
an be
omputed exa
tly in some spe
ial 
ases.In the following, we speak synonymously about the 
o-ordination number distribu-tion of the dynami
al polygoni�
ations model or the distribution of loop lengths ofthe 
orresponding dual �3 or �4 graph representation. Sin
e every link of the graph
orresponds to a link of the polygoni�
ation it should be obvious from (almost) anyof the �gures presented in this 
hapter that the number of sides of a fa
e of thegraph (the loop length) is identi
al to the 
o-ordination number of the vertex of thepolygoni�
ation whi
h is dual to the 
onsidered fa
e of the graph.3.3.1 Counting planar graphsThe �3 regular 
aseMatrix model te
hniques allow the exa
t solution of the 
ounting problem for 
losed,planar �3 and �4 graphs (
f. Se
tion 2.3.4 above). While originally matrix models
ount graphs of the singular ensemble, the 
al
ulations 
an be extended to the 
ase ofthe regularized graphs. In addition, it is not only possible to 
ount 
losed graphs (orva
uum diagrams), but also graphs with a given number of external lines. For planar�3 and �4 diagrams of the singular and regular ensembles this has been �rst doneby matrix model te
hniques in Ref. [16℄. Making use of these results, Boulatov etal. [21℄ have proposed a method for deriving the 
o-ordination number distribution ofdynami
al triangulations from the 
al
ulated graph numbers. Consider the partitionfun
tion of the dynami
al triangulations model in the regular ensemble with one of



76 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSthe N0 verti
es, p0 say, marked and held �xed; this is obviously by symmetry equalto N0Z(N2), where Z(N2) denotes the 
anoni
al partition fun
tion of the dynami
altriangulation model for \universes" with a �xed number N2 of triangles, 
f. Se
tion2.3.3. On the other hand, it 
an also be expressed as [21℄N0Z(N2) =Xq 1qQ(N2)q ; (3.18)where Q(N2)q denotes the 
ontribution of triangulations that have q triangles joiningat the marked vertex p0. This implies that the 
o-ordination number distributionfor dynami
al triangulations is given byPN2(q) = Q(N2)qqN0Z(N2) : (3.19)Cutting out the q triangles meeting at the marked vertex p0 from the triangulation,one is left with an open triangulation with N2� q triangles. In terms of the dual �3graph this 
orresponds to a diagram with N2�q verti
es and q external lines. Then,the 
ut out part 
an be re-inserted again in one of q possible ways, a

ounting forthe fa
tor 1=q in (3.19). This is illustrated in Fig. 3.13(a). Therefore, Q(N2)q is equalto the number G(
)q;N2�q of 
onne
ted, planar �3 graphs with N2 � q verti
es and qexternal lines. The restri
tion to 
onne
ted diagrams stems from the fa
t that, forthe regular ensemble, a 
losed graph 
annot be
ome dis
onne
ted on removing a\ring" sub-diagram of the form indi
ated in Fig. 3.13(a).On the other hand, the partition fun
tion 
an be expressed in terms of the numberG(
)3;N2�1 of diagrams with three external lines asZ(N2) = 13 1N2G(
)3;N2�1; (3.20)where the fa
tor 1=3 a

ounts for the three distin
t ways to 
lose the graphs by theinsertion of a single �3 vertex. Thus, the 
o-ordination number distribution for theregular ensemble of planar dynami
al triangulations is given by [21℄PN2(q) = 3N2q(N2=2 + 2)G(
)q;N2�qG(
)3;N2�1 ; (3.21)where we have used that N0 = N2=2+2 for planar triangulations, whi
h follows fromthe Euler and Dehn-Sommerville relations (2.36) and (2.37). The graph numbersG(
)q;N2 
an be found exa
tly as the 
oeÆ
ients of a power series expansion [16℄. If we
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Figure 3.13: Constru
tion of the 
o-ordination number distribution of the dynami
altriangulations model from the number of �3 diagrams with a given number of verti
esand external lines. Solid lines show the triangulation, dashed lines indi
ate the dual�3 graph. (a) Regular ensemble: removing the marked vertex p0 and its q adja
enttriangles from the triangulation leaves, in terms of the dual �3 graph, a diagramwith N2 � q verti
es and q external lines. Re-inserting the ring diagram of lengthq 
ut out before results in an additional symmetry fa
tor of 1=q for the q distin
texternal legs of the ring. (b) Other ensembles: degenerate links of the trianglesadja
ent to the marked vertex p0 enhan
e the symmetry fa
tor asso
iated with theinsertion of the ring diagram.



78 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSwrite for the generating fun
tion of the number of 
onne
ted, regular �3 graphs thefollowing expansion [16, 151℄,G(
)(z; g) = 1;1Xq=1;N2=0 zq�1gN2G(
)q;N2; (3.22)the 
oeÆ
ients G(
)q;N2 are exa
tly the numbers of su
h graphs with q external linesand N2 verti
es. This expansion 
an be expli
itly performed [151℄ and one �nds,e.g., for q = 2,G(
)1 (g) = 1 + g + g3 + 3g5 + 13g7 + 68g9 + 399g11 + 2530g13 (3.23)+16965g15 + 118668g17 + 857956g19 + 6369883g21 + 48336171g23+373537388g25 + 2931682810g27 + 23317105140g29 +O(g31)Inserting these numbers in Eq. (3.21) yields the exa
t 
o-ordination number distri-bution for �nite triangulations. Finally, for the limit N2 ! 1 one has the expli
itexpression [16, 21℄ P1(q) = 16� 316�q (q � 2)(2q � 2)!q!(q � 1)! : (3.24)This distribution of 
o-ordination numbers is shown in 
omparison to that of Pois-sonian random latti
es 
onstru
ted by the Vorono��-Delaunay pres
ription [165℄ inFig. 3.14. While the 
o-ordination number distribution of Vorono��-Delaunay randomlatti
es is peaked around the mean value 6, the distribution (3.24) is monotonous;espe
ially, in the latter 
ase many more verti
es have 
o-ordination numbers 3 and4 and the distribution exhibits a long tail for large 
o-ordination numbers q. Thedistribution of Poissonian random latti
es falls o� as exp(��q ln q) with � � 2 asq ! 1 [165℄, whereas the distribution (3.24) de
lines mu
h slower proportionalto exp(��q) with � = ln 4=3 � 0:3 [21℄. On the other hand, both distributionshave the same mean, sin
e in any 
losed triangulation ea
h triangle appears in the
o-ordination number of ea
h of its three verti
es, su
h thathqi = 1N0 Xpi q(pi) = 3N2N0 = 6 N2N2 + 4 ; (3.25)whi
h approa
hes 6 as N2 !1.�3 graphs with singular 
ontributionsFor the more singular graph ensembles it is still possible to 
al
ulate the graph num-bers G(
)q;N2 either in the matrix model s
heme of Refs. [16, 149℄ or by writing down
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Figure 3.14: Co-ordination number distribution of Poissonian random latti
es builtby the Vorono��-Delaunay 
onstru
tion in 
omparison to the 
o-ordination numberdistribution of planar random triangulations (QG) from the DTRS model a

ordingto Eq. (3.24). Both distributions are for the limit of in�nite-size latti
es. The resultsfor Poissonian latti
es are taken from Ref. [165℄.equations of the S
hwinger-Dyson type for the graph 
ounting, see Ref. [151℄. How-ever, the \
ut-out and re-insert" pres
ription for the 
al
ulation of the 
o-ordinationnumber distribution des
ribed for the 
ase of regular triangulations does not simply
arry over to situations when singular graph 
ontributions are present. The generalproblem is that the symmetry fa
tor 1=q asso
iated with the insertion of the ringdiagram depi
ted in Fig. 3.13(a) 
hanges when the inserted ring itself 
ontains mul-tiple links or tadpoles. Consider the 
ase of a double link present in the restri
tedsingular and singular ensembles as shown in Fig. 3.13(b). While the 
o-ordinationnumber of the 
onsidered vertex of the triangulation is still equal to q, the insertedring diagram has only q� 1 external lines, whi
h destroys the symmetry argumentsused in writing down Eq. (3.19), sin
e diagrams with varying numbers of externallines mix.For the restri
ted singular ensemble, however, it is still possible to apply the sameformula Eq. (3.21) for the 
o-ordination number distribution with the graph numbers



80 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSG(
)q;N2 repla
ed by the number Gq;N2 of (possibly) dis
onne
ted diagrams in
ludingnon-trivial two-point subgraphs. Possibly dis
onne
ted graphs have to be taken intoa

ount sin
e with the presen
e of non-trivial two-point subgraphs, 
utting out aring diagram of the type shown in Fig. 3.13 
an leave the remaining graph in severaldis
onne
ted pie
es. The gluing pi
ture of Fig. 3.13 is still valid sin
e | in therestri
ted singular ensemble | there is a one-to-one 
orresponden
e between graphswith q external lines that one 
an paste the ring of Fig. 3.13(a) into and graphs withq� 1 external lines, whi
h 
an be 
losed by rings of the type shown in Fig. 3.13(b).This is due to the fa
t that one 
an always pair o� two of the external lines of agraph with q external lines to end up with a graph with the same symmetry andq � 1 external lines. This redu
ed graphs are still of the same, restri
ted singularensemble, sin
e no two of the q external lines are allowed to originate from the samevertex, whi
h would represent a disallowed one-point subgraph. If the latter wouldbe allowed, the pairing of two external lines 
ould lead to a tadpole 
ontributionwhi
h is forbidden in the restri
ted singular ensemble. Sin
e the same reasoning 
anbe put up for the 
ases of several double links present on the ring diagram to beinserted, the 
o-ordination number distribution 
an be 
al
ulated in the same way asfor the regular ensemble. There is one ex
eptional point where this reasoning breaksdown: if q = N2, whi
h is obviously the maximum allowed 
o-ordination number,one is left with a single 
losed ring-diagram with alternating single and double links;this 
on�guration 
an obviously not be de
omposed in the way des
ribed above.As soon as one-point subgraphs are allowed to appear in the graphs, the des
ribed\
ut-out and re-insert" rule 
an no longer be used to 
al
ulate the 
o-ordinationnumber distribution for general q. While it still works for small q, the 
al
ulationbreaks down due to a mixing of symmetry fa
tors for the general 
ase. Note alsothat the de�nition of a 
o-ordination number is ambiguous for the singular ensemble.Besides the number of triangles meeting at a vertex, one 
ould 
onsider the numberof links joining at a vertex. While these two de�nitions 
oin
ide for the regular andrestri
ted singular ensembles, the appearan
e of one-point subgraphs in the singularensemble results in the fa
t that a vertex 
an have more in
ident links than triangles.A spe
ial 
ase of the 
o-ordination number distribution is given by the ratio ofpartition fun
tions for N2 and N2 � 2 triangles, whi
h is by Eqs. (3.20) and (3.21)Z(N2)Z(N2 � 2) = N2 � 2N2 G3;N2�1G3;N2�3 ; (3.26)where the graph numbers G should be suitably 
hosen to mat
h the ensemble under
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onsideration, i.e., 
onne
ted and regular for the regular ensemble and dis
onne
tedand with the 
orresponding type of singularities for the restri
ted singular and sin-gular ensembles. Sin
e the transformation N2 ! N2 � 2 
orresponds to the grand-
anoni
al moves presented above, this relation 
an be used in all of the ensemblesfor 
omparison to results from the pseudo grand-
anoni
al method. Alternatively,the ratios Z(N2)=Z(N2 � 2) 
an be determined from simulations in the 
anoni
alensemble by 
onsidering the number of possible insertion or deletion moves in thefollowing way. With respe
t to the insertion and deletion moves of Fig. 3.6(b), one
an write [159℄ Z(N2)Z(N2 � 2) = �P (N2 � 2! N2)P (N2 ! N2 � 2)�N2 ; (3.27)where P (N2 � 2 ! N2) denotes the total probability of performing an insertionmove N2 � 2 ! N2 if the probability for ea
h single, allowed insertion move is a
onstant. Analogously, P (N2 ! N2 � 2) denotes the 
umulated probability for adeletion step N2 ! N2 � 2. The thermal average is supposed to be taken in the
anoni
al ensemble, i.e., the insertion and deletion steps are never really performed,but only the number of su
h possible moves is 
ounted. An insertion move 
an beperformed on ea
h of the N2�2 verti
es of the smaller �3 graph and a deletion moveis possible for ea
h of the n3 three-loops of the larger graph. Therefore, we have,�P (N2 � 2! N2)P (N2 ! N2 � 2)�N2 = N2 � 2hn3iN2 : (3.28)Finally, noting that hn3iN2 
orresponds to the number of verti
es of the triangulationthat have 
o-ordination number three, one 
an writeZ(N2)Z(N2 � 2) = N2 � 2hn3iN2 = N2 � 2N2=2 + 2 1PN2(3) : (3.29)This relation 
an be used in all of the ensembles to determine PN2(3).�4 graphsBoldly generalizing the dis
ussion of the previous paragraph, one might be temptedto write down an analogue of the expression (3.21) for the 
o-ordination numberdistribution, PN2(q) = 4N2q(N2 + 2)G2q;N2�qG4;N2�1 ; (3.30)



82 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSwhere now G2q;N2�q denotes the number of (
onne
ted or dis
onne
ted) planar �4graphs of the 
onsidered ensemble. The 
orresponding graph numbers 
an be foundorder-by-order for the regular and singular ensembles in Ref. [16℄ and for all butthe stri
t ensembles in Ref. [151℄ from a di�erent approa
h. Finally, Ref. [150℄ givesexpli
it, 
losed-form expressions for the graph numbers for all of the ensembles butthe stri
t one. However, as will be shown in the next Se
tion, this approa
h doesnot give the 
orre
t 
o-ordination number distribution in the general 
ase. In viewof Eqs. (3.26) and (3.29) one 
an writeZ(N2)Z(N2 � 1) = N2 � 1N2 G4;N2�1G4;N2�2 = N2 � 1hn02iN2 (3.31)whi
h uses the analogue of Eq. (3.20) for quadrangulations resp. �4 graphs, namelyZ(N2) = 14 1N2G4;N2�1: (3.32)Here, n02 denotes the number of two-loops of the �4 graph that 
an be deletedwithout leaving the 
onsidered ensemble. For the regular and singular ensemblesone has n02 = n2, i.e., all deletion moves are allowed. In the restri
ted singularensemble, however, the removal of a two-loop belonging to a triple link (self-energydiagram) produ
es a disallowed seagull 
ontribution, su
h that there n02 6= n2 ingeneral. Therefore, the relationZ(N2)Z(N2 � 1) = 2(N2 � 1)N2 + 2 1PN2(2) ; (3.33)is only valid for the regular and singular ensembles. These relations are again notappli
able for the stri
t ensemble, sin
e the used ratio of partition fun
tions 
orre-sponds to the insertion or deletion of a loop of length two, whi
h is forbidden inthe stri
t 
ase. For the graph numbers in Eq. (3.32), dis
onne
ted graphs shouldonly be 
onsidered in the singular ensemble, sin
e only there the removal of a singlevertex 
an split the graph.The reason for the failure of the ansatz (3.30) for general q is similar to that ofthe 
orresponding formula for singular �3 graphs. The situation is even more 
om-pli
ated though, sin
e the analogue of the ring diagram of Fig. 3.13(a) now has 2qpaired external lines as depi
ted in Fig. 3.15. Thus, even if the graph numbers for thestri
t ensemble would be available, the insertion pro
ess would lead to the appear-an
e of double links. Even worse, for all of the ensembles the appearan
e of doublelinks alters the symmetry fa
tor 1=q as in the restri
ted singular �3 
ase; however,



3.3. THE CO-ORDINATION NUMBER DISTRIBUTION 83

���� ����

��
��
��
��

��
��
��
��

��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

����

��������

PSfrag repla
ements
p0

Figure 3.15: A �4 ring diagram (dashed lines) and the 
orresponding part of thequadrangulation (solid lines) as a 
andidate for the 
onstru
tion of the 
o-ordinationnumber distribution of quadrangulations. The marked vertex p0 has 
o-ordinationnumber four. In 
ontrast to the �3 
ase ea
h ring vertex has two external lines.in 
ontrast to the latter situation, for �4 graphs of all ensembles it is possible for twoof the q external lines of the outside graph (i.e., the graph the ring diagram is pastedinto) to originate from the same vertex. This destroys the symmetry assumptionof the insertion pro
ess. Thus, for 
he
ks of simulations of �4 graphs one has toentirely rely on the partition fun
tion ratio method of Eqs. (3.31) and (3.33).3.3.2 Comparison to simulation resultsFor the measurement of 
o-ordination numbers two types of simulations were per-formed. Firstly, dire
t measurements of the 
o-ordination number distribution andthe number of deletion moves n3 resp. n02 by simulations in the 
anoni
al ensembleof a �xed number of �3 or �4 verti
es. Se
ondly, simulations in the pseudo grand-
anoni
al ensemble, delimiting the range of allowed numbers N2 to a small bandaround the values N2 and N2 � 2 resp. N2 and N2 � 1 needed for the 
omparisonwith Eqs. (3.26) and (3.31). All simulations were dire
tly performed in terms of thedual �3 or �4 graphs. Sin
e ergodi
ity problems and 
ode bugs are expe
ted to show
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Figure 3.16: Distribution of 
o-ordination numbers of dynami
al triangulations withN2 triangles from 
anoni
al simulations of �3 graphs with the (2; 2) 
ip move. (a)Results for graphs of the regular ensemble 
ompared to the exa
t expression (3.21)evaluated with the exa
t �3 graph numbers for the indi
ated graph sizes (solid lines).The dashed line indi
ates the in�nite-volume result (3.24). (b) The distribution forgraphs of the restri
ted singular ensemble. The solid lines denote the out
ome ofinserting the number of (possibly) dis
onne
ted �3 graphs of the restri
ted singularensemble into Eq. (3.21). As explained in the text, this formula is 
orre
t apart fromthe value for the maximum possible 
o-ordination number. The statisti
al errors areof similar size as the symbols.
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Figure 3.17: Co-ordination number distribution for dynami
al triangulations withN2 triangles of the singular ensemble from MC simulations. The solid lines indi
atethe values 
onje
tured by inserting the number of possibly dis
onne
ted, singular�4 graphs into Eq. (3.21). As explained in the text, this formula is not generallyappli
able here due to a symmetry redu
tion in the inserted ring diagrams 
ontainingtadpoles and double links.up espe
ially pronoun
ed for the smallest graph sizes, most of the results presentedin this se
tion are for graphs with N2 . 40 verti
es.Triangulations and �3 graphsA

ording to the above explanations, we expe
t the 
o-ordination number distribu-tion to be 
orre
tly predi
ted by Eq. (3.21) for the regular and restri
ted singularensembles. In 
ontrast, due to symmetry problems with the des
ribed \
ut-out andre-insert" te
hnique, the distribution of loop lengths for the �3 singular ensemblewill not be 
orre
tly 
onje
tured by the des
ribed ansatz. These expe
tations are
ompletely met by the simulation out
omes, whi
h are presented in Fig. 3.16 for theregular and restri
ted singular ensembles and in Fig. 3.17 for the singular ensemble.The presented data result from Monte Carlo simulations of planar �3 graphs with a
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Figure 3.18: The ratio Z(N2)=Z(N2 � 2) of 
anoni
al partition fun
tions for thedynami
al triangulations model from pseudo grand-
anoni
al simulations of planar�3 graphs of the various ensembles. The solid lines show the exa
t expressions fromEq. (3.26) and the graph 
ounting results of Refs. [16, 151℄.�xed number of verti
es N2 applying the ergodi
 (2; 2) link 
ip move in a

ordan
ewith the geometry restri
tions des
ribed in Se
tion 3.2.4. The 
o-ordination num-ber distribution was sampled after ea
h \sweep" of 
ip moves of the graph, wherea sweep 
onsists of one attempted 
ip move per vertex of the graph. The dataof Figs. 3.16 and 3.17 
orrespond to 50 000 of su
h samples. Although, as will bedis
ussed below in Se
tion 3.5.1, the 
onsidered 
ip move dynami
s is subje
t torather pronoun
ed 
riti
al slowing down e�e
ts, the latti
e sizes 
onsidered here areso small that these e�e
ts 
an be safely negle
ted. A detailed error analysis was notperformed for these 
he
k-only simulations; however, a 
omparison of independentsimulations reveals that the error bars are 
omparable in size to the used plottingsymbols.When 
omparing the 
o-ordination number distributions for the three 
onsideredensembles, note that the small non-monotoni
ities of the fun
tion PN2(q) for small
o-ordination numbers q and graph sizes N2 for the 
ases of the regular and restri
tedsingular ensembles, as depi
ted in Fig. 3.16, re
e
t the geometri
 restri
tions present
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Figure 3.19: Partition fun
tion ratios from simulations of planar �3 graphs belongingto \pseudo" restri
ted singular and regular ensembles that ex
lude the lo
al singu-larities, i.e. tadpoles and double links, but not more general one- and two-pointsubgraphs. The deviation from the exa
t results for the proper restri
ted singularand regular ensembles is apparent.in these ensembles. Also, it is obvious that the present restri
tions introdu
e hard
ut-o�s on the allowed values of q. While all q � 1 o

ur in the singular ensemble,the restri
ted singular ensemble ex
ludes loops of length one, i.e. q � 2; �nally, theregular ensemble does not allow loops of length two either, that is q � 3 there (as isobvious in the dual regular triangulation). Comparing the results for the di�erentnumbers N2 of �3 verti
es for the regular ensemble to the N2 ! 1 result of Eq.(3.24) it is obvious that �nite-size e�e
ts are rather weak for the 
ase of PN2(q).This is typi
al for lo
al quantities su
h as PN2(q); in 
ontrast, global properties su
has the mean square extent of the graphs (
f. Se
tion 2.3.5 above) usually su�er fromstrong �nite-size 
orre
tions, see e.g. Refs. [51, 166℄. Furthermore, 
omparing Figs.3.16(a) and (b) and Fig. 3.17, it is obvious that the size of �nite-size 
orre
tionsis redu
ed as more of the singular 
ontributions are in
luded in the graphs. Thise�e
t has been observed before, see e.g. Refs. [50, 167℄. The physi
al reason behindthis observation lies in the stru
ture of the \universes" of dynami
al triangulations



88 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSas trees of \baby universes" inter-
onne
ted by minimal ne
ks [29℄. Depending onthe amount of singularities allowed, the average length of the \baby universe" ne
ksvaries. While in the singular ensembles the smallest ne
ks are of length one or two,the minimal ne
k in the regular ensemble is given by a loop of length three. Thus,one has an intrinsi
 length s
ale for the ne
k stru
ture, whose size | 
ompared tothe size of the \universe" | partly determines the strength of �nite-size e�e
ts.As an alternative 
omparison to exa
t results and to test the 
ode for the singularensemble, we additionally performed simulations in the pseudo grand-
anoni
al en-semble in order to estimate the partition fun
tion ratios of Eq. (3.26). As shown inFig. 3.18 this test gives perfe
t agreement with the exa
t results of Eq. (3.26) forall three ensembles, now in
luding the singular one. To probe the sensitivity of thepartition fun
tion ratios to various possible 
ode bugs and ergodi
ity problems, weadditionally simulated graphs in \pseudo" restri
ted singular and regular ensembles.There, only the lo
al singular 
ontributions, i.e. tadpoles and self-energies, were ex-
luded, but one- and (non-trivial) two-point subgraphs on larger length s
ales werenot taken 
are of. As 
an be seen in Fig. 3.19 su
h a 
hange 
an be dete
ted veryeasily by a 
omparison to the exa
t results.Quadrangulations and �4 graphsUsing the generalization of the (2; 2) link 
ip move to quarti
 planar graphs, the
o-ordination number distribution of planar quadrangulations was determined fromsimulations with the same parameters as in the �3 
ase. In addition to the previously
onsidered ensembles, for the �4 graphs simulations were also performed in the stri
tensemble without double links. Fig. 3.20 shows the measured distributions for theextremal 
ases of the stri
t and singular ensembles. Again, the redu
tion of �nite-size e�e
ts on in
luding singular 
ontributions is apparent. Also, in the singularensemble the fra
tion of verti
es with large 
o-ordination numbers is enhan
ed as
ompared to the stri
t ensemble, whi
h is another indi
ation for a redu
tion of �nite-size e�e
ts, sin
e verti
es with large 
o-ordination numbers typi
ally o

ur in thevi
inity of the baby-universe bottlene
ks. Note that, analogous to Eq. (3.25) fortriangulations, for quadrangulations the average 
o-ordination number is a 
onstantfor a �xed number of squares, given byhqi = 1N0 Xpi q(pi) = 4N2N0 = 4 N2N2 + 2 : (3.34)
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Figure 3.20: Co-ordination number distribution of dynami
al quadrangulations from
anoni
al simulations utilizing the generalized (2; 2) link 
ip move. The simulationswere performed in the stri
t (a) and singular (b) ensembles. In 
ontrast to the �guresfor �3 graphs, the solid lines do not show exa
t results, but are merely interpolationsbetween the data points to guide the eye.
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Figure 3.21: Partition fun
tion ratios Z(N2)=Z(N2�1) of the dynami
al quadrangu-lations model from simulations using the generalized (2; 2) link 
ip. The simulationswere performed in the 
anoni
al ensemble, measuring hn02in2 and using Eq. (3.31)to infer Z(N2)=Z(N2 � 1). The statisti
al error bars are of the size of the plottingsymbols, the apparent 
u
tuations stem from the strong dependen
e on the starting
on�guration, whi
h is due to the non-ergodi
ity of the update.Thus, in the thermodynami
 limit N2 ! 1 on average four squares meet at ea
hvertex of the quadrangulation.To 
he
k the simulation program, a 
omparison to the exa
tly known partition fun
-tion ratios of Eq. (3.31) had to be performed. Using Eq. (3.31) and the graph enu-meration results of Refs. [16,150,151℄, the partition fun
tion ratios Z(N2)=Z(N2�1)
an be evaluated exa
tly for small graph sizes N2 and all of the 
onsidered ensemblesapart from the stri
t one. While pseudo grand-
anoni
al simulations yield results inagreement with the thus 
al
ulated partition fun
tion ratios, the \indire
t" methodof performing 
anoni
al simulations and applying Eqs. (3.31) and (3.33) to extra
tthe ratios Z(N2)=Z(N2 � 1) from the measured averages hn02iN2 yields strong de-viations from the exa
t results as indi
ated in Fig. 3.21. These deviations are farfrom being 
overed by the statisti
al errors, whi
h are again 
omparable in sizeto the used plotting symbols. Furthermore, the sign and strength of deviation is
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orrelated to the used starting 
on�guration for the 
anoni
al simulationsof �4 graphs with N2 verti
es. Thus, they indi
ate a non-ergodi
ity of the used gen-eralized (2; 2) link 
ip dynami
s. In 
ontrast, although there are no exa
t results for
omparison, for the stri
t ensemble no su
h strong 
u
tuations o

ur. It seems that,in 
ontrast to the �3 
ase, the link 
ip move alone is not ergodi
 for simulations of�4 graphs with a �xed number of verti
es apart from graphs of the stri
t ensemble.Grand-
anoni
al simulations, however, i.e. the in
lusion of insertion and deletionmoves, seem to work ergodi
ally with the proposed dynami
s.3.4 The Two-Link Flip for �4 GraphsWhat exa
tly are the barriers in the 
on�guration spa
e of dynami
al �4 graphspreventing the generalized (2; 2) link 
ip move from being ergodi
 for 
anoni
alsimulations? In fa
t, one 
an easily �nd �4 graph 
on�gurations whi
h 
annot bemapped to ea
h other by link 
ip moves. Consider, e.g., the 
on�gurations depi
tedin Fig. 3.22, whi
h 
an o

ur in all of the ensembles but the stri
t one. Obviously,in order to 
onne
t the left and right 
on�gurations one would have to perform asequen
e of (2; 2) 
ip moves. However, no matter where it is performed, the �rstmove produ
es a tadpole (or seagull) 
ontribution in the graph of Fig. 3.22(b). Thus,no move is possible for the regular and restri
ted singular ensembles. For graphs ofthe singular ensemble, the �rst move is allowed, but there is nevertheless no sequen
eof 
ip moves 
onne
ting the two diagrams. A proof of this more general statementfollows as a 
orollary from 
onsiderations about a two-
olouring of the verti
es ofthe quadrangulations dis
ussed below in Se
tion 4.3.3.On the other hand, the two shown diagrams are still 
onne
ted to ea
h other bya kind of 
ip move. It 
orresponds to a 
ip move of the �3 type, where the inter-
onne
tion between verti
es a and b is a double link, i.e.
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Figure 3.22: Con�gurations of a regular quadrangulation (a) and its dual �4 graph(b) that 
annot be 
onne
ted by a generalized (2; 2) link 
ip move without produ
inga tadpole 
ontribution.whi
h again 
omes in two 
hiralities, � = +1 (left) and � = �1 (right)9. This\two-link 
ip" 
onne
ts not only the 
on�gurations of Fig. 3.22, but | as it turnsout | removes all of the observed barriers in 
on�guration spa
e. As far as thene
essary geometry tests are 
on
erned, inspe
tion of the two-link 
ip move showsthat it 
annot produ
e two-point subgraphs in the regular ensemble, but disallowedone-point subgraphs 
an be produ
ed in the restri
ted singular ensemble. Thus, anadditional test must only be implemented for the regular ensemble. Guaranteeingdetailed balan
e when in
luding the new move is no issue for the regular and re-stri
ted singular ensembles, sin
e there only two-link 
ips are allowed along doublelinks and therefore a two-link 
ip is always tried when en
ountering a double linkbetween verti
es a and b. For the singular ensemble, on the other hand, on hitting adouble link one has to 
hoose between the two possibilities of performing a \normal"(2; 2) link 
ip (thus produ
ing a seagull) or doing a two-link 
ip instead. One of thepossibilities to do this in a way 
onsistent with detailed balan
e is to treat doublelinks between a and b as normal one-link 
ips during the update pro
ess and to in-trodu
e the two-link 
ip as an additional type of update that is performed between9Stri
tly speaking, there are four 
hiralities if one takes the two possible 
on�gurations of thedouble link between a and b into a

ount.
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Figure 3.23: Partition fun
tion ratios Z(N2)=Z(N2 � 1) for the planar quadrangu-lations model from MC simulations as 
ompared to the exa
t result from Eq. (3.31)and the graph enumeration results of Refs. [16,150,151℄. The simulations were per-formed in the 
anoni
al ensemble utilizing relation (3.31) for the estimation of theratios. The data result from 50 000 samples.the others at a 
onstant frequen
y. Sin
e the number of double links 
hanges duringthe simulation, one 
hooses one of the double links irrespe
tive of the number ofdouble links present.Applying the two-link 
ip additionally to the one-link 
ip in 
anoni
al simulationsseems to ensure ergodi
ity also for simulations of a �xed number of verti
es (re
allthat simulations in the (pseudo) grand-
anoni
al ensemble already were ergodi
with only the one-link 
ip). Although we 
annot present an analyti
 proof for this
laim, 
omparison of the indire
tly sampled partition fun
tion ratios Z(N2)=Z(N2�1) from Eq. (3.31) to the exa
t results from the graph enumeration te
hnique ofRefs. [16, 150, 151℄ now shows perfe
t agreement as illustrated in Fig. 3.23. Notethat the number of samples taken in the Monte Carlo update is identi
al betweenthe data shown in Figs. 3.21 and 3.23; thus, the apparent di�eren
e is solely dueto the restoration of ergodi
ity and not a matter of a redu
tion of the statisti
al
u
tuations.



94 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSTo summarize, for the �3 and �4 graphs of the di�erent ensembles and the di�erenttypes of simulations the following statements about ergodi
ity 
an be made:(a) The (2; 2) link 
ip move is ergodi
 for simulations of dynami
al triangulationsand the dual �3 graphs at a �xed number of triangles resp. verti
es of the �3graph. This has been proved for the 
ase of 
ombinatorial triangulations, 
or-responding to the regular ensemble in our s
heme, in Refs. [21,156℄. Taking thedis
ussion of Se
tion 3.2.1 into a

ount, this result generalizes to the restri
tedsingular and singular ensembles as well. For variants of the grand-
anoni
alsimulation method, adding the (3; 1) and (1; 3) insertion and deletion movesto the (2; 2) link 
ip ensures ergodi
ity in the spa
e of triangulations with avarying number of triangles. The proof 
an be found for the regular ensem-ble in Ref. [156℄. Sin
e every triangulation or �3 graph of the more singularensembles 
an be transformed to a regular one by su

essive appli
ations ofthe link 
ip move, ergodi
ity of the grand-
anoni
al set of moves for the re-stri
ted singular and singular ensembles is guaranteed by the arguments givenin Se
tion 3.2.1.(b) For simulations of dynami
al quadrangulations and the dual �4 graphs, theinformation about ergodi
ity is mainly numeri
al. The generalization of the(2; 2) link 
ip move to �4 graphs is not ergodi
 for 
anoni
al simulations as
an be easily proved. An ex
eption to this statement is given by the stri
tensemble, where no double links o

ur. There, the one-link 
ip dynami
sseems to suÆ
e to ensure ergodi
ity. Augmenting the one-link 
ip by a two-link 
ip around double links obviously restores ergodi
ity also for the regular,restri
ted singular and singular ensembles. In 
ontrary, for simulations in thegrand-
anoni
al type of ensembles of a varying number of �4 verti
es, thegeneralization of the (3; 1) and (1; 3) insertion and deletion moves togetherwith the one-link 
ip are seemingly ergodi
. That is, the possibility to 
hangethe number of �4 verti
es or quadrangles 
ir
umvents the 
on�guration spa
ebarriers seen by the 
anoni
al one-link 
ip dynami
s.Although the information about the ergodi
ity of simulations of dynami
al quad-rangulations or the dual �4 graphs is only numeri
al, it has been demonstrated thatthe 
onsidered partition fun
tion ratios (being related to the small-q limit of the 
o-ordination number distribution) 
onstitute an observable whi
h is highly sensitive to
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Figure 3.24: The spe
i�
 heat Cv per vertex of an Ising model 
oupled to planar�4 random graphs with N2 = 10 verti
es as a fun
tion of the 
oupling � = 1=kBT .The Ising model part was updated on the same time-s
ale as the graphs using theWol� single 
luster algorithm [168℄. (a) Appli
ation of the non-ergodi
 one-link
ip dynami
s to graphs of the singular ensemble. The solid line shows the exa
tresult of Refs. [33, 34, 145℄. The model undergoes a third-order phase transitionat �
 = ln 2 � 0:693. (b) Comparison between simulations with the non-ergodi
one-link 
ip dynami
s and the ergodi
, 
ombined one- and two-link 
ip update forgraphs of the regular ensemble. The solid line is only an interpolation to guide theeye.



96 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSa non-ergodi
ity of the 
onsidered update. This is, of 
ourse, intuitively rather ob-vious, sin
e the partition fun
tion of the dynami
al polygoni�
ations model simply
ounts the number of polygoni�
ations or graphs of a given ensemble. To demon-strate how mu
h less sensitive other observables 
an be to this kind of ergodi
ityproblems, as an aside in Fig. 3.24 we present the out
ome of simulations of an Isingmodel 
oupled to planar �4 graphs. The simulations were performed either with theone-link 
ip alone and thus were not ergodi
, or with the almost 
ertainly ergodi

ombination of one- and two-link 
ips. For the singular ensemble and simulationswith the non-ergodi
 one-link 
ip alone, we �nd nevertheless perfe
t agreement withthe exa
t solution of the problem found in Refs. [33, 34, 145℄, 
f. Fig. 3.24(a). Re-membering that the non-ergodi
ity e�e
t of the one-link 
ip was more pronoun
edin the regular ensemble, we also 
ompared simulations for the Ising model on regular�4 graphs with the non-ergodi
 and ergodi
 set of moves as shown in Fig. 3.24(b).Also there, no obvious deviations are visible.3.5 Enhan
ing the EÆ
ien
yOn
e the question of ergodi
ity of the 
onsidered update is settled, the issue ofperforman
e of the suggested algorithm deserves some interest. Sin
e in the 
anon-i
al ensemble of a �xed number of polygons the dynami
al polygoni�
ations modelshould be 
onsidered as 
riti
al for all values of N2, we expe
t the algorithm to behampered by 
riti
al slowing down. Additionally, the 
onsidered update is lo
al,su
h that fairly large dynami
al 
riti
al exponents 
an be expe
ted. This is indeedthe 
ase, su
h that more sophisti
ated, less lo
al algorithms are highly desirable. A
lass of su
h updates is given by the baby-universe surgery method.3.5.1 Auto
orrelation timesMonte Carlo simulations in the important sampling s
heme are governed by an arti-�
ial dynami
s 
hara
terized by the used set of update moves and the 
orrespondingenergy 
hanges that determine the move a

eptan
e rate via the Metropolis rule,
f. Appendix A.1. Of major interest for the analysis of stati
 behaviour su
h asthermal averages is the integrated auto
orrelation time �int(A), whi
h determinesthe varian
e of the mean �2( �A) and thus the a

ura
y of the estimate �A of hAi from



3.5. ENHANCING THE EFFICIENCY 97a time series of length N . The relevant relation is given by:�2( �A) � �2(A)N=2�int(A) ; (3.35)that is, in presen
e of auto
orrelations the number of independent measurements ise�e
tively redu
ed to N=2�int(A), 
f. Appendix A.2. Numeri
ally, there are severalmethods for the determination of integrated auto
orrelation times, the most popu-lar being a dire
t numeri
al integration of the normalized auto
orrelation fun
tionand the appli
ation of a 
ombined binning/ja
kkni�ng te
hnique. Espe
ially, theestimation of varian
es of the auto
orrelation time estimate itself is 
omputation-ally non-trivial; the relevant formulae are given in Appendix A.4. Sin
e in bothapproa
hes some subje
tive de
ision about the degree of 
onvergen
e of the respe
-tive estimates must still be taken, we apply both methods in parallel to be able todete
t runaway results via a la
k of 
onsisten
y between the two out
omes.As indi
ated in Eq. (3.35), the integrated auto
orrelation time depends on the 
on-sidered observable A. As far as the eÆ
ien
y of the used Monte Carlo dynami
s is
on
erned, one is mainly interested in the slowest mode of the update, i.e., one islooking for the observable with the largest auto
orrelation times sin
e these times
an be taken as the auto
orrelation times of the MC pro
ess as a whole. In viewof the lo
ality of the 
onsidered 
ip-move dynami
s, quantities that depend on theglobal stru
ture of the graphs are the obvious 
andidates for su
h observables. Themain global observable dis
ussed in Chapter 2 was the mean square extent of thepolygoni�
ations or dual graphs, whi
h is, as shown in Se
tion 2.3.5, dire
tly relatedto the global stru
ture of the latti
es, being des
ribed as a tree of \baby universes".The de�nition of the mean square extent used in the simulations is still slightlydi�erent from the versions used in the analyti
al 
onsiderations of Se
tion 2.3.5. Inthe 
anoni
al ensemble of a �xed number of verti
es used in the simulations, wede
ompose the polygoni�
ations into spheri
al shells of verti
es of equal geodesi
distan
e r from a randomly 
hosen referen
e vertex p0; the number of su
h points isdenoted by G11(r), i.e.,G11(r) = # verti
es with a geodesi
 link distan
e r from p0: (3.36)Then, the mean square extent of the polygoni�
ation or the dual graph is de�nedto be hr2iN2 = �Prmaxr=0 r2G11(r)Prmaxr=0 G11(r) �N2 ; (3.37)
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urring distan
e rmax is determined by the 
urrent graph
on�guration and, for dynami
al graphs, varies between measurements10. Here,the average h�iN2 denotes the thermal average in the 
anoni
al ensemble of a �xednumber N2 of graph verti
es. Sin
e the pure dynami
al polygoni�
ations model ata �xed number N2 of polygons has no free 
oupling parameter, it 
an be 
onsidered
riti
al for all values of N2. Therefore, the well-known arguments of dynami
als
aling apply. Espe
ially, the integrated auto
orrelation times �int(r2) are expe
tedto s
ale with the size N2 of the system as�int(r2) = Ar2N zr2=dh2 ; (3.38)
f. Appendix A.2. In 
ontrast to the dynami
al 
riti
al exponent z = zexp de�nedfrom the s
aling of the exponential auto
orrelation times �exp, whi
h is on the basisof universality arguments believed to be independent from the observable under
onsideration, see e.g. Ref. [169℄, the exponent zA = zint;A asso
iated to the s
alingof the integrated auto
orrelation time of an observable A 
an in general depend onthe 
hoi
e of A, 
f. Appendix A.2.Exploiting the given relations, one 
an extra
t the 
riti
al exponent zr2 from the MCsimulations of dynami
al graphs. Sin
e the fo
us of this work lies on �4 graphs, onlythis type of graphs is 
onsidered in detail here, divided into the di�erent ensembleswith respe
t to the in
lusion of singularities des
ribed in Se
tion 3.1. The simula-tions were performed in the 
anoni
al ensemble of a �xed number N2 of �4 verti
es.To generate the initial 
on�gurations, starting from an o
tahedron, i.e. a regulareight-sided polygon 
onsisting of six verti
es, insertion moves of the type des
ribedin Se
tion 3.2.3 were performed until the desired graph size was rea
hed. From thefollowing series of (one- and two-link) 
ip-move updates at least the �rst 500 �int(r2)sweeps11 were dis
arded for equilibration12. The remaining time series of (almost)equilibrium measurements of r2 was then analyzed with the methods des
ribed inAppendix A.4 to extra
t the integrated auto
orrelation time �int(r2). Simulationswere performed for di�erent latti
e sizes up to 8192 verti
es to allow for a �nite-size10Here, one 
ould also 
onsider averaging on the level of G11(r) instead of the indi
ated average.For a proper analysis of varian
es and auto
orrelation times, however, this would require there
ording of a huge amount of data.11Here and in the following, a sweep of 
ip moves refers to one attempted 
ip move per vertexof the �4 (or �3) graph.12Obviously, this has to be done in a self-
onsistent way via an a posteriori 
he
k, sin
e �int(r2)is not known a priori .
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t regular restri
ted singularN2 �int(r2) � ja
kint (r2) �int(r2) � ja
kint (r2) �int(r2) � ja
kint (r2)64 0.708(40) 0.718(46) 0.551(16) 0.546(35) 0.613(20) 0.624(38)128 0.937(55) 0.919(49) 0.681(27) 0.677(33) 0.763(31) 0.715(60)256 1.38(11) 1.33(11) 0.943(81) 0.871(46) 1.062(78) 1.029(50)512 2.19(32) 2.28(23) 1.43(12) 1.47(12) 1.534(95) 1.513(83)1024 3.10(11) 3.12(18) 2.27(13) 2.27(09) 2.32(11) 2.290(77)2048 4.90(35) 4.61(24) 3.37(13) 3.47(14) 3.66(24) 3.80(17)4096 7.16(33) 7.40(36) 5.37(14) 5.51(23) 5.27(16) 4.90(21)8192 8.07(104) 8.66(85)Table 3.2: Integrated auto
orrelation times of the mean square extent hr2i for the(one- and two-link) 
ip-move dynami
s for �4 random graphs of the stri
t, regularand restri
ted singular ensembles. The graph sizes range from 64 up to 8192 verti
es.The auto
orrelation times are measured in units of ten sweeps of 
ip moves usingdire
t integration of the estimated normalized auto
orrelation fun
tion [�int(r2)℄ and,alternatively, a 
ombined binning/ja
kknife te
hnique [� ja
kint (r2)℄; all error estimatesare 
al
ulated via the ja
kknife method, 
f. Appendix A.4.s
aling analysis. The results for the integrated auto
orrelation time are 
olle
ted inTable 3.2. Note that the 
ited values for �int(r2) are given in units of ten sweeps oflink-
ip moves. Sin
e for the singular ensemble it would be 
omputationally verydemanding to keep the �4 graph and the quadrangulation up-to-date syn
hronouslyduring the 
ip-move pro
ess, simulations of graphs of this ensemble are very inef-�
ient. Thus, although �nite-size e�e
ts have been observed to be least there asdis
ussed above in Se
tion 3.1, in our simulational setup, where the graphs and notthe polygoni�
ations are the primary obje
ts, simulations in the singular ensembleare not sensible from eÆ
ien
y 
onsiderations. Therefore, we have not performedextensive simulations of graphs of this ensemble. During the simulations, the (quiteexpensive) measurements were taken after ten sweeps of link-
ip moves. For the lat-ti
es with N2 = 64; : : : ; 512 verti
es 50 000 measurements were taken; for the graphswith N2 = 1024, N2 = 2048 and N2 = 4096 verti
es we took 200 000, 300 000 and500 000 samples, respe
tively. For the additional simulation with N2 = 8192 verti
esfor the regular ensemble 100 000 samples were taken.Considering the data presented in Table 3.2 we �nd good agreement between the twomethods of determining the auto
orrelation times. The absolute values of �int(r2) for
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t ensemble are 
learly enhan
ed as 
ompared to the results for the other twoensembles, whi
h in turn are not strikingly di�erent for the used sizes of the graphs.This re
e
ts the rather large number of restri
tions on the number of allowed 
ipmoves for the stri
t ensemble, resulting in a quite small a

eptan
e rate of the 
ipmove pro
ess. In order to extra
t the dynami
al 
riti
al exponent zr2=dh, we �ttedthe fun
tional form (3.38) to the results of Table 3.2. Figure 3.25 shows �nite-sizes
aling plots of the auto
orrelation time in the stri
t, regular and restri
ted singularensembles and the 
orresponding �ts of Eq. (3.38). The �ts were performed usingthe auto
orrelation times �int(r2) estimated by dire
t integration of the normalizedauto
orrelation fun
tion; the �ts to the estimates � ja
kint (r2) are 
onsistent with thosepresented within error bars. The �t result for the stri
t ensemble is given by,Ar2 = 0:050(11);zr2=dh = 0:597(30);Q = 0:94; (3.39)where Q denotes the quality-of-�t parameter (see, e.g., Ref. [170℄). The simulationsfor regular ensemble graphs give,Ar2 = 0:0285(53);zr2=dh = 0:629(24);Q = 0:96; (3.40)while the results for graphs of the restri
ted singular ensemble are given by,Ar2 = 0:0405(69);zr2=dh = 0:585(23);Q = 0:90: (3.41)All three �ts do not in
lude the simulation results for the graphs of sizes N2 = 64 andN2 = 128 in a trade-o� between the attempt to make the best use of the produ
edsimulation data and the need to keep 
orre
tions to �nite-size s
aling reasonablysmall as 
ompared to the statisti
al errors. On the basis of universality argumentsand the results from matrix model 
al
ulations [10, 152℄, we expe
t the exponentzr2=dh not to depend on the 
onsidered ensemble of graphs. The given results aremarginally 
ompatible with ea
h other with respe
t to the statisti
al errors. Theremaining variation between the results is attributed to e�e
ts of 
orre
tions to�nite-size s
aling and give some idea about the total, statisti
al and systemati
,pre
ision of the estimate. Espe
ially, a 
omparison of the �t results for the regular
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Figure 3.25: Finite-size s
aling of the integrated auto
orrelation times of the meansquare extent of dynami
al �4 graphs from a lo
al link-
ip move simulation. Theauto
orrelation times are given in units of ten sweeps of link-
ip moves. The solidlines denote �ts of the fun
tional form (3.38) to the simulation data. The extent ofthe lines indi
ates the range of graph sizes N2 in
luded in the �ts.and restri
ted singular graphs in view of the fa
t that the auto
orrelation timesthemselves do not di�er mu
h between the two ensembles, demonstrates ni
ely that,for a small region of graph sizes N2, a slight in
rease in amplitude 
an be 
ompen-sated by a de
rease of the exponent and vi
e versa. However, we do not aim at ahighly pre
ise determination of the dynami
al 
riti
al behaviour of the model, butmainly want to know how the simulation parameters have to be tuned to eÆ
ientlyprodu
e an e�e
tively un
orrelated time series of measurements. Also, 
onsideringthe di�erent graph ensembles, it is obvious that the regular and restri
ted singularones are quite equally well suited for simulations from the point-of-view of auto
or-relation times, at least on the given level of pre
ision and for the 
onsidered systemsizes; the dominant restri
tions on 
ip moves for graphs of the stri
t ensemble, onthe other hand, strongly redu
e the eÆ
ien
y of the 
onsidered update pro
ess. Thispoint will be further dis
ussed in the next se
tion.To provide a 
onsisten
y 
he
k, we also performed simulations of dynami
al �3
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Figure 3.26: Integrated auto
orrelation times �int(n3) of the fra
tion n3 of loops(fa
es) of length three for a MC simulation of dynami
al �3 graphs of sizes betweenN2 = 64 and 8192 verti
es. Up to the present a

ura
y, no sign of 
riti
al slowing
an be dete
ted.graphs, utilizing the ergodi
 Pa
hner 
ip-move dynami
s des
ribed in Se
tion 3.2.1,and determined the integrated auto
orrelation times with the methods des
ribedabove for the 
ase of �4 graphs. Here, the starting 
on�guration is given by a tetrahe-dron, blown up to the intended �nal graph size by su

essive appli
ations of the (3; 1)insertion move. For the 
omparison, we restri
ted ourselves to simulations of the reg-ular ensemble of �3 graphs. Again, graph sizes ofN2 = 64; 128; 256; 512; 1024; 2048; 4096and 8192 verti
es were 
onsidered, taking 150 000 MC samples for ea
h system size.Fitting the expe
ted fun
tional form (3.38) to the estimated auto
orrelation times�int(r2), we arrive at the following �t parameters,Ar2 = 0:0238(30);zr2=dh = 0:635(18);Q = 0:99; (3.42)where, again, the results for N2 = 64 and N2 = 128 have been omitted, sin
ethey were too strongly a�e
ted by 
orre
tions to the leading FSS behaviour. Thedynami
al 
riti
al exponent zr2=dh found is in ni
e agreement with the result for the



