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ReferatDiese Arbeit befa�t sih mit der Koppelung von Vertex-Modellen an die planaren�4-Zufallsgraphen des Zugangs zur Quantengravitation �uber dynamishe Polygoni-�zierungen. Das betrahtete System hat eine doppelte Bedeutung, einerseits alsdie Koppelung einer konformen Feldtheorie mit zentraler Ladung C = 1 an zwei-dimensionale Euklidishe Quantengravitation, andererseits als Anwendung von geo-metrisher, \annealed" Unordnung auf ein prototypishes Modell der statistishenMehanik. Da das Modell mit Hilfe einer gro�angelegten Reihe von Monte CarloSimulationen untersuht wird, m�ussen entsprehende Tehniken f�ur die Simula-tion von dynamishen Quadrangulierungen bzw. die dualen �4-Graphen entwik-kelt werden. Hierzu werden vershiedene Algorithmen und die dazugeh�origen Z�ugevorgeshlagen und hinsihtlih ihrer Ergodizit�at und EÆzienz untersuht. Zum Ver-gleih mit exakten Ergebnissen werden die Verteilung der Koordinationszahlen bzw.bestimmte Analoga davon konstruiert. F�ur Simulationen des F -Modells auf �4-Zufallsgraphen wird ein Ordnungsparameter f�ur den antiferroelektrishen Phasen-�ubergang mit Hilfe einer Plakettenspindarstellung formuliert. Ausf�uhrlihe \�nite-size saling"-Analysen des Kosterlitz-Thouless-Phasen�ubergangs des F -Modells aufdem Quadratgitter und auf Zufallsgraphen werden vorgestellt und die Positionender jeweiligen kritishen Punkte sowie die dazugeh�origen kritishen Exponentenwerden bestimmt. Die R�ukreaktion des Vertex-Modells auf die Zufallsgraphenwird in Form der Koordinationszahlverteilung, der Verteilung der \Baby-Universen"und dem daraus resultierenden String-Suszeptibilit�ats-Exponenten sowie durh diegeometrishe Zweipunktfunktion analysiert, die eine Sh�atzung der intrinsishenHausdor�-Dimension des gekoppelten Systems liefert.



IBibliographi InformationWeigel, MartinVertex Models on Random GraphsUniversit�at Leipzig, Dissertation290 p., 279 ref., 92 �g., 24 tab.AbstratIn this thesis, the oupling of ie-type vertex models to the planar �4 random graphsof the dynamial polygoni�ations approah to quantum gravity is onsidered. Theinvestigated system has a double signi�ane as a onformal �eld theory with en-tral harge C = 1 oupled to two-dimensional Eulidean quantum gravity and asthe appliation of a speial type of annealed onnetivity disorder to a prototypimodel of statistial mehanis. Sine the model is analyzed by means of large-saleMonte Carlo simulations, suitable simulation tehniques for the ase of dynamialquadrangulations and the dual �4 random graphs have to be developed. Di�erentalgorithms and the assoiated update moves are proposed and investigated withrespet to their ergodiity and performane. For omparison to exat results, theo-ordination number distribution of the dynamial polygoni�ations model, or er-tain analogues of it, are onstruted. For simulations of the 6-vertex F model on �4random graphs, an order parameter for its anti-ferroeletri phase transitions is on-struted in terms of a \plaquette spin" representation. Extensive �nite-size salinganalyses of the Kosterlitz-Thouless point of the square-lattie and random graph Fmodels are presented and the loations of the ritial points as well as the orre-sponding ritial exponents are determined. The bak-reation of the oupled vertexmodel on the random graphs is investigated by an analysis of the o-ordination num-ber distribution, the distribution of \baby universes" and the string suseptibilityexponent as well as the geometri two-point funtion, yielding an estimate for theinternal Hausdor� dimension of the oupled system.
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Chapter 1
Introdution
The onstrution of a quantum theory of gravity is one of the fundamental open ques-tions in theoretial physis. Einstein gravity being perturbatively non-renormalizableas a �eld theory, this problem alls for novel, non-perturbative approahes. As it hasturned out in the past few years, the investigation of utuating, multi-dimensionalmanifolds is a promising theoretial framework for this task. Ambitious approahesin this diretion inlude the theories of strings, branes et. [1℄. Despite their suess,however, these theories have severe problems of projeting the results of the involvedhigh-dimensional models bak to the physial four-dimensional spae-time.Starting from early ideas about the formulation of a disretised theory of quan-tum gravity [2℄, the introdution of the framework of dynamial triangulations byAmbj�rn et al. [3℄, David [4℄ and Kazakov et al. [5℄ has led to a suessful theory ofEulidean quantum gravity, for reviews see [6{12℄. Although the model an be for-mulated for an arbitrary number of dimensions, the fous of the analytial and mostof the numerial work in the �eld has been | mostly for tehnial reasons | put onthe exploration of the properties of the two-dimensional model. The dynamial trian-gulations sheme starts