3.5. ENHANCING THE EFFICIENCY 103regular ensemble of �4 graphs, whi
h gave zr2=dh = 0:629(24). This agreement isin prin
iple expe
ted on the basis of universality arguments, 
f. Se
tion 3.1. Note,however, that the exponent zr2=dh is a property of the utilized graph update movesand not solely of the 
lass of graphs 
onsidered. Thus, su
h agreement would not beobserved if applying 
ompletely di�erent sets of update moves to �3 and �4 graphs.Finally, to demonstrate the large range of di�erent relaxation modes present in thesystem, we also 
onsidered an auto
orrelation time asso
iated with the 
o-ordinationnumber distribution, whi
h is, in 
ontrast to the mean square extent, a stri
tlylo
al property of the graphs. In parti
ular, we measured the auto
orrelation time�int(n3) of the fra
tion of loops (fa
es) of length three for the 
ase of regular �3graphs. Figure 3.26 shows the size dependen
e of �int(n3) for the 
onsidered systemsizes. As 
an be 
learly seen, with the present a

ura
y the estimate of �int(n3) is
onsistent with the minimal value 1=2, whi
h is a theoreti
al lower bound for allintegrated auto
orrelation times a

ording to the de�nition (A.16). Thus, for thislo
al property 
riti
al slowing down is 
ompletely absent to the a
hieved level ofa

ura
y and, 
onsequently, we 
on
lude zn3=dh � 0. For the 
ase of �4 graphs we�nd an identi
al situation.3.5.2 The baby-universe surgery methodThe presen
e of strong auto
orrelations with a rather large dynami
al 
riti
al ex-ponent13 z=dh has severely hampered the 
on
lusiveness of numeri
al simulationsof the dynami
al polygoni�
ations model. As will be shown later in Chapter 5these problems be
ome even worse when 
oupling matter to the random graphs(see, e.g., Ref. [75℄). Smaller-s
ale improvements 
an be made, e.g., by ve
torizedor parallelized updates (\parallel 
ip algorithm") or, for the spe
ial 
ase of puretwo-dimensional quantum gravity, by exploiting exa
t results from the graph enu-meration (\re
ursive sampling"), see Ref. [161℄. While the 
orresponding problemfor spin systems on regular latti
es 
ould be �nally over
ome by the introdu
tion ofthe 
on
ept of 
luster algorithms [168, 171℄, a feasible te
hnique of similar poten
y
ould up to now not be formulated for the dynami
al polygoni�
ations model. Nev-ertheless, a su

essful push in this dire
tion resulted in the baby-universe surgery al-13Note that on regular latti
es one usually 
onsiders z dire
tly (and not z=d) su
h that, e.g., theresult z � 2 for the single-spin 
ip dynami
s of the two-dimensional Ising model would translateinto z=d � 1 here.
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Figure 3.27: A minBU surgery step for a dynami
al �3 graph. The \baby universe"is 
onne
ted to the rest of the universe by three external lines (the ne
k). The motheruniverse has an additional marked vertex. After 
utting the ne
k, the marked vertexis removed and used to 
onne
t the three external lines of the mother universe. Atthe old position of the marked vertex, the \baby universe" is re-
onne
ted to themain body.gorithm [75,172℄, whi
h was developed together with attempts to formulate a renor-malization group transformation for the dynami
al triangulations model [129, 130℄.The 
on
eptIt has been shown that the stru
ture of a dynami
al triangulation of the quantumgravity type is that of a self-similar tree of \baby universes" [29℄. Thus, an updateoperating dire
tly on this baby-universe sub-stru
ture appears natural for the prob-lem and, in view of its non-lo
al 
hara
ter, promises an appre
iable redu
tion ofauto
orrelation times. The basi
 idea is to 
ut a \baby universe" o� the main uni-verse along its ne
k, re-triangulate the resulting whole and glue the \baby universe"ba
k to the main body at a di�erent pla
e [75℄. In the most general s
heme derivedfrom the representation of Ref. [29℄, this transformation would have to be done for\baby universes" of arbitrary sizes and ne
k lengths. However, it turns out that itis 
omputationally ex
eedingly demanding to identify \baby universes" with ne
kslonger than a few links, thus destroying the potential gain in eÆ
ien
y provided bysu
h an algorithm. Therefore, one 
on
entrates on the \baby universes" of minimalne
k length (minBUs) [75℄. For triangulations of the regular ensemble the minimalne
k is given by a loop of length three, i.e., a minBU is given by a triangle thatdoes not belong to the triangulation14. Sin
e the simulations are done dire
tly in14The restri
ted singular and singular ensembles would allow for even smaller ne
ks. However,we want to use the same algorithm for all three ensembles.
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PSfrag repla
ements
l

Figure 3.28: A given, oriented link of a �3 graph (dashed line) 
an be part of aminBU ne
k with the minBU lying in arrow dire
tion (right) or opposite to it (left).The minBUs 
ontained in ea
h other are found by the algorithm in the order of their
ontainment.the graph language, we present the minBU surgery method in terms of dynami
al�3 or �4 graphs. Then, a surgery step 
an be depi
ted as shown in Fig. 3.27 for the
ase of �3 graphs. Espe
ially, a ne
k of length l 
orresponds to a subgraph with lexternal lines in the graph language. Note, that for simpli
ity we do not exploit anadditional symmetry of the problem, i.e., the possibility to also 
hange the vertexof the \baby universe" that 
onne
ts it to the mother part. This, however, doesobviously not restri
t the generality of the method.Detailed balan
e and implementation detailsWe 
onsider �rst the 
ase of dynami
al triangulations and their dual �3 graphsand generalize to �4 graphs afterwards. There have been proposed (at least) twodi�erent variants of implementation of the minBU surgery algorithm. In the originalpaper [75℄ all ne
ks of length three 
ontained in a given 
on�guration are �rstidenti�ed in order to 
hoose one of them at random and perform the surgery stepon it. For simulations in the language of the dual graphs, however, this te
hnique israther in
onvenient sin
e the identi�
ation of the ne
ks is a 
omputationally quitedemanding task. While in the triangulation it suÆ
es to 
he
k whether two verti
es
onne
ted by a link have a 
ommon neighbour, in the �3 graph one has to traversetwo neighbouring loops (fa
es) of the graph and all their respe
tive neighbouring
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he
k for a subgraph with three external lines. Therefore, it is mu
h more
onvenient to only 
ompute the list of ne
ks 
ontaining a given, randomly sele
tedlink of the graph as was proposed in Ref. [172℄. The 
orresponding situation isdepi
ted in Fig. 3.28. As a se
ond ingredient, we have to 
hoose a vertex in themother universe part at random (or at least symmetri
 with respe
t to the moveand its inverse) to serve as the additional marked vertex of Fig. 3.27. Sin
e thegraph is only endowed with a 
hiral ordering of the links around a vertex, but isnot per de�nition 
onsidered embedded in Rd , the inside and outside of a \babyuniverse" asso
iated with a given ne
k are not a priori known. In other words:sin
e the whole graph 
an be inverted along the ne
k, the labelling of the two partsseparated by the ne
k as \baby universe" and \mother universe" 
an only be de
idedwhen the number of verti
es (the volumes) of the two parts are known. Then, wesimply de�ne the \baby universe" to be the smaller part. However, if one justfollows the given orientation of the 
hosen link l to �nd the volume of the partlying on the 
orresponding side of the ne
k, 
f. Fig. 3.28, on average one wouldhave to traverse half of the whole graph to de
ide about whi
h part to interpret asthe \baby universe". This, obviously, would destroy any potential eÆ
ien
y gainof the algorithm. There are several algorithmi
 tri
ks to over
ome this diÆ
ulty.One is based on the idea of performing a random walk along the links of the graphstarting from the randomly 
hosen link l and preventing the walk to tou
h any ofthe links belonging to the ne
k. This amounts to ignoring the distin
tion between\baby" and \mother universe", whi
h on average leads to a weaker de
orrelation ofthe 
on�gurations between the surgery moves. Another method that does not su�erfrom this weakness and whi
h will be employed here, is given by interleaving twobreadth-�rst (or depth-�rst) sear
hes of the graph, starting from either end of therandomly 
hosen link l of Fig. 3.28 and restri
ting both sear
hes to their respe
tivesides of the 
hosen ne
k15. Then, sin
e it is known that the average minBU is verysmall 
ompared to the volume of the whole graph [29℄, one of the sear
hes will onaverage terminate after only a few steps, thus de�ning the smaller part of the graph,i.e., the \baby universe". During the sear
hes the verti
es have been labelled, su
hthat a vertex of the mother part of the graph 
an now be 
hosen at random. Notethat the verti
es dire
tly adja
ent to the links of the minBU ne
k should not besele
ted here su
h as not to produ
e singular 
on�gurations. Finally, a link l0 of the
hosen vertex is sele
ted at random.15We thank Z. Burda for 
ommuni
ating to us this idea.



3.5. ENHANCING THE EFFICIENCY 107After a minBU and a vertex of the mother universe have been sele
ted in the de-s
ribed way, they are ex
hanged upon ful�lment of a detailed balan
e 
ondition. Letn(l) be the number of minBU ne
ks 
ontaining the link l and n(l0) the 
orrespondingnumber of ne
ks after the move has been performed, i.e., the link l is lo
ated at itsnew position l0 instead of one of the links of the marked vertex. Then, the detailedbalan
e 
ondition reads [172℄,1n(l)Pakz(l ! l0) = 1n(l0)Pakz(l0 ! l); (3.43)where we symboli
ally denote the minBU surgery move as l ! l0. Thus, we 
hoosethe a

eptan
e probability a

ording to the Metropolis rule,Pakz(l ! l0) = min�1; n(l)n(l0)� : (3.44)Note that for the 
onsidered 
ase of �3 graphs the 
ounting of n(l0) is simpli�ed bythe fa
t that the de
omposition of the graph into \baby universes" of ne
k lengththree is a unique transformation to a tree stru
ture [29℄ and the applied ne
k sear
halgorithm lists the minBUs in the order of their 
ontainment in ea
h other, 
f. Fig.3.28. Thus, the position of the randomly 
hosen minBU in the list of minBUsasso
iated with the link l gives the number of minBUs 
ontained in the 
onsideredone. Con
erning the di�erent graph ensembles it should be noted that the minBUsurgery moves do not produ
e singular 
ontributions when starting from a graphof the regular ensemble, su
h that the a priori a

eptan
e rate is one. In order toenhan
e the eÆ
ien
y one might want to limit the size of the used minBUs frombelow and only 
onsider suÆ
iently large \baby universes". Sin
e their sizes are notknown in advan
e, however, this would be 
omputationally more expensive thanin
luding minBUs of all sizes. Only trivial minBUs 
onsisting of only one vertex areex
luded.Generalizing the des
ribed update s
heme to the 
ase of dynami
al quadrangulationsand their dual �4 graphs, a minBU is now de�ned for the stri
t and regular ensemblesto be 
onsidered here as a subgraph with four external lines. Correspondingly, theoperation of �nding the ne
ks adja
ent to a given link is now O(m3) instead ofO(m2) for �3 graphs, where m denotes the average 
o-ordination number of thepolygoni�
ation. Additionally, several te
hni
al 
ompli
ations not present in the�3 
ase arise. First, a minBU surgery move on a graph of the stri
t ensemble 
anprodu
e a double link, thus making the algorithm inappli
able for this ensemble (at
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hanges). Triple links, on the other hand, 
annot be produ
ed,su
h that no additional 
he
ks are ne
essary for simulations in the regular ensemble,whi
h we will hen
e ex
lusively fo
us on. Se
ond, due to the presen
e of double linksin the graphs the number of verti
es adja
ent to a 
onsidered ne
k, whi
h would befour without multiple links, 
an be redu
ed to three or two. This is relevant for thesele
tion of a vertex \outside" of the minBU as des
ribed above. Sin
e this e�e
t
an be asymmetri
 with respe
t to the situations before and after the surgery move,it has to be in
luded in the detailed balan
e 
ondition, whi
h therefore now reads1n(l) 1Vout(l)Pakz(l! l0) = 1n(l0) 1Vout(l0)Pakz(l0 ! l); (3.45)where Vout denotes the number of verti
es of the mother universe that are not dire
tlyadja
ent to the 
onsidered minBU. The a

eptan
e probability for the surgery moveis therefore given by, Pakz(l ! l0) = min�1; n(l)n(l0) Vout(l)Vout(l0)� : (3.46)Finally, the mentioned simpli�
ation in the evaluation of n(l0) for the �3 
ase abovedoes not apply here, sin
e di�erent minBUs 
an overlap for the 
ase of quadrangu-lations or �4 graphs. Therefore, the proposed move has to be 
ompletely performedin order to evaluate n(l0); if the detailed balan
e 
ondition (3.46) is not met, themove must be reversed to restore the original situation.Auto
orrelation timesFor ergodi
ity reasons, the minBU surgery update has to be mixed with the lo
allink-
ip move dynami
s. Sin
e, at least for the �4 
ase, the baby-universe surgerymoves are 
omputationally mu
h more expensive than the lo
al updates, we foundit an a

eptable 
ompromise to mix the lo
al and global updates at a ratio of threeto one. Then, a sweep of the new, mixed update 
onsists of N2=4 attempted surgerymoves and 3N2=4 one- and two-link 
ip updates. Traversing the same steps as forthe lo
al link-
ip update in Se
tion 3.5.1, we determined the integrated auto
or-relation times for the 
ombined, \mixed" update by a �nite-size s
aling analysisof simulations for N2 = 26; 27; : : : ; 213 verti
es for �3 and �4 graphs of the regularensembles. For the �3 graphs, we took 150 000 samples ea
h and for the �4 graphs100 000 samples. The results for �3 and �4 graphs are 
ompiled for 
omparison inTable 3.3. The 
orresponding FSS plot for the 
ase of �4 graphs is shown in Fig.



3.5. ENHANCING THE EFFICIENCY 109�3 graphs �4 graphsN2 �int(hr2i) � ja
kint (hr2i) �int(hr2i) � ja
kint (hr2i)64 0.497(15) 0.496(13) 0.506(13) 0.541(25)128 0.510(14) 0.497(19) 0.513(13) 0.532(18)256 0.581(14) 0.556(20) 0.593(16) 0.586(25)512 0.742(25) 0.744(23) 0.814(28) 0.783(32)1024 1.115(43) 1.090(43) 1.151(52) 1.144(50)2048 1.764(73) 1.781(98) 1.896(86) 1.906(118)4096 2.97(15) 3.27(20) 2.97(17) 2.93(19)8192 4.76(28) 4.79(21) 4.95(29) 5.27(40)Table 3.3: Integrated auto
orrelation times of the mean square extent hr2i for the\mixed" link-
ip and minBU surgery dynami
s for �3 and �4 random graphs of theregular ensemble. The auto
orrelation times are measured in units of ten sweepsof mixed moves using dire
t integration of the estimated normalized auto
orrela-tion fun
tion [�int(hr2i)℄ and, alternatively, a 
ombined binning/ja
kknife te
hnique[� ja
kint (hr2i)℄. For the estimation methods, see Appendix A.4.3.29, in
luding the data for the purely lo
al update for 
omparison. Fitting thefun
tional form (3.38) to the data, for the �4 
ase we �ndAhr2i = 0:0139(22);zhr2i=dh = 0:646(22);Q = 0:26; (3.47)while the data for �3 graphs �t best with the parametersAhr2i = 0:0112(17);zhr2i=dh = 0:668(21);Q = 0:49: (3.48)For both 
ases, the data points for N2 < 512 have been omitted due to too strong
orre
tions to the leading FSS behaviour. The results for both types of graphs arerather ni
ely 
ompatible with ea
h other as expe
ted from universality arguments,sin
e we apply the same kind of update pro
edure to both graph types.Obviously, the surgery update 
onsiderably redu
es the amplitude of the 
riti
alslowing down pro
ess as 
ompared to the results (3.40) and (3.42) of the purely lo
alupdate. However, somewhat surprisingly the dynami
al 
riti
al exponent zhr2i=dh is



110 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS

64 256 1024 4096
N

2

0.5

1

2

4

8

τ in
t(r

2 )

local update
mixed update

Figure 3.29: Finite-size s
aling of the integrated auto
orrelation times of the meansquare extent of dynami
al �4 graphs from a simulation applying one part of minBUsurgery updates and three parts of one- and two-link 
ip moves (mixed update). Theresults from the pure link-
ip dynami
s of Fig. 3.25 are shown for 
omparison (lo
alupdate). The auto
orrelation times are given in units of ten sweeps of the 
ombinedupdate. The graphs are taken from the regular ensemble. The solid lines denote �tsof the fun
tional form (3.38) to the simulation data.not redu
ed, but 
ompatible with the value for the lo
al algorithm within statisti
alerrors. This might be partly an e�e
t of the 
onsidered rather small system sizes,whi
h 
ould entail di�erent 
orre
tion to s
aling terms for the two 
onsidered up-dates. We think, however, that the main reason for this disappointing performan
eis given by the fa
t that the 
utting and gluing pro
ess of \baby universes" doesnot 
hange very e�e
tively the overall size of the universe, whi
h is measured bythe mean square extent hr2i. This observation is in qualitative a

ordan
e with theresults of Ref. [75℄ for the Polyakov string, where the authors �nd zhr2i=dh = 0:76(3)for an update of the mixed type and dynami
al triangulations. As will be shownbelow in Chapter 5, the performan
e gain of the minBU surgery method is overallbetter for di�erent observables and when 
oupling matter to the dynami
al graphs.Finally, it should be noted that, of 
ourse, the integrated auto
orrelation times re-
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o-ordination number distribution are again 
ompatible with a 
onstantvalue of 1=2 as was found for the 
ase of the purely lo
al update in Se
tion 3.5.1.



Chapter 4
Vertex Models and TheirSimulation
I
e-type or vertex models on regular latti
es form one of the most general 
lassesof models of statisti
al me
hani
s with dis
rete symmetry (for reviews see, e.g.,Refs. [55, 56, 173℄). Spe
ial 
ases of this 
lass of models 
an be mapped onto morewell-known problems su
h as Ising and Potts models or graph 
olouring problems[55℄. For the 
ase of two-dimensional latti
es, a whole variety of su
h vertex models
an be solved exa
tly, yielding a very ri
h and interesting phase diagram in
ludingvarious transition lines as well as 
riti
al and multi-
riti
al points [55℄. Thus, fortwo-dimensional vertex models one has the rare 
ombination of a ri
h stru
tureof phase transitions and an ex
eptional 
ompleteness of the available analyti
alresults. In view of these appealing properties it is of obvious interest to analyzethe behaviour of vertex models 
oupled to the random latti
es o

urring in theframework of dynami
al polygoni�
ations.In this 
hapter we introdu
e the 
on
ept of vertex or i
e-type models and summarizethe known exa
t results for the 
ase of regular latti
es. Due to the en
oding of thevertex-model intera
tions in restri
tions on the allowed 
on�gurations it is non-trivial to formulate eÆ
ient algorithms for the simulation of su
h models. The loopalgorithm [76℄, a 
luster algorithm for the simulation of rather general vertex models,will be used for the vertex-model simulations of this thesis. While its implementationfor i
e-type models on regular latti
es is well do
umented [174℄, for random latti
essome spe
ial 
onsiderations have to be taken into a

ount. After summarizing theprin
iples and implementation details of the loop algorithm, the spe
ial ne
essities112



4.1. SQUARE-LATTICE VERTEX MODELS 113of a simulation of vertex models on random graphs will be addressed.4.1 Square-Latti
e Vertex Models4.1.1 De�nition and basi
 propertiesAn i
e-type or vertex model was �rst proposed by Slater [175℄ as a model for (type I)i
e. It was known that i
e forms a hydrogen-bonded 
rystal, i.e., the oxygen atomsare lo
ated on a four-valent latti
e and the bonding is mediated by one hydrogenatom per bond, whi
h has the additional property of being near one or the otherend of the bond. Slater proposed that the four hydrogen atoms surrounding anoxygen atom should satisfy the i
e rule, stating that always two of them are in the\
lose" position and two are in the \remote" position with respe
t to the 
onsideredoxygen atom. Denoting the position of the hydrogen atom by a de
oration of thebond with an arrow pointing to the oxygen atom the hydrogen atom is 
loser to,this leads to the arrow 
on�gurations depi
ted in Fig. 4.1 when pla
ing the oxygenson a square latti
e; the other possible arrow 
on�gurations are ex
luded by the i
erule. This 
annot, of 
ourse, be a realisti
 model for physi
al i
e, whi
h is obviouslythree-dimensional; some properties of i
e are, however, astonishingly well des
ribedby this square-latti
e model. For instan
e, the per-site free energy of this square-latti
e i
e model 
an be shown [176℄ to be f = (43)3=2 � 1:540 in the thermodynami
limit, whi
h is surprisingly 
lose to the experimentally observed value for real i
e off � 1:507 [56℄.In the original i
e model all of the shown 
on�gurations o

ur with equal probability,su
h that the energies asso
iated with the arrow 
on�gurations 1; : : : ; 6 shown in Fig.4.1 are all equal and 
an thus, by a suitable shift of the referen
e point, be arrangedto be all zero. More generally, one assigns energies �1; : : : ; �6 to the 
on�gurations,su
h that the Hamiltonian of the model is given byH =Xi E(vi); E(vi) 2 f�1; : : : ; �6g (4.1)where the sum runs over all sites of the latti
e and vi denotes the 
on�guration ofvertex i of the latti
e. The vertex energies give rise to the 
orresponding Boltzmannweights, !j = exp(��j=kBT ); (4.2)



114 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATION- -661 � �??2 - -??3 � �664 - �?65 � -6?6Figure 4.1: Allowed arrow 
on�gurations for the 6-vertex model on the square latti
e.In the i
e model the arrows symbolize the position of the hydrogen atoms on thebonds 
onne
ting the sites where the oxygen atoms are lo
ated. The allowed arrow
on�gurations are restri
ted by the i
e rule, stating that ea
h site must have twoin
oming and two outgoing arrows.and the partition fun
tion of the model is given by,Z =Xfvig exp "�Xi E(vi)=kBT# : (4.3)Depending on the respe
tive 
hoi
e of the vertex energies �j, this more general 6-vertex model in
ludes models known by other names. As mentioned before, the
hoi
e �1 = : : : = �6 = 0 (4.4)
orresponds to the i
e model. On the other hand, taking�1 = �2 = 0; �3 = : : : = �6 > 0; (4.5)results in the so-
alledKDP model [175℄, whi
h is supposed to des
ribe the behaviourof KH2PO4, a hydrogen-bonded four-valent 
rystal that exhibits ferroele
tri
 orderat low temperatures. Finally, setting�1 = �2 = �3 = �4 > 0; �5 = �6 = 0; (4.6)one arrives at the F model of anti-ferroele
tri
s [61℄. In view of the vertex arrange-ments of Fig. 4.1 and the given energy 
hoi
es it is obvious that the KDP modelwill have a ground state 
onsisting entirely of the 
on�gurations 1 or 2 indi
atingferroele
tri
 order when interpreting the arrows as dipoles. On the other hand, the
hoi
e of energies of the F model shows that its ground state will 
onsist of the
on�gurations 5 and 6 and therefore is anti-ferroele
tri
ally ordered with the arrow



4.1. SQUARE-LATTICE VERTEX MODELS 115- �6?7 � -?68Figure 4.2: Additional vertex 
on�gurations of the 8-vertex model. These 
on�g-urations form sinks and sour
es for the arrows and violate the i
e rule. They are
ompatible, however, with the rule that ea
h vertex should have an even number ofin
oming and outgoing arrows.dire
tions alternating between su

essive bonds when traversing the latti
e on hori-zontal or verti
al lines. For a general 
hoi
e of the �j, symmetry 
onsiderations stillimpose some restri
tion. Namely, the fa
t that the model should be invariant undera reversal of all the arrows of the latti
e implies that,�1 = �2; �3 = �4; �5 = �6: (4.7)Given the interpretation of the arrows as ele
tri
al dipoles, this symmetry shouldbe present whenever no external ele
tri
al �eld is applied1. In this thesis, we willex
lusively 
onsider this zero-�eld model.As will be
ome obvious in the next se
tion, the 6-vertex model has some pathologieswhen 
onsidered as a model for solid state physi
s, whi
h follow from the strong
onstraint on the allowed vertex 
on�gurations. This observation led Sutherland[177℄ and Fan and Wu [178℄ to the proposal to relax the i
e rule and repla
e it bythe postulate that ea
h vertex should have an even number of arrows going into andout of it. This, obviously, in
ludes the 
on�gurations satisfying the i
e rule, butadditionally allows \sinks" (7) and \sour
es" (8) of arrows as depi
ted in Fig. 4.2.Assigning energies �7 and �8 to the newly introdu
ed 
on�gurations, this de�nes the8-vertex model of statisti
al me
hani
s. Whenever periodi
 boundary 
onditions areimposed on the latti
e, one has �7 = �8; (4.8)in addition to the restri
tions (4.7). To simplify notation, we introdu
e the variables1Note that the third 
ondition, �5 = �6, is always ful�lled on a latti
e with periodi
 boundary
onditions, even if an ele
tri
 �eld is applied.



116 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATION(a) (b)

Figure 4.3: A 
on�guration of the square-latti
e 6-vertex model in the original arrowformulation (a) and its transformation to the worldline pi
ture (b) of 
losed, non-interse
ting lines. Periodi
 boundary 
onditions are assumed.a; b; 
; d for the vertex weights,a = !1 = !2; b = !3 = !4; 
 = !5 = !6; d = !7 = !8; (4.9)whi
h are also used to label the verti
es of type 1 and 2 (a), 3 and 4 (b) et
.Finally, we note for future referen
e that the 6- and 8-vertex models have alternativerepresentations as worldline models. Consider drawing a line on an edge of the squarelatti
e whenever its arrow points down or to the left and leaving it empty otherwise.In this way a given 
on�guration of the 6-vertex model is translated as shown in Fig.4.3 to a number of 
losed, non-interse
ting lines on the latti
e (we assume periodi
boundary 
onditions). For the 6-vertex model the number of present line-segmentsis identi
al for ea
h horizontal row of verti
al edges of the latti
e, while for the8-vertex model this number 
an vary between rows. This worldline pi
ture is thenatural representation for the quantum spin models equivalent to 
ertain vertexmodels as will be des
ribed in Se
tion 4.1.3.4.1.2 Exa
t solution of the zero-�eld 
asesThe 6-vertex modelThe square-latti
e, zero-�eld 6-vertex model has been solved exa
tly in the thermo-dynami
 limit by means of a transfer matrix te
hnique by Lieb [62, 176, 179℄ andSutherland [180℄. As it turns out [55, 173℄, the analyti
 stru
ture of the free energy
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Figure 4.4: The phase diagram of the square-latti
e, zero-�eld 6-vertex model interms of the re-s
aled weights a=
 and b=
. Phase boundaries are indi
ated by solidlines. The phases I and II are ferroele
tri
ally ordered, phase IV exhibits anti-ferroele
tri
 order and phase III 
onstitutes the disordered regime. The dashed linesdo not indi
ate phase boundaries, but denote the parameter ranges of the KDP andF models, respe
tively.is most 
onveniently parameterized in terms of the variable� = a2 + b2 � 
22ab ; (4.10)su
h that the free energy takes a di�erent analyti
 form depending on whether� < �1, �1 < � < 1 or 1 < �. This leads to a phase diagram of the model
onsisting of four distin
t phases as shown in Fig. 4.4. The phases I and II areboth 
hara
terized by � > 1, thus 
orresponding to the same analyti
 form ofthe free energy. For phase I one has a > b + 
, su
h that the 
on�gurations aredominated by the verti
es 1 and 2. Therefore, at low temperatures the systemorders ferroele
tri
ally; the 
orresponding ground state is of the form shown in Fig.4.5(a). Phase II is 
hara
terized by b > a + 
, i.e., it is related to phase I by asimple ex
hange of verti
es 1 and 2 by 3 and 4, whi
h 
orresponds to a rotation ofthe whole latti
e by �=2. Thus phase II is also a ferroele
tri
ally ordered phase. Inthe intermediate 
ase �1 < � < 1, 
orresponding to phase III, the vertex weightsful�l the relation a; b; 
 < (a+ b+ 
)=2. Sin
e this in
ludes the in�nite temperaturepoint a = b = 
 = 1, this region 
orresponds to the disordered phase. However, it
an be shown [55,173℄ that the 
orrelation length is in�nite everywhere in phase III,
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Figure 4.5: Parts of the ground-state 
on�gurations of the 6-vertex model in phasesII and IV. (a) One of the two ferroele
tri
ally ordered ground states in phaseII. It 
onsists entirely of the vertex 
on�guration 4. (b) One of the two anti-ferroele
tri
ally ordered ground states of phase IV. The state 
onsists of verti
es5 and 6 at equal proportions. The dashed lines show one of the two tilted sub-latti
es, whi
h are ferroele
tri
ally ordered.i.e., 
orrelations de
ay algebrai
ally instead of exponentially. Nevertheless, there isno long-range ordering in this phase. This pe
uliarity 
an be tra
ed ba
k to the fa
tthat the 6-vertex model 
orresponds to a 
riti
al surfa
e in the phase diagram ofthe 8-vertex model [55℄. Finally, for � < �1 one has 
 > a + b, su
h that in phaseIV the vertex 
on�gurations 5 and 6 dominate, leading to anti-ferroele
tri
 order;the 
orresponding ground state is depi
ted in Fig. 4.5(b).While the ferroele
tri
ally ordered phases exhibit an overall polarization, whi
h 
anbe used as an order parameter for the 
orresponding transition, the anti-ferroele
tri
order of phase IV is a

ompanied by a staggered polarization with respe
t to a sub-latti
e de
omposition of the square latti
e. That is, when de
omposing the squarelatti
e into two new square latti
es tilted by �=4 against the original one as shown inFig. 4.5(b), the anti-ferroele
tri
 ground states 
orrespond to a ferroele
tri
 orderingof the verti
es of the sub-latti
es with opposite signs of the overall polarization ofthe sub-latti
es. An order parameter for the 
orresponding transition 
an be de�nedby introdu
ing overlap variables �i for ea
h vertex of the latti
e su
h that [55℄,�i = vi � v0i ; (4.11)where v0i denotes the anti-ferroele
tri
 ground-state 
on�guration depi
ted in Fig.
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t \�" denotes the overlap given byv � v0 � 4Xk=1 Ak(v)Ak(v0); (4.12)where k numbers the four edges around ea
h vertex and Ak(v) should be +1 or�1 depending on whether the 
orresponding arrow of v points out of the vertex orinto it. Then, the spontaneous staggered polarization h�ii=2 = h�i=2 vanishes in thedisordered phase and approa
hes unity for low temperatures in phase IV and 
anthus be used as an order parameter for the anti-ferroele
tri
 transition.The transitions between the phases I{IV 
an be analyzed from the exa
t expressionfor the free energy of the model [62, 176, 179, 180℄. We 
onsider the temperatureT as the external parameter to be tuned, whereas the vertex energies �j are kept�xed. Then, starting from one of the ordered, low-temperature phases I, II or IV,in
reasing the temperature one tra
es out a path in the phase diagram whi
h alwaysends at the in�nite-temperature point a = b = 
 = 1 in phase III, 
f. Fig. 4.4. Thetransition temperatures 
an be easily inferred from the exa
t phase boundaries ofthe phase diagram Fig. 4.4. The transitions I! III and II! III are dis
ontinuous or�rst-order phase transitions between the ferroele
tri
ally ordered and the disorderedregimes [55℄. However, in the ferroele
tri
ally ordered phases the model has thepe
uliarity of sti
king to the ground states throughout the whole phase, i.e., alsofor non-zero temperatures. This is due to the fa
t that the simplest deformation ofthe ground state depi
ted in Fig. 4.5(a) 
onsists of reversing the arrows of a wholeline of bonds spanning the latti
e2. In the thermodynami
 limit, this 
orresponds toan in�nite amount of energy and thus does not o

ur within the phases I or II. Onthe other hand, the anti-ferroele
tri
 transition III! IV is also rather pathologi
al.The singular part of the free energy density 
an be shown to behave as [55℄fsing / exp(�
onst=jtj 12 ); (4.13)i.e., all temperature derivatives exist and vanish exponentially as jtj ! 0. This
orresponds to a phase transition of in�nite order, known from the XY model asKosterlitz-Thouless (KT) phase transition [63, 64℄.2Obviously it is also possible to 
ip the arrows around one of the elementary plaquettes, i.e.squares. This, however, would produ
e verti
es of the types 5 and 6, whi
h are strongly suppressedin the ferroele
tri
ally ordered phases at low temperatures.



120 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONThe 8-vertex modelThe in
lusion of the verti
es 7 and 8 of Fig. 4.2 allows one to make lo
al, �nite-energydeformations of the ferroele
tri
 ground states and thus one expe
ts less pathologi
albehaviour from the resulting 8-vertex model. In the thermodynami
al limit, it 
anbe solved exa
tly by means of the method of \
ommuting transfer matri
es" andthe \star-triangle relation" [59, 60℄. The parameter � 
lassifying the phases is nowgeneralized to � = a2 + b2 � 
2 � d22(ab + 
d) : (4.14)Depending on the value of �, the system is 
on�ned in one of �ve phases [59, 60℄:I. Ferroele
tri
: a > b + 
+ d, � > 1,II. Ferroele
tri
: b > a+ 
+ d, � > 1,III. Disordered: a; b; 
; d > (a+ b + 
+ d)=2, �1 < � < 1,IV. Anti-ferroele
tri
: 
 > a+ b + d, � < �1,V. Anti-ferroele
tri
: d > a + b+ 
, � < �1,whi
h 
an be mapped onto ea
h other exploiting 
ertain symmetry relations of themodel [55℄. In the generi
 
ase, the phase boundaries de�ned by the above relations
orrespond to se
ond-order phase transitions. It 
an be shown [59, 60℄ that for thisgeneri
 
ase the singular part of the free energy s
ales in the vi
inity of the phaseboundaries as fsing � jtj�=�; (4.15)where now t is a generalized redu
ed temperature variable and the 
riti
al value of� is given by tan(�=2) =p
d=ab: (4.16)From the given s
aling form of the free energy it is obvious that the 
riti
al exponentsresulting from this s
aling also depend on �; in parti
ular, one �nds [60℄� = �=16�; � = �=2�; 
 = 7�=8�; (4.17)su
h that the 
riti
al exponents vary 
ontinuously with the parameter �. Obviously,this is in 
ontradi
tion with the usual notion of universality of 
riti
al exponents.
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an be re
on
iled with the expe
tations based on the 
on
ept of weakuniversality [181℄, whi
h suggests that instead of expressing the s
aling ansatz interms of the parameter jtj, one should formulate s
aling in terms of the 
orrelationlength �. This leads, very similar to the 
ase of �nite-size s
aling, to an additionalfa
tor of 1=� multiplying all of the other exponents, and the renormalized exponents,� 0 � �=� = 18 ; 
0 � 
=� = 74 ; (4.18)are 
onstant and independent of the value of �. At the ex
eptional points � = �=n,where n is an integer, the s
aling relation (4.15) is no longer valid and must beeither augmented by a logarithmi
 
orre
tion (n even) or is even repla
ed by a
ompletely di�erent formula (n odd). This latter 
ase espe
ially in
ludes the �rst-order ferroele
tri
 transitions present in the phase diagram of the 6-vertex model,whi
h obviously must be in
luded in the more general 8-vertex model as the limiting
ase d = 0. The spe
ial 
ase � = 0 
orresponds to the Kosterlitz-Thouless typeanti-ferroele
tri
 phase transition of the 6-vertex model. From the point of view ofthe 8-vertex model it is found that the disordered phase III of the 6-vertex model
orresponds to a 
riti
al surfa
e of the 8-vertex 
ase; this explains the divergen
e ofthe 
orrelation length throughout this whole phase.4.1.3 Transformations and spe
ializationsThe quite general 8-vertex model in
ludes several interesting spe
ial 
ases. Ad-ditionally, it 
an be mapped onto a multitude of di�erent problems of statisti
alme
hani
s and graph theory. We will only brie
y summarize the most important ofthese 
orresponden
es. The most obvious limiting 
ase is that of the 6-vertex model,whi
h is obtained for d = 0 and in turn 
omprises as spe
ial 
ases the i
e and Fmodels, among others. The i
e model itself 
an be mapped to a variety of 
ountingproblems, in
luding that of dimers on the square latti
e [56℄ and the three-
olourfa
e-
olouring problem of the square latti
e [55℄.The 8-vertex model, on the other hand, is equivalent to a non-intera
ting many-fermion system for the spe
ial 
hoi
e of weights [182℄a2 + b2 = 
2 + d2; (4.19)whi
h thus de�nes the free-fermion model , whi
h is of interest sin
e it 
an be solvedusing PfaÆans, su
h that one does not need the mu
h more elaborate ansatz used



122 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONto solve the general 8-vertex model [55℄. One of the most important transformationsis that of the 8-vertex model in an ele
tri
 �eld to a zero-�eld Ising model3 on thesquare latti
e, in
luding nearest-neighbour, next-nearest-neighbour and four-spinintera
tions [55, 182℄. Espe
ially, by means of a suitable sub-latti
e de
omposition,this model 
an be 
onsidered as the sum of two ordinary, nearest-neighbour Isingmodels on the sub-latti
es 
oupled by four-spin intera
tions. For a 
ertain 
hoi
eof the vertex weights this 
oupling 
an be removed su
h that the resulting model isthat of two un
oupled Ising models [56℄ and the partition fun
tions are related asZ8V = 2ZIsing: (4.20)Alternatively, the 8-vertex model 
an be mapped onto an Ising model with only two-spin intera
tions, whi
h are then between nearest neighbours and next-next-nearestneighbour spins [55℄.Furthermore, the 8-vertex model is equivalent to the XYZ 
hain quantum spinmodel with HamiltonianH � �12Xhji Hjj+1 = �12Xhji [Jx�xj �xj+1 + Jy�yj �yj+1 + Jz�zj�zj+1℄; (4.21)where the �j are quantum spin-1=2 operators at the sites j and hji denotes sum-mation over the 
hain assuming periodi
 boundary 
onditions. Here, \equivalen
e"means identity of the eigenvalues of the respe
tive transfer matri
es [177℄. Thetransformation revealing this equivalen
e 
an be demonstrated in the worldline rep-resentation of the XYZ 
hain [183℄, whi
h 
an be sket
hed as follows (see, e.g.,Ref. [155℄). Split the Hamiltonian (4.21) into 
ommuting pie
es,H = Heven +HoddHeven;odd = Xj: even;oddHjj+1; (4.22)and perform a Trotter-Suzuki breakup [184, 185℄,Z = Tr e��H = limLt!1ZTr = limLt!1Tr �e� �LtHevene� �LtHodd�Lt ; (4.23)where Lt denotes the number of (imaginary) time sli
es used in the dis
retisation.Inserting 
omplete sets of �z eigenstates, one arrives at the worldline representation,ZTr =XSzjt W (fSzjtg) =XSzjt Yp Wp(fSpg); (4.24)3Note that the most general 16-vertex model on the square latti
e (whi
h has not been solved)is equivalent to two Ising models in a magneti
 �eld (whi
h has also not been solved) [56℄.
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(
) (d)

Figure 4.6: Worldline and vertex-model representations of the XYZ quantum spin
hain. (a) Classi
al spin variables Sz = �1 living on the 
orners of the shaded pla-quettes and denoted by arrows pointing upward (+1) or downward (�1) in the ver-ti
al time dire
tion. The arrow 
on�gurations 
orrespond to those of a tilted square-latti
e 8-vertex model with spe
ial boundary 
onditions. (b) The same 
on�gurationin the worldline representation. (
) Plaquette 
on�guration of the Heisenberg-Ising
hain 
orresponding to an arrow 
on�guration of the 6-vertex model. (d) The 
or-responding worldlines.whi
h is a sum over 
lassi
al spin variables Szjt = �1 living on a 
he
kerboardlatti
e with the original spa
e dire
tion j = 1; : : : ; N and an additional (imaginary)time dire
tion t = 1; : : : ; Lt, 
f. Fig. 4.6(a). The 
on�gurational weights W (fSzjtg)
an be broken up into weights Wp(fSpg) asso
iated with the elementary plaquettesp = [(j; t); (j+1; t); (j; t+1); (j+1; t+1)℄ of the latti
e. As it turns out [155℄, only theweights of plaquettes with an even number of up and down spins give non-vanishing
ontributions. Thus, depi
ting the spin values Sz by arrows pointing upwards ordownwards in imaginary time dire
tion as shown in Fig. 4.6(a), the resulting arrow
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on�gurations on the shaded plaquettes ful�l the generalized i
e-rule of the 8-vertexmodel4. On the other hand, as mentioned above, the 
on�gurations of the square-latti
e vertex model 
an be depi
ted as 
losed, oriented, non-interse
ting lines (orpolygons), 
f. Fig. 4.3(b); thus one arrives at the worldline representation of theXYZ quantum 
hain depi
ted5 in Fig. 4.6(b).Spe
ial 
ases of the XYZ quantum 
hain are the (quantum) Heisenberg model (Jx =Jy = Jz), the XY model (Jz = 0), the XZ 
hain (Jy = 0) and the so-
alledHeisenberg-Ising orXXZ model (Jx = Jy). As it turns out, theXZ limit 
orrespondsto the spe
ial 
ase of the 8-vertex model equivalent to two un
oupled, nearest-neighbour Ising models, the XY model 
orresponds to the free-fermion model limitand the Heisenberg-Ising 
hain is equivalent to the 6-vertex model [55℄. For thelatter 
ase, the number of 
orresponding worldlines is 
onserved in the imaginarytime dire
tion as depi
ted in Figs. 4.6(
) and (d).Further transformations 
an be found when 
onsidering the 8-vertex model on theKagom�e latti
e (whi
h is four-valent like the square latti
e). This model is alsoexa
tly solvable and has further 
orresponden
es to well-known models of statisti-
al me
hani
s. Namely, it in
ludes the triangular and honey
omb latti
e nearest-neighbour Ising models, the triangular and honey
omb 
riti
al q-state Potts modelsand an Ising model with (only) three-spin intera
tions on the triangular latti
e [55℄.4.2 The Loop AlgorithmAs mentioned above in the introdu
tion of this 
hapter it is hard to formulate aneÆ
ient update for vertex models due to the strong 
onstraints on the allowed ar-row 
on�gurations. A trivial lo
al update would be to 
ip the arrows around theelementary plaquettes of the latti
e, e.g., the squares for the 
ase of the squarelatti
e. This algorithm, however, su�ers from 
riti
al slowing down with the dy-nami
al 
riti
al exponent z � 2 typi
al for lo
al algorithms [174℄. For the 6-vertexmodel one has the additional 
ompli
ation of a massless disordered phase, su
h that4Note, however, that due to the tilting of the latti
e the equivalent 8-vertex model a
quiresrather un
onventional boundary 
onditions.5Note that the way the worldlines are drawn is slightly di�erent from the presentation of Fig.4.3(b), sin
e here the line segments are drawn on the links of the 
he
kerboard latti
e and not onthose of the latti
e formed by the vertex model arrows.
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orrelation times are expe
ted to be large throughout this whole region. When-ever 
luster algorithms [168, 171, 186, 187℄ 
an be found they are usually the mosteÆ
ient updates in the vi
inity of 
ontinuous phase transitions. This was for the�rst time a
hieved for the ferromagneti
, nearest-neighbour Ising, Potts and O(n)models [168, 171℄. As 
ould have been 
onje
tured from the 
lose relation of vertexmodels to spin models su
h as the Ising and Potts models, it is possible to formulate
luster algorithms for vertex models, too. The most prominent of these algorithmsis given by the loop algorithm [76, 174, 188, 189℄.4.2.1 Idea and outlineIn a formal des
ription, the basi
 idea of 
luster algorithms is that of a transfor-mation of the representation of the model under 
onsideration from the \natural"state spa
e variables su
h as, e.g., the spin variables of the Ising model, to an en-larged spa
e of states, additionally 
omprising graph variables, whi
h are usually asubgraph of the latti
e under 
onsideration and are for ea
h 
on�guration \
ompat-ible" with the original (e.g. spin) variables [186, 187, 190℄. This is the generalizednotion of a Fortuin-Kasteleyn representation [191℄. Then, new statisti
al weightsare 
hosen in the enlarged phase spa
e in whi
h the 
luster simulation is performed.While for the Ising model the relevant graph variables are bonds of the latti
e thatare 
hosen to be a
tivated or passive, for the loop algorithm the graph variables arede
ompositions or breakups of the verti
es and the surrounding edges. The possiblebreakups for a four-valent latti
e are shown in Fig. 4.7. As for the bonds in the Ising
ase, whi
h 
an only be set between parallel spins, not every breakup is 
ompatiblewith a given 
on�guration of the vertex model.After the graph transformation, i.e., after 
hoosing a breakup for ea
h vertex of thelatti
e, a new 
on�guration, whi
h is also in agreement with the 
hosen breakup,is a
hieved by a suitable 
ipping of the arrows on the latti
e bonds. This 
an bedone in the following way. Interpreting the vertex arrows as a dis
rete ve
tor �eld,the i
e-rule of the 6-vertex model translates to the 
ondition of zero divergen
e ofthis �eld. Analogously, the generalized i
e-rule of the 8-vertex model is equivalentto the statement that the 
orresponding ve
tor �eld should have zero divergen
e\mod 4". As a 
onsequen
e, every 
on�guration of the 6- or 8-vertex models 
anbe 
onstru
ted from a given referen
e 
on�guration by a reversal of the arrows of
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1 2 3 4Ga
, Gbd Gb
, Gad Gab, G
d G��Figure 4.7: Possible vertex breakups for the 8-vertex model. The breakups G�� arelabelled by the vertex energies a; b; 
; d, su
h that a symbolizes verti
es 1 and 2, bverti
es 3 and 4 et
. of Figs. 4.1 and 4.2. The breakup G�� is possible for a vertexof type � 2 fa; b; 
; dg and it is taken to 
on�guration �, if the 
orresponding loop is
ipped. For the 6-vertex model, transitions with label d do not o

ur. The breakupsG�� 
orrespond to a freezing of the 
onsidered vertex, i.e., a 
ip does not 
hangethe vertex weight sin
e all arrows are 
ipped together.a number of 
losed loops on the latti
e6, with an \almost 
onstant" dire
tion ofthe arrows along them [76℄. Here, the restri
tion to \almost 
onstant" takes 
areof the verti
es 7 or 8 of the 8-vertex model, where the loops have to 
hange theirarrow dire
tion. This set of loops is uniquely de�ned from the arrow 
on�gurationof the vertex model in 
ombination with the 
hosen breakups of the verti
es. To
onstru
t it, start to \grow" a loop at a given bond of the latti
e, walking in thedire
tion of the arrows. Ea
h time you hit a site of the latti
e, the walk 
ontinues inthe dire
tion indi
ated by the breakup of the 
orresponding vertex, i.e., it turns tothe left or right for breakups 1 and 2 or it goes straight on for breakup 3 (breakup4 will be dis
ussed later), 
f. Fig. 4.7. For verti
es of the types 7 or 8 the loop
hanges its arrow dire
tion at that site. Due to the (generalized) i
e rule, ea
hwalk 
onstru
ted in this way eventually returns to the vertex it originated from,thus 
losing it to a loop. Repeating this 
onstru
tion until ea
h bond of the latti
ehas been visited, de
omposes the latti
e into a set of su
h loops. Then, the newvertex-model 
on�guration is found by independently proposing to invert the arrowdire
tion along ea
h loop with a probability of, say, one half. This is 
ompletelyanalogous to the proposal of 
luster 
ips in the Swendsen-Wang 
luster algorithmfor the Ising model [171℄.6Note that the su
h de�ned loops are possibly self-interse
ting, in 
ontrast to the worldlines
onsidered above.
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Figure 4.8: A loop 
luster (bla
k solid lines) built on top of a 
on�guration of the6-vertex model on a 8� 8 latti
e with periodi
 boundary 
onditions. The numbers1{4 near the verti
es indi
ate the 
hosen breakups a

ording to Fig. 4.7. At thevertex with breakup 4 (bla
k dot) two loops are glued together to form the loop
luster. For illustration purposes, the breakups are only shown along the path ofthe presented loop 
luster.The type-4 breakup of Fig. 4.7, also 
alled freezing of a vertex, requires a di�erenttreatment. On 
oming a
ross a frozen vertex, one 
hooses (at random) one of thebreakups 1 to 3 
ompatible with the given vertex 
on�guration to determine thedire
tion to leave the vertex. After 
losing the loop, one has to grow a se
ond loopstarting from one of the bonds of the frozen vertex that have not yet been tou
hed.Then, these two loops are glued together to form a loop 
luster , i.e., one proposes to
ip them together. As a 
onsequen
e, the statisti
al weight of the frozen vertex doesnot 
hange, sin
e all four of the adja
ent arrows are 
ipped or left un
hanged. Thisfreezing pro
edure 
orresponds to the a
tivation of bonds in the Swendsen-Wangalgorithm, whi
h there entails that two spins are always 
ipped together. Thus,
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on
ept of freezing into a

ount, ea
h vertex 
on�guration is de
omposedinto a set of loop 
lusters, whi
h then are 
ipped independently with a given proba-bility to arrive at the new vertex model 
on�guration. Figure 4.8 shows an exampleof su
h a 
luster of loops o

urring in a loop algorithm simulation of the 6-vertexmodel.Thus, we have the following re
ipe for the 
luster algorithm for the 6- and 8-vertexmodels:(a) For ea
h site of the latti
e, 
hoose one of the breakups 1{4 with suitably 
hosenprobabilities, whi
h solely depend on the vertex 
on�guration at the respe
tivesite.(b) De
ompose the vertex 
on�guration into a set of loop 
lusters. To do so,
hoose a latti
e edge at random and walk along the bonds following the arrowdire
tions. At ea
h site, 
hoose the dire
tion pres
ribed by the breakups de-termined in step (a). If freezing o

urs at a site, 
hoose one of the breakups1{3 at random to 
ontinue the loop and (after �nishing the 
urrent loop) growanother loop at the same site, whi
h is glued to the �rst loop to a loop 
luster.For the 8-vertex model, when hitting upon a vertex of types 7 or 8, 
hangethe orientation of the loop. Repeat this pro
ess, until all bonds are tou
hedby a loop.(
) Flip ea
h loop 
luster independently with a 
onstant probability of, e.g., onehalf. Here, \
ipping" means reversing the dire
tion of all the vertex arrowsalong the loop.(d) With the new vertex-model 
on�guration, start again with the breakup step(a).4.2.2 Choi
e of the breakup probabilitiesIn the general s
heme of Refs. [186, 187, 190℄ the enlargement of phase spa
e toin
lude the breakups is expressed by the fa
t that the weight fun
tion of Eq. (4.3),W (V = fvig) = exp[�Xi E(vi)=kBT ℄; (4.25)
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ed by a generalized weight fun
tion W (V;G), su
h thatXG W (V;G) = W (V); W (V;G) � 0; (4.26)where G = fGig denotes the set of 
hosen vertex breakups. This results in a Fortuin-Kasteleyn type representation of the partition fun
tion (4.3),Z =XV XG W (V;G): (4.27)Then, a 
luster-update Monte Carlo simulation 
onsists of the two steps of 
hoosingthe breakups with probabilityp[V ! (V;G)℄ = W (V;G)W (V) ; (4.28)sele
ting a new 
on�guration V 0 of the spin or vertex variables and a

epting themove V ! V 0, e.g., with the heat-bath probabilityp[(V;G)! (V 0;G)℄ = W (V 0;G)W (V;G) +W (V 0;G) ; (4.29)where we have already assumed that the graph 
on�guration is not 
hanged by the
ip, i.e., G 0 = G [186℄. Sin
e the breakup pro
ess is done independently for ea
hvertex, the generalized weight fun
tion fa
torizes,W (V;G) =Yi w(vi; Gi); (4.30)where the index i runs over all sites of the latti
e7. In order to be able to 
ip theloop 
lusters independently, one additionally assumes that the lo
al weights are not
hanged by the 
ip operation, i.e.,w(v;G) = w(v0; G): (4.31)Then, the 
luster 
ip probability (4.29) be
omes a 
onstant and 
an be 
hosen tobe, e.g., p[(V;G) ! (V 0;G)℄ = 1=2. The 
ondition (4.31) 
an be obviously realizedby 
onsidering a �xed set of vertex breakups G��, whi
h allow exa
tly the transitionof a vertex from type � to type �, su
h that the 
orresponding weights are given byw(v;G��) = ( w��; if v is of type �;0; otherwise; (4.32)7In general, one has to take an overall fa
tor Aglobal(V) into a

ount here. However, for the
ase of zero-�eld vertex models, one 
an 
hoose Aglobal(V) = 
onst [76℄.
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onstants w�� = w�� are taken symmetri
 in their indi
es to honour Eq.(4.31).Suitable 
onstants w�� 
an always be found, see Refs. [76, 188℄. However, theyare not uniquely de�ned by the present 
onstraints. Within the range of allowedvalues, an optimum 
an be attained guided by the prin
iple of minimal freezing :it is intuitively obvious that freezing of verti
es, i.e., the assignment of breakupsof the type G�� of Fig. 4.7, whi
h glues two loops together to a loop 
luster to be
ipped together, tends to in
rease the 
orrelation between su

essive 
on�gurationsgenerated by the loop algorithm. This 
onje
ture is 
on�rmed by numeri
al results[174℄. Thus, minimizing w�� should result in the most eÆ
ient algorithms. Wepresent here the optimal weights for the 
ase of the 6-vertex model. As it turnsout [188℄, the 
ondition of minimal freezing gives distin
t solutions for di�erentregions of the fa; b; 
g parameter spa
e. In fa
t, these regions 
oin
ide with thephases I{IV of the 6-vertex model dis
ussed above in Se
tion 4.1.2. Depending onthe phase, the optimal weights are given in the following list [76℄.(I) Ferroele
tri
 phase I : Here, a > b + 
 and the non-zero weights arewab = wba = b;wa
 = w
a = 
; (4.33)waa = a� 
� b;i.e., freezing o

urs only for verti
es of the types 1 and 2.(II) Ferroele
tri
 phase II : For b > a + 
, the weights are given by inter
hangingindi
es b and 
 from phase I and freezing of b verti
es instead of a verti
es,wab = wba = 
;wa
 = w
a = b; (4.34)wbb = a� 
� b:(III) Disordered phase III : For a; b; 
 � (a+b+
)=2 one 
an avoid freezing and has,wab = wba = (b+ a� 
)=2;wa
 = w
a = (a+ 
� b)=2; (4.35)wb
 = w
b = (
+ b� a)=2:
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tri
 phase IV : For 
 > a+ b one has,wa
 = w
a = a;wb
 = w
b = b; (4.36)w

 = 
� a� b;su
h that freezing only o

urs for verti
es 5 and 6.For ea
h phase, the weights not listed above are taken to be zero in the 
orrespondingregion.4.2.3 Pra
ti
al appli
ation and testsFor the further dis
ussion we spe
ialize on the 
ase of the 6-vertex model, whi
h isof main interest in this thesis.Ergodi
ity and detailed balan
eThe issues of ergodi
ity and detailed balan
e 
an be quite straightforwardly settledfor the loop algorithm. Ful�lment of the detailed balan
e 
ondition follows triviallyfrom the 
onstru
tion of the weights from Eq. (4.28). Sin
e, as a 
onsequen
e ofthe (generalized) i
e rule, any two vertex 
on�gurations are related to ea
h otherby a unique set of loop 
ips [56℄, ergodi
ity of the algorithm is obvious if all w��are 
hosen non-zero. For the spe
ial 
hoi
es of weights presented above, where someof the breakups do not o

ur, one has to 
he
k expli
itly that ergodi
ity is stillguaranteed. This is in general easy to see by inspe
tion [76℄. The only region,where some problems 
an o

ur is the anti-ferroele
tri
 phase IV. In terms of theequivalent quantum spin model in its worldline representation, the magnetization
orresponds to the number of worldlines present as 
an be seen from Fig. 4.6. It
an only be 
hanged by 
ipping loops that wind around the latti
e in temporaldire
tion. With the given 
hoi
e of weights for phase IV, however, the loops 
hangedire
tion at every site of the 
he
kerboard latti
e of Fig. 4.6. Thus, if the latti
ehas an odd number of rows (
orresponding to a frustrated anti-ferromagnet), loopswith non-trivial temporal winding numbers 
annot be 
onstru
ted with the givenweights. In that 
ase, one has to introdu
e breakups of the type Gab with a �niteprobability and adapt the other weights 
orrespondingly [76℄. However, for the
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es of the topology of a sphere 
onsidered in this thesis,this \topologi
al" problem 
an obviously not o

ur.Implementation and testIt should be obvious from the previous dis
ussion that the loop algorithm is withsuitable adaptions in the treatment of the latti
e part appli
able to any four-valentgraph with orientable fa
es, i.e., with a 
y
li
al ordering of the links. Thus, it 
anbe easily employed for vertex models on the �4 graphs dis
ussed in the previous
hapter. We 
hoose a four-bit en
oding of the vertex arrows in order to have aneasy a

ess to the dire
tions of the arrows on the links as well as the total type 1{6of the 
on�guration of the vertex. To 
he
k the proper fun
tioning of the algorithm,we performed simulations for the F model (
f. Eq. (4.6)) on a 4� 4 square latti
ewith periodi
 boundary 
onditions with the same program used for the true randomlatti
e simulations, but with no latti
e-update moves employed. Deviations from theexpe
ted 
orre
t results are expe
ted to be most prominent for su
h small latti
esizes. The out
omes of these simulations are 
ompared to the exa
t expression forthe F model on the 
onsidered latti
e, found by a brute-for
e summation of thepartition fun
tion (4.3), whi
h 
an be somewhat simpli�ed by exploiting the spe
ialsymmetries of the F model. As shown in Fig. 4.9 the loop algorithm simulationswith the 
hoi
e of weights given above give results in perfe
t agreement with theexa
t expressions. From the 
ondition 
 = a + b for the boundary line betweenphases III and IV of the 6-vertex model, one �nds the KT transition to happenat �
 = 1=kBT
 = ln 2, assuming �a = �b = 1 for simpli
ity. The lo
ation of thepeaks of the spe
i�
 heat and the polarizability are in qualitative agreement withthis transition point.Performan
eSin
e the typi
al extent of the obje
ts 
onsidered in a 
luster algorithm 
oin
ideswith the 
orrelation length when operating at 
riti
ality, 
luster algorithms promisethe most substantial eÆ
ien
y gain for a system in the vi
inity of a 
ontinuousphase transition. The dynami
al 
riti
al exponent z is usually largely redu
ed, and,in some 
ases, even 
ompatible with an only logarithmi
 growth implying z = 0, see,e.g., Ref. [193℄. A similar redu
tion of 
riti
al slowing down has been observed for the
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Figure 4.9: Spe
i�
 heat per site (a) and the polarizability belonging to the stag-gered polarization of Eq. (4.11) (b) of the F model on a 4 � 4 square latti
e withperiodi
 boundary 
onditions from loop-
luster Monte Carlo simulations of 5� 105measurements ea
h. The solid lines show the exa
t results from a brute-for
e sum-mation of the partition fun
tion exploiting the symmetries of the model. The drawnerror bars are mostly hidden by the plotting symbols. The F model exhibits aKosterlitz-Thouless type phase transition at �
 = ln 2 � 0:693.



134 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATION

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
β

1.0

1.5

2.0

2.5

τ in
t(E

)

Figure 4.10: Integrated auto
orrelation time of the energy E for a loop-algorithmsimulation of the F model on a 4�4 square latti
e with periodi
 boundary 
onditions.As typi
al for 
luster algorithms, the performan
e is optimal in the 
riti
al regime(for a similar presentation for the Swendsen-Wang dynami
s of the Potts model,see Ref. [192℄). The auto
orrelation times and the related statisti
al errors wereestimated using the methods presented in Appendix A.4.
loop algorithm. As an example, for the F model at 
riti
ality one �nds z = 0:71(5)as 
ompared to z = 2:2(2) for the lo
al algorithm 
ipping the arrows around theelementary plaquettes [174℄. Sin
e phase III is massless, one expe
ts dynami
als
aling to work for all � < �
 and �nds z to de
rease with de
reasing � [174℄. We didnot perform a detailed analysis of dynami
al s
aling for the loop algorithm applied tovertex models on regular latti
es sin
e we are mainly interested in the random latti
ebehaviour. However, to illustrate the fa
t that a major performan
e improvementfor 
luster algorithms as 
ompared to lo
al updates 
an only be expe
ted in thevi
inity of a 
riti
al point, in Fig. 4.10 we present the integrated auto
orrelationtime of the internal energy for the loop-algorithm simulation of the F model on a4� 4 latti
e dis
ussed above.
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luster variantIt should be noted that the loop algorithm 
an be easily adapted to the 
on
ept ofa single 
luster update [168℄, whi
h often yields even further redu
tions of z and/orthe 
orresponding s
aling amplitude. This is done by just growing a single loop
luster and doing the breakups \on the 
y". However, sin
e we �nally have to mixthe loop update with the (di�erent) updates of the random graphs, it is desirable tohave a �xed proportion between updates of the graph and matter parts. Therefore,we prefer to use the des
ribed multi-
luster variant. As will be demonstrated in thenext 
hapter, the auto
orrelations related to the graph dynami
s are mu
h largerthan those of the vertex model, su
h that the minor di�eren
es between variants ofthe loop algorithm do not matter here.
4.3 Vertex Models on Random �4 Graphs4.3.1 Additional symmetryPutting a vertex model onto a random four-valent graph su
h as the quantum gravity�4 graphs dis
ussed in the previous 
hapters imposes some additional restri
tionson the 
lass of vertex weights that 
an be sensibly 
onsidered. The ferroele
tri
allyordered phases I and II of the 8-vertex model and the order parameter des
ribingthe 
orresponding phase transition depend on the existen
e of a global notion ofdire
tion. The (plain, not staggered) polarization asso
iated with the transition
orresponds to the rea
tion of the system to an exterior ele
tri
 �eld of 
onstantdire
tion. On a random graph, the notions of su
h a global orientation and 
onstantdire
tion are malde�ned. The only lo
al orientational stru
ture available is that ofthe verti
es and fa
es of the graph and their distan
es from ea
h other in terms ofthe geodesi
 metri
 of the graph.To demonstrate the 
onsequen
es of this \loss of dire
tion", 
onsider the KDP 6-vertex model 
oupled to planar �4 random graphs. On the square latti
e this modelexhibits a �rst-order phase transition to a ferroele
tri
ally ordered phase 
onsistingof verti
es 1 and 2, 
f. Fig. 4.4. The me
hanism driving this transition is a symmetrybreaking between the verti
es of types a and b. The transition o

urs at the point
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es a attain the same weight as the sum of the other two types, i.e.,1 = a = b + 
 = 2 exp(��
); (4.37)where we have re-s
aled �b = �
 = 1 for simpli
ity; this implies �
 = ln 2. Now, on arandom graph of the des
ribed type verti
es of the types a and b 
an obviously notbe distinguished, sin
e they are related to ea
h other by rotations (of an angle of�=2). Sin
e we only have a 
y
li
 ordering of the links around ea
h vertex, di�erentrotational orientations of the vertex 
on�gurations 
annot be distinguished. Thus,for an 8-vertex model 
oupled to quantum-gravity random �4 graphs, one has toassume that a = b; (4.38)while the other vertex types 
an still be distinguished with only a 
y
li
 ordering ofthe links around ea
h vertex. For the 6-vertex model this leaves only two prin
ipallydi�erent 
hoi
es of models to be sensibly 
onsidered: the F model with �a = �b = 1,�
 = 0 and the so-
alled inverse F (IF ) model with �a = �b = �1, �
 = 0. The latter,however, 
an be shown to have no ordered phase and thus no phase transition. Sin
ethe additional disorder introdu
ed by the random graphs 
an be hardly expe
ted tomake an ordered phase appear, this model is of little interest for statisti
al me
hani
sand �eld theory and will thus not be 
onsidered further. For the 8-vertex model oneis left with a generalized F model. On the square latti
e it has two anti-ferroele
tri
phases dominated by verti
es of types 
 or d, respe
tively. The square-latti
e phasediagram of this model is illustrated in Fig. 4.11.In a 
omputer program for the simulation of vertex models 
oupled to �4 graphsthe rule a = b 
an obviously be broken, sin
e a formal distin
tion between verti
esa and b is automati
ally made. Sin
e, however, the dynami
s of the random graphsdoes not respe
t this distin
tion, a ferroele
tri
 order 
an impossibly o

ur. As ademonstration of this we present a short s
an of the behaviour of a formally de-�ned \KDP model" 
oupled to planar random �4 graphs. As 
an be seen from Fig.4.12, the spe
i�
 heat of the model exhibits a maximum for very low temperatures,mimi
king the behaviour at a physi
al phase transition. However, this is only a
onsequen
e of the fa
t that the graph dynami
s is subje
t to freezing as the tem-perature is lowered. Eventually, no allowed 
ip moves remain and, 
onsequently,no energy 
hanges o

ur, leading to a de
rease of the spe
i�
 heat. This me
ha-nism obviously 
annot 
orrespond to a physi
al phase transition, sin
e an allowed
y
li
 re-labelling of the links of some verti
es of the graph 
orresponds to the same
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Figure 4.11: Phase diagram of the 8-vertex generalized F model on the squarelatti
e, whi
h is a 
ut of the phase diagram of the full 8-vertex model resulting fromthe 
ondition a = b. The phases IV and V are anti-ferroele
tri
 and verti
es of types
 and d, respe
tively, dominate. Phase III is the disordered phase.physi
al situation, but would (in general) lead to an energy 
hange sin
e verti
esof the type a are transformed into verti
es of type b and vi
e versa, and a 6= b isassumed. As a 
omparison, in Fig. 4.12 we plot the spe
i�
 heat of the F modelon the same graphs, whi
h | as will be shown in the next 
hapter | exhibits aphysi
al, 
ontinuous phase transition to an anti-ferroele
tri
ally ordered phase.4.3.2 The order parameterFor the square latti
e an order parameter for the anti-ferroele
tri
 transition ofthe F model 
ould be de�ned by a suitably 
al
ulated overlap between the a
tualstate and one of the two anti-ferroele
tri
ally ordered ground states of the model.On a random graph, the 
orresponding ground states are not so easily found and,moreover, vary between di�erent realizations of the 
onne
tivity of the graph. Thus,this notion of an order parameter 
annot easily be generalized to the vertex modelson random graphs.To enable a generalization of the anti-ferroele
tri
 order parameter to the 
ase ofrandom graphs, the vertex model has to be transformed to one of its numerous equiv-alent representations. Stru
turally, the anti-ferroele
tri
ally ordered state has been
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Figure 4.12: Spe
i�
 heat of a formally de�ned \KDP model" 
oupled to randomplanar �4 graphs with labelled links and N2 = 256 verti
es as a fun
tion of theinverse temperature � = 1=kBT . Its maximum for very low temperatures does notindi
ate a phase transition, but is merely an artefa
t of the labelling of the links.For 
omparison, the spe
i�
 heat of the F model 
oupled to the same latti
es isshown, whi
h exhibits a physi
al phase transition.des
ribed as one of ferroele
tri
 order on two 
omplementary sub-latti
es, with theoverall dire
tion of the polarization 
hosen opposite to ea
h other on the sub-latti
es.A de
omposition of the square latti
e of this kind 
orresponds to a bipartition ortwo-
olouring of its sites, 
f. Fig. 4.5(b). This property of the de
omposition pre-vents an immediate generalization to a random �4 graph, whi
h is, in 
ontrast tothe square latti
e, not ne
essarily bipartite. This follows from the following lemma:a graph is bipartite if and only if it has no 
y
les, i.e. 
losed paths, of an odd length.Obviously, su
h an odd-length 
y
le would not allow a labelling of the verti
es metwhen traversing it with alternating 
olours. The proof of the inverse statement,namely that a graph without odd 
y
les is bipartite, is a bit more intri
ate and 
anbe found, e.g., in Ref. [194℄. However, the planar random �4 graphs 
onsidered inthe previous 
hapter obviously in
lude 
y
les of odd lengths, for example triangularfa
es; this 
an be expli
itly 
he
ked by inspe
tion of the 
o-ordination number dis-
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Figure 4.13: Transformation of the square-latti
e 6-vertex model to a \spin" modelon the dual latti
e. The four links of ea
h plaquette of the latti
e are traversed
ounter-
lo
kwise. The \spin" values written in the 
entres of the plaquettes arethe sum of �1 around the plaquettes, where +1 is 
hosen for arrows pointing in thedire
tion of the traversal and �1 for arrows pointing against it. Thus, the o

urring\spin" values are 0;�2;�4.tributions presented in Fig. 3.20, whi
h have non-zero entries for odd 
o-ordinationnumbers of the quadrangulations, 
orresponding to odd-length fa
e 
y
les (loops) ofthe �4 graphs.As mentioned above, when interpreting the vertex-model arrows as a dis
rete ve
tor�eld on the latti
e, the i
e rule for the 6-vertex model translates to a zero-divergen
e
ondition for this �eld. Therefore, it is essentially 
hara
terized by its 
url. We thustransform the vertex model from its interpretation as a �eld on the links of theoriginal latti
e to a representation of the 
url of this �eld on the fa
es of the latti
eor, equivalently, the sites of the dual latti
e. This is done by integrating the vertexmodel arrows around the elementary plaquettes; by Stokes' theorem, the result ofthis integral is the 
url asso
iated with the en
losed plaquette. By 
onvention, theplaquette boundaries are traversed in a 
ounter-
lo
kwise orientation. Then, arrowsalong the dire
tion of motion 
ontribute +1 to the integral and, 
orrespondingly,



140 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONarrows pointing against the orientation of traversal add �1. On the square latti
ethe resulting \spins" on the plaquettes 
an assume the values 0, �2, �4. This isdemonstrated in Fig. 4.13. In this way, the 6-vertex model 
an be transformed to asort of \spin model" on the dual of the original latti
e (whi
h is also square for the
onsidered 
ase). Note, however, that one still has restri
tions for the \spin" valuesallowed between neighbouring plaquettes, whi
h would lead to rather 
umbersomeintera
tion terms when trying to write down a Hamiltonian for this \spin" model8.Obviously, the mapping between both representations is not one-to-one, sin
e there
an be more than one arrow 
on�guration 
ompatible with a given 
url around theplaquettes. As a 
onsequen
e of the de�nition, the sum of the plaquette valuesinside any 
y
le of the latti
e is equal to the integral of the arrow dire
tions alongthe 
y
le. Espe
ially, for a (�nite) 
losed latti
e the sum of all plaquette \spins"vanishes exa
tly for ea
h 
on�guration of the vertex model9.In the new representation, the anti-ferroele
tri
ally ordered state of the model againhas a sub-latti
e stru
ture as is depi
ted in Fig. 4.14. However, in 
ontrast tothe sub-latti
e de
omposition of the original representation, now the dual latti
e isbroken down into sub-latti
es, i.e., the plaquettes of the latti
e are either shaded orplain, su
h that no two plaquettes of the same 
olour share a link. Then, an orderparameter for the anti-ferroele
tri
 transition 
an be de�ned as the thermal averageof the sum of the plaquette \spins", e.g., for the shaded plaquettes. Re
e
ting the
onstru
tion of the plaquette \spins" in Fig. 4.13 it is obvious that this de�nitionof the order parameter exa
tly 
oin
ides with the original de�nition of Se
tion 4.1.2on the level of 
on�gurations. The di�eren
e is, however, that the new de�nition
an be easily generalized to the 
ase of arbitrary latti
es, as long as their duals arebipartite. This is the 
ase for the planar random �4 graphs we are 
onsidering sin
eany planar quadrangulation is bipartite. This 
an be seen from the equivalen
e ofbipartiteness and the non-existen
e of odd-length 
y
les. The smallest 
y
les of su
ha latti
e are the fa
es, whi
h are quadrangles. All other 
y
les 
an be generated bygluing fa
e 
y
les together to 
losed paths, whi
h in ea
h step either leaves the length8Note also, that the presented transformation is vaguely similar to the transformation of the6-vertex model to a BCSOS (body-
entred solid-on-solid) model suggested by van Beijeren, seeRefs. [195, 196℄. The resulting models, however, are not the same. Related is also the pure looprepresentation of Refs. [197,198℄.9This 
onstraint should be 
ompared, e.g., to the magnetization of the Ising model, whosethermal average also vanishes for any �nite latti
e. On the level of 
on�gurations, however, non-zero values o

ur.



4.3. VERTEX MODELS ON RANDOM �4 GRAPHS 141

+4 −4 +4 −4 +4

−4 +4+4−4+4−4

+4 −4 +4 −4 +4 −4

+4−4+4−4+4−4

+4 −4 −4 +4 −4

+4−4+4−4+4−4

−4

+4

Figure 4.14: One of the two anti-ferroele
tri
 ground states of the square-latti
e Fmodel in the \plaquette-spin" representation. The system is fully ordered on thesub-latti
es of the shaded and plain plaquettes, with opposite total \magnetization"of �4 per plaquette. Thus, the total staggered polarization of Eq. (4.39) is �2 persite, the sign depending on the way �1 is assigned to the two 
olours.of the 
y
le invariant or 
hanges it by �2. Thus, a planar quadrangulation has noodd-length 
y
les and is hen
e bipartite. For latti
es with inequivalent 
y
les, i.e.,with non-spheri
al topology, the situation is somewhat more 
ompli
ated, sin
e thena 
y
le winding around the latti
e 
an have an odd length if the latti
e has an oddlength in one dire
tion. For the vertex-model simulations we will only be 
on
ernedwith planar graphs. Due to the bipartiteness of the 
orresponding quadrangulations,we 
an introdu
e a two-
olouring of the fa
es (loops) of the graphs. While for thesquare latti
e the numbers of shaded and plain plaquettes are always the same, the
oloured and plain fa
es of the �4 random graphs not ne
essarily o

ur at equalproportions. Thus, one should take the \spins" of both types of fa
es into a

ount,however \weighted" with the 
olour of the loops. Therefore, the 
on�gurationalvalue of the staggered polarization of the F model on a planar �4 random graph G
an be de�ned as P � 12 Xv2V (G�)CvSv; (4.39)



142 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONwhere G� denotes the dual of the graph, i.e. the quadrangulation, V (G�) the set ofverti
es of G�, Cv = �1 the \
olour" of the plaquette of G 
orresponding to thevertex v of G� and Sv the plaquette \spin" at v. Re
alling the 
onstru
tion of theplaquette \spins", this 
an also be written in terms of the �4 graph G asP = 12 Xf2F (G)Xlf2f CfA(lf ); (4.40)where F (G) denotes the set of fa
es (loops) of G, lf the links of fa
e f , Cf = �1the \
olour" of f and A(lf) = �1 the dire
tion of the vertex-model arrow on link lfwith respe
t to the pres
ribed anti-
lo
kwise traversal of the loops. Note that thisde�nition 
oin
ides with the approa
h of 
ounting only the shaded plaquettes for thesquare latti
e, sin
e now ea
h vertex-model arrow is 
ounted twi
e, whi
h is 
orre
tedfor by the additional fa
tor of 1=2. The thermal average hP i=2 is now taken as theorder parameter of a possibly o

urring anti-ferroele
tri
 phase transition of the Fmodel 
oupled to planar �4 random graphs. Note, however, that due to the overallarrow reversal symmetry of the vertex model the expe
tation value hP i will vanish atany temperature for a �nite graph. Thus, for �nite graphs we 
onsider the modulushjP ji instead, in 
omplete analogy to the usual treatment of the magnetization ofthe Ising model.4.3.3 Implementation of the simulation s
hemeOrder parameterFrom the pre
eding dis
ussion it is obvious that for the measurement of the staggeredpolarization of the F model on random �4 graphs one needs a two-
olouring of thefa
es of the graph. Sin
e in the dynami
al polygoni�
ations approa
h, the graphsthemselves are dynami
 entities, during the 
ourse of a Monte Carlo simulationsu
h a two-
olouring has to be found anew for ea
h graph 
on�guration observed.While in general graph 
olouring problems are NP hard and thus 
omputationallypra
ti
ally intra
table (see, e.g., Ref. [164℄), �nding a two-
olouring of the fa
es ofa graph whose dual is bipartite (or, equivalently, �nding a two-
olouring of the sitesof a bipartite graph) is simple. Obviously, there are only two inequivalent ways oftwo-
olouring su
h a graph. One of these ways 
an be found by 
olouring a startingfa
e at random, 
olouring the neighbouring fa
es with the other 
olour and so onuntil all fa
es have been 
oloured. This algorithm is guaranteed to lead to a valid
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olouring of the latti
e [164℄. The other 
olouring is found by inverting the
olours of all fa
es. Although this algorithm is polynomial in time it is 
learly stillundesirable to 
ompletely re-
olour the fa
es after ea
h link-
ip or minBU surgerymove of the graph.However, as 
an be easily seen, this is not really ne
essary. Consider one of theone-link 
ips for �4 graphs dis
ussed in Se
tion 3.2.4. Here, a proper two-
olouringbefore the 
ip stays valid after the 
ip without 
hanging any 
olours,
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su
h that the two-
olouring is invariant under the one-link 
ip move updates. Inthis and the following sket
hes the \�" and \	" symbols denote the 
olours of thefa
es adja
ent to the two depi
ted �4 verti
es. On the other hand, for a two-link
ip around a double link,
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��the 
olour of the fa
e en
losed by the double link has to be inverted. Thus, the two-link 
ip move is the only move 
apable of 
hanging the ratio of \�" and \	" fa
es ofthe graph. It is obvious that in general the 
onsidered 
lass of graphs in
ludes graphswith varying proportions of \�" and \	" fa
es, at least for the non-stri
t ensembles.This ex
eptional property of the two-link 
ip provides a somewhat belated proof forthe 
laim that the one-link 
ip dynami
s alone is not ergodi
 even for the 
ase ofsingular �4 graphs put up above in Se
tion 3.4. Finally, the minBU surgery movesdes
ribed in Se
tion 3.5.2 do not 
hange the adja
en
y properties of the fa
es, su
hthat no re-
olouring is ne
essary there. Thus, with a slight intervention for the 
aseof the two-link 
ip moves, the fa
e-two-
olouring of the graphs 
an be easily kept



144 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONup-to-date during the graph part of the update and measurements of the staggeredpolarization be
ome 
omputationally 
heap.Graph updates in the presen
e of matterThe graph update moves des
ribed in the previous 
hapter were there dis
ussed forthe 
ase of plain graphs, i.e., of pure quantum gravity without 
oupling to matter.In the presen
e of a de
oration of the graphs with matter variables some additional
onsiderations 
ome into play. First of all, in all 
ases the 
hange in energy of thematter part indu
ed by a proposed 
ip, insertion/deletion or surgery move has to be
omputed and taken into a

ount in the a

eptan
e probability, whi
h is, however,straightforward. For the vertex models, a 
ip move 
ould in prin
iple produ
edisallowed vertex 
on�gurations violating the arrow reversal symmetry. Su
h movesare prevented by assigning in�nite energies to unwanted vertex 
on�gurations (also,e.g., to the verti
es 7 and 8 for the 
ase of the 6-vertex model), su
h that forbiddenmoves are never a

epted. For the F model one 
he
ks by expli
it inspe
tion thatthis restri
tion still leaves some allowed link-
ips to perform, whi
h is maybe notself-evident.The insertion and deletion moves used in (pseudo) grand-
anoni
al simulations andto build up the initial graph need some di�erent treatment. For the deletion moveone has to 
he
k, whether the resulting vertex-model 
on�guration on the redu
edgraph is valid for the 
onsidered vertex model. If it is not, the move has to bereje
ted. Otherwise, the 
orresponding energy 
hange has to be taken into a

ountfor the a

eptan
e probability. On the other hand, for the insertion moves one hassome freedom in the de
oration of the newly inserted links of the graph. For the 6-vertex model one 
an guarantee a valid vertex-model 
on�guration after the insertionstep irrespe
tive of the initial 
on�guration both, for the simple insertion move forthe non-stri
t ensembles as well as for the more 
ompli
ated insertion move for thestri
t ensemble. The re
ipe for the de
oration is illustrated in Fig. 4.15. Again, theenergy of the additional vertex 
on�gurations has to be taken into a

ount whenformulating the detailed balan
e 
ondition for this type of move.Finally, the minBU surgery moves dis
ussed in Se
tion 3.5.2 have to pass the addi-tional 
he
k of whether the arrow 
on�guration on the external lines of the minBUmat
hes that of the marked vertex on the \mother universe" the minBU is re-
onne
ted to. For the F model, one 
an additionally exploit the rotational symme-
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Figure 4.15: Finite-energy insertion moves for the F model 
oupled to planar ran-dom �4 graphs. These moves are always allowed, irrespe
tive of the original arrow
on�guration, i.e., they involve a �nite energy 
hange. The dashed lines indi
atethe newly inserted arrows. (a) Insertion move for the stri
t ensemble. The arrowdire
tions are simply 
opied in either of the four dire
tions. The new \ring" isde
orated 
onsistently with arrows in a 
lo
kwise or 
ounter-
lo
kwise orientation.(b) Insertion move produ
ing a double link used for the non-stri
t ensembles. Thezero-divergen
e 
ondition ensures that the double link 
an always be 
onsistentlyde
orated.try of the vertex-model weights and 
he
k whether the minBU 
an be pasted at theposition of the marked vertex in one of four possible rotational orientations. Notethat no non-trivial 
hange of energy is possible here; either the move is forbiddenand thus reje
ted or it does not 
hange the vertex-model energy and is hen
e alwaysa

epted. Therefore minBU surgery steps have a non-vanishing a

eptan
e rate asthe temperature goes to zero. In 
ontrast, the (one- and two-link) 
ip-move dy-nami
s freezes as T ! 0 for the F model, sin
e a 
ip in a 
on�guration 
onsistingentirely of verti
es of type 5 and 6 (maybe up to small frustration e�e
ts) would
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e verti
es of the types 1{4 and thus has a vanishing a

eptan
e ratein the zero-temperature limit.



Chapter 5
The 6-Vertex Model on Random�4 Graphs
Having developed the ne
essary tools for Monte Carlo simulations of dynami
al �4random graphs and simulations of vertex models, an analysis of the 6-vertex model
oupled to Eu
lidean dis
rete quantum gravity or, equivalently, an exploration of thein
uen
e of annealed 
onne
tivity disorder on the 6-vertex model, 
an be attempted.As will be dis
ussed below, the 6-vertex model is at the heart of all integrablemodels of statisti
al me
hani
s in two dimensions. Transferring vertex models fromthe square latti
e to planar �4 random graphs, they take on a similar rôle for thestatisti
al me
hani
s of matter 
oupled to Eu
lidean quantum gravity. An analysisof the s
aling properties of the F model on the ensemble of planar �4 graphs dualto dynami
al quadrangulations provides an understanding of an important exampleof the marginal 
ase of a C = 1 theory 
oupled to quantum gravity.After a short survey of the densely meshed net of inter-relations between two-dimensional integrable models on regular and random latti
es, we re-
onsider thesquare-latti
e F model and the s
aling properties at its Kosterlitz-Thouless tran-sition point, mainly in order to �ne-tune the needed simulational ma
hinery, butalso as an interesting problem in itself. Combining the te
hniques des
ribed in theprevious two 
hapters, we perform extensive simulations of the F model 
oupledto random �4 graphs and analyse its behaviour in the vi
inity of the Kosterlitz-Thouless transition point. Having explored the phase stru
ture of the model, thedynami
al behaviour of the simulation algorithm for the 
ombined system of 
u
-tuating geometry and 
oupled matter will be dis
ussed. Finally, the ba
k-rea
tion147



148 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSof the matter variables on the 
u
tuating geometry, expressed in the string sus
ep-tibility exponent and the intrinsi
 Hausdor� dimension of the random graphs, isexplored.5.1 Analyti
al ResultsThe 
lassi�
ation of the s
aling properties of 
onformal �eld theories [199{201℄ 
ou-pled to the dynami
al polygoni�
ations model has re
eived 
onsiderable interestin the past de
ades. The KPZ/DDK ansatz [30{32℄ predi
ts a renormalization or\dressing" of 
onformal weights for models with 
entral 
harges C � 1, whi
h hasbeen 
on�rmed by exa
t results from matrix model 
al
ulations in all 
ases treatedso far, in
luding the Ising [33{35℄, Potts [36{39℄ and O(n) [40{44℄ models, 
f. Se
tion2.4.5.1.1 The 
ase of regular latti
esVertex models on regular latti
es are 
losely linked with di�erent series of integrablemodels, whi
h in turn are related to an exhaustive enumeration of 
ertain 
onformal�eld theories. In fa
t, it turns out that the 6-vertex model, being the 
riti
al versionof the 8-vertex model, in
ludes in suitable generalizations the 
riti
al points of allof the well-known two-dimensional latti
e models of statisti
al me
hani
s. Alter-natively, a 
ommon point of referen
e for all these 
riti
al models is given by theirasymptoti
 equivalen
e to a Coulomb gas. In the following, the net of these inter-relations is shortly exposed to underline the extraordinary importan
e of 6-vertextype of models for statisti
al me
hani
s.SOS and minimal modelsOn regular latti
es, the relation between latti
e models, 
onformal �eld theories andintegrability has been quite 
omprehensively explored. A parti
ularly interesting
lass of 
onformal �eld theories is given by the unitary minimal series of Ref. [141℄,where the 
entral 
harge assumes a dis
rete set of values labelled by an integervariable m, C = 1� 6m(m+ 1) ; m = 2; 3; 4; : : : (5.1)
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e models, whi
h realizes ea
h 
entral 
harge of this unitary series[202℄ is given by the restri
ted solid-on-solid (RSOS) models of Andrews, Baxterand Forrester [203℄. There, one assigns height variables hi to the sites of a latti
e,whose values are restri
ted to a �nite set of integers, hi = 1; : : : ; m. Moreover,the heights of neighbouring sites of the latti
e are 
onstrained to di�er by plus orminus one unit. The intera
tions depend of the height values at the 
orners of theelementary plaquettes or fa
es of the 
onsidered graph whi
h are assumed to besquares, when
e the RSOS models are also 
alled intera
tion-round-a-fa
e (IRF)models [55℄. In Ref. [203℄ it was shown that these models 
an be asymptoti
allymapped onto the 8-vertex model, su
h that the 
riti
al RSOS models 
orrespondto a 6-vertex model. A more abstra
t generalization of this 
lass of models, the so-
alled ADE series of models provides an even 
loser 
orresponden
e between latti
esystems and the 
onformal minimal models. These are de�ned as mappings from thelatti
e into the Dynkin diagrams of a simply-la
ed Lie algebra [204℄. These simply-la
ed Lie algebras 
ome in two dis
retely labelled series, Am and Dm, and the singleex
eptional 
ases E6, E7 and E8, see, e.g., Refs. [205, 206℄. Compared to the RSOSmodels, the restri
tion of unity di�eren
es in the heights of adja
ent sites is relaxedand repla
ed by the 
ondition that neighbouring heights should 
onform to the labelsof neighbouring verti
es of the 
orresponding Dynkin diagram. The RSOS models
an be shown to 
orrespond to the A series of ADE models. Pasquier [204, 207℄has shown that ea
h minimal model is realized in one of the ADE models. Thisgoes beyond the exemplary realisations of the RSOS models of Refs. [202,203℄, sin
ethere are usually di�erent realizations for a given 
entral 
harge, di�ering in thepart of the Virasoro algebra a
tually o

urring. Thus, the ADE model 
lassi�
ationresolves the \�ne stru
ture" of models of a given 
entral 
harge.The Coulomb gas and loop representationsBefore the pioneering papers Refs. [141, 199℄ on the 
lassi�
ation of 
riti
al be-haviour by methods of 
onformal �eld theory, a treatment of a variety of modelsin two dimensions had been su

essfully attempted by mapping them (exa
tly orasymptoti
ally) to a two-dimensional gas of intera
ting ele
tri
 and magneti
 point-like 
harges, i.e., the Coulomb gas [196℄, whi
h 
an also be used for an exhaustivelabelling of 
riti
al theories in two dimensions [208℄. This s
heme was pioneered bythe �nding of Kosterlitz and Thouless [63,64℄ that the in�nite-order phase transitionof the two-dimensional XY or O(2) model 
ould be des
ribed by vortex ex
itations
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ting like a gas of 
harges. A spe
ially tailored version of the XY model withHamiltonian,��H =Xhiji V (�i � �j); exp[V (�)℄ = 1Xk=�1 exp[�J(� � 2�k)2℄; (5.2)introdu
ed by Villain [209℄ 
an be mapped exa
tly onto a Coulomb gas. TheCoulomb gas method rests on the fa
t that the renormalization group equationsof the Coulomb gas 
an be formulated exa
tly to leading order and thus yield exa
t
riti
al exponents [196℄1. The Villain model, whose 
riti
al behaviour is numeri
allyfound to 
oin
ide with that of the original XY model as expe
ted [210,211℄, 
an beidenti
ally transformed to a model of the SOS type [212℄ by a duality transforma-tion [213℄. This so-
alled dis
rete Gaussian model is an unrestri
ted solid-on-solidmodel, i.e., with heights ranging from �1 to 1, and (dis
retised) Gaussian inter-a
tions between neighbouring heights.An impressive series of models 
an be mapped onto the Coulomb gas, in
luding the8-vertex, Ashkin-Teller, q-state Potts and O(n) ve
tor models [196℄. In all 
asesan intermediate step is a mapping to an SOS type model and the 
orrespondingloop representation. The general RSOS models of Ref. [203℄ themselves 
an also bemapped onto the Coulomb gas [195℄. For the F model, the equivalen
e with the so-
alled BCSOS (body-
entred SOS) model has been shown by van Beijeren [214℄. The
orresponding transformation 
onsists of mapping the bond arrows of the square-latti
e F model to arrows on the dual latti
e, turning all the arrows by a right-angleto the left. Interpreting the original arrow 
on�guration as a divergen
e-free ve
tor�eld, this transformation results in a 
url-free ve
tor �eld on the dual latti
e. Thusit 
an be understood as the gradient of s
alar height variables residing on the sitesof this dual square latti
e and di�ering by unit amounts between neighbouring sites,whi
h de
omposes the latti
e into sub-latti
es with only even and odd heights. Thisequivalen
e suggests that the Kosterlitz-Thouless (KT) transition point of the Fmodel is indeed equivalent to the 
orresponding transition of the XY model bytheir 
ommon equivalen
e to a Coulomb gas. It should be noted that the vorti
es ofthe XY model, triggering the Kosterlitz-Thouless phase transition there, naturally
orrespond to the sour
e and sink 
on�gurations 7 and 8 of the 8-vertex model andbe
ome identi�ed in the Coulomb gas limit.1Note, however, that in general some exa
t input found by other means is needed to �x thevalue of the renormalized 
oupling.



5.1. ANALYTICAL RESULTS 151Loop or polygon representations [215℄ 
an also be given for the dis
ussed models,in
luding the general RSOS model [216℄. For the 6- and 8-vertex models this poly-gon representation 
oin
ides with the loop representation dis
ussed in the previous
hapter in the 
ontext of the loop-
luster algorithm. To mention another example,it has been shown [217℄ that a suitably adapted version of the O(n) ve
tor model(sometimes denoted as the O(n) loop model) is identi
al to a model of 
losed polygonrings with partition fun
tion Z = XgraphsKLn
; (5.3)where 
 is the number of present loops and L denotes their total length. The loops
orrespond to the 
ontour lines of the spin 
lusters o

urring in a high-temperatureexpansion. Thus, the model is equivalent to a Coulomb gas and its 
riti
al exponents
an be evaluated [218℄. Su
h loop models have attra
ted mu
h attention due totheir obvious relation to 
on�gurations of polymers su
h as protein 
hains et
. [219℄.Note that the loops of this O(n) model do not normally 
over the whole latti
eand, instead, the model has \dilute" and \dense" phases, whereas the loop model
onsidered in the 
ontext of vertex models is a \fully pa
ked" loop model [220℄ withthe loops 
overing ea
h site of the latti
e. In the 
ontext of SOS type models, su
hloops o

ur as domain walls between regions of equal height.Combining the des
ribed equivalen
es, the 8-vertex model is found to be the \swiss-army ja
kknife" of statisti
al me
hani
s. Its 
riti
al version, the 6-vertex model,
an be 
onsidered as the basi
 element of two-dimensional 
riti
al systems and theasso
iated 
onformal �eld theories [57, 58℄.5.1.2 Vertex models 
oupled to quantum gravityThe KPZ/DDK formula shows that rational 
onformal �eld theories stay in these
tor of minimal models on 
oupling them to two-dimensional Eu
lidean quantumgravity, the 
orresponding 
riti
al exponents merely being renormalized due to thepresen
e of a 
u
tuating ba
kground. From the sket
hed various equivalen
es be-tween models of statisti
al me
hani
s not all survive the transformation to randomlatti
es. A loop representation in the spirit of the Coulomb gas treatment, however,has turned out to be the starting point for most of the solutions found so far. Itallowed for an evaluation of 
riti
al-point properties of the ADE intera
tion-round-a-fa
e models [221{223℄, being still related to the 
orresponding RSOS models, and
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(a) (b) (
)Figure 5.1: (a) Unique breakup of a vertex of type a = b into upper-left and lower-right 
orners. (b) One of the possible breakups of a vertex of type 
 into upper-leftand lower-right 
orners. (
) The other possible breakup of a vertex of type 
 intoupper-right and lower-left 
orners.a treatment of the O(n) loop model [40, 41, 224℄.The F model on a random latti
eThe F model on a (regular or random) four-valent graph 
an be represented asa gas of oriented loops [55, 225℄. To see this, one applies the breakup operationsde�ned in the 
ontext of the loop algorithm in Se
tion 4.2, restri
ting oneself to the\
orner-type" breakups 1 and 2 of Fig. 4.7. Thus, verti
es of type a and b allowexa
tly one breakup into 
orners, while verti
es of type 
 
an be broken up in bothways, 
f. Fig. 5.1. As has been shown in Se
tion 4.2, 
hoosing su
h a breakup forea
h vertex of the graph (uniquely for verti
es of types a and b and at random forverti
es of type 
), de
omposes it into a set of fully pa
ked, oriented loops, 
f. Fig.5.2. Conversely, summing over all possible 
lose-pa
ked loop arrangements and thetwo orientations of the loops yields all possible 
on�gurations of the F model on the
onsidered graph. The original weights of the 6-vertex model translate into weightsfor the oriented loops by assigning a phase fa
tor exp(i��=2) to ea
h left turn anda phase fa
tor exp(�i��=2) to ea
h right turn of an oriented loop [55, 225℄. Here,the 
oupling � is related to the weights of the F model as2,a=
 = b=
 = [2 
os(��)℄�1: (5.4)On the square (or any other regular) latti
e the phase fa
tors around ea
h loopalways sum up to a total of exp(�i�2�) due to the absen
e of 
urvature. On a2Note that, in terms of the parameter � of Eq. (4.10), this 
hoi
e of weights 
overs only therange �1 < � < 1, whi
h 
orresponds to the disordered phase of the square-latti
e F model.



5.1. ANALYTICAL RESULTS 153

Figure 5.2: A pie
e of a random quadrangulation and a 
on�guration of a fullypa
ked gas of oriented loops on the dual �4 graph, 
orresponding to a 
on�gurationof the 6-vertex model. This �gure is reprodu
ed from Ref. [73℄.random graph, however, a loop l in general re
eives a non-trivial weight exp[i��(l)℄with �(l) denoting the integral of the geodesi
 
urvature along the 
urve l, i.e.,�(l) = �2 (# left turns�# right turns) ; (5.5)
f. Se
tion 2.2.3.This loop expansion is related to the loop representation of the O(n) model men-tioned above. On a regular latti
e, due to the absen
e of 
urvature all loops re
eivethe same 
onstant fuga
ity n = 2 exp(�i�2�) of Eq. (5.3), leading to the 
riti
alO(n) model. On the 
onsidered random graphs this pi
ture only remains valid forthe limiting 
ase � = 0, where the 
urvature dependen
e 
an
els. Thus, the � = 0point of the F model on random planar �4 graphs is equivalent to the 
riti
al O(2)loop model [41, 72, 226℄ and thus, by universality, the original XY model3. Notethat this 
orresponds to the same 
riti
al point a=
 = b=
 = 1=2 as on the regularsquare latti
e, whi
h is natural sin
e the symmetry breaking is indu
ed by the 
hoi
eof the vertex weights. The KT point itself has been 
onsidered before within theframework of the XY model [227{229℄ and the O(n) loop models [40{44℄ 
oupled3Note that the loops o

urring in the expansion of the O(n) model are not in general 
losepa
ked on the latti
e as are the loops of the presented loop expansion of the F model. However,the 
riti
al O(2) model lies at the boundary of the dense phase of the O(n) model, where loops are
lose pa
ked [224℄.
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al polygoni�
ations. Also within the framework of ADE models 
onsid-ered in Refs. [221,222℄ the symmetri
 6-vertex model is naturally in
luded and someexa
t results were given at 
riti
ality. Finally, it should be noted that the 
riti
alF model 
oupled to the random graphs is equivalent to the 
riti
al point of a freemassless boson 
ompa
ti�ed on a 
ir
le and 
oupled to quantum gravity [226℄.The matrix model solutionAn exa
t solution of the F model 
oupled to planar random �4 graphs in its formu-lation as a matrix model has been found independently by P. Zinn-Justin [72℄ andI. Kostov [73℄. As was �rst noted by Ginsparg [124℄ the model 
an be formulated asthe perturbative expansion of the matrix integralW (a; 
; N) = Z d� d�y exp h�NTr ���y � a �2�y2 � 
2(��y)2�i ; (5.6)su
h that the partition fun
tion of the F model on planar graphs is the leading termof the 1=N expansion of Z(a; 
; N) = ln W (a; 
; N)W (0; 0; N) ; (5.7)
f. Eq. (2.94). Here, in 
ontrast to the Hermitian matrix models 
onsidered inSe
tion 2.3.4 above, � is taken to be a general N�N 
omplex matrix, thus endowingthe links of the �4 graphs represented by the propagators hTr��yi with a sense ofdire
tion, whi
h in turn 
an be interpreted as the de
oration of the graph edges withthe arrows of a vertex model, see also Refs. [128, 230℄. The pairing of two \heads"� and two \tails" �y at ea
h vertex in the matrix model potential ensures that thegenerated 
on�gurations satisfy the i
e rule.Introdu
ing an additional auxiliary Hermitian matrix, the resulting matrix model
an be interpreted as a deformation of the O(2) loop matrix model and the inte-gration over the 
omplex � matri
es 
an be performed [73℄. Employing the usualsaddle point te
hnique, the planar N !1 limit of the model 
an be solved. Whatis found is that for ea
h value of the 
oupling � of Eq. (5.4) the model has a 
riti
alpoint4 with 
entral 
harge C = 1. In terms of the vertex model 
oupling a these4Note that, as mentioned above, real values of � only 
over the parameter range of the disorderedphase of the square-latti
e F model. Thus, also the square-latti
e model is 
riti
al for all �.



5.1. ANALYTICAL RESULTS 155
riti
al points are parameterized as [72℄,a
rit = 132 sin(��=2)��=2 1
os3(��=2) : (5.8)Note that in 
ontrast to the regular latti
e model, where only the ratio a=
 = b=
had physi
al signi�
an
e, the 
ouplings a = b and 
 of the F model 
an be variedindependently here, sin
e a takes on the rôle of the 
osmologi
al 
onstant, i.e.,the fuga
ity 
ontrolling the 
ost of adding a new site to the graph. Exploring thevi
inity of this 
riti
al point, it is found that the string sus
eptibility exponent 
s = 0for all �, leading to only logarithmi
 divergen
es of the free energy [72, 73℄. Thisbehaviour is indeed expe
ted from the C ! 1 limit of the KPZ/DDK predi
tionEq. (2.137). The spe
tral density of the matrix integral has a singularity with anexponent (1 � �)=(1 + �) varying 
ontinuously along the 
riti
al line, whi
h leadsto an also 
ontinuously varying exponent for the s
aling of the typi
al length ofloops on the worldsheet, whi
h is a generally 
onsidered observable within the loopmodel s
heme [41, 73, 224℄. Finally, the vortex operators, whi
h 
orrespond to thedeformation of the 6-vertex model to an 8-vertex model by insertion of sinks andsour
es, i.e., verti
es of the types 7 and 8, are found to have dimension 1� � [73℄.Thus, the general phase stru
ture of the F model 
oupled to planar random �4graphs in the grand-
anoni
al ensemble of a varying number of verti
es has beenfound in Refs. [72,73℄. The existen
e of a Kosterlitz-Thouless type phase transitionat � = 0 was obvious beforehand from the equivalen
e to the O(2) loop model atthis point. Details of the behaviour of matter-related observables in the vi
inityof this point, su
h as the s
aling of the staggered anti-ferroele
tri
 polarizability,however, 
ould naturally not be extra
ted from the matrix model ansatz.Further vertex modelsFrom the given interpretation of the matrix model (5.6) it is obvious that a 
omplexmatrix model with potential,V (�; �y; a; 
; d) = 12��y � a �2�y2 � 
2(��y)2 � d4(�4 + �y4); (5.9)introdu
es the sour
e and sink 
on�gurations 7 and 8 and thus des
ribes an 8-vertexmodel 
oupled to random �4 graphs. For the spe
ial 
hoi
e of weights 
 = d, thismatrix model, written as a two-matrix model of real matri
es, 
an be solved by a
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hara
ter expansion method [231℄. As expe
ted, the model is found to have a 
riti
alpoint as it 
rosses the parameter spa
e of the 6-vertex model at d = 0, implying
 = 0, whi
h 
orresponds to the point � = 1=2 of the above parameterization (5.4)of the F model. Along its 
riti
al line the model exhibits 
entral 
harge C = 0behaviour with 
s = �1=2, the only ex
eption being its 
riti
al point, where is has
entral 
harge C = 1 and, 
orrespondingly, a string sus
eptibility exponent 
s = 0.Varying the potential of the 
omplex matrix integral, one 
an easily 
onstru
t matrixmodel formulations of further vertex models, in
luding matrix models on three-valent �3 graphs [128, 230℄. In the limit N ! 1, the matri
es be
ome repla
ed bys
alar variables and one des
ribes generi
, \thin" random graphs without a de�nedtopology. The 
orresponding s
alar integrals 
an be generally solved by a saddle-point 
al
ulation. For the vertex models on thin �3 and �4 graphs, a 
lever 
hoi
eof the parameters of a simple linear transformation of the matri
es maps the modelsonto known (and solved) problems su
h as Ising and Potts models in the mean-�eldlimit [128℄. For planar, \fat" �3 and �4 graphs, while a general solution is la
king,it is still possible to formulate well-known solved two-matrix models, espe
ially theIsing model, as spe
ial 
ases of vertex models [128℄. Also, the solution of a so-
alledbond vertex model for the �3 
ase, where the links of the graph do not 
arry arrowsbut are rather o

upied or uno

upied, 
ould be found by transformation to an Isingmodel in a �eld [230℄.5.2 The Anti-Ferroele
tri
 Phase TransitionObviously, the in�nite-order phase transition to an anti-ferroele
tri
ally orderedphase predi
ted to o

ur at the parti
ular 
hoi
e of weights a=
 = b=
 = 1=2 ofthe F model 
oupled to planar random �4 graphs is the main point of interestin analyzing this model. The s
aling and �nite-size s
aling theories asso
iated withsu
h a phase transition of the Kosterlitz-Thouless type are quite di�erent from thoseat �nite-order phase transitions and will thus be reviewed shortly. Even though theKT point of the F model is known to be equivalent to the 
riti
al point of the XYmodel, the two models do not exhibit 
ompletely identi
al s
aling behaviour dueto di�eren
es in the relevant observables. Sin
e we will �nd a numeri
al s
alinganalysis of the KT point of the F model on random latti
es extremely diÆ
ult dueto the 
ombined e�e
t of the logarithmi
 
orre
tions asso
iated with every C = 1theory and the smallness of the a

essible e�e
tive linear extensions of the latti
es



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 157resulting from their large Hausdor� dimension, the ma
hinery of analysis is testedand re�ned for the 
ase of the F model on the square latti
e, where at least these
ond 
orre
tion e�e
t is absent.5.2.1 S
aling at an in�nite order phase transitionEssential singularities and the XY modelEven though a transition of in�nite order was found by Lieb [56, 62℄ in the phasediagram of the F model before Kosterlitz and Thouless formulated their famoustheory for the phase transition of the two-dimensional XY model [63, 64℄, the o
-
urren
e of essential singularities at a phase transition point is invariably linked tothe latter two names5. As a 
onsequen
e of a theorem by Mermin, Wagner andHohenberg [233, 234℄, the two-dimensional XY model 
annot develop an orderedphase with a non-vanishing value of a lo
ally de�ned order parameter for non-zerotemperature. Instead, the transition is des
ribed as the binding or unbinding of vor-tex pairs superimposed on an e�e
tive spin-wave behaviour of the low-temperaturephase. Above the 
riti
al temperature, spin-spin 
orrelations de
ay exponentially,G(r) � e�r=�(T ); T > T
; (5.10)while below T
 long-range 
orrelations are en
ountered,G(r) � r��(T ); T � T
; (5.11)su
h that the 
orrelation length �(T ) = 1 for all T � T
 and the massless low-temperature phase 
orresponds to a 
riti
al line terminating in the 
riti
al pointT
 [63, 64, 235℄. The 
riti
al exponent � varies 
ontinuously along this 
riti
al line.Approa
hing the 
riti
al point T
 from above, the 
orrelation length diverges expo-nentially instead of algebrai
ally as for a usual 
ontinuous phase transition6,�(T ) � exp(a=t�); t > 0; (5.12)5It should be noted that the notion of topologi
al ex
itations triggering the phase transition ofthe XY model was introdu
ed before the works of Kosterlitz and Thouless by Berezinskii [232℄.6For the KT point of the square-latti
e F model it 
an be shown that in fa
t all temperaturederivatives of the free energy exist and are 
ontinuous a
ross the transition point [55℄.
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)=T
 and7 � = 1=2. The behaviour of further observables at thetransition point 
an be 
onveniently expressed in terms of this singularity of the
orrelation length. In parti
ular, the magneti
 sus
eptibility diverges as�(T ) � �
=� = �2��
; T > T
; (5.13)where �
 � �(T
) = 1=4. The spe
i�
 heat, on the other hand, is only very weaklysingular, behaving as Cv � ��2: (5.14)Finite-size s
alingFinite-size s
aling (FSS) analyses of the KT transition of the XY model are ham-pered by the o

urring essential singularities and the presen
e of a 
riti
al phase. Asa 
onsequen
e of the latter, magneti
 observables su
h as the sus
eptibility do notexhibit maxima in the vi
inity of the 
riti
al point, whi
h otherwise 
ould be usedfor an estimation of the transition temperature from �nite systems. As will be shownbelow, the situation is di�erent for the KT point of the F model, where the analogueof the magneti
 sus
eptibility, the staggered anti-ferroele
tri
 polarizability, showsa maximum for �nite latti
es. Nevertheless, the general arguments for �nite-sizeshifting and rounding remain valid, su
h that suitably de�ned pseudo-
riti
al pointsT �(L) for systems with linear extent L s
ale to the 
riti
al point T
 as [236℄[T �(L)� T
℄=T
 � (lnL)�1=�; (5.15)
f. Eq. (5.12). SuÆ
iently 
lose to the 
riti
al point the growth of the 
orrelationlength be
omes limited by the linear extent L of the system and, 
orrespondingly,� 
an be repla
ed by L to yield the �nite-size s
aling law�(L; T
) � L
=� = L2��
 ; (5.16)whi
h for �
 = 1=4 predi
ts a rather strong divergen
e. On �nite latti
es, thespe
i�
 heat is found to exhibit a smooth peak, whi
h is however 
onsiderably shiftedaway from the 
riti
al point into the high-temperature phase and does not s
ale asthe latti
e size is in
reased [236℄. Thus, with the main strengths of FSS being7Note that the exponent � is often 
alled �. However, to underline the fa
t that this exponent,albeit being related to the singular behaviour of the 
orrelation length like � for an ordinary phasetransition, does not des
ribe a power-law singularity, we prefer to use a di�erent symbol.



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 159not exploitable for the KT phase transition, the fo
us of numeri
al analyses of theXY and related models has been on thermal s
aling, see, e.g., Refs. [210, 237{239℄.In addition, renormalization group analyses predi
t logarithmi
 
orre
tions to theleading s
aling behaviour [240,241℄, as expe
ted for a C = 1 theory, whi
h have beenfound ex
eptionally hard to reprodu
e numeri
ally due to the presen
e of higherorder 
orre
tions of 
omparable magnitude (for the a

essible latti
e sizes) [211℄.5.2.2 The square-latti
e F modelAs mentioned above, an analysis of the square-latti
e F model is put in front of theinvestigation of the random graph problem to allow for a detailed 
omparison andto 
alibrate the needed numeri
al ma
hinery. To begin, we present some spe
i�
exa
t results and 
onje
tures for the square-latti
e F model, whi
h have not yetbeen reported in Se
tion 4.1.2 above.Analyti
al resultsWe assume a parameterization of the F model 
oupling parameters, whi
h involvesa temperature variable and thus sti
ks more 
losely to the language of statisti
alme
hani
s than to that of �eld theory. It thus di�ers from the parameterization(5.4) used in the 
ontext of the matrix model solution, whi
h only 
overs the 
riti
aldisordered phase of the F model. Assuming �a = �b = 1 in Eq. (4.6), we havea = b = e��; 
 = 1; (5.17)where � = 1=kBT , su
h that the KT point o

urs for �
 = ln 2. From Lieb's exa
tsolution of the square-latti
e F model [62℄, the 
orrelation length and the free energyare expe
ted to exhibit the essential singularities found for theXY model, 
f. Se
tion4.1.2. Additionally, the exa
t solution provides the amplitudes and 
orre
tion terms.In the thermodynami
 limit, one �nds [55℄��1(�) � 4 exp(��2=2�);fsing(�) � 4kBT
 exp(��2=�); (5.18)where � is related to the redu
ed 
oupling � of Eq. (4.10) as � = � 
osh �, whi
h
overs the anti-ferroele
tri
ally ordered phase � < �1 for real values of �. Ingeneral, the 
oupling � is related to the 
oupling � de�ned in (5.4) as � = 2�i�. As
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riti
al point is approa
hed from the low-temperature side, � behaves as � � t1=2to leading order8, i.e., � = 1=2 as for the XY model. Here, fsing denotes the singularpart of the free energy per site. The spe
i�
 heat diverges as ��2 as expe
ted. Forlater referen
e, we also note the 
riti
al values of the internal energy U and spe
i�
heat Cv, whi
h are given by [56℄U(T
) = 1=3;Cv(T
) = 28(ln 2)2=45: (5.19)Con
erning properties related to the order parameter, the situation for the F modelis somewhat di�erent from that of the XY model. The order parameter de�ned inEq. (4.11) for the square latti
e resp. in Eqs. (4.39) or (4.40) for general (in
ludingrandom) latti
es, is non-vanishing for �nite temperatures in the ordered phase9.Thus, the 
orresponding staggered anti-ferroele
tri
 polarizability,� = N�12 (hP 20 i � hjP0ji2); (5.20)where N2 as usual denotes the number of verti
es of the 
onsidered graph, showsa 
lear peak in the vi
inity of the 
riti
al point for �nite latti
es. However, in thelimit N2 ! 1 the polarizability diverges throughout the whole high-temperaturephase, whi
h is 
riti
al as mentioned in Se
tion 4.1.2. Note that 
ompared to theXY model the rôles of high- and low-temperature phases are ex
hanged in thisrespe
t, as expe
ted from duality [213℄. Although the F model has not been solvedin a staggered ele
tri
 �eld for general temperatures, the spontaneous staggeredpolarization is known exa
tly for all temperatures [242℄,P0(�) = " 1Yn=1 tanh(n�)#2 ; (5.21)whi
h in the vi
inity of the 
riti
al point s
ales asP0(�) � ��1 exp(��2=4�): (5.22)8Note that the deviation t from the 
riti
al point is de�ned in terms of the weights a, b and 
instead of the temperature T in Ref. [55℄. For small t, however, both de�nitions asymptoti
ally
oin
ide.9Note that the Mermin-Wagner-Hohenberg theorem [233, 234℄ does not apply to the F modelwith its dis
rete symmetry.
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aling relation �+2�+
 = 2 to be valid10, from Eqs.(5.18) and (5.22) Baxter 
onje
tured the following s
aling of the zero-�eld staggeredpolarizability [242℄, �(�) � ��2 exp(�2=2�) � (ln �)2�; (5.23)whi
h implies 
=� = 2 � �
 = 1. The apparent dis
repan
y with the XY modelresults should not be interpreted as an indi
ation of di�ering universality 
lasses ofthe models (whi
h are equivalent at their 
riti
al points), but re
e
ts the fa
t thatthe F model staggered polarizability is not equivalent to the magneti
 sus
eptibilityof the XY model. Sin
e the whole high-temperature phase is 
riti
al, s
aling of thepolarizability is expe
ted throughout this phase. In fa
t, the F model in a staggered�eld 
an be solved exa
tly at the point a=
 = 1=p2 (
orresponding to � = 0 or� = i�=2), where its parameter spa
e 
rosses that of the free-fermion model, 
f.Eq. (4.19) [243℄. At this point, a logarithmi
 divergen
e of the polarizability isfound, implying 2�� = 0, su
h that, obviously, the divergen
e of � be
omes weakerwithin the 
riti
al phase, in 
ontrast to the XY model, where � is found to de
reasefrom its 
riti
al value �
 = 1=4 when moving further into the 
riti
al phase, see,e.g., [237℄.Monte Carlo analysisIn 
ontrast to the exa
tly solvable Ising model in two dimensions, whi
h has servedas a playground and referen
e point for the Monte Carlo method right from its �rstbeginnings (see, e.g., Ref. [155℄), the exa
tly solved 6-vertex model has re
eived
onsiderably less attention as far as numeri
al work is 
on
erned. The only MonteCarlo analyses of the square-latti
e F model we found are reported in Refs. [244,245℄in the 
ontext of the equivalen
e of the F model to the BCSOS surfa
e model, whoseroughening transition 
orresponds to the KT point of the F model11.To 
alibrate our set of simulation and analysis tools, we performed simulations of thesquare-latti
e F model and investigated the s
aling behaviour of the spe
i�
 heat and10Although the KT transition is 
hara
terized by essential singularities and thus the 
onventional
riti
al exponents are meaningless, one 
an re-de�ne them by 
onsidering s
aling as a fun
tion ofthe 
orrelation length � instead of the redu
ed temperature t, 
f. Se
tion 4.1.2. The exponents�, � and 
 used here and in the following should be understood in that sense. The exponent �,however, has its spe
ial meaning de�ned by (5.12).11Note that in 
ontrast to the \stati
" F model 
onsidered here, various dynami
 extensions ofthe 6-vertex model have been extensively explored as models of surfa
e growth, see, e.g., Ref. [246℄.
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Figure 5.3: Non-s
aling of the spe
i�
 heat Cv of the square-latti
e F model fromMonte Carlo simulations. The square latti
e is 
onsidered wrapped around a torus.From the simulated latti
e sizes ranging from N2 = 162 = 256 up to N2 = 2562 =65 536 sites, only three are shown for the sake of 
learness of the diagram.
the staggered anti-ferroele
tri
 polarization and polarizability. The fo
us was laidon the in
uen
e of di�erent 
orre
tion terms as well as the 
onsidered latti
e sizes onthe �t results, su
h as to develop an intuition for the analysis of the random graph
ase, guided by the available exa
t results for the mu
h simpler square-latti
e model.Simulations were performed for square latti
es with periodi
 boundary 
onditionsusing the same simulation program as later on for the random graph systems (butwith the graph 
ip and surgery moves omitted) to ensure maximal 
omparabilitybetween the regular and random graph results. Sin
e the loop algorithm is foundto be very eÆ
ient in eliminating the 
riti
al slowing down at the F model KTpoint [174,188℄, measurements were taken after ea
h multi-
luster loop-update step.Latti
e sizes up to N2 = 10242 � 106 sites were simulated, whi
h is by far largerthan the a

essible sizes for the random graph 
ase, taking between 1 � 105 and2� 105 measurements.
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 A� Q256 0.73822(48) 1.419(25) 0.00576 0.73270(59) 1.813(35) 0.001024 0.73033(74) 2.007(50) 0.002116 0.72635(110) 2.365(89) 0.464096 0.72409(172) 2.581(154) 0.888464 0.72322(261) 2.667(249) 0.7816 384 0.72077(463) 2.923(469) 0.79Table 5.1: Parameters of least-squares �ts of the fun
tional form (5.24) to thesimulation estimates for the peak lo
ations of the staggered polarizability of thesquare-latti
e F model. From the set of simulated latti
e sizes from N2 = 256 toN2 = 65 536 sites, the smallest sizes are su

essively ex
luded from the �ts, whi
hare performed for the data points between N2 = N2;min and N2 = 65 536. Q denotesthe quality-of-�t parameter, see Ref. [170℄.Non-s
aling of the spe
i�
 heatThe spe
i�
 heat of the square-latti
e F model exhibits a broad peak shifted awayfrom the 
riti
al point into the low-temperature phase [56℄12. The essential singu-larity predi
ted by Eq. (5.14) 
annot in general be resolved, sin
e it is 
overed bythe presen
e of non-singular ba
kground terms. Thus, a non-s
aling of the broadspe
i�
-heat peaks (together with a s
aling of the sus
eptibility or polarizability tobe 
onsidered below) is 
ommonly taken as a good indi
ator for a phase transitionto be of the KT type [236℄. Indeed, this is what is found from the simulation dataas is shown in Fig. 5.3. Neither does the width of the peaks shrink nor do theirheights s
ale as the latti
e size is in
reased. In fa
t, for the broad range of latti
esizes from N2 = 162 = 256 up to N2 = 2562 = 65 536 sites, all data almost 
ollapseonto a single 
urve with only small deviations for the smallest latti
es.The 
riti
al 
ouplingTo determine the 
riti
al 
oupling, we exploit the fa
t that the maxima of the stag-gered polarizability for �nite latti
es should be shifted away from the 
riti
al point12Note that the spe
i�
 heat of the 2D XY model exhibits a peak in the high-temperature phase,as expe
ted from duality.
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Figure 5.4: Peak positions of the staggered anti-ferroele
tri
 polarizability of thesquare-latti
e F model from MC simulations, as a fun
tion of the number of sitesN2 of the 
onsidered latti
es. The solid lines show �ts of the fun
tional form (5.24)to the data, the range of the �ts indi
ating the window of latti
e sizes in
luded inthe �t.a

ording to the s
aling relation Eq. (5.15). The peak lo
ations were determinedfrom simulations at nearby 
ouplings � by means of the reweighting te
hnique, 
f.Appendix A.5. Transforming the s
aling ansatz (5.15) to the 
oupling � instead ofthe temperature T , we have to �rst order,��(N2) = �
 + A�(lnN2)�2; (5.24)where s
aling is formulated in terms of the number of sites N2 of the latti
e, an-ti
ipating the notation of the random graph 
ase, and ��(N2) denotes the lo
ationof the maximum of the staggered polarizability � for a pN2 �pN2 square latti
e.The determined peak lo
ations of the polarizability together with several �ts of thefun
tional form (5.24) to the data, omitting more and more of the smaller latti
eresults, are shown in Fig. 5.4. The 
orresponding �t parameters are 
ompiled inTable 5.1. Apparently, the presented 
urves �t the data rather poorly, at least forthe smaller latti
e sizes. Compared to the exa
t transition point �
 = ln 2, the esti-mates are 
learly too large, dropping only very slowly as points from the small-N2
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 A� 1=~� Q256 �155.34 156.21 0.00033 0.00576 �17.033 17.92 0.0032 0.821024 �14.42 15.31 0.0038 0.722116 0.63(21) 0.357(33) 0.48(82) 0.964096 0.69(11) 0.481(835) 0.88(157) 0.91(b) N2;min �
 A� B� Q256 0.6957(25) 13.8(7) �2.64(2) 0.51576 0.7020(42) 11.7(14) �2.56(5) 0.881024 0.6974(64) 13.4(22) �2.63(8) 0.932116 0.7050(117) 10.4(44) �2.47(31) 0.97Table 5.2: (a) Parameters of non-linear �ts of the fun
tional form (5.25) to thesimulation estimates for the peak lo
ations of the staggered polarizability of thesquare-latti
e F model. For small N2;min the �t routine gives huge or even unde�nederror estimates, whi
h are thus omitted. (b) Parameters of �ts with log-log 
orre
tionterm of the fun
tional form (5.26) to the simulation estimates for the peak lo
ationsof the staggered polarizability.side of the list are su

essively omitted. Thus, the expe
ted logarithmi
 
orre
tionsto the leading s
aling behaviour (5.24) have to be taken into a

ount to yield reliableresults. Note that this e�e
t here o

urs for rather large latti
es, where for a �nite-order 
ontinuous phase transition the presen
e of 
orre
tions would not be mu
h ofan issue for the determination of the leading s
aling behaviour. The linear extentsof the latti
es 
onsidered here are in fa
t mu
h larger than the sizes a

essible forthe random graph 
ase to be dis
ussed below.Sin
e for the polarizability an exa
t, 
losed-form expression is not available even forthe square-latti
e model, 
orre
tions 
annot be taken into a

ount with their exa
tform. Instead, an e�e
tive des
ription will have to be employed. One possible ansatzis to relax the 
onstraint on the exponent of the logarithm of Eq. (5.24), introdu
ingas an additional �t parameter an exponent ~� as��(N2) = �
 + A�(lnN2)�1=~�; (5.25)resulting in an e�e
tive exponent ~� 6= � = 1=2, in
orporating the present 
orre
tionterms in a phenomenologi
al way. This approa
h yields very unstable results, sin
e
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rease in the amplitude A� 
an be 
ompensated by an in
reaseof the e�e
tive exponent ~� and vi
e versa, 
f. Table 5.2(a). Only for the two largeststarting sizes N2;min a sensible result is obtained. A di�erent 
hoi
e of 
orre
tionterm yields mu
h more reliable results, namely a log-log 
orre
tion of the form��(N2) = �
 + A�(lnN2)�2 �1 +B� ln lnN2lnN2 � ; (5.26)whi
h has the advantage of still being a linear �t, thus promising mu
h more stable�t results. This is indeed the 
ase, as 
an be seen from Table 5.2(b) and Fig. 5.5.This 
hoi
e of fun
tional form is somewhat ad ho
; however, similar 
orre
tions havebeen observed for the 
ase of the XY Villain model [211,240,241℄. In prin
iple, onewould at least want to admit the log-log 
orre
tion term to have an additional,variable exponent. However, we �nd the data not pre
ise enough to reliably �t tothem a non-linear fun
tion with more than two independent parameters. Using thusthe ansatz (5.26) and taking, e.g., the result with N2;min = 1024, our estimate forthe 
riti
al 
oupling is �
 = 0:6974(64), in good agreement with the exa
t answer�
 = ln 2 � 0:693.FSS of the polarizabilityFrom Baxter's 
onje
ture (5.23) for the s
aling of the staggered anti-ferroele
tri
polarizability of the square-latti
e F model one dedu
es the following 
riti
al-point�nite-size s
aling behaviour of �,�(N2; �
) � N
=d�2 (lnN2)2; (5.27)where d denotes the dimensionality of the latti
e and, from Eq. (5.23), 
=d� = 1=2.Taking only the leading term into a

ount, i.e. �tting the form�(N2; �
) = A�N
=d�2 ; (5.28)to the simulation data, again a very slow drift from slightly too large values for 
=d�towards the 
orre
t result is observed, just as for the 
ase of the peak positions. Fig-ure 5.6 shows the simulation results for the 
riti
al polarizability together with a �t ofthe fun
tional form (5.28) to the data, resulting in an estimate 
=d� = 0:53892(85),whi
h is 
learly too large. Here, the results from latti
e sizes between N2 = 642 andN2 = 10242 sites have been taken into a

ount. Thus, again, 
orre
tions to s
alinghave to be taken into a

ount, even though the latti
e sizes have now been in
reased
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Figure 5.5: Peak positions of the staggered anti-ferroele
tri
 polarizability of thesquare-latti
e F model from MC simulations, as a fun
tion of the number of sitesN2 of the 
onsidered latti
es. The solid line shows a �t of the log-log 
orre
tionform (5.26) to the data, where the range of in
luded latti
e sizes was taken to beN2 = 1024; : : : ; 65 536.up to N2 � 106 sites. Fitting to the exa
t form given in Eq. (5.27), we �nd poor �tresults with exponents 
=d� around 0:3 and quality-of-�t parameters Q vanishingto ma
hine pre
ision. However, letting the 
orre
tion exponent vary, i.e., �tting thefun
tional form �(N2; �
) = A�N
=d�2 (lnN2)!; (5.29)with an additional heuristi
 �t parameter ! yields stable and good-quality �t results.Fitting the range N2 = 242; : : : ; 10242 to (5.29), we �nd the following �t parameters,A� = 1:27(06);
=d� = 0:5083(45);! = 0:32(04);Q = 0:78; (5.30)in reasonable agreement with the exa
t result 
=d� = 1=2.
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Figure 5.6: Finite-size s
aling of the 
riti
al staggered polarizability � of the square-latti
e F model for latti
e sizes from N2 = 162 up to N2 = 10242 in a log-log plot.The solid line shows a least-squares, power-law �t of the fun
tional form (5.28) tothe data.FSS of the spontaneous polarizationThe s
aling form (5.22) of the spontaneous staggered polarization translates intoFSS as P0(N2; �
) � N��=d�2 lnN2; (5.31)where �=d� = 1=4 from Eq. (5.22). As for the previously dis
ussed observables, asimple �t to the leading term,P0(N2; �
) = AP0N��=d�2 ; (5.32)yields exponents �=d� approa
hing the expe
ted value logarithmi
ally slow on su
-
essively omitting data points from the small-N2 side of the list. For instan
e, forthe range N2 = 922; : : : ; 10242 we �nd �=d� = 0:23290(98), whi
h is still far fromthe exa
t value in terms of the quoted statisti
al error. On the other hand, in
ludingthe logarithmi
 
orre
tion term of (5.31) as it stands, leads to estimates for �=d�even farther away from the true answer, with values around 0:3 and standard error
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orre
tions into a

ount via an e�e
tive
orre
tion exponent ! as P0(N2; �
) = AP0N��=d�2 (lnN2)!; (5.33)leads to stable �ts and a satisfa
tory agreement with the exa
t result for the 
on-sidered latti
e sizes, the parameter estimates beingAP0 = 2:002(78);�=d� = 0:2436(38);! = 0:109(33);Q = 0:14; (5.34)where latti
e sizes from N2 = 242 to N2 = 10242 were in
luded.Thermal s
alingThe dis
ussed FSS of the 
riti
al polarization and polarizability is independent of thevalue of the 
riti
al exponent �. Thus, to dire
tly verify the exponential type of theobserved divergen
es and to estimate the parameter �, one has to 
onsider thermalinstead of �nite-size s
aling. Figure 5.7 shows an overview of the thermal behaviourof the staggered polarizability for di�erent latti
e sizes. The 
lear s
aling of � for thehigh-temperature region � < �
 = ln 2 indi
ates the presen
e of a 
riti
al phase. In
ontrast, for the low-temperature phase to the right of the peaks, the polarizability
urves essentially 
ollapse and only start to diverge as the 
orrelation length rea
hesthe linear extent of the 
onsidered latti
e. Therefore, a thermal s
aling analysis mustbe performed in the low-temperature vi
inity of the 
riti
al point, the behaviour inthe high-temperature phase being 
ompletely governed by �nite-size e�e
ts.Here, we do not 
onsider the s
aling of the 
orrelation length itself, sin
e for the
ase of random latti
es to be dis
ussed below it is a non-trivial and not 
ompletelyresolved question, how to reliably determine 
onne
ted 
orrelation fun
tions (andthus the 
orrelation length) in an ordered phase [247℄. Instead, we 
onsider thethermal s
aling of the staggered polarizability for a single latti
e size of N2 = 2562 =65 536 sites. Simulations were performed for a 
losely spa
ed series of temperaturesin the low-temperature vi
inity of the 
riti
al point. From the s
aling 
onje
ture(5.22), we expe
t the following s
aling relation,ln�(�) � A� +B�(� � �
)�� + C� ln(� � �
); (5.35)
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Figure 5.7: S
aling of the polarizability peaks of the square-latti
e F model fromMonte Carlo simulations. The lines simply 
onne
t the data points and are drawn forillustrative purposes. The 
urves show a 
lear s
aling of the polarizability in the 
rit-i
al high-temperature phase (to left of the peaks), whereas in the low-temperaturelimit � !1 the 
urves 
ollapse, only diverging as the 
orrelation lengths rea
h therespe
tive linear extents of the latti
es when approa
hing the 
riti
al point.whi
h should be valid as � ! �+
 in the thermodynami
 limit N2 !1. Note thatthis relation is essentially independent of the value of the 
riti
al exponent 
, whi
honly enters the amplitude A�. The window of validity of (5.35) for the thermals
aling of � for a �nite latti
e is limited for small deviations � � �
 by �nite-sizee�e
ts and for large deviations ���
 by higher-order 
orre
tions to s
aling. Ideally,one would want to monitor the e�e
t of the �nite latti
e size by 
omparing thevalue of the 
orrelation length � at a given � > �
 with the linear extent L of thelatti
e and ensuring the ratio �=L not to ex
eed a given threshold, say 1=15 [210℄.However, sin
e we do not want to 
onsider 
orrelation lengths in view of the more
ompli
ated random graph problem, the onset of �nite-size e�e
ts is estimated bythe beginning of the rounding of the exponential in
rease of � as �
 is approa
hed.Furthermore, with the given a

ura
y of our data we �nd it impossible to reliably�t the �ve-parameter family of fun
tions (5.35) to the data. Thus, we �rst drop
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Figure 5.8: Thermal s
aling of the polarizability of the square-latti
e F model on aN2 = 2562 = 65 536 latti
e. The solid line shows a �t of the fun
tional form (5.35)to the data, where the parameters C� = 0 and �
 = ln 2 were kept �xed. The extentof the 
urve indi
ates the window of data points in
luded in the �t.the logarithmi
 
orre
tion term, i.e., we enfor
e C� = 0. The resulting non-linearfour-parameter �t yields �
 = 0:56(24) and � = �2:4(33), whi
h is 
onsistent withthe exa
t result, but obviously not very useful. Thus, we additionally either �x the
riti
al 
oupling �
 at its exa
t value �
 = ln 2 and determine � from the �t, or we�x � = 1=2 and determine �
. The simulation results together with a �t with �
�xed are shown in Fig. 5.8. The �t parameters are,A� = �2:18(39);B� = 2:37(27);� = 0:519(27);Q = 0:12; (5.36)
indi
ating good agreement with the expe
ted result � = 1=2. The other type of �t,



172 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSi.e., with � = 1=2 �xed, yields, A� = �2:38(13);B� = 2:531(67);�
 = 0:6944(19);Q = 0:12; (5.37)for the same set of simulation points, whi
h should be 
ompared to �
 = ln2 � 0:693.5.2.3 The F model on planar �4 random graphsWhile it is already rather non-trivial to resolve the Kosterlitz-Thouless nature ofthe phase transition of the square-latti
e F model via MC simulations due to thepresen
e of logarithmi
 
orre
tion terms, an analysis of the F model on planarrandom �4 graphs is additionally 
ompli
ated by the strongly redu
ed linear extentsof the latti
es resulting from their large fra
tal dimension. We performed simulationsof the 
ombined system ex
lusively for latti
es of spheri
al topology, i.e., planargraphs, of sizes up to N2 = 65 536 sites. The graph geometry is being updated withthe 
ombined (one- and two-) link-
ip and minBU surgery dynami
s des
ribed inChapter 3 and the loop algorithm of Se
tion 4.2 is applied for the vertex model part.Unless otherwise stated, all simulations were performed for the regular ensemble of�4 graphs. A pro�ling analysis of the exe
ution times of the simulation programshows that more than half of the total run time is spent for �nding the minimalne
ks of the minBU surgery part. This pro
edure is mu
h more time 
onsuming, ifthe problem is formulated in terms of the �4 graphs, as it is when 
onsidering thedynami
al quadrangulations. The simulations were performed partly on the CrayT3E 1200 of the \John von Neumann-Institute for Computing" (NIC) in Jueli
h (
a.12 000 CPU hours) and on the heterogeneous 
luster of i386 PC's of the Institutefor Theoreti
al Physi
s of the University of Leipzig (
a. 50 000 CPU hours) as wellas its 40 Athlon MP1800+ 
luster 
omputer \Hagrid" (
a. 60 000 CPU hours).The spe
i�
 heatAs for the 
ase of the square-latti
e F model, for the random graph 
ase we �ndno signal of a s
aling of the spe
i�
 heat. Instead, it exhibits a broad peak in thelow-temperature phase, whi
h is found to be independent from the latti
e size up
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Figure 5.9: Non-s
aling of the spe
i�
 heat of the F model 
oupled to planar random�4 graphs. The solid 
urves are line se
tions 
onne
ting the data points and aredrawn for illustrative purposes only. Note the mu
h stronger shift of the peakpositions towards lower temperatures as 
ompared to the square-latti
e F model ofFig. 5.3.to small �nite-size 
orre
tions, 
f. Fig. 5.9. Comparing Figs. 5.3 and 5.9, note thatthis peak appears for mu
h lower temperatures around �Cv � 1:2 for the �4 randomgraphs as 
ompared to �Cv � 0:85 for the square-latti
e model. This behaviour ofthe spe
i�
 heat is 
ommonly 
onsidered as a �rst good indi
ator for the presen
eof an in�nite-order phase transition [236℄.Lo
ation of the 
riti
al pointAs for the square-latti
e model, we determine the lo
ation of the KT point from thes
aling of the maxima of the staggered anti-ferroele
tri
 polarizability, now de�nedfrom the generalized polarization of Eqs. (4.39) or (4.40). Again, the peak lo
ationsare expe
ted to s
ale logarithmi
ally to the true 
riti
al point; to leading order wehave, ��(N2) = �
 + A�(lnN2)�1=�; (5.38)
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Figure 5.10: S
aling of the peak lo
ations of the polarizability of the F model onplanar �4 random graphs from MC simulations. The solid lines show �ts of thesimple analyti
 form (5.38) to the simulation data, where � = 1=2 was kept �xed.The ranges of the 
urves indi
ate the windows of in
luded graph sizes N2.
f. Eq. (5.24). For the determination of the peak positions we made use of thetemperature-reweighting te
hnique des
ribed in Appendix A.5. Note that the quotederrors do not 
over the potential bias indu
ed by the reweighting pro
edure. Weperformed simulations for graph sizes between N2 = 256 and N2 = 25 000 sites, tak-ing some 106 measurements after the systems had been equilibrated. Measurementswere taken after every tenth sweep of the 
ombined link-
ip and minBU surgery dy-nami
s, 
on�ning the graphs to the regular ensemble of Se
tion 3.1. All statisti
alerrors were determined by the 
ombined binning/ja
kknife te
hniques des
ribed inAppendix A.3.Figure 5.10 shows the FSS of the peak lo
ations resulting from the simulations.Comparing to the 
orresponding presentation for the square-latti
e model, Fig. 5.4,we �rst note that the a

essible part of the s
aling regime is strongly shifted towardslower temperatures, being rather far away from the 
onje
tured 
riti
al 
oupling�
 = ln 2 � 0:693. We start with �ts of the simple form Eq. (5.38) without in
ludingany 
orre
tion terms. Additionally, we assume � = 1=2 here as in the square-latti
e
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 A� Q256 1.0011(18) 2.049(77) 0.00512 0.9810(24) 3.28(13) 0.001024 0.9676(32) 4.22(19) 0.002048 0.9361(59) 6.69(44) 0.534096 0.9265(84) 7.49(66) 0.82Table 5.3: Parameters of �ts of the analyti
 form (5.38) to the simulation data forthe peak lo
ations of the staggered anti-ferroele
tri
 polarizability of the F modelon random �4 graphs. The exponent � was kept �xed at the value � = 1=2 for the�ts. Here, N2;min denotes the minimum graph size in
luded in the �t.
ase, whi
h has to be justi�ed a posteriori by the thermal s
aling analysis. Withinthis s
heme, the in
uen
e of 
orre
tion terms is taken into a

ount by su

essivelyomitting latti
e sizes from the small-N2 side. As 
an be seen from the �ts of thistype presented in Fig. 5.10 and the 
orresponding �t parameters listed in Table 5.3,this ansatz does not lead to good �ts when the small latti
es are in
luded. The�t with N2;min = 2048 yields a reasonable �t quality, resulting in an estimate of�
 = 0:9361(59) for the 
riti
al 
oupling. However, in analogy with the square-latti
e 
ase and guided by the matrix model 
onje
ture, we interpret the slowlyde
reasing values of �
 as more and more of the small-N2 graphs sizes are ex
ludedfrom the �t as an indi
ator of a bad �t form for the 
onsidered graph sizes and
on
lude that the resulting estimate for �
 is still 
learly too large. Thus, we revertto �ts in
luding e�e
tive 
orre
tion terms.Adding the exponent � to the �t parameters amounts to a �t with an e�e
tiveexponent ~� as in Eq. (5.25), i.e.,��(N2) = �
 + A�(lnN2)�1=~�; (5.39)The parameters resulting from the 
orresponding non-linear three-parameter �tsare listed in Table 5.4(a) as a fun
tion of the minimum in
luded graph size N2;min.Obviously, the available a

ura
y of the data hardly allows su
h a non-linear �t,whi
h yields rather non-sensi
al results for small values of N2;min. Additionally, we�nd that the �t results for small N2;min partly depend on the 
hoi
e of the startingvalues for the �t parameters, i.e., that the �t routine gets stu
k in lo
al minimaof the �2 distribution. Thus, at least the results for small N2;min 
annot be takenseriously. Only for the 
hoi
es N2;min = 2048 and N2;min = 4096 the �ts yield
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 A� 1=~� Q256 �0.4 1.6 0.06 0.00512 �0.4 1.7 0.08 0.001024 �0.2 1.6 0.1 0.002048 0.3(40) 1.2(30) 0.3(15) 0.764096 0.83(58) 1.7(62) 1.0(31) 0.69(b) N2;min �
 A� B� Q256 0.856(11) 42.6(27) �2.737(10) 0.13512 0.823(18) 49.3(53) �2.774(22) 0.171024 0.758(33) 70.6(104) �2.862(28) 0.632048 0.834(65) 42.9(229) �2.659(414) 0.80Table 5.4: (a) Parameter results of least-squares �ts of the fun
tional form (5.39) forthe FSS of the peak lo
ations of the staggered polarizability of the F model on �4random graphs to the simulation data. ~� denotes an e�e
tive exponent and N2;minsymbolizes the minimum graph size in
luded in the �ts. (b) Parameter results oflinear three-parameter �ts of the form (5.40) to the simulation data with more andmore of the small-N2 data points omitted.reasonable parameters, whi
h are in prin
iple in agreement with the expe
ted value�
 = ln 2 for the 
riti
al 
oupling, but are endowed with statisti
al errors whi
h arefar too large for the estimate to be of mu
h pra
ti
al use. As in the square-latti
e
ase, the result for the exponent ~� 
annot be taken as a serious estimate for �, sin
eit in
orporates 
orre
tion terms in an e�e
tive way.Sin
e for the square-latti
e 
ase we found a linear �t in
orporating an additive log-log
orre
tion of the form��(N2) = �
 + A�(lnN2)�2 �1 +B� ln lnN2lnN2 � (5.40)to be the best of the 
onsidered des
riptions for the available �nite-size data (and a
orresponding 
orre
tion is found for the KT phase transition of the XY model onregular latti
es [211, 240, 241℄), we also 
onsider this �t for the random graph data.This fun
tional form �ts the data rather well already for small values ofN2;min, as 
anbe seen from the 
olle
tion of �t parameters in Table 5.4(b). Nevertheless, the �tsstill show some inherent instability as 
an be seen from the result for N2;min = 1024,where obviously a slightly di�erent lo
al minimum of the �2 distribution is favoured
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Figure 5.11: Fits of the fun
tional forms (5.40) resp. (5.39) with the 
onstant �xedto �
 = ln 2 � 0:693 to the simulation data for the peak lo
ations of the staggeredpolarizability of the random graph F model.over the minimum obtained for the other values of N2;min. However, the 
riti
al
oupling �
 estimated for, e.g., the N2;min = 2048 
ase is still noti
eably larger thanthe expe
ted value of �
 = ln2. Nevertheless, it 
an be 
onsidered still marginally
onsistent with the 
onje
tured value, the deviation being about 2:2 times the quotedstandard error of the estimate. On the other hand, if we �x the 
riti
al 
oupling atthe expe
ted value ln 2, redu
ing the number of �t parameters to two, we still get aproper �t result of reasonable quality Q, the parameters being,A� = 92:51(167);B� = �2:920(19);Q = 0:27; (5.41)where N2;min = 2048 was 
hosen. This �t is shown in Fig. 5.11 to 
onvin
e thereader of our opinion that the simulation data are well 
ompatible with the expe
tedasymptoti
 behaviour, the a

ura
y of the data and, espe
ially, the rea
hable graphsizes just being not suÆ
ient to properly resolve the �nite-size approa
h to 
riti
ality.It should be noted that also the other type of �ts presented here still yield goodquality-of-�ts when �xing the parameter �
 at ln 2. For example, a �t of the form



178 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS(5.39) to the data with N2;min = 2048 gives,A� = 1:071(81);1=~� = 0:541(35);Q = 0:84: (5.42)The 
orresponding 
urve is also shown in Fig. 5.11.Universality of the 
riti
al 
ouplingOne might be tempted to suspe
t that the observed rather large distan
es of the�nite-size positions of the polarizability maxima from the expe
ted value �
 = ln 2 �0:693 are due to the fa
t that we use graphs of the regular ensemble, whereas thematrix model 
al
ulations of Refs. [72, 73℄ naturally 
on
ern graphs of the singularensemble. Indeed, quite generally one does not expe
t the 
riti
al 
oupling of a modelof statisti
al me
hani
s to be universal . Instead, one �nds that the lo
ation of thetransition points of problems su
h as per
olation, Potts or O(n) models dependson the type (e.g., the valen
y) of the 
onsidered latti
e. Similarly, for the Isingmodel 
oupled to dynami
al polygoni�
ations or the dual graphs, the lo
ation ofthe observed third-order phase transition depends on whether one 
onsiders spinslo
ated on the verti
es of triangulations, quadrangulations, �3 or �4 graphs [34, 49,74℄13. Additionally, depending on the 
onsidered ensemble of graphs with respe
tto the in
lusion or ex
lusion of 
ertain types of singular 
ontributions as de�ned inSe
tion 3.1, one arrives at di�erent values for the 
riti
al 
oupling [34, 35, 152, 248℄.However, the situation is quite di�erent for the 
ase of the F model 
oupled torandom latti
es. As has been mentioned above in Se
tion 5.1.2, in the matrixmodel des
ription of the problem, Eq. (5.6), the matrix potential be
omes equivalentto that of the O(2) model in the limit � = 0 [73℄; a

ording to Eqs. (5.4) and(5.17), this limit 
orresponds to the 
hoi
e a=
 = b=
 = 1=2 or �
 = ln 2. Thus,renormalizing the matrix model for restri
ted singular or regular �4 graphs merely
hanges the 
riti
al point a
rit of Eq. (5.8), whi
h takes on the rôle of the 
osmologi
al
onstant in the grand-
anoni
al ensemble. But the KT point still o

urs for theratio a=
 = b=
 = 1=2 of 
oupling 
onstants14. This universality aspe
t is maybe13However, it is found that the lo
ation of the 
riti
al point does not depend on the topology ofthe latti
es [146℄.14This universality 
an already be expe
ted from the fa
t that the lo
ation of the 
riti
al pointis the same for the square-latti
e and random �4 graph models.
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Figure 5.12: Finite-size approa
h of the peak lo
ations of the staggered polarizabilityof the F model on �4 random graphs of the singular and regular ensembles. Thesolid lines show �ts of the fun
tional form (5.40) to the data. The lower limits inN2 of the 
urves are identi
al to the 
hoi
e of N2;min for the �ts.most strikingly demonstrated by the loop representations of the F and O(2) modelsas des
ribed in Se
tion 5.1.2: the loop expansion of the F model assigns 
urvaturedependent weights exp[i��(l)℄ to the loops on the �4 graphs; for � = 0, the 
urvaturedependen
e disappears and one is left with the loop weights of the O(2) model.Obviously, the stru
ture of this 
onstru
tion does not depend on the detailed type ofthe 
onsidered graphs, i.e., whether they do or do not 
ontain singular 
ontributionssu
h as self-energy and tadpole terms. Thus, the 
orresponden
e of the � = 0 pointof the F model and the KT point is not in
uen
ed by latti
e details, hen
e endowingthe 
riti
al 
oupling �
 = ln 2 with an universality aspe
t.We have not performed extensive simulations of graphs of the singular ensemble todemonstrate this behaviour numeri
ally. This is due to the fa
t that our implemen-tation of the simulation s
heme for the 
ase of singular graphs is rather ineÆ
ientsin
e it does not in
orporate the minBU surgery moves and, additionally, the \on-line" updating of the dual latti
e information used for the other ensembles 
annotbe easily adapted to the 
ase of singular graphs sin
e it would entail a separate
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Figure 5.13: FSS of the square-rootphr2i of the mean square extent of the square-latti
e on a torus and planar �4 random graphs at the peak positions of the polar-izability of the 
oupled F model. The solid lines show �ts of the simple power-lawform phr2i � N1=dh2 to the data. The range of the 
urves indi
ates the latti
e sizesin
luded in the �t.treatment of numerous spe
ial 
ases; thus, the dual latti
e has to be 
onstru
tedanew for ea
h measurement 
y
le. Hen
e, simulations for graphs of the singularensemble are by orders of magnitude less eÆ
ient for the 
onsidered graph sizesthan simulations of the other graph ensembles. Nevertheless, we performed somesimulations for smaller graph sizes and analyzed the FSS of the peak lo
ations of thestaggered polarizability just as for the the 
ase of regular graphs. The 
orrespondingFSS data are shown in Fig. 5.12 together with the results for regular graphs. A �tof the log-log form Eq. (5.40) to the data in
luding all �ve points from N2 = 128 toN2 = 2048 yields the following parameters,�
 = 0:76(19);A� = 114:9(364);B� = �2:676(22);Q = 0:95; (5.43)in agreement with the expe
tations. Note that from Fig. 5.12 the �nite-size 
orre
-
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Figure 5.14: Collapse of the FSS approa
h of the s
aling of the peak lo
ations ofthe staggered anti-ferroele
tri
 polarizability of the F model on random �4 graphs(left s
ale) and on the square latti
e (right s
ale).tions for the singular graph 
ase are mu
h larger than those for the regular graphmodel. This is in 
ontrast to previous observations for the 
ase of the Potts model
oupled to random triangulations [50℄ and the resulting 
ommon belief that thein
lusion of singular graph 
ontributions redu
es FSS e�e
ts, at least for the 
on-sidered small latti
e sizes. Exploratory simulations for the other graph ensemblesde�ned in Se
tion 3.1 imply that the polarizability peak lo
ations o

ur in the order��(stri
t) � ��(regular) � ��(restri
ted singular) � ��(singular), at least for smallgraph sizes.As has been previously mentioned, the reason for the observed very slow approa
hto the expe
ted asymptoti
 behaviour lies in the double e�e
t of the presen
e oflogarithmi
 
orre
tions to s
aling and the small linear extent of the highly fra
tallatti
es. In prin
iple it should be possible to resolve the resulting s
aling 
orre
tionsby in
luding higher-order 
orre
tion terms in the �t ans�atze. However, it mustbe admitted that, refraining from any arti�
ial \good-will" tinkering with the �tparameters, the a

ura
y of the present data is not suÆ
ient for reliable multi-parameter, possibly non-linear �ts. The strength of this 
ombined e�e
t is ni
ely



182 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSdemonstrated numeri
ally by the fa
t that the �ts to the FSS of the polarizabilitypeak lo
ations with �
 �xed to its true value �
 = ln 2 shown in Fig. 5.11 
ome as
lose as ��(N2) = 0:7 to the 
riti
al value only for graph sizes N2 � 1050 for theform (5.40) or even N2 � 105000 for the form (5.39). Instead of �guring out moreelaborate �ts, we try to disentangle the two 
orre
tion e�e
ts by a 
omparison tothe square-latti
e model, where only the logarithmi
 
orre
tions are present, but the
onsidered latti
es are not fra
tal. For this purpose, we plot the polarizability peaklo
ations as a fun
tion of the square-root of the mean square extent of the 
onsideredlatti
es as de�ned by Eq. (3.37), whi
h is the relevant measure for the linear extentof the graphs. The mean extents phr2i s
ale very di�erently for the two types of
onsidered latti
es as 
an be seen from Fig. 5.13. Here, the values for the squarelatti
es are exa
t up to ma
hine pre
ision. From the simple s
aling ansatzhr2i � N1=2dh2 ; (5.44)without 
onsidering any 
orre
tion terms for the random graph 
ase, we �nd dh =2:000(20) for the square latti
e, the deviation stemming from dis
retisation e�e
ts forthe smallest latti
es. For the 
ase of �4 random graphs the �t yields dh = 3:336(11).Note, however, that the result for dh is slowly in
reasing as more and more ofthe small-N2 latti
es are ex
luded and we expe
t the true value of the Hausdor�dimension to be somewhat larger, see Refs. [115, 249, 250℄ and Se
tion 5.4.3 below.From Fig. 5.13 one reads o� that, in order to obtain results for the F model at
omparable linear extents of the square and random latti
es, one has to 
onsiderrather small volumes for the square-latti
e 
ase. For the 
omparison we use L � Lsquare latti
es with edge lengths L 
hosen su
h that the resulting mean square extent
omes as 
lose as possible to the hr2i values for the �4 random graphs of volumesbetween N2 = 256 up to N2 = 8192, in
reasing in powers of two.In Fig. 5.14 we present a 
omparison of the FSS approa
h of the peak lo
ations ofthe polarizability for the �4 graph and square-latti
e models plotted as a fun
tionof the linear extent phr2i of the latti
es. Here, the abs
issae of the plot have beens
aled su
h as to a

ount for the di�eren
e in the overall 
orre
tion amplitude, butassuming the same value ln 2 for the o�set . From the two simulation points nearphr2i � 10 we �nd the ratio of the 
orre
tion amplitudes as15A� = �rl� (N2 = 1024)� ln 2�sl� (N2 = 324)� ln 2 � 4:23; (5.45)15These two simulation points have been 
hosen sin
e there the di�eren
e in phr2i between thesquare and random latti
es is minimal within the set of 
onsidered latti
e sizes.



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 183where �rl� denotes the peak position for the random �4 graph model and �sl� thevalue for the square-latti
e 
ase. The thus a
hieved 
ollapse of the FSS data isobvious from Fig. 5.14. Consequently, we 
ome to the 
lear 
on
lusion that the largerdeviations of the peak lo
ations for random graphs are simply due to an about fourtimes larger overall amplitude of the 
orre
tion terms as 
ompared to the square-latti
e model, the details of the FSS approa
h being otherwise surprisingly similarbetween the two 
onsidered latti
e types. Espe
ially, the fa
t that for the �4 graph
ase the asymptoti
 value �
 = ln 2 
annot be 
learly resolved by the 
onsidered �tsto the data is an obvious 
onsequen
e of the 
omparative smallness of the a

essiblelatti
e sizes in terms of their e�e
tive linear extentsphr2i. To underline this �nding,we performed �ts of the simple form (5.38) to the data for both types of latti
es(there are not enough data points for �ts with 
orre
tion terms), in
luding sizesstarting from the points nearphr2i � 10, whi
h result in estimates �
 = 0:7554(18)for the square latti
e resp. �
 = 0:9416(89) for the random graphs. In terms ofthe quoted statisti
al errors these are obviously both far away from the asymptoti
result. The deviation from �
 = ln 2 is, however, just about four times larger forthe random graph 
ase than for the square-latti
e model, in agreement with theprevious dis
ussion of the s
aling 
ollapse of Fig. 5.14.Criti
al energy and spe
i�
 heatWe note in passing that for the largest latti
e we have simulated, i.e., forN2 = 65 536,at � = �
 = ln 2 we �nd the following values of the internal energy and spe
i�
 heatper site, U(� = ln 2) = 0:333355(11);Cv(� = ln 2) = 0:2137(12): (5.46)Comparing these results to the values (5.19) found analyti
ally for the square-latti
eF model, we see that U(� = ln 2) is very 
lose to the value 1=3 found for the squarelatti
e, whereas Cv(� = ln 2) is far away from the square-latti
e result 28(ln 2)2=45 �0:2989. On the basis of these results, we 
onje
ture that the 
riti
al value of theinternal energy of the F model is not a�e
ted by the 
oupling to random graphs,while the 
riti
al spe
i�
 heat is. Thus, as one would expe
t, the 
riti
al distributionof vertex energies naturally 
hanges its shape on moving from the square-latti
e tothe random graph model, but, 
uriously, its mean is not shifted by this pro
edure.Interestingly, this situation seems to be spe
i�
 to the 
riti
al point �
 = ln 2 of themodel, whereas for other inverse temperatures the square-latti
e and random graph
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Figure 5.15: Temperature dependen
e of the internal energy U of the square-latti
eand random �4 graph F models. Simulations have been performed for a N2 = 462 =2116 square latti
e and random graphs with N2 = 2048 sites. The lines drawn only
onne
t the data points.energies diverge, see Fig. 5.15. This probably indi
ates the presen
e of an additionalsymmetry 
ommon to the 
riti
al square-latti
e and random graph models.FSS of the polarizabilityOn 
oupling the vertex model to quantum gravity we expe
t a renormalization of the
riti
al exponents as pres
ribed by the KPZ/DDK framework des
ribed in Se
tion2.4. The work of KPZ/DDK [30{32℄ 
onsiders 
onformal minimal models with C < 1
oupled to the Liouville �eld, however it should also marginally apply to the limiting
ase C = 1 of the model 
onsidered here. As des
ribed above in Se
tion 2.4, the
riti
al exponents of the random graph model 
an be found from the KPZ formulain terms of the 
onformal weights of the s
aling operators of the theory. To �nd theusual 
riti
al exponents from the weights, one assumes that the well-known s
aling



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 185relations stay valid (see, e.g., Refs. [46, 140℄) and thus arrives at,� = 1� 2��1��� ;� = �P1��� ;
 = 1� 2�P1��� ; (5.47)dh� = 11��� ;2� � = (1� 2�P )dh:Here, �� denotes the weight of the energy operator and �P symbolizes the weightof the s
aling operator 
orresponding to the spontaneous staggered polarization P0,whi
h here takes on the rôle of the magnetization operator � of magneti
 models.As before, dh is the internal Hausdor� dimension of the random graphs. For thespe
ial 
ase of an in�nite-order phase transition 
onsidered here, the usual exponentswritten above are not well-de�ned in the sense of des
ribing power-law singularities,as has been mentioned above. Espe
ially, the energy operator does not 
arry a
onformal weight �� in the usual sense. However, the 
orresponding �nite-sizes
aling exponents, i.e., �=dh� = �P ;
=dh� = 1� 2�P ; (5.48)have a well-de�ned meaning in the sense of Eqs. (5.27) and (5.31). Note that we
annot solve for �=� resp. 
=� sin
e the Hausdor� dimension of the graphs in thepresen
e of the vertex model is not known a priori . From the exponents �=dh� = 1=4and 
=dh� = 1=2 
ited above for the square-latti
e F model, we �nd the 
orrespond-ing anti-ferroele
tri
 \spin" operator to have 
onformal weight�P = 1=4; (5.49)leading to the intended 
riti
al exponents �=dh� = 1=4 and 
=dh� = 1=2 via Eq.(5.48). Note that the weight �P = 1=4 is di�erent from the weight �� = 1=16 foundfor the magnetization of the 
riti
alXY model in two dimensions, see e.g. Ref. [201℄.For the present limiting 
ase of 
onformal 
harge C = 1, the KPZ formula (2.140)redu
es to the simple relation ~� = p�; (5.50)



186 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSsu
h that one has ~�P = 1=2 and the dressed 
riti
al exponents be
ome�̂=dh� = ~�P = 1=2;
̂=dh� = 1� 2 ~�P = 0; (5.51)implying a merely logarithmi
 singularity of the staggered polarizability16. Note,that the dimension xP = 2�P = 1=2 does not appear in the list of s
aling dimensionsof the primary operators of the Coulomb gas, whi
h are given by [58, 196, 201, 251℄xe;m = 12 � e2R2 +R2m2� ; e;m = �1;�2; : : : ; (5.52)where R denotes the 
ompa
ti�
ation radius and is given by R = 1=2 for the square-latti
e F model [73℄, in 
ontrast to R = 2 for the two-dimensional XY model [201℄(the lowest present vortex operator has m = �4, see below). This fa
t, however,should not be taken too seriously, sin
e it has been observed that the identi�
ationof operators of the Gaussian line of �xed points (i.e., the Coulomb gas) and of the
orresponding 8-vertex model (resp. its 
riti
al version, the 6-vertex model) is arather deli
ate task, whi
h 
annot be redu
ed to reading o� the dimensions fromEq. (5.52) [252{255℄. As far as the appli
ation of the KPZ formula for the predi
tionof the \dressed" exponents is 
on
erned, one should additionally keep in mind that,although the Coulomb gas pi
ture in prin
iple survives the transformation to a ran-dom graph model, one has always the possibility of additional di�eren
es betweenthe regular and random graph models with respe
t to the spe
trum of operatorsa
tually realized (i.e., having non-vanishing amplitude)17. One rather obvious dif-feren
e between both models is that for the square-latti
e 
ase the lowest vortex (ormagneti
) operator with non-vanishing amplitude is that with vorti
ity m = �4,
orresponding to an insertion of a vertex of type 7 resp. 8. On a random graph,vorti
es with smaller vorti
ity 
an be realized due to the irregularity of the fa
es [73℄.However, this is not important for the 
onsidered 
ase of the F model, sin
e therethe fuga
ity of all vorti
es is stri
tly zero (d = 0).For a numeri
al 
he
k of the exponents 
onje
tured by the KPZ formula, there arethe two prin
ipal possibilities of 
onsidering the FSS of the staggered polarizabilityat its maxima for the �nite graphs or at the �xed asymptoti
 transition 
oupling�
 = ln 2. While in the asymptoti
 regime both approa
hes are expe
ted to lead to16In the following we will drop the tilde (~) from the dressed exponents to improve readability.17Note that there are even di�erent opinions about whether the KPZ s
heme should be appliedat all for the 
ase of the XY model 
oupled to random latti
es, see Refs. [45, 256℄.
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=dh� Q256 0.9110(41) 0.7255(7) 0.00512 1.0582(78) 0.7048(11) 0.001024 1.238(16) 0.6853(17) 0.002048 1.581(44) 0.6575(32) 0.004096 1.864(87) 0.6395(52) 0.15(b) N2;min A� 
=dh� ! Q256 0.1975(97) 0.4749(81) 1.698(55) 0.00512 0.116(14) 0.406(16) 2.22(12) 0.001024 0.039(12) 0.281(37) 3.24(30) 0.242048 0.047(37) 0.301(79) 3.07(68) 0.16Table 5.5: Results of �ts of the fun
tional form (5.53) to the simulation data for thepeak values of the staggered polarizability of the F model on random �4 graphs. (a)Fits with the e�e
tive 
orre
tion exponent �xed at ! = 0, i.e., �ts without 
orre
tionterm. (b) Fits in
luding ! as an additional �t parameter.identi
al results, this is not at all obvious in the presen
e of large, not 
ompletely
ontrolled 
orre
tion e�e
ts for the a

essible graph sizes. In both 
ases, we startfrom an FSS form in
luding a leading e�e
tive 
orre
tion term as in the square-latti
e 
ase, namely, �(N2) = A�N
=dh�2 (lnN2)!; (5.53)where �(N2) is taken to be either the peak value as a fun
tion of � or the valueat � = �
 = ln2. We 
onsider the peak value 
ase �rst, taking the simulationresults for the graph sizes quoted in the previous se
tion for the determinationof the 
riti
al 
oupling, i.e., N2 = 256; : : : ; 25 000. Omitting the 
orre
tion term,i.e., for
ing ! = 0, and trying to 
ontrol the e�e
t of 
orre
tions to s
aling bysu

essively omitting data points from the small-N2 side, results in quite poor �tswith an exponent estimate 
=dh� � 0:7 steadily de
reasing with in
reasing lower
ut-o� N2;min, 
f. Table 5.5(a). Allowing the e�e
tive 
orre
tion exponent ! to vary,the resulting leading exponent estimate 
=dh� is 
onsiderably redu
ed, still showinga tenden
y to de
line as N2;min in
reased, 
f. Table 5.5(b). However, the �t qualityis still not very good and the resulting exponent estimate for, e.g., N2;min = 2048,
=dh� = 0:301(79) is not 
onsistent in terms of the statisti
al error with the purelylogarithmi
 singularity expe
ted from the KPZ/DDK predi
tion. Figure 5.16 shows
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Figure 5.16: FSS of the peak values of the staggered polarizability of the random-graph F model together with a �t to the fun
tional form (5.53) in
luding the pointswith N2 � N2;min = 2048.the simulation data for the peak heights together with this last �t.For the data at �xed 
oupling �
 = ln 2 simulations up to slightly larger graph sizes
ould be performed sin
e no reweighting analysis is ne
essary there. Hen
e, resultsare available for graph sizes between N2 = 256 and N2 = 32 768 sites, in
reasing bypowers of two. Again, the fun
tional form (5.53) is �t to the resulting �nite-size datafor the polarizability at � = ln 2. For the 
onstrained �ts with ! = 0 we do not �nda quality-of-�t of at least 10�2 for N2;min up to 4096 and thus do not 
onsider thisform further. The parameters of �ts in
luding the logarithmi
 term are 
olle
ted inTable 5.6. Note that the fa
t that the data s
ale at all 
annot in itself be taken asan indire
t justi�
ation of the 
laim that �
 = ln 2 is the 
riti
al 
oupling sin
e, asmentioned several times, the whole high-temperature phase of the model is 
riti
aland thus shows s
aling behaviour. As is obvious from Table 5.6, the fun
tional formin
luding a logarithmi
 
orre
tion �ts the data rather well already for quite smallvalues of N2;min, leading to exponent estimates 
=dh� at least marginally 
ompatiblewith the 
onje
ture 
=dh� = 0 in terms of the quoted statisti
al errors. In fa
t, ifwe assume a purely logarithmi
 in
rease of �(N2), i.e., if we �x 
=dh� = 0, the data
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=dh� ! Q256 0.491(19) 0.0194(55) 2.117(40) 0.66512 0.543(42) 0.0304(91) 2.026(72) 0.911024 0.569(75) 0.035(14) 1.98(12) 0.85Table 5.6: Parameters resulting from �ts of the fun
tional form (5.53) to the simu-lation data for the staggered polarizability at � = �
 = ln 2 of the random-graph Fmodel as a fun
tion of the minimum graph size N2;min in
luded in the �t.yield good-quality �ts for N2;min & 512; for N2;min = 2048 the parameters of thispurely logarithmi
 �t are A� = 0:3960(96);! = 2:295(11);Q = 0:39: (5.54)
The simulation data at � = ln 2 together with this last �t are shown in Fig. 5.17.Note that for the peak height data dis
ussed before, su
h a purely logarithmi
 �t isnot possible with a

eptable values of Q. To enable a somewhat better judgementof the observed dis
repan
y between the s
aling at the peak maxima and at theasymptoti
 
riti
al 
oupling for the random graph model, we shortly 
onsider thesame two lines for the square-latti
e model, using a range of latti
e sizes 
omparableto that of the random graph 
ase in terms of the e�e
tive linear extents as it hasbeen dis
ussed in the previous se
tion. Fitting the fun
tional form (5.6) to thesetwo data sets, we �nd 
=dh� = 0:475(46) for the s
aling at � = ln 2 also 
onsideredabove, but an estimate of 
=dh� = 0:598(36) from the s
aling of the peak values of�. Thus, also for the square-latti
e model, the s
aling of the peak values yields anexponent estimate lying o� the expe
ted result (
=dh� = 1=2 in this 
ase), while�ts at the 
riti
al 
oupling are in good agreement with the expe
tations. However,this e�e
t is mu
h less pronoun
ed for the regular-latti
e model and, in fa
t, atthe given level of a

ura
y at the verge of statisti
al signi�
an
e. This observation,on the other hand, �ts well into the general pi
ture drawn in the 
ontext of thes
aling of the polarizability peak positions above, implying a general enhan
ementof 
orre
tion amplitudes on moving from the regular latti
e to the random-graphmodel.
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Figure 5.17: Finite-size simulation data of the polarizability of the F model onrandom �4 graphs at the asymptoti
 
riti
al 
oupling �
 = ln2. The solid 
urveshows a �t of the form (5.53) to the data, where 
=dh� = 0 was kept �xed.FSS of the spontaneous polarizationFor the s
aling of the spontaneous polarization the situation is found to be verysimilar to the above dis
ussed 
ase of the polarizability. Hen
e, we do not presentthe results in su
h detail as for the latter observable. We assume the same FSS formas in the square-latti
e 
ase, i.e.,P0(N2) = AP0N��=dh�2 (lnN2)!; (5.55)where, again, P0(N2) is taken to be either the value at the peak position of the po-larizability or, alternatively, the result at the asymptoti
 
riti
al 
oupling �
 = ln2.Fits without the logarithmi
 
orre
tion term show una

eptable quality throughoutthe whole region of 
hoi
es of the 
ut-o� N2;min and are thus not expli
itly presentedhere. Table 5.7(a) shows the parameters resulting from �ts of the fun
tional form(5.55) to the spontaneous polarization at the peak positions of the polarizability. Forall 
hoi
es of N2;min shown in Table 5.7(a) the quality-of-�t parameter Q assumesvalues below 10�2. This, however, seems not to be due to a prin
ipally bad 
hoi
e



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 191(a) N2;min AP0 �=dh� ! Q256 1.031(17) 0.1378(24) 0.468(17) 0.00512 0.850(32) 0.1615(4) 0.653(37) 0.001024 0.681(58) 0.1855(96) 0.853(78) 0.002048 2.15(42) 0.076(20) 0.12(17) 0.004096 1.46(109) 0.064(40) 0.23(37) 0.00(b) N2;min AP0 �=dh� ! Q256 1.583(35) 0.4633(30) 0.726(22) 0.74512 1.658(68) 0.4581(50) 0.684(39) 0.911024 1.58(11) 0.4633(79) 0.728(64) 0.982048 1.48(23) 0.469(15) 0.779(134) 1.00Table 5.7: Parameters resulting from �ts of the form (5.55) to the �nite-graphspontaneous polarization at (a) the peak position of the staggered polarizabilityand (b) the in�nite-volume 
riti
al 
oupling �
 = ln 2.of the fun
tional form of the �t, but rather is the e�e
t of one or two outliers, whi
hare rather far away from the �tted 
urve in terms of their statisti
al error. Apartfrom pure 
han
e, a plausible explanation for this �nding is the presen
e of system-ati
 reweighting errors (bias) whi
h are mu
h more important for the spontaneouspolarization than they were for the polarizability due to the mu
h smaller statisti
alerrors. The situation is illustrated by the plot of su
h a �t in Fig. 5.18. As far asthe results for the exponent �=dh� are 
on
erned, as a fun
tion of N2;min we observetwo regions 
orresponding to two di�erent lo
al minima of the �2 distribution; thejump between both minima o

urs for N2;min = 2048, 
f. Table 5.7(a). At least forthe minimum 
orresponding to the smaller values of N2;min, the results for �=dh�are slowly in
reasing as a fun
tion of N2;min, but are still far away from the value�=dh� = 1=2 
onje
tured within the KPZ/DDK framework dis
ussed above. Again,an analysis of the FSS of the spontaneous polarization at the polarizability peak po-sitions for the square-latti
e model reveals a similar behaviour for 
omparable graphsizes in terms of the e�e
tive linear extent, however with the size of the deviationsfrom the expe
ted result being mu
h smaller.Table 5.7(b) shows the parameters resulting from least-squares �ts of Eq. (5.55) tothe simulation data at the �xed 
oupling � = �
 = ln 2. The overall quality of the�ts is mu
h better than for the data at the polarizability peak lo
ations dis
ussed
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Figure 5.18: S
aling of the �nite-size spontaneous polarization of the random-graphF model at the peak lo
ations ��(N2) of the polarizability. The 
urve shows a �tof the fun
tional form (5.55) to the data, in
luding all graph sizes starting fromN2;min = 2048.before. This is at least partially due to the fa
t that for the results at �xed 
ouplingno bias e�e
ts indu
ed by a reweighting pro
edure are present sin
e the simulationswere performed dire
tly at � = ln 2. We do not observe a 
lear overall drift of theexponent estimate �=dh� resulting from the �ts as a fun
tion of the 
ut-o� N2;minand the quality-of-�t is found to be ex
eptionally high already for small values ofN2;min, 
f. Table 5.7(b). Figure 5.19 shows the simulation data at � = ln 2 togetherwith the �t 
orresponding to N2;min = 2048. The �ts yield values for �=dh� 
loseto the expe
ted result �=dh� = 1=2. The result for N2;min = 2048 is 
onsistent withthe KPZ/DDK 
onje
ture within about two times the quoted standard deviation.Thermal s
alingIn order to extra
t information about the 
riti
al exponent � and possibly to �ndadditional eviden
e for the lo
ation of the 
riti
al point, we try to perform a ther-mal s
aling analysis and 
onsider the dependen
e of the staggered anti-ferroele
tri
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Figure 5.19: S
aling of the spontaneous polarization of the F model on �4 randomgraphs at the asymptoti
 
riti
al 
oupling �
 = ln 2 and a �t of the fun
tional form(5.55) to the data, in
luding graph sizes starting from N2;min = 2048 (solid 
urve).polarizability on the inverse temperature � in the vi
inity of the 
riti
al point. Sin
ethe high-temperature phase of the F model 
oupled to �4 random graphs is expe
tedto be 
riti
al as for the 
ase of the square-latti
e F model, su
h a s
aling analysishas to be performed on the low-temperature side of the polarizability peak. Figure5.20 shows a survey of the thermal and FSS s
aling properties of the staggered po-larizability of the random graph F model. As for the square-latti
e model (
f. Fig.5.7), we �nd s
aling throughout the high-temperature phase to the left of the peaks.However, the 
ontrast of a non-s
aling polarizability in the low-temperature phase
annot be demonstrated here as easily as for the regular latti
e model. Due to theexponential slowing down of the link-
ip and minBU surgery dynami
s of the �4graphs above �
 to be dis
ussed in Se
tion 5.3 below, simulations 
annot pro
eedarbitrarily deep into the ordered phase. Comparing the regions to the right of thepeaks of Figs. 5.7 and 5.20, we see that the �nite-size e�e
ts in the low-temperaturephase are extremely strong for the random graph model, mu
h stronger than forthe square-latti
e 
ase. Thus, up to the inverse temperature � = 1:4 shown in Fig.5.20, there is no sign of a 
onvergen
e of the 
urves for di�erent latti
e sizes as it is
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Figure 5.20: S
aling of the polarizability peaks of the F model on planar �4 randomgraphs from Monte Carlo simulations. The lines are drawn for illustrative purposesonly.already found for � � 0:8 in Fig. 5.7. This e�e
t is, again, attributed to the relativesmallness of the linear extents of the random graphs as 
ompared to those of thesquare latti
e.The requirements of a proper thermal s
aling analysis of the polarizability resultingfrom these observations are almost impossible to ful�l: one has to keep enough dis-tan
e from the 
riti
al point for the linear extent of the graph to be large 
omparedto the 
orrelation length of the matter part to keep �nite-size e�e
ts under 
ontroland, on the other hand, one should not pro
eed too deep into the ordered phasesu
h as not to leave the thermal s
aling region in the vi
inity of the 
riti
al point.Thus, one would have to go to huge graph sizes to get rid of these 
onstraints to apra
ti
ally a

eptable extent. Nevertheless, we attempt a thermal s
aling analysisof the polarizability from simulations of graphs of size N2 = 30 000 with inverse tem-peratures ranging from � = 0:9 up to � = 1:6 taking about 800 000 measurementsat ea
h �. The expe
ted s
aling form is given by Eq. (5.35), i.e.,ln�(�) � A� +B�(� � �
)��; (5.56)
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h should hold for � ! �+
 as N2 !1 and where logarithmi
 
orre
tions havealready been omitted. We �nd it impossible to reliably �t all four of the parametersinvolved in Eq. (5.56) to the available data. Varying the starting values we �nd amultitude of lo
al minima of the �2 distribution, su
h that virtually any result 
anbe \found" for �
 and � in this way. Fixing one or the other of both parametersat the expe
ted values �
 = ln 2 resp. � = 1=2, the �ts be
ome more stable. Thedependen
y on the range of in
luded values of � is found to be rather small and for� � 1:25 we arrive at the following �t parameters,A� = �101(4662);B� = 106(4662);� = 0:02(103);Q = 0:03; (5.57)for �
 �xed at ln 2 resp. A� = �86(1083);B� = 324(5744);�
 = �11(147);Q = 0:04; (5.58)with � �xed at 1=2. Obviously both �ts are not very useful, su
h that we are �nallyfor
ed to �x both parameters at their expe
ted values to �nd,A� = 0:91(41);B� = 4:20(33);Q = 0:03: (5.59)This �t is shown in Fig. 5.21 together with the simulation data. Thus, the bestwe 
an 
on
lude about the thermal s
aling behaviour of the polarizability of the Fmodel 
oupled to �4 random graphs is that there is no obvious 
ontradi
tion withthe expe
tations 
on
erning the parameters �
 and �. However, in view of the fa
tthat already for the regular latti
e model thermal s
aling �ts were not at all easilypossible, this �nding is probably not a too astonishing one.Long-range orderTo 
omplete the pi
ture, we try to visualize graphi
ally how the anti-ferroele
tri
order parameter, i.e., the staggered polarization, 
hanges on passing from the dis-ordered high-temperature to the ordered low-temperature phase. For this purpose
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Figure 5.21: Thermal s
aling of the polarizability of the random graph F model forgraphs with N2 = 30 000 sites. The 
urve shows a �t of the fun
tion (5.56) to thedata, where �
 = ln 2 and � = 1=2 have been kept �xed.we use the graph embedding and 3D visualization s
heme des
ribed in Appendix B,whi
h yields 3D 
omputer graphi
s of an embedding of the dynami
al polygoni�
a-tions into three-dimensional Eu
lidean spa
e without edge 
rossings. For the 
ase of�4 graphs and the 
orresponding quadrangulations 
onsidered here, the square fa
esare divided into two triangular parts for te
hni
al reasons. To visualize the lo
alvalue of the order parameter we use the \plaquette spin" representation de�ned inSe
tion 4.3.2, where to ea
h fa
e of the �4 graph a s
alar variable is attributed,whi
h represents the integral over the arrow dire
tions around the fa
e with respe
tto the referen
e dire
tion de�ned by the two-
olouring of the fa
es of the graph. Inthe language of polygoni�
ations this 
orresponds to s
alar \spin" variables residingon the sites of the quadrangulation. These variables we symbolize with 
olours,positive \spins" being drawn in red and negative \spins" in blue. The fa
es of thequadrangulations are �lled with 
olour gradients interpolating between the 
oloursof the quadrangulation sites. In this way a smooth impression of the lo
al behaviourof the order parameter 
an be 
reated.Figures 5.22 and 5.23 show the out
ome of su
h a visualization attempt starting
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(a)

(b)

Figure 5.22: Con�guration snapshots of the F model 
oupled to �4 random graphsat � = 0:4 (a) and � = 0:75 (b). Depi
ted is the dual quadrangulation with ea
hsquare fa
e divided into two triangles. Red and blue regions denote positive andnegative values of the \plaquette spins" de�ned in Se
tion 4.3.2.



198 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS
(a)

(b)

Figure 5.23: Con�guration snapshots of the F model 
oupled to �4 random graphsat � = 0:8 (a) and � = 0:9 (b). Depi
ted is the dual quadrangulation with ea
hsquare fa
e divided into two triangles. Red and blue regions denote positive andnegative values of the \plaquette spins" de�ned in Se
tion 4.3.2.



5.3. DYNAMICAL SCALING AND AUTOCORRELATION TIMES 199from �4 graphs with N2 = 1000 sites. Figure 5.22 shows 
on�guration snapshots ofthe high-temperature phase and the vi
inity of the 
riti
al point �
 = ln 2, whereasFig. 5.23 represents 
on�gurations for inverse temperatures, whi
h in the thermo-dynami
 limit belong to the low-temperature phase. Obviously, as the temperatureis de
reased from the high-temperature phase, the snapshots show the expe
ted or-dering behaviour with pat
hes of equal \spin" orientations of all sizes around the
riti
al point and a 
lear long-range ordering in the low-temperature phase. Notethat the presented snapshots also give a good impression of the overall variationof the extent and fra
tal stru
ture of the graphs during the link-
ip and surgeryupdating pro
ess, whi
h to most of the extent visible from Figs. 5.22 and 5.23 isindependent from the variation of the inverse temperature � and would be seen fordi�erent snapshots at the same temperature in quite the same way.5.3 Dynami
al S
aling and Auto
orrelation TimesThe dynami
al behaviour of the graph-update dynami
s for the 
ase of pure Eu-
lidean quantum gravity has been studied in Se
tion 3.5. For the two 
ases of thepurely lo
al (one- and two) link-
ip update and the 
ombined dynami
s of link-
ip and minBU surgery moves the dynami
al 
riti
al exponents zhr2i=dh belongingto the integrated auto
orrelation time of the mean square extent have been deter-mined. Coupling a spin model to the dynami
al graphs introdu
es an additionaltype of updates related to the matter variables (i.e., the loop algorithm for the 
aseof the vertex model). Sin
e both types of variables 
u
tuate on the same time s
ale(annealed disorder), the 
oupling of the geometry and matter subsystems naturallyindu
es 
hanges in the dynami
al behaviour of both kinds of observables, those re-lated to geometry (su
h as the mean square extent) and those referring to the matterdegrees of freedom (su
h as the energy and polarization of the vertex model).In this se
tion, dynami
al s
aling analyses will be presented for the purely lo
al andthe 
ombined link-
ip/surgery updating s
hemes at the asymptoti
 
riti
al 
oupling�
 = ln2 of the model. An analysis of the behaviour at the pseudo-
riti
al pointsof systems of �nite size is not easily possible sin
e the reweighting s
heme doesnot properly transform the auto
orrelations of the involved time series. This isobvious from the fa
t that these temporal 
orrelations are not themselves des
ribedby the Boltzmann distribution of the model, whi
h only 
overs the stati
, equilibriumproperties of the system. Additionally, some attention will be paid to the dynami
al
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onsidered updates beyond the KT point in the high- and low-temperature phases.5.3.1 Lo
al updateAs has been mentioned above in Se
tion 3.5, the mean square extent of the ran-dom graphs is generi
ally found to 
onstitute the slowest mode of relaxation of thegeometri
 se
tor of the theory. Thus, for the geometri
 part we again 
on
entrateon this observable, de�ned as des
ribed in Se
tion 3.5.1. Among the observables ofthe 
oupled F model we 
onsider the internal energy of Eq. (4.1) and the staggeredanti-ferroele
tri
 polarization de�ned by (4.39) resp. (4.40). For the determination ofthe dynami
al 
riti
al exponent zO=dh � zint;O=dh of the observable O the followingfun
tional form is �tted to the the �nite-size results,�int(O) = AON zO=dh2 ; (5.60)i.e., no 
orre
tion terms are taken into a

ount in this exploratory study. From theusual universality arguments, the exponents zO=dh are not expe
ted to depend onthe ensemble of graphs 
onsidered. On the other hand, in 
ontrast to the 
ase ofdynami
al exponents asso
iated to the exponential auto
orrelation times, zO=dh ingeneral 
an depend on the 
onsidered observable O [169℄. As for the 
ase of the purepolygoni�
ations model, lo
al (one- and two-) link-
ip simulations were performedfor graph sizes N2 between 64 and 4096 sites, where the number of measurementswas in
reased with N2, ranging between 50 000 and 300 000 samples. As for allsimulations of random graph models presented in this thesis, measurements weretaken every ten sweeps of the respe
tive graph update under 
onsideration. Theloop-
luster update of the vertex model part, on the other hand, was performedonly on
e per measurement, sin
e the dynami
s of the loop-
luster update is foundto be mu
h faster than that of the graph-related updates.Table 5.8 shows the integrated auto
orrelation times �int(r2) 
orresponding to themean square extent of graphs of the stri
t, regular and restri
ted singular ensembles
oupled to the F model. The simulations were performed at the asymptoti
 
riti
al
oupling �
 = ln 2. Simulations for the singular ensemble have not been performeddue to the 
omputational ineÆ
ien
y of the update for this ensemble, whi
h hasbeen mentioned several times. As for the 
ase of pure dynami
al polygoni�
ationsanalyzed in Se
tion 3.5.1, we �nd 
learly larger auto
orrelation times for graphs of
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t regular restr. sing.64 3.78(76) 2.03(56) 2.96(64)128 6.40(135) 4.32(120) 4.44(60)256 8.86(59) 6.34(87) 7.51(75)512 14.6(17) 10.3(11) 12.04(90)1024 24.8(34) 17.7(16) 18.0(11)2048 38.8(64) 27.6(34) 29.5(39)4096 58.7(73) 47.6(61) 44.8(56)Table 5.8: Criti
al integrated auto
orrelation times �int(r2) of the mean square extenthr2i for the lo
al link-
ip dynami
s of planar random �4 graphs of the stri
t, regularand restri
ted singular ensembles 
oupled to the F model. The auto
orrelationtimes are given in units of ten sweeps of 
ip moves. They were evaluated using thedire
t integration method for the normalized auto
orrelation fun
tion des
ribed inAppendix A.4. The results from the 
ombined binning/ja
kknife te
hnique agreewith those quoted within the estimated statisti
al errors.the stri
t ensemble than for graphs of the other two ensembles, but no dramati
di�eren
e between the regular and restri
ted singular 
ases. Also, independent fromthe 
onsidered ensemble, 
oupling the vertex model to the random graphs stronglyin
reases the auto
orrelations between su

essive measurements of the mean squareextent, indi
ating a strong rea
tion of the 
oupled matter ba
k onto the graphgeometry, 
f. Table 3.2 and Fig. 5.24. On the 
on�guration level, these enlargementof auto
orrelation times 
an be tra
ed ba
k to the i
e-rule restri
tion of the vertexmodel, whi
h leads to a strong redu
tion of the 
ip-move a

eptan
e rate. Figure5.25 shows FSS plots of the auto
orrelation times of the mean square extent for thestri
t, regular and restri
ted singular ensembles. For the �ts of the power-law form(5.60) to the data, the graph sizes N2 = 64 and N2 = 128 were omitted sin
e there
lear deviations from linearity 
an be re
ognized from the logarithmi
 plots of Fig.5.25. For graphs of the stri
t ensemble we �nd,Ar2 = 0:194(56);zr2=dh = 0:691(45);Q = 0:95: (5.61)
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Figure 5.24: Comparison of the 
riti
al integrated auto
orrelation times �int(r2)of (one- and two-) link-
ip simulations of pure �4 random graphs of the regularensemble and the same graphs 
oupled to the F model. The times are given in unitsof ten sweeps of link 
ips. The lines show �ts of the fun
tional form (5.60) to thedata.The 
ase of regular graphs yields the following �t parameters,Ar2 = 0:114(46);zr2=dh = 0:724(58);Q = 0:98; (5.62)whereas for the restri
ted singular ensemble of graphs we arrive atAr2 = 0:218(73);zr2=dh = 0:640(50);Q = 0:97: (5.63)Obviously, the dynami
al 
riti
al exponents found for the di�erent graph ensemblesare statisti
ally 
onsistent with ea
h other as expe
ted from universality, 
f. Se
tion3.5. Comparing these results to the �t parameters found in Se
tion 3.5.1 for thepure polygoni�
ations model, we �nd an overall in
rease of zr2=dh from zr2=dh � 0:6
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Figure 5.25: Criti
al integrated auto
orrelation times �int(r2) of the mean square ex-tent of lo
al (one- and two-) link-
ip simulations of �4 random graphs of the stri
t,regular and restri
ted singular ensembles 
oupled to the F model. The auto
orre-lation times are given in units of ten sweeps of link 
ips. The solid lines show �tsof the power-law form (5.60) to the data.to zr2=dh � 0:7, re
e
ting the e�e
t of the i
e-rule restri
tion of the vertex modelon the link-
ip graph dynami
s.As far as the auto
orrelations of the matter-related observables are 
on
erned, we�nd almost no size dependen
e of �int(E), i.e., the integrated auto
orrelation timeasso
iated with the internal energy of the vertex model. This is illustrated in Fig.5.26, whi
h also shows that the values for �int(E) are only very slightly above thetheoreti
al minimum of 1=2, 
f. Eq. (A.16). The same e�e
t has been observedfor simulations of the F model on the square latti
e via the loop algorithm andother 
luster algorithms, 
f. Refs. [174, 257℄. There, this e�e
t is attributed to thesub-latti
e stru
ture of the anti-ferroele
tri
 model. For the square latti
e, one 
aneasily de�ne sub-latti
e energies asso
iated with the vertex 
on�gurations on the twosquare sub-latti
es. These are found to exhibit temporal 
orrelations for di�erent
onsidered updates, however with a strong anti-
orrelation between the two sub-latti
e energies indu
ed by the i
e-rule 
onstraint [174, 257℄. Thus, for the total
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Figure 5.26: FSS plot of the 
riti
al integrated auto
orrelation times �int(E) of theinternal energy of lo
al link-
ip simulations of �4 random graphs of the regularensemble 
oupled to the F model. The auto
orrelation times are given in units often sweeps of link 
ips.energy signi�
ant temporal 
orrelations are expe
ted to show up only for extremelylarge latti
es. For the 
ase of �4 random graphs, on the other hand, sub-latti
eenergies 
annot be easily de�ned sin
e the graphs are not bipartite (although theirduals are). Hen
e, we do not further 
onsider the energy-related observables here,but 
on
entrate on the spontaneous staggered polarization P0. Figure 5.27 depi
tsthe FSS of the integrated auto
orrelation times �int(P0) at � = �
 = ln 2 for graphsof the stri
t, regular and restri
ted singular ensembles. Fits of the power-law form(5.60) to the �nite-size data yield the following parameters,AP0 = 0:295(54);zP0=dh = 0:190(28);Q = 0:86; (5.64)for graphs of the stri
t ensemble,AP0 = 0:320(58);zP0=dh = 0:155(27);Q = 0:88; (5.65)
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Figure 5.27: Finite-size s
aling of the 
riti
al integrated auto
orrelation times of thespontaneous staggered polarization of the F model on planar �4 random graphs ofthe stri
t, regular and restri
ted singular ensembles from MC simulations with thelo
al link-
ip dynami
s. The solid lines show power-law �ts a

ording to Eq. (5.60)to the data.for the 
ase of the regular ensemble andAP0 = 0:281(55);zP0=dh = 0:173(29);Q = 0:85; (5.66)for simulations in the restri
ted singular ensemble. Here, the points 
orrespondingto N2 = 64 and N2 = 128 have been omitted from the �ts to a

ommodate for theirapparent deviation from linearity (in the log-log plot). Again, the estimates of zP0=dhare 
onsistent between the di�erent graph ensembles, the remaining deviations indi-
ating the size of the 
orre
tions to the leading s
aling behaviour. Comparing zP0=dhto the exponent zr2=dh found for the mean square extent, however, we �nd a largedisagreement of the dynami
al exponents asso
iated with both types of variables,whi
h is, however, not unexpe
ted for dynami
al 
riti
al exponents de�ned fromintegrated auto
orrelation times, see the dis
ussion above in Se
tion 3.5.1.
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orrelation times o� the 
riti
al point is given in Fig. 5.28, wherea temperature s
an of �int(r2), �int(E) and �int(P0) is shown for the 
ase of regulargraphs. For all of the high-temperature regime � < �
 = ln 2 we expe
t s
alingsin
e the 
orresponding phase is 
riti
al. The absolute values of the auto
orrelationtimes of the matter-related observables, however, de
rease largely as one movesfurther into the disordered phase, su
h that for the pra
ti
al purposes 
onsideredhere auto
orrelations be
ome less and less important in this regime. For � > ln 2,on the other hand, we �nd a systemati
 in
rease of auto
orrelation times of di�eringintensity. The auto
orrelations of the mean square extent in
rease only quite slowly(albeit starting from a high level) and �int(E) starts to signi�
antly ex
eed its trivialvalue � 1=2 as � is in
reased above �
. On the other hand, �int(P0) explodesexponentially above � = ln 2 (mind the logarithmi
 s
ale of the abs
issa in Fig.5.28). This re
e
ts the ergodi
ity breaking of the dynami
s between the two anti-ferroele
tri
ally ordered states in the low-temperature phase of the model. On
eagain, on the 
on�guration level it is obvious how the dynami
al properties of thevertex model part a
t ba
k onto the graph dynami
s: to the extent that verti
esof types a and b disappear from the 
on�gurations due to the suppression of theirBoltzmann weights as � is in
reased above �
, the a

eptan
e rate of the link-
ipmoves is redu
ed, thus slowing down the relaxation of, e.g., the mean square extent.In fa
t, it is easy to see that the a

eptan
e rate of the link-
ip moves vanishes as� ! 0.5.3.2 Surgery updateThe 
ombined link-
ip and minBU surgery dynami
s utilized for the main part ofthe F model simulations has only been implemented for the 
ase of the regularensemble of �4 graphs, 
f. Se
tion 3.5.2. For all simulations presented, link-
ipand surgery updates were mixed at a ratio of three to one, su
h that a sweep nowdenotes N2=4 attempted surgery moves and 3N2=4 one- and two-link 
ip updates.Again, loop-
luster updates of the vertex model part were performed only on
e permeasurement due to the mu
h higher eÆ
ien
y of this 
luster update as 
omparedto the graph update. For the determination of auto
orrelation times, simulationsat � = �
 = ln 2 were performed for graphs between N2 = 64 and N2 = 8192 sites,taking between 50 000 and 300 000 measurements after equilibration and in
reasingthe length of the time series with the number of sites. As for the lo
al update, the
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Figure 5.28: Temperature s
an of the integrated auto
orrelation times of the internalenergy, the spontaneous staggered polarization and the mean square extent of link-
ip simulations of the F model on �4 random graphs of the regular ensemble. Thepresented data 
orrespond to graphs with N2 = 2048 sites. Note the logarithmi
s
ale of the abs
issa.simple power-law form (5.60) was �tted to the �nite-size data in order to extra
tthe dynami
al 
riti
al exponents.Figure 5.29 shows the auto
orrelation times for the mean square extent of the graphsas 
ompared to the results for the purely lo
al link-
ip update. From the power-law�t (5.60) to the data, again omitting the results for N2 = 64 and N2 = 128, we �ndthe parameters Ar2 = 0:0097(24);zr2=dh = 0:863(33);Q = 0:86: (5.67)Thus, in agreement with the 
ase of pure graphs 
onsidered in Se
tion 3.5.2, 
om-pared to the purely lo
al update we �nd a 
onsiderable redu
tion in the overall sizeof auto
orrelations and thus the s
aling amplitude, but no redu
tion of the dynam-i
al 
riti
al exponent zr2=dh. Instead, the exponent found for the global updatemarginally agrees with that found for the lo
al update above, with a tenden
y to
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Figure 5.29: Auto
orrelation times �int(r2) at � = ln 2 of the mean square extent of�4 random graphs 
oupled to the F model resulting from simulations utilizing the
ombined, \global" link-
ip and surgery move dynami
s. The results for the purelylo
al link-
ip update are shown for 
omparison. The lines show �ts of the power-lawEq. (5.60) to the data. The times are given in units of ten sweeps of graph updates.be even larger. This last fa
t, however, only hints at the size of the present system-ati
 errors (i.e., 
orre
tions to s
aling), sin
e obviously the additional appli
ation ofsurgery moves 
an asymptoti
ally only de
rease the value of z=dh or leave it 
on-stant. As a rule of thumb for the 
onsidered graph sizes, at �
 = ln 2 the 
ombinedlink-
ip and surgery update redu
es the auto
orrelation time of the mean squareextent to about a �fth of the value for the purely lo
al update18.Considering the matter-related observables, the energy is again found to la
k anysign of 
riti
al slowing down at � = ln 2. The integrated auto
orrelation timesof the spontaneous polarization are 
olle
ted in Table 5.9 in 
omparison to thoseof the lo
al update simulations for the 
ase of regular graphs. This 
omparison isadditionally illustrated by the FSS plot of Fig. 5.30. The power-law �t (5.60) applied18Note, however, that the lo
al link-
ip dynami
s is about three times faster than the 
ombined\global" update in terms of 
omputer time.
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al global64 0.692(41) 0.605(14)128 0.774(45) 0.631(15)256 0.760(34) 0.652(23)512 0.841(77) 0.666(17)1024 0.905(52) 0.687(22)2048 1.091(91) 0.762(36)4096 1.160(78) 0.901(47)8192 1.050(58)Table 5.9: Integrated auto
orrelation times of the spontaneous staggered polariza-tion of the random graph F model from \lo
al" simulations (link-
ip moves only)and from \global" simulations (
ombined link-
ip and surgery move dynami
s) at� = �
 = ln 2. The times are given in units of ten sweeps of link-
ip or 
ombinedlink-
ip/surgery moves. Both types of simulations were restri
ted to the regularensemble of graphs.to the range N2 = 512; : : : ; 8192 yields the following �t parameters,AP0 = 0:249(31);zP0=dh = 0:153(17);Q = 0:27: (5.68)Again 
omparing to the result for the purely lo
al dynami
s dis
ussed in the previousse
tion, we �nd no signi�
ant 
hange of the dynami
al 
riti
al exponent. In fa
t, themeasured auto
orrelation times at � = ln 2 are still so 
lose to the lower bound of 1=2that even in the amplitude no di�eren
es between the two updates 
an be dete
ted19.However, 
onsidering the exponential in
rease of �int(P0) above � = ln2, we �nd anappre
iable redu
tion of auto
orrelations by the appli
ation of the 
ombined link-
ip and surgery update, 
f. Fig. 5.31. For the shown example of N2 = 4096, theauto
orrelation times for the purely lo
al update are about four times larger thanthose for the 
ombined, global dynami
s. This is of some importan
e sin
e, as hasbeen dis
ussed above in Se
tion 5.2.3, most of the FSS analysis of the stati
 
riti
albehaviour had to be performed in the region � > ln 2 were the �nite-size peaks ofthe staggered polarizability are lo
ated. For the mean square extent above �
 asimilar situation is found.19Re
all the fa
t that all auto
orrelation times have been measured in units of ten sweeps ofupdate moves.



210 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS

100 500 1000 2000 4000
N

2

0.5

1.0

2.0
τ in

t(P
0)

local update
global update

Figure 5.30: Comparison of the FSS of the 
riti
al integrated auto
orrelation timesof the spontaneous polarization of the random graph F model from lo
al updateand global update simulations. The solid lines denote �ts of the form (5.60) to thedata.5.4 Geometri
al PropertiesThe annealed nature of disorder applied to the vertex model via its pla
ement ontodynami
al �4 random graphs indu
es a ba
k-rea
tion of the matter variables onto theunderlying geometry and thus a possible 
hange in the (lo
al and global) geometri
alproperties of the graphs. Sin
e the general me
hanism of matter ba
k-rea
tion ontothe graphs is the tenden
y to minimize interfa
es between pure-phase regions of thematter variables, a \strong" 
oupling between matter and graph variables is onlyexpe
ted if the 
ombined system of spin model and underlying geometry is 
riti
al,i.e., when 
lusters of ordered 
on�gurations exist on all length s
ales. Thus, oneexpe
ts the universal graph properties su
h as the graph-related 
riti
al exponentsto remain at the values of pure Eu
lidean quantum gravity, unless the 
oupled mattersystem has a diverging 
orrelation length, see, e.g., Ref. [258℄.From the graph properties dis
ussed in Chapters 2 and 3, we 
onsider the 
o-ordination number distribution as a typi
al lo
al property as well as the string



5.4. GEOMETRICAL PROPERTIES 211

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

β

0

10

20

30

40

50

60
τ in

t(P
0)

local update
global update

Figure 5.31: Temperature dependen
e of the integrated auto
orrelation times of thespontaneous staggered polarization of the random graph F model from simulationsutilizing the link-
ip only (\lo
al") and the 
ombined link-
ip and surgery move(\global") update. The data points 
orrespond to a graph size of N2 = 4096 sites.sus
eptibility exponent des
ribing the tenden
y of the area of the graphs to divergein the grand-
anoni
al ensemble and the fra
tal or Hausdor� dimension as globalgeometri
al properties. As for the analysis of the KT transition in Se
tion 5.2.3above, we return to ex
lusively using graphs of the regular ensemble.5.4.1 The 
o-ordination number distributionThe distribution of ring lengths of the random graphs or, equivalently, the 
o-ordination number distribution of the dual polygoni�
ations has been rather ex-tensively studied for the 
ase of pure Eu
lidean quantum gravity in Chapter 3.When 
oupling matter to the graphs, it is obvious that the ba
k-rea
tions of thematter variables on the graphs in prin
iple are able to alter this lo
al graph 
har-a
teristi
. Espe
ially, for the 
ase of the vertex model 
onsidered here, the i
e-ruleforbids 
ertain link-
ip update moves and thus potentially 
hanges the distributionPN2(q) of 
o-ordination numbers. Note that the i
e-rule restri
tion of the vertex
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Figure 5.32: Co-ordination number distribution of �4 random graphs (resp. the dualquadrangulations) withN2 = 512 sites 
oupled to the F model fromMC simulations.The error bars are of the size of the plotting symbols. The solid 
urve shows thedistribution for pure �4 random graphs of the same size.model leads to a 
oupling between matter variables and geometry whi
h is quitedi�erent from that of, say, an Ising model pla
ed on random graphs. While for thelatter 
ase the energy di�eren
es of the spin model 
on�gurations be
ome irrelevantin the in�nite-temperature limit � ! 0, thus leading to a 
omplete de
oupling ofspin and graph variables, the forbidden 
on�gurations of the F model 
orrespondto 
ontributions of in�nite energy su
h that even in the limit � ! 0 there is aba
k-rea
tion of the vertex model 
on�gurations on the underlying graphs. To putit di�erently, the matter ba
k-rea
tion is of entropi
 instead of energeti
 nature forthe 
ase of the vertex model.Figure 5.32 shows the distribution of 
o-ordination numbers for �4 random graphsof the regular ensemble and with N2 = 512 sites 
oupled to the F model at thethree di�erent inverse temperatures � = 0:001, � = ln 2 and � = 1:5. Obviously,on the s
ale of the whole distribution PN2(q) no dramati
 di�eren
es between thetemperature extremes 
an be distinguished and all three distributions look verysimilar to the 
ase of pure �4 random graphs of the same size also shown in Fig.
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Figure 5.33: Fra
tion n2 of loops (fa
es) of length two of planar �4 random graphswith a 
oupled F model as a fun
tion of the inverse temperature �. The drawnerror bars are mostly 
overed by the size of the symbols. The solid line shows thevalue of n2 for the 
ase of pure �4 random graphs of the regular ensemble and withN2 = 2048 sites.5.32. As it turns out, however, the distribution of 
o-ordination numbers 
an bedetermined very pre
isely from the simulations. Thus, 
on
entrating on a singlepoint of the distribution, namely the fra
tion of quadrangulation sites with 
o-ordination number two or, equivalently, the fra
tion n2 of length-two loops of the�4 graphs, whi
h already has been 
onsidered in Chapter 3, a 
lear variation withthe inverse temperature � 
an be resolved, 
f. Fig. 5.33. Also, in terms of thequoted statisti
al errors, whi
h are of the order of 10�5 for the measurements ofn2, the pure graph result of n2 = 0:296365(32) is very far away from the whole ofthe shown variation of the F model 
ase. We �nd a pronoun
ed peak of n2 around� � 0:7 with only rather small variations with the size of the 
onsidered graph.A similar peak of the fra
tion of three-loops for di�erent spin models 
oupled todynami
al triangulations has been observed before, see Refs. [45, 46, 259℄. Sin
ethe 
o-ordination number distribution is normalized and (for the regular ensemble)monotonous, su
h an in
rease of n2 is ne
essarily a

ompanied by a de
rease of the



214 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSN2 �n2 n2(�n2)256 0.6941(27) 0.3151620(81)512 0.6904(25) 0.3149714(76)1024 0.6961(55) 0.3148749(93)2048 0.6926(46) 0.3148528(68)4096 0.6894(54) 0.3148274(68)Table 5.10: Maxima of the fra
tion of loops of length two of �4 graphs 
oupled tothe F model as a fun
tion of the inverse simulation temperature � for di�erent sizesof the graphs.probability to �nd very large loops in the graph. The latter, on the other hand,typi
ally o

ur in the vi
inity of bottlene
ks 
onne
ting \baby universes" to themain body of the graph. Thus, at 
riti
ality one would expe
t slightly less \babyuniverses" to o

ur, thereby resulting in a dominan
e of more 
ompa
t 
on�gurationsof the graphs. However, if this e�e
t is indeed present, it is too small to be dete
tedby measurements of the mean square extent of the graphs, whi
h are mu
h lesspre
ise than measurements of the 
o-ordination number distribution, see Fig. 5.40below.Sin
e, as has been mentioned above, a pronoun
ed ba
k-rea
tion of the matter vari-ables onto the underlying graphs is only expe
ted at 
riti
ality, we interpret thelo
ation of the observed peak of n2(�) as a pseudo-
riti
al point �n2 whi
h shoulds
ale20 to the asymptoti
 
riti
al 
oupling �
 = ln 2. As before, the pre
ise lo
a-tion of the maxima 
an be determined from the simulation data via the reweightingte
hnique des
ribed in Appendix A.5. This has been done for the data from simu-lations of graphs of sizes between N2 = 256 and N2 = 4096 sites with time series oflengths between 8� 105 and 4� 106 measurements. The results of this analysis are
ompiled in Table 5.10. As is additionally illustrated in Fig. 5.34, we �nd only verysmall 
hanges of this peak position on variation of the size of the graphs, su
h thatwithin the present statisti
al errors �n2 
an be 
onsidered 
onstant. Thus, we donot perform a �nite-size �t to the data of the peak lo
ations, but instead quote theresult from the largest 
onsidered latti
e as an estimate for the asymptoti
 
riti
al20Note, however, that this is in 
ontrast to the interpretation of Refs. [45, 46, 259℄ for the 
or-responding peak of n3 in the triangulation model, whi
h was that it should stay away from the
riti
al point even in the thermodynami
 limit.
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Figure 5.34: Inverse pseudo-
riti
al temperatures �n2 de�ned by the maximum ofthe fra
tion n2 of loops of length two of �4 random graphs 
oupled to the F modelas a fun
tion of the graph size N2. The solid line shows the error-weighted mean ofthe estimates, whi
h is ��n2 = 0:6934(20).
oupling, namely �n2 = 0:6894(54); (5.69)resulting from the simulations for N2 = 4096. This is in ni
e agreement with theexpe
ted value of �
 = ln 2 � 0:693 and almost two orders of magnitude morepre
ise than the results found above from the s
aling of the polarizability peaklo
ations. From simulations of Potts models, it has been argued in Ref. [46℄ thatthe maximum value n2(�n2) of the fra
tion of two-loops itself (resp. the maximumvalue of the fra
tion of three-loops for the dynami
al triangulations model 
onsideredthere) 
ould be a universal property whi
h only depends on the 
entral 
harge of thematter 
oupled to the latti
es. An analysis of the XY model 
oupled to dynami
altriangulations by the same authors [45℄, however, showed a 
lear dis
repan
y to this
onje
ture.



216 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS5.4.2 The string sus
eptibility exponentIn the grand-
anoni
al ensemble of the dynami
al polygoni�
ations model the stringsus
eptibility exponent 
s governs the leading singularity of the partition fun
tionZ(�) via21 Z(�) � (�� �0)2�
s ; (5.70)
f. Eqs. (2.59) and (2.60). Thus, a dire
t measurement of 
s requires 
omputation-ally demanding simulations with a varying number of polygons or graph verti
es.Additionally, sin
e (as for all the graph properties) a shift of 
s due to the presen
e ofsome matter variables 
oupled to the polygoni�
ations model 
an only be expe
tedat 
riti
ality, a numeri
al setup for the dete
tion of su
h a 
hange needs to tune two
oupling 
onstants, namely � and �, to 
riti
ality. Due to the 
ombination of thesetwo problems a reliable estimation of 
s from grand-
anoni
al MC simulations hasproved diÆ
ult, see e.g. [109, 110℄.The methodAs it turns out, the string sus
eptibility exponent is related to the baby-universestru
ture of the dynami
al polygoni�
ations [29℄. This observation 
an be turnedinto a method for the determination of 
s from simulations at a �xed number ofpolygons or graph verti
es [258℄. The distribution of volumes B 
ontained in theminBUs of the dynami
al polygoni�
ations model 
an be expressed in terms of the
anoni
al partition fun
tion of the model in the following way; for simpli
ity, westart with the 
ase of dynami
al triangulations. Consider the situation of a minBUof volume B 
onne
ted to the \mother universe" of volume N2 � B via its ne
kof length three. This whole triangulation 
an be imagined as 
onstru
ted in thefollowing way: take two \universes" of volumes B + 1 and N2 � B + 1 with onetriangle marked on ea
h \universe", remove the marked triangles and glue bothparts together to give the triangulation dis
ussed before. Thus, the total number ofsu
h 
on�gurations is given by the following produ
t of partition fun
tions,3Z 0(B + 1)Z 0(N2 � B + 1); (5.71)where the fa
tor of three a

ounts for the three possible ways to glue both partstogether along the omitted triangles and Z 0(B) denotes the 
anoni
al partition fun
-21Sin
e we always 
onsider planar graphs here, 
s 
orresponds to the genus zero exponent 
0s ofChapter 2.
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al triangulations with B triangles and one marked triangle, i.e.,Z 0(B) = BZ(B); (5.72)where Z(B) denotes the usual 
anoni
al partition fun
tion of Se
tion 2.3.3. Now,the average number hnN2(B)i of minBUs of volume B for triangulations of volumeN2 is given by the absolute number (5.71), normalized by the total partition fun
tionZ(N2),hnN2(B)i / 3Z(N2)(B + 1)Z(B + 1) (N2 � B + 1)Z(N2 � B + 1): (5.73)From Eq. (2.81) the 
anoni
al partition fun
tion to leading order s
ales asZ(N2) � e�N2N
s�32 : (5.74)Inserting this expression into Eq. (5.73) the leading exponential part 
an
els and wearrive at, hnN2(B)i � (B + 1)
s�2(N2 � B + 1)
s�2N
s�22� N2�
s2 [B(N2 � B)℄
s�2; (5.75)where from (5.74) one has to demand that B � 1 and N2 �B � 1 for this relationto be valid. A very similar argument 
an be given for \baby universes" with larger(than minimal) ne
k length [29℄. For the 
ase of minBUs of the dynami
al quadran-gulations model the argument is obviously un
hanged apart from the repla
ement3 ! 4 in Eq. (5.71). Also, it 
an be shown that the same relation should hold forthe 
ase of C < 1 
onformal matter 
oupled to the polygoni�
ations or dual graphswith 
s then denoting the 
orresponding dressed string sus
eptibility exponent [29℄.For the limiting 
ase C = 1, on the other hand, it is argued in Ref. [29℄ that thedistribution of minBUs should a
quire logarithmi
 
orre
tions and look like,hnN2(B)i � N2�
s2 [B(N2 � B)℄
s�2[lnB ln(N2 � B)℄�; (5.76)with � = �2.An estimate �nN2(B) for the volume distribution of minBUs of the dynami
al polygoni-�
ations model 
an be easily found numeri
ally from a de
omposition of the graphsinto \baby universes". When the minBU surgery algorithm des
ribed in Se
tion3.5.2 is applied, su
h an estimate 
an even be produ
ed as a simple by-produ
t
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heme, sin
e there the relevant information has to be gatheredanyway for the update pro
ess. Then, an estimate for 
s 
an be found from a �tof the 
onje
tured fun
tional form (5.75), resp. (5.76) for the C = 1 
ase, to theestimated distribution �nN2(B) [258℄. In order to honour the 
onstraints B � 1 andN2 � B � 1 of Eqs. (5.75) and (5.76) one has to introdu
e 
ut-o�s Bmin and Bmax,su
h that only data with Bmin � B � Bmax are in
luded in the �t. Here, the 
hoi
eof the lower 
ut-o� Bmin is found to be mu
h more important for the out
ome ofthe �t than the 
hoi
e of Bmax. As a 
onsequen
e of this observation we use thefollowing re
ipe for the determination of the 
ut-o�s: as a rule of thumb, we 
hooseBmax = N2=8, whi
h has turned out to be a good 
hoi
e for most situations. WithBmax �xed, the lower 
ut-o� Bmin is steadily in
reased from Bmin � 0, monitoringthe e�e
t of those in
reases on the resulting �t parameters, espe
ially the estimatedstring sus
eptibility exponent 
s. Finally, with the resulting value of Bmin �xed, ase
ond adaption of Bmax is attempted, usually 
hanging Bmax by fa
tors of two resp.one half. Additionally, the quality-of-�t parameter Q is utilized as a further indi-
ator of whether negle
ted 
orre
tions to s
aling are important for the 
onsideredwindow of minBU volumes B. As far as 
orre
tions to the leading s
aling behaviourare 
on
erned, it is spe
ulated in Ref. [258℄ that a good e�e
tive des
ription of theleading 
orre
tion term results from the repla
ementB
s�2 ! B
s�2�1 + D
sB +O(1=B2)� : (5.77)Hen
e, the a
tual �ts were performed to the fun
tional formln �nN2(B) = A
s + (
s � 2) ln [B(N2 � B)℄ + D
sB ; (5.78)for C < 1, resp. to the formln �nN2(B) = A
s + (
s � 2) ln[B(N2 � B)℄ + � ln[lnB ln(N2 �B)℄ + D
sB ; (5.79)for the limiting 
ase of C = 1. Here, the dependen
y on the total volume N2 hasbeen 
ondensed into the 
onstant A
s . Note that both of these �ts are linear and thenumber of data points is of the order of 103 for the latti
e sizes we have 
onsidered,su
h that a �t with four independent parameters is not utterly unrealisti
. In Eq.(5.79) we keep � as a free parameter sin
e its presumable value � = �2 is onlya 
onje
ture and, additionally, further 
orre
tions to s
aling 
an be 
overed in ane�e
tive way by letting � vary.
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Figure 5.35: Distribution ln �nN2(B) of minBUs of the dynami
al quadrangulationsmodel with N2 = 1024 quadrangles. Note the pre
ision down to a probability of10�12.Results for pure �4 graphsFor the 
ase of pure dynami
al triangulations and planar topology the string sus-
eptibility exponent is exa
tly known to be 
s = �1=2, 
f. Se
tion 2.3.3. In orderto 
he
k the 
orre
t fun
tioning of the des
ribed analyti
al ma
hinery and to ex-pli
itly 
he
k for the expe
ted universality of 
s with respe
t to the 
hange fromtriangulations to quadrangulations, we performed simulations for pure �4 randomgraphs and measured the distribution nN2(B) of minBUs. Sin
e the measurementsare taken as a by-produ
t of the minBU surgery update, a large number of eventsis built up rather automati
ally. As 
an be seen from the presentation of the mea-sured distribution for graphs with N2 = 1024 sites of Fig. 5.35, this results inhigh-pre
ision results even down to the very improbable events of minBU volumesaround B � N2=2. Table 5.11 shows the gradual de
rease of the estimated 
s asthe lower 
ut-o� Bmin is in
reased to a

ommodate for higher 
orre
tions to s
aling.Note that the quoted error estimates, being the usual error estimates resulting froma least-squares �t routine, 
annot be taken seriously sin
e they do not a

ount for
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s Q0 �0.24879(11) 0.0010 �0.43439(64) 0.0020 �0.4613(18) 0.4530 �0.4722(37) 0.7240 �0.4722(72) 0.6250 �0.463(13) 0.5860 �0.474(25) 0.79Table 5.11: In
uen
e of the 
hoi
e of the lower 
ut-o� Bmin on the string sus
ep-tibility exponent estimate resulting from �ts of the fun
tional form (5.78) to themeasured minBU distribution �nN2(B) for pure �4 random graphs of size N2 = 1024.The upper 
ut-o� has been 
hosen to be Bmax = 128. Note that the given error es-timates do not fully re
e
t the statisti
al 
u
tuation due to the 
orrelation betweenthe individual points of the distribution Bmin.the apparent 
orrelations of the points of �nN2(B) for di�erent sizes B of the minBUs.These 
orrelations generi
ally lead to an underestimation of varian
es. The drift of
s as a fun
tion of Bmin shown in Table 5.35 is found to be
ome small against the ap-parent statisti
al 
u
tuations between di�erent 
hoi
es of the 
ut-o� for Bmin � 60,whi
h then was 
hosen as the �nal lower 
ut-o� for the graph size N2 = 1024. Theauthors of Ref. [258℄ have proposed to additionally extrapolate the results 
s(Bmin)with an ad ho
 exponential ansatz towards B ! 1. Apart from the fa
t that itis in general arguable, whether one should try extrapolations of noisy data, in thepresent situation we �nd the 
ombination of wrongly estimated errors from the �tsto �nN2(B) and the apparent strong 
orrelations of su

essive values of 
s(Bmin) aswell as the la
k of justi�ed assumptions of the fun
tional form of the approa
h of
s(Bmin) towards 
s suÆ
ient arguments to refrain from using su
h additional �ts.We note that statisti
ally reliable error estimates for 
s 
ould be found when takinginto a

ount the full 
ovarian
e matrix of the individual entries of �nN2(B). This,however, in pra
ti
e would be a huge matrix and one 
ould hardly take enough MCsamples to reliably estimate ea
h of its entries. Instead, we revert to a more tra
tableja
kkni�ng te
hnique: �rst the upper and lower 
ut-o�s in B are determined asdes
ribed using the full estimate �nN2(B). Then, of the order of ten ja
kknife blo
ksare built from the times series the estimate �nN2(B) is based on and �ts with the same
onstant 
ut-o�s are performed for ea
h blo
k to yield ja
kknife-blo
k estimates of
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s 
s D
s Q1024 60 128 18.36(49) �0.474(40) �2.9(30) 0.792048 70 256 20.34(14) �0.495(10) �3.8(12) 0.564096 70 512 22.030(90) �0.4915(63) �3.78(74) 0.058192 100 1024 23.853(72) �0.4977(47) �4.80(87) 0.04Table 5.12: Parameters of �ts of the fun
tional form (5.78) to the simulation data forthe distribution �nN2(B) of minBUs for pure �4 random graphs. The parameter errorestimates were found by ja
kkni�ng over the whole �t pro
edure, keeping the 
ut-o�s Bmin and Bmax �xed. Note that the small values of the quality-of-�t parameterQ for the two largest graph sizes are simply an e�e
t of the under-estimation oferrors resulting from the 
ross-
orrelations in �nN2(B).
s and the other �t parameters. Using the formulas of Appendix A.3, then reliableerror estimates for the �t parameters 
an be given. For the pure gravity 
ase we haveperformed simulations for graphs of sizes N2 = 1024 up to N2 = 8192 in
reasing byfa
tors of two, taking about 109�N2 minBUs into a

ount for ea
h graph size. Table5.12 
olle
ts the resulting estimates of 
s together with the remaining �t parametersfor the di�erent graph sizes. As far as �nite-size e�e
ts with respe
t to N2 are
on
erned, we 
on
lude that the estimates for 
s for N2 � 2048 are 
ompatible withea
h other and, 
onsequently, e�e
ts of �nite N2 
an be negle
ted at the given levelof a

ura
y. Thus, as our best estimate of 
s we quote the result for N2 = 8192,whi
h is 
s = �0:4977(47). Obviously, this is in very good agreement with the exa
tresult 
s = �1=2.Results for the F model 
aseFor the 
ase of the F model 
oupled to �4 random graphs we expe
t a variation ofthe string sus
eptibility exponent 
s with the inverse temperature � of the F model.Sin
e the whole high-temperature phase is 
riti
al, in the thermodynami
 limit 
sshould vanish for all � � �
 = ln 2, whereas in the non-
riti
al ordered phase theexponent should sti
k to the pure quantum gravity value of 
s = �1=2. To getan impression of the temperature dependen
e of 
s we measured the distribution�nN2(B) of minBUs over an inverse temperature range of 0:2 � � � 1:3 for graphsof size N2 = 2048 and performed �ts of the fun
tional form (5.78) to the data toextra
t 
s. The lower and upper 
ut-o�s Bmin resp. Bmax were adapted a

ording
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Figure 5.36: Estimates of the string sus
eptibility exponent 
s from �ts of thefun
tional form (5.78) to the measured distribution �nN2(B) of minBUs for �4 randomgraphs of size N2 = 2048 
oupled to the F model as a fun
tion of the inversetemperature �. As is explained in the main text, the displayed error bars do notrepresent the full statisti
al error.to the pro
edure des
ribed above for the 
ase of pure dynami
al �4 graphs. Theresulting estimates for 
s presented in Fig. 5.36 show a plateau value of 
s � �0:25within the 
riti
al phase � � ln 2 and a slow drop down to 
s � �0:5 at � = 1:3in the low-temperature phase. Note that the error bars displayed in Fig. 5.36 arethose resulting from the �t pro
edure itself and are thus not representing the fullstatisti
al variation due to the above mentioned 
ross-
orrelations between the valuesof �nN2(B) at di�erent B. As shall be shown below, the fa
t that 
s is found to bestill 
onsiderably smaller than zero in the high-temperature phase is due to a �nite-size e�e
t. In prin
iple, this 
ould be redu
ed by performing �ts of the form (5.79)in
luding the logarithmi
 
orre
tions expe
ted at 
entral 
harge C = 1. For thequite small graph size of N2 = 2048, however, this type of (four parameter) �t is ingeneral found to be too unstable to yield reliable results.More pre
ise estimates for 
s are found from a �nite-size s
aling study of three seriesof simulations, one at the 
riti
al point �
 = ln 2, one in the 
riti
al high-temperature
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s 
s D
s2048 70 256 20.48(23) �0.496(18) �5.9(18)4098 70 256 22.48(34) �0.515(25) �8.2(26)8192 100 512 23.75(51) �0.482(35) �5.9(41)16 384 100 2048 25.39(27) �0.478(17) �3.5(31)Table 5.13: Parameters of �ts of the form (5.78) to the distribution of minBUs of�4 random graphs 
oupled to the F model at � = 1:4. Larger graphs 
ould not beproperly relaxated due to the exponential slowing down of the MC dynami
s foundin the low-temperature phase.phase at � = 0:2 and one deep in the ordered phase at � = 1:4, using �4 graphsof the regular ensemble. For the latter 
ase, the exponential slowing down of the
ombined link-
ip and surgery dynami
s of the graphs reported in Se
tion 5.3 limitedthe maximum a

essible graph size to N2 = 16 384, while for the simulations at the
riti
al point and in the high-temperature phase graphs with up to N2 = 65 536 siteswere 
onsidered. The �t results at � = 1:4 are 
olle
ted in Table 5.13. Obviously,within the present a

ura
y of the data no relevant �nite-size e�e
ts are visible, allresults being 
ompatible with the 
onje
tured value of 
s = �1=2. Thus, as our�nal estimate for � = 1:4 we report the value found for N2 = 16 384,A
s = 25:39(27);
s = �0:478(17);D
s = �3:5(31);Q = 1:00; (5.80)where Bmin = 100 and Bmax = 2048 have been used. For the quoted statisti
al errorestimates the ja
kkni�ng pro
edure des
ribed above for pure dynami
al �4 graphshas been used, thus taking full a

ount of the present 
u
tuations.At the 
riti
al point �
 = ln 2 �ts of the form (5.78) without logarithmi
 
orre
tionsshow 
onsiderable �nite-size e�e
ts, 
f. Table 5.14(a). For the largest graph size
onsidered, the thus found estimate 
s = �0:2075(17) is still far away from theexpe
ted result 
s = 0. Taking the logarithmi
 
orre
tions into a

ount, these results
an be 
onsiderably improved. The parameters of �ts of the 
orresponding fun
tionalform (5.79) are 
olle
ted in Table 5.14(b). The relatively large statisti
al errors ofthe estimates for the smaller graph sizes are explained by the fa
t that the �ts showa 
ompetition of two distin
t lo
al minima of the �2 distribution, su
h that for some



224 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS(a) N2 Bmin Bmax A
s 
s D
s2048 80 256 17.80(17) �0.259(13) 1.1(15)4098 100 512 19.25(13) �0.2498(92) 2.0(13)8192 140 1024 20.70(23) �0.2426(15) 4.1(32)16 384 150 2048 21.87(17) �0.2193(10) 10.7(25)32 786 170 4096 23.525(59) �0.2263(34) 9.9(15)65 536 180 8192 24.73(30) �0.2075(17) 15.6(53)(b) N2 Bmin Bmax A
s 
s � D
s2048 60 256 19.7(37) �0.06(41) �1.2(24) �5.5(116)4098 65 512 22.3(13) 0.04(13) �1.81(81) �9.4(45)8192 90 1024 23.6(19) �0.01(19) �1.6(12) �9.7(73)16 384 100 2048 25.7(15) 0.05(13) �1.97(89) �10.9(69)32 768 110 4096 27.08(93) 0.013(70) �1.80(50) �12.6(47)65 536 120 4096 27.5(14) �0.05(12) �1.27(82) �6.9(71)Table 5.14: Parameters of �ts to the distribution �nN2(B) of minBUs for �4 randomgraphs 
oupled to the F model at � = �
 = ln 2. (a) Fits to the fun
tional form(5.78), i.e., without in
lusion of logarithmi
 
orre
tions expe
ted for C = 1. (b) Fitsto the form (5.79) in
luding logarithmi
 
orre
tions.of the ja
kknife blo
ks the �t yields 
s � �0:2. This e�e
t, however, vanishes forthe larger graphs. Apart from this �nding, no relevant �nite-size dependen
e of theestimate 
s 
ould be dete
ted. The o

urring values for the \
orre
tion exponent" �are not too far away from and indeed statisti
ally 
ompatible with the 
onje
tured(however not exa
tly known) value of � = �2. Sin
e for the 
ase of N2 = 65 536only a mu
h shorter time series than for the smaller graph sizes was re
orded, wepresent as our �nal estimate of the 
riti
al value of 
s the result at N2 = 32 768,A
s = 27:08(93);
s = �0:013(70);� = �1:80(50);D
s = �12:6(47);Q = 1:00; (5.81)
where the 
ut-o�s have been 
hosen at Bmin = 110 and Bmax = 4096.Finally, in the high-temperature phase at � = 0:2 the simulation results behave very
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Figure 5.37: Estimates of 
s from �ts to the fun
tional form (5.78), i.e., withoutthe in
lusion of logarithmi
 
orre
tions expe
ted at C = 1, for the random graphF model at � = 0:2 as a fun
tion of the graph size N2. The statisti
al errors wereevaluated using the ja
kknife te
hnique des
ribed in the main text.similarly to the 
riti
al point 
ase. When applying �ts of the form (5.78) withoutlogarithmi
 
orre
tions, 
onsiderable �nite-size e�e
ts are found, the resulting expo-nent estimates 
s only very slowly approa
hing the expe
ted value of 
s = 0. Thissituation is depi
ted in the FSS plot of Fig. 5.37. On the other hand, the estimatesresulting from �ts of the form (5.79) to the data are 
ompatible with 
s = 0 forthe larger of the 
onsidered graph sizes. For graphs of sizes up to N2 = 4096 the\other" minimum of the �2 distribution wins against the \true" minimum relevantfor the larger graphs. We report here the estimate resulting from graphs of sizeN2 = 32 768: A
s = 26:25(79);
s = �0:041(73);� = �1:38(47);D
s = �8:1(30);Q = 0:05; (5.82)
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ut-o�s Bmin = 100 and Bmax = 2048.22 To 
omplete the pi
ture, it shouldbe mentioned that the fun
tional form (5.79) does not �t the data in the low-temperature phase at � = 1:4 well and does not give estimates of 
s 
ompatiblewith 
s = 0.5.4.3 The Hausdor� dimensionThe non-trivial (internal) Hausdor� dimension dh of the latti
es of the dynami
alpolygoni�
ations model, de�ned by the relations of Se
tion 2.3.5, is one of its moststriking features. Apart from the present physi
al impli
ations, this fa
t results ina quite in
onvenient obsta
le for the numeri
al analysis of the model, namely the
omparable smallness of the e�e
tive linear extent of the graphs at a given totalvolume N2 as 
ompared to 
at latti
es.As matter variables are 
oupled to the dynami
al graphs, the strong 
oupling be-tween graph and matter variables at 
riti
ality 
ould lead to a 
hange of the fra
taldimensionality of the latti
es. In a phenomenologi
al pi
ture, su
h a strong 
ou-pling of matter and geometry should set in as soon as the intrinsi
 length s
ale ofthe graphs or polygoni�
ations, usually de�ned as their mean square extent, be
omes
omparable to the 
orrelation length of the matter system. For 
onformal minimalmatter, there has been quite some debate about how dh should depend on the 
entral
harge C of the 
oupled matter system, see, e.g., Refs. [51, 116, 166, 172, 249, 250℄.For C = 0 the result dh = 4 is exa
tly known [26{28℄ as has been mentioned inChapter 2. On the other hand, the bran
hed polymer model [109℄ des
ribing theC ! 1 limit [53℄ yields dh = 2 (see, e.g., Ref. [119℄), 
f. the dis
ussion of Se
tion2.4. For the intermediate region 0 < C � 1 two di�ering 
onje
tures have been madefor dh, 
f. Eqs. (2.142) and (2.143). All numeri
al investigations up to now, on theother hand, are 
onsistent with a 
onstant dh = 4 for 0 < C � 1 [51, 144, 172, 250℄.Naturally, the limiting 
ase C = 1 also 
onsidered here is of spe
ial interest for theinvestigation of the transition to the bran
hed polymer regime C � 1.Numeri
ally, it has proved ex
eptionally diÆ
ult to extra
t the Hausdor� dimensionsfrom the statisti
s of the numeri
ally a

essible graph sizes, see, e.g., Refs. [22,161,22Note that due to the present 
orrelations, as has been mentioned above, the quoted valuesof the quality-of-�t parameter 
annot be really taken seriously as far as their absolute values are
on
erned. However, they still serve a helpful purpose in 
omparing the quality of di�erent �ts tothe same data.
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Figure 5.38: Measured geometri
al two-point fun
tion GN211 (r) for pure �4 randomgraphs of the regular ensemble with N2 = 4096 sites. For 
omparison, we alsoshow the two-point fun
tion of a perfe
t sphere of the same size, i.e., the fun
tionGN211 (r) = N0=(2pN0=4�) sin(r=pN0=4�) with N0 = 4098.172℄. Before the exa
t result dh = 4 for the 
ase of pure Eu
lidean quantum gravityhad been found, an analysis of very large, re
ursively 
onstru
ted pure dynami
altriangulations even implied an only logarithmi
 growth of the mean square extentwith the area of the mesh, 
orresponding to the limit dh !1 [161℄. Only in the lastseveral years, the development and appli
ation of suitable FSS te
hniques allowedfor a more su

essful and pre
ise determination of dh [166, 249, 250℄.S
aling and the two-point fun
tionInformation about the fra
tal stru
ture of the graphs or polygoni�
ations is en
odedin the loop-loop 
orrelator or geometri
al two-point fun
tion of the latti
es. It 
anbe de�ned in terms of di�erent geometri
al entities, i.e., the verti
es or fa
es of thepolygoni�
ations or the dual graphs and employing di�erent notions of geodesi
 dis-tan
e of these geometri
al entities as dis
ussed above in Se
tions 2.2.3 and 2.3.5. Theasymptoti
, large-volume behaviour of the two-point fun
tions should not depend
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Figure 5.39: FSS plots of the peak lo
ations rmax (left s
ale) and peak heightsGN211 (rmax) (right s
ale) of the two-point fun
tion of pure dynami
al �4 randomgraphs as a fun
tion of the number of sites N2. The solid lines show �ts of thefun
tional form (5.89) to the data. The extent of the lines indi
ates the range of N2in
luded in the �ts.on these mi
ros
opi
al details of its de�nition (apart from trivial re-s
alings). Here,as in Se
tion 3.5.1 above, we de�ne the geometri
al two-point fun
tion GN211 (r) as theaverage number of verti
es of the polygoni�
ations at a distan
e r from a markedvertex, where \distan
e" denotes the minimal number of links one has to traverse to
onne
t both verti
es. In terms of the dual graphs 
onsidered here, GN211 (r) denotesthe number of loops or fa
es of the graphs at a distan
e r from a marked fa
e, withthe distan
e measured in dual links.Sin
e the intrinsi
 length of the model s
ales as N1=dh2 by de�nition of the intrinsi
Hausdor� dimension dh, from the usual FSS arguments one 
an make the followings
aling ansatz (see, e.g., Ref. [166℄),GN211 (r) � N�2 F (r=N1=dh2 ); (5.83)i.e., GN211 (r) is a generalized homogeneous fun
tion and one 
an de�ne a s
alingfun
tion F (x) of the single s
aling variable x = rN�1=dh2 and a 
riti
al exponent �.
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Figure 5.40: Mean extent phr2i of regular �4 random graphs 
oupled to the Fmodel as a fun
tion of the inverse temperature �. The 
onsidered graphs haveN2 = 2048 sites. The horizontal line indi
ates the mean square extent of pure �4random graphs of the same size.As a simple 
al
ulation shows, due to the obvious 
onstraintN2 =Xr GN211 (r); (5.84)resp. its 
ontinuous analogue with the sum repla
ed by an integral, the exponent �is not independent, but simply related to dh as � = 1� 1=dh. As it has turned out,for pra
ti
al purposes the s
aling variable has to be shifted to yield reliable results,see, e.g., Refs. [116, 247, 249℄. The ne
essity of su
h a shift 
an be most easily seenby a phenomenologi
al s
aling dis
ussion of the mean extent de�ned byhriN2 = 1N2 Xr r GN211 (r) � F0N1=dh2 ; (5.85)with F0 = Pr F (r). As usual in FSS theory, one expe
ts analyti
al 
orre
tions tothis leading behaviour, i.e. 
orre
tion terms 
ontaining negative integral powers ofthe linear length s
ale L of the 
onsidered latti
e. For the random latti
es 
onsidered



230 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSN2;min Ar a dh Q256 1.4476(93) 1.063(23) 3.6347(76) 0.00512 1.501(13) 1.219(35) 3.675(10) 0.051024 1.535(21) 1.326(63) 3.700(16) 0.152048 1.549(33) 1.37(11) 3.709(24) 0.094096 1.669(61) 1.78(20) 3.789(41) 0.98Table 5.15: Parameters of �ts of the fun
tional form (5.89) to the peak lo
ationsrmax of the geometri
al two-point fun
tion of random �4 graphs 
oupled to the Fmodel at � = 0:2 as a fun
tion of the minimum in
luded graph size N2;min.here, the mean extent hri itself takes on the rôle of L, su
h that one 
an write [249℄hriN2N1=dh2 � F0 + aN1=dh2 + bN2=dh2 + � � � : (5.86)Combining the terms proportional to 1=N1=dh2 on both sides, one arrives athr + aiN2 � F0N1=dh2 +O( 1N2=dh2 ); (5.87)Thus, to in
orporate �rst-order 
orre
tions to s
aling, the ansatz (5.83) is repla
edby GN211 (r) � N�2 F [(r + a)=N1=dh2 ℄; (5.88)i.e., the s
aling variable is now de�ned to be x = (r + a)=N1=dh2 . Although one 
angive physi
ally more profound arguments speaking in favour of the in
lusion of su
ha shift parameter, see Ref. [247℄, we will restri
t ourselves to the phenomenologi
alexplanation given above.S
aling of the maximaA typi
al form of the measured two-point fun
tion GN211 (r) for pure dynami
al �4graphs of size N2 = 4096 is shown in Fig. 5.38. It exhibits a pronoun
ed peak andde
lines exponentially for r ! 1. The two-point fun
tion of a sphere also shownin Fig. 5.38 illustrates the 
omparably small linear extent of the random latti
eas 
ompared to a regular geometry. From the s
aling ansatz (5.88) one infers thefollowing leading s
aling behaviour of the position and height of the maxima of the
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ations� N2;min Ar a dh Q0.2 4096 1.669(61) 1.78(20) 3.789(41) 0.98ln 2 4096 1.641(79) 1.73(26) 3.769(53) 0.251.4 2048 1.611(84) 1.53(25) 3.754(60) 0.21peak heights� N2;min An Bn dh Q0.2 4096 0.740(44) 6.7(36) 3.446(68) 0.76ln 2 4096 0.753(63) 6.2(51) 3.426(92) 0.551.4 2048 0.567(84) 12.7(60) 3.94(23) 0.55Table 5.16: Parameters of �ts of the form (5.89) to the data for the peak lo
ationsand heights of the geometri
al two-point fun
tion GN211 (r) of dynami
al �4 graphs
oupled to the F model at the inverse temperatures � = 0:2, � = ln 2 and � = 1:4.For � = 0:2 and � = ln 2 graph sizes between N2;min and N2 = 65 536 were in
ludedin the �ts; for � = 1:4 the maximum graph size was N2 = 32 768.two-point fun
tion GN211 (r),rmax + a = ArN1=dh2 ;GN211 (rmax) = AnN1�1=dh2 +Bn: (5.89)Sin
e the lo
ation and height of these maxima 
an be determined numeri
ally fromsimulation data, these relations 
an be used to estimate the intrinsi
 Hausdor�dimension dh of the latti
es. A te
hni
al diÆ
ulty is given by the fa
t that r 
anonly take on integer values for the dis
rete graphs 
onsidered. This problem is
ir
umvented by a smoothing out of the vi
inity of the maximum by a �t of a �nite-order polynomial to GN211 (r) around its maximum. For pra
ti
al purposes, we �nd afourth-order polynomial suÆ
ient for this �t. The position and height of the maximaare then taken to be the 
orresponding properties of the �tted polynomial. To arriveat reliable error estimates for the position and height estimates, the simulationdata for GN211 (r) are 
ombined into ja
kknife blo
ks to whi
h the �tting pro
edure isapplied separately, with a subsequent appli
ation of the ja
kknife varian
e estimatorto the set of thus determined ja
kknife blo
k estimates of the peak positions andheights, 
f. Appendix A.3. The �ts themselves are done with equal weights givento the points of GN211 (r) around the maximum in
luded in the �t. This 
hoi
e ofweights is found appropriate sin
e only a very small number of between �ve and



232 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSpeak lo
ations� N2;min Ar Br a dh Q0.2 2048 2.34(43) 9.2(39) 5.5(21) 4.13(20) 0.86ln 2 2048 1.96(39) 5.6(43) 3.7(20) 3.93(21) 0.111.4 1024 2.18(49) 6.0(37) 4.4(22) 4.07(26) 0.44Table 5.17: Parameters of �ts of the form (5.92) to the peak lo
ations of the two-point fun
tions of �4 random graphs 
oupled to the F model at di�erent inversetemperatures �. The maximum graph size was N2 = 65 536 for � � ln 2 resp.N2 = 32 768 for � = 1:4.�fteen adja
ent points around the maximum are in
luded in the �t, whose individualstatisti
al errors are found to be almost identi
al. Thus, one arrives at estimates forthe peak lo
ations rmax and heights GN211 (rmax) as a fun
tion of the graph size N2, towhi
h then the fun
tional forms of Eq. (5.89) are �tted.Figure 5.39 shows FSS plots of the peak lo
ations and heights for the 
ase of puredynami
al �4 random graphs and the 
orresponding �ts of (5.89) to the data. Asusual, we tried to a

ount for the e�e
t of negle
ted s
aling 
orre
tions by su

es-sively dropping data points from the small-N2 side. We �nd the value of dh tosteadily in
rease on omitting more and more points. The �ts of Fig. 5.39 in
ludethe latti
e sizes N2 = 4096 up to N2 = 32 768 with the following �nal �t parameters,Ar = 1:705(42);a = 1:84(14);dh = 3:803(28);Q = 0:22; (5.90)for the peak lo
ations and, An = 0:606(27);Bn = 12:0(26);dh = 3:814(63);Q = 0:44; (5.91)for the peak heights. Thus, in terms of the statisti
al errors both estimates arestill quite far away from the exa
t result dh = 4 for the pure gravity 
ase, whi
h is,however, in agreement with previous attempts to determine dh with similar methods,see e.g. Ref. [166℄. It should be noted, on the other hand, that the results are already
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h improved by the introdu
tion of the shift parameter a; enfor
ing a = 0, the�t to the peak lo
ations yields dh = 3:4313(20). We note that by varying thede�nition of the two-point fun
tion one 
an probably redu
e the amount of �nite-size 
orre
tions, but we will not attempt to do this here [166℄. Instead, in view ofthe su

ess of introdu
ing a �rst-order s
aling 
orre
tion via the shift parameter a,we add the next analyti
 
orre
tion term to the �t, i.e., for the peak lo
ations wemake the ansatz rmax + a = ArN1=dh2 +BrN�1=dh2 ; (5.92)whi
h, again, is found to improve the estimate for dh 
onsiderably. In
luding graphswith N2 = 512 up to N2 = 32 768 sites, we �nd the following �t parameters,Ar = 2:007(77);Br = 4:50(61);a = 3:55(35);dh = 3:964(42);Q = 0:24; (5.93)
whi
h gives now good agreement with dh = 4 at the pri
e of an in
reased statisti
alerror.For random �4 graphs 
oupled to the F model, we �nd a small dependen
e of themean square extent on the inverse temperature � of the 
oupled F model and also aslight shift ofphr2i as 
ompared to the 
ase of pure �4 random graphs, 
f. Fig. 5.40.Thus, it is at least not impossible for the Hausdor� dimension dh to be temperaturedependent, too. We performed the same analysis as des
ribed above for the 
aseof pure dynami
al graphs for three spe
i�
 inverse temperatures of the F model,namely � = 0:2, � = ln 2 and � = 1:4, 
overing the 
riti
al high-temperaturephase, the 
riti
al point and the non-
riti
al low-temperature phase, respe
tively.Simulations were performed for graphs of sizes between N2 = 256 and N2 = 65 536for � = 0:2 and � = ln 2 resp. between N2 = 256 and N2 = 32 768 for � = 1:4. Theresults for dh from �ts of the fun
tional form (5.89) to the data steadily in
rease onomitting more and more points from the small-N2 side. This is exempli�ed for the
ase of the peak lo
ations of the � = 0:2 data in Table 5.15. A similar situationis found for the s
aling of the peak heights and the data at the other simulated
ouplings �. The �nal results from �ts of the form (5.89) to the data are 
olle
tedin Table 5.16. Obviously, the estimates of dh extra
ted from the s
aling of the peaklo
ations are signi�
antly smaller than dh = 4 in terms of the statisti
al errors,



234 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSN2;min Ahri a dh Q256 1.601(41) 1.49(11) 3.657(30) 0.01512 1.592(54) 1.47(15) 3.651(39) 0.001024 1.85(10) 2.23(28) 3.821(66) 0.302048 2.14(21) 3.08(59) 3.99(12) 0.81Table 5.18: Parameters of �ts of the form (5.94) with Bhri = 0 to the simulationestimates for the mean extent hri of pure �4 random graphs as a fun
tion of the
ut-o� N2;min. Graphs with up to N2 = 32 768 sites were in
luded in the �ts.however in good agreement with the results found from the same �ts to the datafor pure �4 random graphs. The estimates of dh resulting from the s
aling of thepeak heights, on the other hand, are mu
h lower than they were for the 
ase ofpure �4 graphs. The rather di�erent result for � = 1:4 as 
ompared to the otherinverse temperatures again indi
ates the presen
e of 
ompeting lo
al minima of the�2 distribution | an e�e
t whi
h is always rather likely to o

ur in non-linear �ttingpro
edures.As for the pure gravity model, we try to improve on the found estimates for dh byin
luding the next sub-leading 
orre
tion term into the �ts to the peak lo
ations ofthe two-point fun
tion, using the �t ansatz (5.92). With this type of �t we �nd nosigni�
ant dependen
y of the results on the lower 
ut-o� N2;min in the graph sizes.The parameters of �ts of this form are shown in Table 5.17. The resulting estimatesof dh are 
ompatible within statisti
al errors with dh = 4, su
h that from this datawe have no reason to suspe
t that dh di�ers from its pure gravity value dh = 4 forany inverse temperature � of the F model.S
aling of the mean extentAs an alternative to the s
aling of the maxima of the two-point fun
tion, one 
an also
onsider the behaviour of mean properties of the distribution GN211 (r), espe
ially thes
aling of the mean extent (5.85). Taking the next sub-leading analyti
 
orre
tionterm into a

ount, we make the s
aling ansatzhr + aiN2 = AhriN1=dh2 +BhriN�1=dh2 : (5.94)Estimates for hri 
an be easily found from the simulation data for GN211 (r) togetherwith statisti
al error estimates evaluated by a ja
kknife blo
king of the time se-



5.4. GEOMETRICAL PROPERTIES 235(a) N2;min aopt �dh �2=dof256 1.47(41) 3.67(11) 2.5512 1.57(63) 3.69(16) 3.01024 2.22(49) 3.83(11) 0.72048 2.97(100) 3.97(21) 0.1(b) N2;min aopt �dh �2=dof256 1.46(10) 3.657(28) 2.3512 1.52(14) 3.672(37) 2.71024 2.20(23) 3.818(55) 0.72048 2.98(60) 3.97(12) 0.1Table 5.19: Estimates of the shift a and the internal Hausdor� dimension dh fromthe adaption method proposed by the authors of Ref. [249℄. (a) Estimates resultingfrom the original pres
ription of Ref. [249℄. (b) Results from the same method,however with the average (5.98) repla
ed by (5.100) and error estimates evaluatedby a ja
kknife te
hnique. In the adaption pro
ess graph sizes from N2 = N2;min upto N2 = 32 768 sites were in
luded.ries. Setting Bhri = 0 �rst and adapting the lower 
ut-o� N2;min of the graph sizessu

essively as before, for the 
ase of pure dynami
al �4 graphs we �nd the esti-mates listed in Table 5.18. As for the results from the s
aling of the peaks of thetwo-point fun
tion, the resulting estimates of dh are signi�
antly too small in termsof the statisti
al errors with an obvious tenden
y to in
rease as more and more ofthe points from the small-N2 side are omitted. On the other hand, in
luding the
orre
tion term of Eq. (5.94) largely redu
es the dependen
y on the 
ut-o� N2;min.For N2;min = 256 we �nd the following �t parameters,Ahri = 2:01(27);Bhri = 3:1(18);a = 3:3(11);dh = 3:90(15);Q = 0:01; (5.95)with an estimate of dh in ni
e agreement with dh = 4. Obviously, in view of theresults already found without in
lusion of the 
orre
tion term, the use of this addi-tional 
orre
tion is more questionable here than it was for the s
aling of the peaklo
ations above. Also, the �ts be
ome very unstable as less points are in
luded;



236 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS� N2;min Ahri a dh Q0.2 4096 1.54(20) 1.60(74) 3.57(12) 0.04ln 2 4096 1.23(19) 0.50(80) 3.35(14) 0.841.4 2048 1.95(33) 2.67(94) 3.89(21) 0.31Table 5.20: Parameters of �ts of the fun
tional form (5.94) with Bhri = 0 to themean extents of �4 random graphs 
oupled to the F model at inverse temperatures� = 0:2, � = ln 2 and � = 1:4. The �ts for � = 0:2 and � = ln2 in
lude graph sizesup to N2 = 65 536 sites, whereas the �t at � = 1:4 in
ludes graphs up to N2 = 32 768sites.this explains the use of the 
ut-o� N2;min = 256 above, although the quality-of-�t israther poor.The authors of Ref. [249℄ have proposed a di�erent and less 
onventional method toextra
t a and dh from data of the mean extent, whi
h they 
laim to be espe
ially wellsuited for obtaining high-pre
ision results. They 
onsider the following 
ombination,Ra;N2(dh) � hr + aiN2N1=dh2 ; (5.96)and evaluate it for a series of simulations for di�erent graph sizes N2. Then, fora given a and for ea
h pair (N i2; N j2 ) they de�ne dijh (a) su
h that Ra;N i2(dijh ) =Ra;Nj2 (dijh ), i.e., dijh (a) = lnN i2 � lnN j2ln(hriN i2 + a)� ln(hriNj2 + a) ; (5.97)where we have used that hr + aiN2 = hriN2 + a. By a binning te
hnique, an errorestimate �(dijh ) is evaluated and the estimates dijh (a) are averaged over all pairs(N i2; N j2 ) of volumes, �dh(a) = 1#pairsXi<j dijh (a): (5.98)Then, the optimal 
hoi
e aopt of the shift is found by minimizing�2(a) =Xi<j [dijh (a)� �dh(a)℄2�2[dijh (a)℄ ; (5.99)being a

ompanied by an optimal estimate �dh(aopt). The authors of Ref. [249℄ sug-gest to estimate the statisti
al error of this �nal estimate by 
onsidering the variationof (a; �dh) in an interval of a around aopt de�ned by �2(a) < min[1; 2�2(aopt)℄.



5.4. GEOMETRICAL PROPERTIES 237� N2;min Ahri Bhri a dh Q0.2 512 2.58(48) 11.4(33) 7.0(22) 4.08(21) 0.10ln 2 512 1.37(22) 0.4(29) 1.1(12) 3.45(14) 0.411.4 512 2.6(10) 9.1(58) 6.2(42) 4.15(47) 0.29Table 5.21: Parameters of �ts of the form (5.94) in
luding the 
orre
tion term tothe mean extent of dynami
al �4 graphs 
oupled to the F model at di�erent inversetemperatures �.We implemented this whole pro
edure to 
ompare its out
omes to the results ofthe �ts to Eq. (5.94); the resulting estimates for a and dh are 
ompiled in Table5.19(a). First of all, we �nd the ad ho
 assumption for the estimation of the errorsof (a; �dh) not adequate. We apply a se
ond-order ja
kkni�ng te
hnique as des
ribedin Appendix A.3 to be able to give error estimates for dijh (a) as well as the �nalestimate (a; �dh) and �nd error estimates largely di�ering from that resulting from therule �2(a) < min[1; 2�2(aopt)℄. For the set of simulations 
onsidered, the ja
kknifeestimated errors are about three to four times smaller than those estimated by therule for �2(a); however, for the simulations of the F model 
oupled to the randomgraphs we also �nd situations where the ja
kknife errors are up to ten times largerthan the errors estimated from �2. As far as the estimate of dh itself is 
on
erned,we �nd indeed slightly in
reased values as 
ompared to the �t method, 
f. the data
ompiled in Table 5.19(a). However, this in
rease 
an be tra
ed ba
k to the fa
tthat the individual estimates dijh (a) all re
eive the same weight in the average (5.98),irrespe
tive of their pre
ision. This gives an extra weight to the results for largergraphs, whi
h 
annot be justi�ed on statisti
al grounds. If, instead, we repla
e theaverage (5.98) by the varian
e-weighted average�dh(a) = Pi<j dijh (a)=�2[dijh (a)℄Pi<j 1=�2[dijh (a)℄ ; (5.100)the resulting estimates for dh and a are statisti
ally equivalent to those found fromthe �ts to (5.94), 
f. the parameters listed in Table 5.19(b). Thus, we do not �ndany spe
ial bene�ts of this 
omputationally rather demanding method as 
omparedto a plain �t to (5.94) with Bhri = 0 and hen
e do not present further detailed resultsfor this method.For the 
ase of the F model 
oupled to the �4 random graphs we pro
eeded asbefore, again using simulation data for � = 0:2, � = ln 2 and � = 1:4. The results
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Figure 5.41: Collapse of the two-point fun
tions GN211 (r) of �4 graphs 
oupled to theF model at � = 0:2, re-s
aled a

ording to Eq. (5.88) with dh = 3:57 and a = 1:60.from �ts of the mean extent hriN2 to the form (5.94) with Bhri = 0 show very mu
hthe same behaviour as the results from the s
aling of the maxima of the two-pointfun
tion, with estimates of dh 
learly below dh = 4 and slowly in
reasing as moreand more points from the small-N2 side are omitted from the �ts. In Table 5.20we only show the �nal estimates with N2;min already adapted. The out
omes of themethod of Ref. [249℄ des
ribed above, with the average (5.98) repla
ed by (5.100)and the �2(a) rule repla
ed by a ja
kknife error estimate, are again very 
lose to the�t results. Only o

asionally it gives a result being marginally di�erent in terms ofthe statisti
al errors; we interpret this as di�erent lo
al minima of the 
orresponding�2 distribution being found by di�erent methods resp. from di�erent starting values.In
luding the 
orre
tion term of (5.94), i.e., relaxing the 
onstraint Bhri = 0, on theother hand, yields estimates 
onsistent with dh = 4 for � = 0:2 and � = 1:4, howeverwith rather large statisti
al errors, 
f. the parameters 
olle
ted in Table 5.21. Notethat, as mentioned before, the results for � = 1:4 are in general less pre
ise thanthose for the other two inverse temperatures, whi
h is due to the exponential slowingdown of the 
ombined link-
ip and surgery dynami
s in the low-temperature phase,
f. Se
tion 5.3. The �t for � = ln 2 settles down at a 
ompletely di�erent minimum of



5.4. GEOMETRICAL PROPERTIES 239the �2 distribution, yielding a non-sensi
al result for dh, whi
h is almost un
hangedas 
ompared to the out
ome of the 
orresponding �t without 
orre
tion term. Thisunderlines the fa
t that the 
omplexity of the 
hosen �t is at least at the verge ofbeing too large for the available data. Nevertheless, 
ombining the data for dh fromthe presented methods and in
luding the 
omparison to the pure gravity 
ase, we�nd no reason to assume that dh di�ers from dh = 4 for the 
ase of the F model
oupled to �4 random graphs.Finally, we note that the parameters a and dh determined from the �ts dis
ussedabove lead to a ni
e s
aling 
ollapse of the two-point fun
tions GN211 (r) when re-s
aled a

ording to the s
aling ansatz of Eq. (5.88). Figure 5.41 shows this 
ollapse ofdistributions for the 
ase of � = 0:2 and the 
hoi
e of parameters listed in Table 5.20,i.e., dh = 3:57(12) and a = 1:60(74). The visible deviations around the distributionpeaks indi
ate the presen
e of higher-order 
orre
tions not in
orporated into thes
aling ansatz (5.88).



Chapter 6
Con
lusions and Outlook
In this thesis, we have reported the results of large s
ale Monte Carlo simulations ofthe F model of statisti
al me
hani
s 
oupled to planar �4 quantum gravity graphs.This system is of signi�
an
e as a model of annealed 
onne
tivity disorder applied toa prototypi
 spin model of statisti
al me
hani
s and as a realization of a 
onformal�eld theory with 
entral 
harge C = 1 
oupled to dis
rete Eu
lidean quantum gravityin two dimensions.For the 
ase of dynami
al triangulations or, equivalently, \fat" �3 random graphs,a set of ergodi
 update moves for simulations in the 
anoni
al and grand-
anoni
alensembles is given by the Pa
hner or (k; l) moves of Ref. [156℄. For simulations of dy-nami
al quadrangulations and the dual �4 random graphs a 
ip move for 
anoni
alsimulations was proposed in Refs. [49,74℄. To this 
ip move we add suitable general-izations of the insertion and deletion moves for triangulations to the quadrangulationmodel. A

ording to the extent of singular 
ontributions in the polygoni�
ationsor dual graphs (su
h as self-energies and tadpoles), we distinguish di�erent graphensembles, whi
h we label as stri
t , regular , restri
ted singular and singular ; al-though the original ergodi
ity proof of Ref. [156℄ for the Pa
hner moves for thetriangulation model 
onsidered 
ombinatorial triangulations 
orresponding to theregular ensemble of our 
lassi�
ation, this proof 
an be easily extended to the otherensembles 
onsidered here. Comparing the simulation results for �4 graphs to ex-a
t results from the graph 
ounting via matrix models, we �nd the \one-link 
ip"of Refs. [49, 74℄ to be suÆ
ient to ensure ergodi
ity for 
anoni
al simulations at a�xed number of graph verti
es for the 
ase of the stri
t ensemble, whi
h forbidsthe o

urren
e of any multiple links in the graphs. For the other three ensembles,240



241however, this update 
an be shown to be not ergodi
. Introdu
ing a se
ond type of
ip move, whi
h we 
all \two-link 
ip", the visible e�e
ts of ergodi
ity breaking forthe regular, restri
ted singular and singular ensembles disappear, and we 
on
ludethat the 
ombination of one- and two-link 
ip is ergodi
 for all of the 
onsideredensembles for simulations of �4 graphs at a �xed number of graph verti
es. On theother hand, for simulations in the grand-
anoni
al ensemble of a varying number ofgraph verti
es, the additional two-link 
ip move it found to be not ne
essary.We attempt to formulate exa
t expressions for the 
o-ordination number distribu-tion of the polygoni�
ations or, equivalently, the distribution of loop lengths of thedual graphs in the spirit of a proposal put forth in Ref. [21℄. This is found tobe possible for the regular and restri
ted singular ensembles of the triangulationmodel. For singular triangulations and the quadrangulation model this approa
hfails due to a 
hange in the symmetry fa
tors asso
iated to the graphs indu
ed bythe o

urren
e of multiple links. The values of the 
o-ordination number distribu-tion for small 
o-ordination numbers are shown to be related to ratios of 
anoni
alpartition fun
tions; these ratios 
an be determined exa
tly for �nite sizes of thepolygoni�
ations or graphs and all of the 
onsidered ensembles of the triangula-tion and quadrangulation models. Setting up a grand-
anoni
al simulation s
hemewith non-Boltzmann weights whi
h we 
all \pseudo grand-
anoni
al simulations",these partition fun
tion ratios are estimated numeri
ally. Alternatively, they 
anbe measured by 
onsidering suitable observables in 
anoni
al simulations of a �xednumber of polygons resp. graph verti
es. With the help of these tools, very sensitive
omparisons between exa
t and simulation results 
an be performed.A s
aling analysis of the integrated auto
orrelation times of the mean square extentof pure �3 and �4 random graphs shows that the 
onsidered 
anoni
al link-
ip dy-nami
s as a lo
al update su�ers from 
riti
al slowing down whi
h a�e
ts only globalproperties of the graphs, whereas lo
al 
hara
teristi
s su
h as the 
o-ordinationnumber distribution are not 
on
erned. To improve the dynami
al performan
e ofthe simulations, the minBU surgery algorithm proposed in Ref. [75℄ is adapted forsimulations of quadrangulations and �4 graphs. A dynami
al s
aling analysis of analgorithm 
ombined from lo
al link-
ip and non-lo
al minBU surgery steps shows a
onsiderable redu
tion of auto
orrelation times of non-lo
al observables, however noredu
tion of the dynami
al 
riti
al exponents z=dh, whi
h is in 
ontrast to previous
laims [75, 172℄. Additionally, the performan
e of the algorithm for �4 graphs ishampered by the higher 
omputational 
ost of the sear
h for minBU ne
ks for the
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ase of quadrangulations as 
ompared to the triangulation model.For simulations of the 6-vertex model 
oupled to �4 random graphs, we adapt theloop algorithm of Ref. [76℄ to the needs of random latti
es. Due to the la
k of aglobal sense of dire
tion on the random graphs, the de�nition of the staggered anti-ferroele
tri
 polarization as an order parameter of the Kosterlitz-Thouless phasetransition of the F model 
annot be trivially transferred to the random graph model.However, sin
e the dynami
al quadrangulations 
onsidered are bipartite latti
es, atwo-
olouring of the quadrangulations together with a \plaquette spin" representa-tion of the vertex model allows for a generalization of the order parameter to therandom graph model, whi
h 
oin
ides exa
tly on the 
on�guration level with the
onventional de�nition when applied to the square-latti
e model.In view of the la
k of numeri
al work on square-latti
e vertex models and to 
al-ibrate the applied simulational and analyti
al ma
hinery, a �nite-size and thermals
aling analysis of the square-latti
e F model is performed. Although the Kosterlitz-Thouless point of the model is known to be equivalent to the 
riti
al point of thetwo-dimensional XY model, observables related to the order parameters of bothmodels show di�erent s
aling behaviour. Additionally, due to duality, the high-and low-temperature phases of both models appear ex
hanged with respe
t to ea
hother. The s
aling analysis is found to be 
onsiderably 
ompli
ated by the natureof the in�nite-order phase transition as well as the presen
e of logarithmi
 
orre
-tions expe
ted for a 
riti
al point of 
entral 
harge C = 1. Nevertheless, we �ndgood agreement between the simulation results and the exa
t solution of Lieb forthe zero-�eld model [62℄ as well as further results and 
onje
tures of Baxter [242℄for the observables related to the staggered anti-ferroele
tri
 polarization.For the F model 
oupled to planar �4 random graphs, we performed large-s
alesimulations and a �nite-size s
aling analysis guided by the results for the square-latti
e 
ase. In addition to the present logarithmi
 
orre
tions, the �nite-size s
alinganalysis is hampered by the large fra
tal dimension of the random graphs, whi
hleads to very small e�e
tive linear extents at a given volume as 
ompared to thesquare latti
e. Thus, �nite-size e�e
ts are found to be very strong. The appar-ent non-s
aling of the spe
i�
 heat together with a 
lear divergen
e of the staggeredanti-ferroele
tri
 polarizability are taken as indi
ators for the presen
e of an in�nite-order phase transition of the Kosterlitz-Thouless type. The results of Refs. [72, 73℄and further symmetry arguments imply that the 
riti
al 
oupling of the randomgraph model is identi
al to that of the square latti
e. However, we �nd the peaks



243of the polarizability for the numeri
ally a

essible graph sizes to be shifted very farinto the low-temperature phase as 
ompared to the asymptoti
 
riti
al 
oupling.Thus, �nite-size s
aling �ts to the shifts of the polarizability peaks are at best inmarginal agreement with the 
onje
tured value of the asymptoti
 
riti
al 
oupling.A 
omparison of the peak positions re-s
aled a

ording to the mean linear extentsof the latti
es between the random graph and square-latti
e models, however, showsthat the �nite-size approa
hes of both models are indeed very similar, but withlarger 
orre
tion amplitudes for the random graph model. Thus, the identity of the
riti
al 
ouplings between both models 
an be made very plausible numeri
ally. A
ursory 
omparison of the s
aling behaviour of the model for di�erent ensembles re-garding the in
lusion of singular 
ontributions in the graphs reveals that 
orre
tionsto s
aling in
rease as more and more singular 
ontributions are in
luded. This isin 
ontrast to the behaviour of the pure polygoni�
ations model found here and byother authors [50℄. As far as the 
riti
al exponents related to the order parameterare 
on
erned, a �nite-size s
aling analysis of the values of the spontaneous polariza-tion and the polarizability at the asymptoti
 
riti
al 
oupling yields 
riti
al indi
esin agreement with the predi
tions from the KPZ formula. An attempted thermals
aling analysis of the polarizability around its peak remains in
on
lusive due tothe huge size of present �nite-size 
orre
tions. This, however, was to be expe
tedin view of the problems already en
ountered in the analysis of the square-latti
emodel (and, similarly, the diÆ
ulties in the analysis of the two-dimensional XYmodel en
ountered by many authors before) and the additional 
ompli
ation of themu
h smaller linear extents a

essible for the random graph model as 
ompared tomodels on regular latti
es. As before for the square-latti
e model, we �nd signs ofs
aling throughout the whole high-temperature region of the model, indi
ating a
riti
al phase. As a 
uriosity, we report the �nding of a 
riti
al internal energy ofthe model, whi
h is identi
al between the square-latti
e and random graph 
ases.A dynami
al s
aling analysis of the 
ombined Monte Carlo update of graph-relatedand matter-related moves at the asymptoti
 
riti
al point of the model reveals in-
reased auto
orrelation times for the global, graph-related properties, exempli�edby the mean square extent, for the lo
al link-
ip as well as the global minBU surgerydynami
s as 
ompared to the pure polygoni�
ations model. Although the global,minBU surgery algorithm is found to perform overall better than the pure lo
al link-
ip dynami
s, as for the pure graph model we �nd no 
hange in the 
orrespondingdynami
al 
riti
al exponents. This identi
ally applies to the behaviour of matter-
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h as the spontaneous polarization. On pro
eeding into theordered phase, however, the gain of using the minBU update is found to in
rease,sin
e the link-
ip dynami
s is there found to be subje
t to \freezing" indu
ed bythe i
e-rule 
onstraint of the vertex model, leading to vanishing a

eptan
e rates forthe link 
ips there.Several aspe
ts of the ba
k-rea
tion of the matter variables onto the properties of the�4 random graphs are analyzed as a fun
tion of temperature. The distribution of 
o-ordination numbers of the quadrangulations 
an be determined very a

urately. Thefra
tion of quadrangulation sites of 
o-ordination number two is found to be sharplypeaked around the asymptoti
 
riti
al 
oupling, thus de�ning a pseudo-
riti
al pointwhi
h determines the in�nite-volume 
riti
al 
oupling quite a

urately and in goodagreement with the analyti
al predi
tions. A s
aling analysis of the distribution of\baby universes" of the graphs in the spirit of Refs. [29, 258℄ allows to extra
t thestring sus
eptibility exponent of the model. It is found to 
oin
ide with the value
s = 0 expe
ted for a C = 1 theory throughout the 
riti
al high temperature phase.The pure-gravity value 
s = �1=2 is found in the non-
riti
al low-temperaturephase. Exploiting �nite-size s
aling relations, we analyze the geometri
al two-pointfun
tion of the graphs and extra
t the fra
tal Hausdor� dimension. We �nd itto be 
onsistent with the pure gravity value dh = 4 for all temperatures of the
oupled vertex model. Determining all these graph properties also for the 
ase ofpure �4 random graphs, we �nd agreement with the results previously found for thedynami
al triangulations model, thus 
on�rming the expe
ted universality of thedynami
al polygoni�
ations model with respe
t to the form of the polygons.Using an adaptive algorithm and a 3D 
omputer graphi
s pa
kage, the latti
es of thedynami
al polygoni�
ations model 
an be visualized by an embedding into three-dimensional Eu
lidean spa
e. For the pure gravity model, this yields a valuableimpression of the fra
tal stru
ture of the latti
es as well as a visualization of the largevariation of the graph properties in the 
onsidered ensembles. For the vertex model
oupled to random graphs, it provides helpful snapshots revealing the intera
tionbetween the matter variables and the underlying geometry as the system passes fromthe disordered to the ordered phase.From the point of view of statisti
al me
hani
s an obvious generalization of the
onsidered model is given by the generalized 8-vertex type F model dis
ussed inSe
tion 4.3, whi
h | on the square latti
e | exhibits two di�erent ordered phasesand a ri
h phase diagram. This model has been 
onsidered in a matrix model



245formulation in Ref. [231℄ and a spe
ial, one-dimensional sli
e of the parameter spa
e
ould be solved analyti
ally. The general phase diagram of this model 
oupled to�4 random graphs, however, is as yet unknown. From the quantum gravity pointof view, a very promising appli
ation of the 
oupling of vertex models to randomgraphs 
ould be given in an alternative formulation of dis
rete Lorentzian quantumgravity proposed in Ref. [230℄. There, the arrows of the vertex model on links
onne
ting neighbouring sites allow to distinguish between spa
e-like and time-likeedges (�3 
ase) or, alternatively, forward and ba
kward light 
ones (�4 
ase) andthus provide a Lorentzian signature of the 
on�gurations in the spirit of spin networkevolution [260℄. This approa
h 
ould lead to a formulation of dis
rete Lorentzianquantum gravity starting out with less initial assumptions than the formulation ofAmbj�rn et al. [12, 85, 86, 261℄.



Appendix A
Methods of Simulation and DataAnalysis
A.1 The Monte Carlo Pro
essA.1.1 Simple samplingThe Monte Carlo (MC) method is a general te
hnique for the statisti
al evaluationof (typi
ally) high-dimensional integrals. Consider, e.g., a thermal average of anobservable A for a system of statisti
al me
hani
s,hAi = 1ZXfsig A(fsig) exp[��H(fsig)℄; (A.1)where S � fsig denotes the state-spa
e variables (e.g., spin degrees of freedom), His the Hamiltonian of the model and Z denotes the partition fun
tion. Here, thesum symbolizes either an integral for systems with 
ontinuous degrees of freedomor a true summation for dis
rete variables. The number N of variables si, e.g. thenumber of spins of a latti
e model, is typi
ally huge and, eventually, a 
onsiderationof the thermodynami
 limit N ! 1 is intended. For the vast majority of the
ases, the integral (A.1) 
annot be performed analyti
ally, su
h that one has torevert to a numeri
al integration (or other approximation methods). Unlike forlow-dimensional integrals, however, a numeri
al integration using a regular (e.g.hyper-
ubi
) grid of evaluation points in the phase spa
e S is not very well suited.The standard rationale for this failure rests on the observation that the fra
tion of246



A.1. THE MONTE CARLO PROCESS 247interior points of a regular grid vanishes as the grid dimension N tends to in�nity(see, e.g., Ref. [153℄). That is, in this limit all points are lo
ated on the boundaryof the 
onsidered phase-spa
e region, whi
h is a surfa
e of vanishing N -dimensionalvolume. To guarantee a proper 
onvergen
e of the numeri
al integration one needs amore sensible, e.g. uniform, distribution of evaluation points. This 
an be a
hievedby 
hoosing phase-spa
e points at random instead of regularly leading to a statisti
alor Monte Carlo evaluation of the integral (A.1).In this s
heme, a time sequen
e of integration points S(t), i.e. a realization of adis
rete sto
hasti
 pro
ess, is 
hosen a

ording to some probability density1 Psim(S)and an estimate of hAi is then given by�A = PtA[S(t)℄Peq[S(t)℄=Psim[S(t)℄Pt Peq[S(t)℄=Psim[S(t)℄ ; (A.2)where Peq(S) denotes the integration measure of the integral (A.1), i.e., the Boltz-mann equilibrium distribution of statisti
al me
hani
s,Peq(S) = 1Z exp[��H(S)℄: (A.3)Choosing a uniform distribution Psim(S) of evaluation points results in the so-
alledsimple sampling MC s
heme. Then, su

essive integration points S(t) 
an be 
hosen
ompletely independent of ea
h other, 
orresponding to a true random sampling.This is a sensible pro
edure for 
ases where the Boltzmann fa
tors in Eq. (A.1) are
onstant, su
h that all regions of phase spa
e 
ontribute equally to the integral, i.e.,when � tends to zero or the temperature to in�nity. Typi
ally, however, this is notthe 
ase and, instead, the Boltzmann fa
tors give large weight to a 
omparably smallregion of the state spa
e. This largely unequal distribution of \importan
e" overthe phase spa
e should then be taken into a

ount when 
hoosing the integrationpoints, leading to the importan
e sampling MC method.A.1.2 Importan
e samplingObviously, the optimal probability density Psim(S) for the 
hoi
e of integrationpoints is the integration measure of Eq. (A.1) itself, i.e., the 
ase Psim(S) = Peq(S).1For systems with dis
rete phase-spa
e variables the densities have to be repla
ed by simpleprobabilities.
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hoi
e of integration points 
an be a
hieved, every region of phase spa
e re-
eives attention exa
tly a

ording to its importan
e for the integral (A.1) and theestimate (A.2) redu
es to a simple arithmeti
 time-series average,�A = 1T TXt=1 A[S(t)℄; (A.4)where T denotes the length of the time series. In order to realize this goal, adis
rete Markov pro
ess (or Markov 
hain) S(t) is utilized. There, the transition or
onditional probabilities are independent of all but the last prede
essor states,Psim[S(t + 1)jS(t); : : : ;S(1)℄ = Psim[S(t + 1)jS(t)℄; (A.5)i.e., at ea
h time the 
hoi
e of the next integration point S(t + 1) depends only onthe 
urrent state S(t) of the system. Additionally, one requires the Markov 
hain tobe homogeneous, i.e., the transition probabilityW (S ! S 0) � Psim[(S 0; t+1)j(S; t)℄should not depend on t. It 
an be easily shown (see, e.g., Ref. [262℄) from this Markovproperty and the normalization of probability densities that the probabilities of the
hain have to ful�l the so-
alled Master equation,Psim(S; t + 1)� Psim(S; t) =XS0 [Psim(S 0; t)W (S 0 ! S)� Psim(S; t)W (S ! S 0)℄ ;(A.6)whi
h is simply a 
ontinuity equation for the 
onserved quantity Psim(S); on the rhsof Eq. (A.6) the �rst term denotes the amount of probability entering the state Sand the se
ond term the amount of probability leaving S in the time step t! t+1.Thus, a suÆ
ient, though not ne
essary, 
ondition for the Boltzmann distributionto be a stationary probability density P (S; t) = P (S) of the 
hain is given by thepostulate of detailed balan
e for the transition probabilities W ,W (S ! S 0)Peq(S) =W (S 0 ! S)Peq(S 0): (A.7)To guarantee not only stationarity of the Boltzmann distribution, but the 
onver-gen
e of Psim to Peq, is more intri
ate. However, this 
onvergen
e 
an be provedunder the additional 
ondition of ergodi
ity of the Markov 
hain. For a �nite num-ber of states, ergodi
ity means that with a �nite probability the 
hain will adopt anyof these states after a �nite number of steps, irrespe
tive of the initial 
onditions.For an in�nite number of dis
rete states or a 
ontinuum of states this notion has tobe suitably generalized. For the 
ase of a �nite number of states, the 
onvergen
e
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ity theorem [262℄. A re
ent 
ompilation ofproofs of the 
onvergen
e of the MC pro
ess 
an be found in Ref. [263℄.Therefore, an importan
e sampling Monte Carlo simulation s
heme satisfying the
onditions of detailed balan
e and ergodi
ity is guaranteed to 
onverge to the Boltz-mann distribution and thermal averages are given by the simple time-series average(A.4). While ergodi
ity is a property of the set of 
onsidered update moves S ! S 0(su
h as, e.g., single spin 
ips for a spin model), whi
h have to be ensured to 
onne
tany two states of the system within a �nite number of steps (at least for the 
aseof a �nite number of states), detailed balan
e is a 
ondition to be ful�lled by the
hosen transition probabilities W (S ! S 0). The most 
ommonly adopted 
hoi
e isgiven by the Metropolis formula [264℄,W (S ! S 0) = min f1; exp (��[H(S 0)�H(S)℄g ; (A.8)whi
h satis�es Eq. (A.7) as 
an be easily 
he
ked.A.2 Auto
orrelations and Dynami
al S
alingThe Markovian nature of the sto
hasti
 pro
ess involved in the importan
e sam-pling Monte Carlo s
heme entails the fa
t that subsequent system states generatedin the 
hain are not statisti
ally independent. The degree of 
orrelation betweensubsequent realizations of a random variable A at times s and t is measured by the
onne
ted, unnormalized auto
orrelation fun
tionCA(s; t) � hAsAti � hAsihAti; t � s: (A.9)The stationarity of the pro
ess implies translation invarian
e hAsi = hAti � hAiand hAsAti = hA0At�si, so that we 
an 
onsider CA(t) � CA(0; t). One 
an alsode�ne the normalized auto
orrelation fun
tion of A,�A(t) � CA(t)=CA(0); (A.10)su
h that �A(0) = 1 and limt!1 �A(t) = 0. The auto
orrelation fun
tion is generi-
ally expe
ted to de
line exponentially, i.e.CA(t) � CA(0)e�t=�(A); (A.11)
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h de�nes the exponential auto
orrelation time �(A) whi
h is spe
i�
 to the
onsidered pro
ess (i.e., MC dynami
s) and the random variable (i.e., observable)A. Obviously, CA(0) is identi
al to the varian
e �2(A) of A. In general the dynami
sof a Monte Carlo pro
ess will be 
hara
terized by a set of di�erent 
orrelation times�0 � : : : � �n, where, potentially, n ! 1. By the exponential 
orrelation length�(A) of an observable A we refer to the largest 
orrelation length �0(A) present withnon-vanishing amplitude in the dynami
 spe
trum of A, i.e. [169℄�0(A) = lim supt!1 t� ln �A(t) (A.12)Note, however, that due to the possibility of a very small amplitude of the leadingexponential, this 
orrelation length 
ould be suppressed as 
ompared to the non-leading terms even for long, but �nite time series.The degree of dependen
e in time of su

essive states of a Markov 
hain generatedby lo
al moves (like single spin 
ips in a latti
e spin model) is obviously linkedto the strength of 
orrelations of the system's degrees of freedom in spa
e, i.e.,the auto
orrelation times are expe
ted to grow with the spatial 
orrelation length�. In the vi
inity of a 
riti
al point, where 
lusters of pure phase states of allsizes 
onstitute the typi
al 
on�gurations, auto
orrelation times (in units of latti
esweeps) are observed to grow algebrai
ally (
riti
al slowing down),� / min(�; L)z; (A.13)where the dynami
al 
riti
al exponent z is now on the basis of universality argumentsexpe
ted to be independent of the observable under 
onsideration. In a simpli�eddynami
al model for a general lo
al algorithm, the information about a lo
al ex
i-tation within a pure phase region is assumed to travel di�usively, thus implying arandom-walk exponent of z = 2. In real-world models, however, z like stati
 
riti-
al exponents takes on a non-trivial value, whi
h is for lo
al dynami
s 
lose to butdi�erent from z = 2.The pre
ision of a time-series average �A = (PtAt)=N from a Monte Carlo simulationis maximal for un
orrelated measurements At; here, N denotes the length of thetime series. The varian
e of the mean �2( �A) � h �A2i�h �Ai2 for the 
ase of 
orrelatedmeasurements is given by�2( �A) = 1N2 NXs;t=1CA(s; t) = 2CA(0)N "12 + N�1Xt=1 �A(t)�1� tN�# : (A.14)
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tor in square bra
kets as ~�int;N(A), this expression 
an be re-arranged with CA(0) = �2(A) to give�2( �A) = �2(A)N=2~�int;N(A) � �2(A)N=2~�int;1(A) ; N � 1: (A.15)For histori
al and te
hni
al reasons (stemming from spe
tral analysis, 
f. Ref. [265℄),the integrated auto
orrelation time is not de�ned as ~�int;1(A), but omitting the fa
tor(1� t=N) as �int(A) � �int;1(A) � 12 + 1Xt=1 �A(t); (A.16)whi
h, for an exponentially de
aying auto
orrelation fun
tion �(t) only di�ers by anexponentially small amount from ~�int;1(A), su
h that, for pra
ti
al purposes, bothde�nitions are equivalent. Thus, if we de�ne,Ne� = N2�int(A) ; (A.17)the varian
e still vanishes inversely linear with the number of measurements, butwith N repla
ed by the e�e
tive number of independent measurements Ne� .The relation between the exponential and integrated auto
orrelation times, �0(A)and �int(A), is obvious for the purely exponential form of �A(t) of Eq. (A.11); then,we have �int(A) = 12 �1 + e�1=�0(A)1� e�1=�0(A)� � �0(A): (A.18)For a spe
trum of �A(t) 
ontaining higher order ex
itations �i(A), i > 0, one 
anshow that Eq. (A.18) has to be repla
ed by [266℄�int(A) � �0(A): (A.19)Also, then, one 
an ask, whether the dynami
al 
riti
al exponents of Eq. (A.13)asso
iated with the two types of auto
orrelation times 
oin
ide. This is not generallythe 
ase; instead from Eq. (A.19) it is obvious thatzint � z0; (A.20)and 
ases where zint < z0 have been observed [267℄.
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kknifeA.3.1 The binning te
hniqueAs dis
ussed in Appendix A.2 above, the fa
t that the importan
e sampling methodutilizes a sto
hasti
 Markov pro
ess for the generation of the Monte Carlo integra-tion points, entails auto
orrelations between su

essive 
on�gurations of the system.As far as the analysis of the resulting time series At of observable measurements is
on
erned, these auto
orrelations are rather unpleasant, sin
e the statisti
al anal-ysis of time series is mu
h simpler for un
orrelated data, see, e.g., Refs. [265, 268℄.For instan
e, to evaluate the varian
e of the mean value �A of an auto
orrelatedtime series, a

ording to Eq. (A.15) one has to estimate the integrated auto
orrela-tion time �int(A) �rst, whi
h is not 
ompletely straightforward and 
omputationallyquite expensive, 
f. Appendix A.4. Apart from that, advan
ed analysis tools su
h asthe \ja
kknife" method to be des
ribed below 
an only be applied to a set of \iid"(identi
ally and independently distributed) random variables. The blo
king pro
essdis
ussed in the following re-arranges the simulation data in a way su
h as to gen-erate an e�e
tively un
orrelated time series, thus alleviating the above-mentionedproblems.The binning approa
h exploits the observation that the 
ombination of neighbouringentries of the time series of length N to sub-averages,A0t = 12(A2t�1 + A2t); N 0 = N2 ; (A.21)results in a less 
orrelated new time series A0t of (smaller) length N 0 as long as the
orrelations of the original time series de
ay fast enough. This has some important
onsequen
es for the estimation of the varian
e of the mean from the transformedtime series. Obviously, the mean value �A and its varian
e �2( �A) are not a�e
ted bythis transformation. However, the varian
e �2(A) = CA(0) of a single measurementtransforms as [269℄, �2(A0) = 12[CA(0) + CA(1)℄; (A.22)where CA(t) denotes the auto
orrelation fun
tion of A de�ned by Eq. (A.9). Thatis, a part of the auto
orrelations, namely the one-step-distan
e part CA(1), is beingin
orporated into the varian
e �2(A0) of the transformed variable A0. Now, from Eq.(A.14) it is obvious that CA(0)=N is a lower bound of the varian
e �2( �A) and for



A.3. BINNING AND THE JACKKNIFE 253the transformed variables one �nds,�2( �A) = �2( �A0) � C 0A(0)N 0 = CA(0)N + CA(1)N ; (A.23)su
h that the sequen
e C(k)A (0)=N (k) resulting from k su

essive appli
ations of thebinning transformation (A.21) is bounded and monotonous as long as the auto
orre-lation fun
tion CA(t) de
ays faster than 1=t [269℄. Thus, the sequen
e C(k)A (0)=N (k)is 
onvergent, and its �xed point value C�A(0)=N� is the varian
e �2( �A) of the mean.On the other hand, from Eq. (A.14) this implies that the higher order auto
orre-lations C�A(t)=N�, t > 0 vanish at this �xed point. Therefore, the �xed point timeseries is un
orrelated and for the estimate of the varian
e of its mean, the na��veformula 
an be employed [268℄,�2( �A) = �2( �A�) = h 1N� � 1Ĉ�A(0)i � h 1N�(N� � 1) N�Xt=1 (A�t � �A�)2i: (A.24)In pra
ti
e, the estimates Ĉ(k)A (0)=(N (k) � 1) are evaluated after ea
h appli
ationof the binning transformation. A

ording to the pre
eding dis
ussion, they areexpe
ted to grow monotonously and to settle down on the plateau value Ĉ�A(0)=(N��1) as soon as \enough" binning transformations have been performed. While intheory this requires in�nitely many of su
h transformations, in pra
ti
e it suÆ
esto do this k = � log2 �int(A) times with a fa
tor � of the order of 101 to shift thee�e
t of auto
orrelations below the noise of the statisti
al 
u
tuations. This is dueto the fa
t that for the usual Monte Carlo dynami
s auto
orrelations in fa
t de
lineexponentially and not only algebrai
ally, 
f. Appendix A.2 above.A.3.2 Ja
kknife bias and varian
e estimatesIn this se
tion we 
onsider a Monte Carlo time series At whi
h is un
orrelated,i.e., whi
h either 
omes from a simple sampling MC simulation or is already theresult of a re-blo
king of the original time series via the binning s
heme of theprevious se
tion. The length n of the time series then 
orresponds to the number ofblo
ks used in the binning transformation. The analysis of stationary, un
orrelatedtime series 
an be generally des
ribed as the estimation of some parameter f(F ) ofthe underlying probability density F (A) of the random variable (observable) A by
onsideration of the sampled density F̂ = [Pt Æ(A � At)℄=n. The two main issuesrelated to this estimation are the question of its bias, i.e. how far on average the



254 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISestimate is from the expe
ted value, and the need to determine the a

ura
y of theestimate in terms of the present statisti
al 
u
tuations. For reviews of the ja
kknifeand other resampling s
hemes see Refs. [270, 271℄.Bias redu
tionThe bias of the estimate f(F̂ ) of the parameter f(F ) is given byBIAS � hf(F̂ )i � f(F ): (A.25)For the parameters f 
ommonly 
onsidered in MC simulations, the bias dependsanalyti
ally on the length n of the time series, so one 
an expand2hf(F̂ )i = f(F ) + a1n + a2n2 + � � � : (A.26)For time series analyses of MC data, the parameter f will most often be a fun
tion ofthe expe
tation value hAi, i.e. f(F ) = f(hAi), and the estimate is given by repla
ingthe expe
tation by the mean, i.e. f̂ � f(F̂ ) = f( �A). We will dis
uss this 
ase here,the generalization to more general situations being straightforward. Obviously, theidentity f(hAi) = hAi 
an be estimated without bias by f( �A) = �A. For non-linearfun
tions f , however, in general a bias will o

ur that, to �rst order, vanishes as 1=nfor large lengths n of the time series. Denoting the expe
tation value hf( �A)i froma time series of length n as En, from Eq. (A.26) one reads o� that, to �rst order in1=n, En � E1En�1 � En = 1=n1=(n� 1)� 1=n; (A.27)su
h that the true expe
tation value E1 = f(hAi) 
an be estimated byE1 = nEn � (n� 1)En�1: (A.28)Thus, if one 
an 
onstru
t an estimate for the expe
tation values En�1 for timeseries of length n� 1 from the original series of length n, a bias-redu
ed estimatorfor E1 = f(hAi) 
an be easily found. The simple tri
k on whi
h the ja
kkniferesampling s
heme is based, is the observation that n time series of length n � 1
an be 
onstru
ted from a series of length n by omitting in ea
h series a singlemeasurement As. That is, one 
onsiders the ja
kknife empiri
al densitiesF̂(s)(A) � 1n� 1Xt6=s Æ(A� At); s = 1; : : : ; N: (A.29)2Note, that in 
ontrast to many of the textbook formulae of statisti
s we do not have to assumea Gaussian distribution here.
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orresponding ja
kknife blo
k averages,�A(s) = 1n� 1Xt6=s At; (A.30)ja
kknife estimates for the expe
tation value En�1 and their average are given byf̂(s) = f( �A(s));f̂(�) = 1n nXs=1 f(s): (A.31)From Eq. (A.28) the ja
kknife bias-redu
ed estimator of f(hAi) is therefore givenby ~f = nf̂ � (n� 1)f̂(�); (A.32)and, 
orrespondingly, the ja
kknife or Quenouille estimator of bias is given by [270℄,[BIAS(f̂) = (n� 1)(f̂(�) � f̂): (A.33)From the expansion (A.26) it is obvious that the improved estimator ~f now merelyhas a bias proportional to 1=n2 instead of 1=n. In prin
iple, this pro
ess of biasredu
tion 
an be iterated to also remove higher-order bias 
ontributions. It shouldbe 
lear, however, that the varian
e of ~f will in general be larger than that of theoriginal estimator f̂ . Thus, a redu
tion of bias is paid for by an in
rease in statisti
al
u
tuations. Therefore, a (further) redu
tion of bias is only sensible if the bias is (atleast) of the same order of magnitude as the varian
e of the 
onsidered observable.Varian
e estimationA quanti�
ation of the statisti
al a

ura
y of a parameter estimation is given by itsvarian
e. While, again, an estimation of this parameter is straightforward for thetrivial 
ase f̂ = f( �A) = �A, where an unbiased estimate of varian
e is given by�̂2( �A) = 1n(n� 1) NXt=1 (At � �A)2; (A.34)for non-linear fun
tions f( �A) an unbiased varian
e estimate 
an in general not be
onstru
ted. This problem is often solved by the appli
ation of well-known errorpropagation formulae [170℄. These assume a Gaussian distribution of the observable�A, whi
h is approximately the 
ase for long enough time series thanks to the 
entral



256 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISlimit theorem. However, there is no simple way to quantify the systemati
al errorentailed by this approximation. Furthermore, the analyti
 form of the fun
tion f isneeded for the error propagation, whi
h is not always known, for example when fdenotes the operation of �nding the lo
ation of the maximum of the spe
i�
 heat asa fun
tion of temperature found by a reweighting analysis of a time series of energymeasurements.A brute-for
e ansatz for the evaluation of varian
es of parameter estimates wouldbe to perform k independent MC simulations of length n=k ea
h and to evaluatethe desired parameter estimates f̂i, i = 1; : : : ; k. Then the analogue of the na��vevarian
e estimate (A.34) 
an be applied to this set of time series,�̂2(f̂) = 1k(k � 1) kXi=1 (f̂i � �̂f)2; (A.35)with a bias of at most O(k=n) and a varian
e of O(1=k). In 
ontrast, applying (A.34)dire
tly on the level of the measurements of a single time series would result in abias whi
h is O(1). Eq. (A.35) 
orresponds to the plain blo
king or binning s
hemepresented in the previous se
tion applied to an un
orrelated time series. However,one 
an improve on this and �nd an estimator with bias and varian
e O(1=n) usingthe ja
kkni�ng idea. Interpreting the ja
kknife blo
ks of Eq. (A.31) as the out
omesof n simulations with time series of length n�1 one 
an write down an estimate of thetype (A.35). This, however, would negle
t the large but trivial 
orrelations betweenthese n series, whi
h di�er only by one measurement ea
h. Yet, as it turns out [270℄,the e�e
t of these 
orrelations is simply an under-estimation of the varian
e by afa
tor of 1=(n�1)2, whi
h 
an be easily amended. Therefore, the ja
kknife estimateof varian
e of f̂ is given by[VAR(f̂) = n� 1n nXs=1 [f̂(s) � f̂(�)℄2; (A.36)with a bias whi
h is O(1=n). The fa
t that the e�e
t of the 
orrelations between theja
kknife blo
ks 
an simply be 
orre
ted for by a multipli
ation with (n�1)2 
an beeasily 
he
ked for the trivial 
ase of f̂ = �A. For more general parameter estimates,one has to assume 
ertain analyti
ity properties of the parameters f as a fun
tionof n [270℄. In general, it 
an be shown [270℄ that the ja
kknife varian
e estimate is
onservative in the following sense,h nn� 1[VAR(f̂)i � �2n�1(f̂); (A.37)
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e of the estimate f̂ from time series of lengthn� 1.Finally, it should be noted that the ja
kknife bias redu
tion and varian
e estimationte
hniques 
an be 
ombined to assess the varian
e of the bias-redu
ed estimates~f of Eq. (A.32). For this purpose, the ja
kknife blo
king s
heme has to be iter-ated to se
ond order, leading to a matrix of ja
kknife blo
ks of length n � 2. The
orresponding formulae are given in Ref. [272℄.A.4 Estimation of Auto
orrelation TimesGiven a realisation of the time series At of length N the auto
orrelation fun
tionEq. (A.9) 
an be estimated asĈA(t) = 1N � t N�tXs=1(As � �A)(As+t � �A); (A.38)where �A = 1N NXt=1 At: (A.39)However, the estimate Eq. (A.38) is not unbiased; in fa
t, it 
an be shown [268℄ thatits bias is approximately given by ��2(A)�int(A)=N , so that it is still asymptoti
allyunbiased for N � �int(A), whi
h is anyway a ne
essary 
ondition for reliable anda

urate parameter estimates from �nite-length time series. Alternatively, CA(t)
an be estimated by ĈA(t) = 1N � t N�tXs=1 AsAs+t � �A2; (A.40)whi
h is also not unbiased due to the bias of the se
ond term. For time serieswith, e.g., N & 10 000 �int, typi
ally o

urring in Monte Carlo simulations, thetwo estimates (A.38) and (A.40) are nearly indistinguishable. The se
ond estimateEq. (A.40) is 
omputationally somewhat more 
onvenient sin
e the estimate �A 
anbe 
omputed within the same loop as the estimate for hAsAs+ti. From this, thenormalized auto
orrelation fun
tion 
an be estimated by�̂A(t) = ĈA(t)=ĈA(0); (A.41)whi
h is also a biased estimate; for the rather long times series needed for theestimation of auto
orrelation times, however, this bias 
an be rather safely negle
ted.
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orrelation time �0(A) follows from a three-parameter �t of ĈA(t) to the fun
tional formĈA(t) = ĈA(0) exp(�t=�̂0(A)) + 
onst; (A.42)where the additive 
onstant should be in
luded to a

ount for the statisti
al un
er-tainty in the estimation of the dis
onne
ted part hAi2 [273℄. An alternative set ofestimates that eliminate varian
e and bias 
onne
ted to the additive and multipli
a-tive 
onstants is given by [274℄�̂0(A; t) = �"ln ĈA(t)� ĈA(t��)ĈA(t +�)� ĈA(t)#�1; (A.43)where the free parameter � 
an be used to tune the signal-noise ratio to an optimum.For a �nal estimate of �0(A) an average over di�erent distan
es t in Eq. (A.43) shouldbe performed, taking the 
ovarian
es of the estimates �̂0(A; t) for di�erent o�sets tinto a

ount [274℄.Of more interest also for the analysis of stati
 behaviour of model systems is theintegrated auto
orrelation time �int(A). Unfortunately, the obvious estimator,�̂int;N(A) = 12 + N�1Xt=1 �̂A(t); (A.44)whi
h would also be used to approximately estimate �int(A) � �int;1(A), is verybadly-behaved statisti
ally. Sin
e the number of data points used for the estimate�̂A(t) of Eq. (A.41) de
reases with the distan
e t as (N � t), the estimate �̂A(t)be
omes very noisy for large separations t. These varian
es of �̂A(t) sum up to atotal varian
e of �̂int;N(A) of Eq. (A.44) that does not vanish with N ! 1 [265℄,thus destroying the reliability of the estimate �int(A). To 
ir
umvent this problem,one introdu
es a 
ut-o� M < N � 1 in the distan
es t, i.e.,�̂int;M(A) = 12 + MXt=1 �̂A(t); (A.45)whi
h, on the other hand, introdu
es an additional bias. Sin
e an in
rease of Min
reases the varian
e of �̂int;M(A), but redu
es the bias, the 
hoi
e ofM is a tradeo�between bias and varian
e. In pra
ti
e, a self-
onsistent determination of the 
ut-o�turns out to be useful [169℄, i.e. M is su

essively in
reased to the point whereM � � �̂int;M(A): (A.46)



A.4. ESTIMATION OF AUTOCORRELATION TIMES 259For the usual lengths of time series in Monte Carlo simulations of N > 10 000 �int, a
ut-o� parameter of � � 6 turns out to be a sensible 
hoi
e [210℄. The varian
e ofthe estimate �̂int;M(A) 
an be approximately found from straightforward but tedious
al
ulations [169, 265, 268℄ for �int �M � N to be�2 [�̂int;M(A)℄ � 2(2M + 1)N � 2int(A): (A.47)A more a

urate determination of the estimator varian
e 
an be 
onstru
ted withthe ja
kknife te
hnique, 
f. Appendix A.3. De�ne ja
kknife blo
k estimates for nblo
ks of the auto
orrelation fun
tion asĈ(�)A (t) � 1N nn� 2 Xs2T�AsAs+t � 1N nn� 2 Xs2T�As!2 ; t < N=n (A.48)where � = 1; : : : ; n andT� � f0 < i � (�� 1)N=ng [ f�N=n < i � (n� 1)N=n)g; i 2 N : (A.49)Then, from the resulting ja
kknife blo
k estimates of �int(A),�̂ (�)int;M(A) � 12 + MXt=1 Ĉ(�)A (t)=Ĉ(�)A (0);�̂ (�)int;M(A) � 1n nX�=1 �̂ (�)int;N(A); (A.50)the ja
kknife estimate of varian
e for �̂int;M(A), M < N=n, is given by[VAR[�̂int;M(A)℄ = n� 1n nX�=1 h�̂ (�)int;M(A)� �̂ (�)int;M(A)i2 : (A.51)An alternative estimate of �int(A) 
an be found from Eq. (A.15),�int;n(A) � 12 �2( �A)�2(A)=N ; (A.52)where the \�" a

ounts for the di�eren
e between �int;n(A) and the fa
tor in squarebra
kets of Eq. (A.14) that is negligible for all pra
ti
al purposes. Considering theusual n-blo
k ja
kknife estimate of the varian
e of �A,[VARn( �A) � n� 1n nXs=1 [A(s) � A(�)℄2; (A.53)
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kknife estimate of the integrated auto
orrelation time is given by�̂int;n(A) � 12[VARn( �A)=[VARN ( �A); (A.54)where, as usual, n has to be 
hosen su
h that the ja
kknife blo
ks are approximatelyindependent statisti
ally; this is 
ommonly a
hieved by monitoring the value of[VARn( �A) on in
reasing n, until a plateau value is rea
hed. An estimate for thevarian
e of �̂int;n(A) 
an be found from iterating the ja
kknife pro
edure to se
ondorder, i.e., in the usual notation,[VARn([VARn( �A)) = n� 1n nXs=1 [[VAR(s)n�1( �A)�[VAR(�)n�1( �A)℄2; (A.55)su
h that �̂2[�̂int;n( �A)℄ � 14[VARn([VARn(A))[VAR2N( �A) ; (A.56)where the varian
e of[VARN( �A) has been negle
ted due to its suppression by �int(A)=N
ompared to the varian
e of [VARn( �A).A.5 Histogram ReweightingAs it has been des
ribed in Se
tion A.1, a single importan
e-sampling Monte Carlosimulation yields statisti
ally exa
t information about thermal averages of a systemof statisti
al me
hani
s only at a single point of the 
oupling parameter spa
e. Forsimpli
ity, we restri
t ourselves to the 
ase of the (inverse) temperature � as the onlypresent 
oupling. Impli
itly, however, the gathered data 
ontains temperature in-dependent information about the system. Within the importan
e sampling s
heme,the probability density of the system energies at the inverse temperature �0,p�0(E) = 1Z�0
(E)e��0E; (A.57)is sampled by the normalized energy histogram Ĥ�0(E), i.e., hĤ�0(E)i = p�0(E).Here, 
(E) denotes the density of energy states of the system. Sin
e the temperaturedependen
e of p�0(E) is expli
it, i.e., the non-trivial term 
(E) does not depend on�0, one has the following basi
 relation,p�(E) =W���0(E) p�0(E) � exp[�(� � �0)E℄PE p�0(E) exp[�(� � �0)E℄ p�0(E); (A.58)



A.5. HISTOGRAM REWEIGHTING 261whi
h is the starting point for the reweighting pro
edure in the importan
e samplings
heme [275, 276℄. Thus, obtaining information about the system at the 
oupling� from a simulation at �0 amounts to the appli
ation of the reweighting fa
torsW���0(E). Therefore, from the estimate Ĥ�0(E), the distribution at a di�erentinverse temperature � 
an be evaluated asĤ�(E) = Ŵ���0(E) Ĥ�0(E) � exp[�(� � �0)E℄PE Ĥ�0(E) exp[�(� � �0)E℄ Ĥ�0(E): (A.59)Consequently, estimates of expe
tation values of temperature dependent observablesA(E) at � are given by Â� =XE Ĥ�(E)A(E): (A.60)In terms of the time series (Et; At) of energy and observable measurements at �0,this 
an be written asÂ� =Xt Ŵ���0(t)At �Xt exp[�(� � �0)Et℄Pt exp[�(� � �0)Et℄At: (A.61)For the reweighting of observables A, whose value for a given system 
on�guration isnot uniquely de�ned by the 
on�gurational energy (su
h as, e.g., the magnetization),one has to 
onstru
t mi
ro-
anoni
al (�xed-energy) averages hAiE, whi
h then 
anbe treated as the observables A(E) above.While the given relations are statisti
ally exa
t for arbitrary 
hoi
es of �, in pra
ti
ethe quality of the estimates strongly depends on the separation � � �0. Sin
e inthe importan
e sampling pro
ess events are sampled only in the vi
inity of therather narrow peak(s) of the energy histogram, whose positions strongly depend onthe inverse temperature �, for too large separations � � �0 the histogram Ĥ�0(E)eventually 
ontains no entries for the region of E re
eiving large weights from thereweighting fa
tors Ŵ���0(E). The reliability of the reweighting pro
ess for a giveninverse temperature � is 
onveniently assured by monitoring the overlap OE(���0)of the 
orresponding energy histograms at the 
ouplings �0 and �, i.e.,OE(� � �0) =XE min[Ĥ�0(E); Ĥ�(E)℄ =Xt min[1=T; Ŵ���0(t)℄; (A.62)where T denotes the length of the time series. For the reweighting to work reliably,the overlap should ex
eed a 
ertain threshold, say 2=3. Thus, reweighting is mostlyuseful in the vi
inity of 
riti
al points, where the 
orresponding energy distributionsare rather broad, ensuring a non-trivial size j���0j of the region where reweighting



262 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISworks reliably. Note that suitably evaluated statisti
al errors of the reweightedestimates do not (or only partially) re
e
t the error stemming from a la
k of overlapof the relevant histograms, sin
e the (unde�ned) relative varian
e of energy bins withno entries is usually assumed to be zero. For the reweighting of observables related tothe magnetization, it is sometimes 
onvenient to also 
onsider the overlapOM(���0)of the magnetization histograms, whi
h 
an be easily de�ned in terms of the two-dimensional histogram Ĥ(E;M). Note that in general an absolute threshold for theoverlap 
an not guarantee reliability of the reweighting pro
ess, sin
e observables
an be de�ned to use more and more data from the far wings of the energy (ormagnetization) distributions by in
luding terms with large-order moments hEki orhMki, k � 1. In addition to the 
u
tuations, the reweighting pro
ess entails a biasof the reweighted estimates, whi
h also results from missing histogram entries andvanishes as 1=T with the length of the time series.



Appendix B
Graph Embedding andVisualization
In 
ontrast to embedded string and latti
e random surfa
e models, the dynami
altriangulations (or, more generally, dynami
al polygoni�
ations) model as de�ned inChapter 2 des
ribes abstra
t graphs without any referen
e to an embedding spa
e.Obviously, this is what one would expe
t from a dis
retised theory of quantumgravity, whi
h should be formulated entirely in terms of intrinsi
 variables su
h asthe intrinsi
 metri
 tensor. However, for pra
ti
al purposes and, espe
ially, for thevisualization of the resulting abstra
t surfa
es, the possibility of an embedding of thetwo-dimensional graphs into three-dimensional Eu
lidean spa
e is highly desirable.In 
onne
tion with suitable software for three-dimensional visualization su
h as theOpenGL API [277℄, an embedding allows for quite de
orative and, more importantly,physi
ally very instru
tive representations of graphs of the 
onsidered ensembles. Forthe pure gravity model, the 
orresponding representation provides a visualizationof the fra
tal stru
ture of the graphs, being des
ribed as that of a self-similar treeof baby universes [29℄. Furthermore, en
oding dis
rete matter variables 
oupledto the verti
es or fa
es of the graphs by a suitable 
olouring of these entities, theintera
tions between spa
e-time and matter 
an be dire
tly \observed". Espe
ially,the in
uen
e of the tenden
y of (partially) ordered spin models to minimize theboundaries between pure-phase regions on the bran
hing properties of the babyuniverse tree is dire
tly visible, see also Se
tion 2.4.For visualization purposes, one should 
on
entrate on the polygoni�
ations, sin
ethe fa
es are planar there (the types of polygons being restri
ted to triangles or263
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onsidering �3 or �4 graphs, they should be transformed tothe dual triangulations resp. quadrangulations. Additionally, the square fa
es ofthe quadrangulations are divided into two triangles for the visualization with theOpenGL pa
kage. Sin
e the fa
es of the polygoni�
ations are assumed to be equi-lateral, the embedding problem is in prin
iple a 
ombinatorial one: the number ofequilateral polygons meeting at a given vertex (i.e., its 
o-ordination number) de-termines the 
on�guration of su
h a \dome" or \trough" of polygons uniquely upto a �nite number of dis
rete transformations. Thus, for any �nite, planar polygo-ni�
ation there are only a �nite number of representations satisfying the 
onstraintof equilaterality, whi
h 
ould be su

essively tested to �nd an embedding withoutedge interse
tions. Pra
ti
ally, however, we �nd this not very 
onvenient sin
e thenumber of possible 
on�gurations still grows exponentially with the number of graphverti
es. Thus, instead, we revert to an adaptive embedding algorithm.Although the 
onsidered graphs are planar and 
an thus be drawn in the plane,this is obviously impossible if the equilaterality 
onstraint should be observed atthe same time. Also, the fra
tal stru
ture is mu
h better visible for a spheri
alrepresentation. Hen
e, the embedding pro
edure is split into three sub-steps:1. Find a planar embedding of the triangulation or quadrangulation, i.e., drawit in the plane ensuring that no two edges interse
t.2. Proje
t this embedding stereographi
ally onto the unit sphere.3. Approximately satisfy the equilaterality 
onstraint by the simulation of a gen-eralized spring embedder.The problem of planarity testing and the 
onstru
tion of plane embeddings of planargraphs has re
eived mu
h attention in algorithmi
 theory and several eÆ
ient, butmostly quite 
omplex, solutions have been put forward. For the �rst time, it hasbeen shown by Tarjan et al. [278℄ (see also Refs. [164,279℄) that planarity of a graph
an be tested in O(V + E) time, where V denotes the number of verti
es and Ethe number of edges of the graph. We use this algorithm, whi
h produ
es a validplanar embedding in the 
ourse of the test (for a planar graph). However, it doesnot pay any attention to the length of the edges, whi
h are thus arbitrarily adaptedto eliminate edge 
rossings. In the se
ond step, the resulting plane embedding isstereographi
ally proje
ted onto a sphere, i.e., from the 
o-ordinates (x; y) in the
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Figure B.1: For
e trying to unify the lengths of the edges adja
ent to a single vertexof a dynami
al triangulation.plane, 
o-ordinates (x0; y0; z0) on the unit sphere are found as(x0; y0; z0) = (x=r2; y=r2; 1=2� 1=r2);r2 = 1 + x2 + y2: (B.1)This transformation has the advantage of not produ
ing any edge interse
tions sin
ethe mapping preserves angles. Finally, to bring the postulate of equal edge lengthsinto play, a generalized spring embedder is iteratively solved, i.e., we assume two-body for
es (\springs") between the verti
es of the polygoni�
ation embedded onthe sphere trying to unify the edge lengths,Fij = F0 jrijj � r0r0 rijjrijj ; (B.2)where rij denotes the di�eren
e ve
tor between verti
es i and j, r0 is the desired
ommon edge length and F0 denotes the for
e strength, i.e., a free parameter to beadjusted. These for
es are iteratively evaluated until the system has relaxated into asteady state, adjusting the time steps su
h as to prevent edge and fa
e interse
tionsfrom o

urring. Additionally, a se
ond type of intera
tions is assumed, whi
h movesa single vertex with respe
t to all its neighbours, trying to unify the lengths of theinvolved edges, 
f. Fig. B.1. Both types of for
es are applied alternatingly, until thesystem has 
onverged into a steady state.



266 APPENDIX B. GRAPH EMBEDDING AND VISUALIZATIONNote that this 
ombined algorithm 
annot guarantee the absen
e of edge or fa
einterse
tions for the �nal embedding. However, a suitable adaption of the inherentparameters ensures this with only a few lo
al ex
eptions. Furthermore, full equalityof edge lengths is not a
hieved, but the overall stru
ture of the resulting graphs is
learly resolved, as 
an be seen from the 
orresponding �gures presented in the maintext.
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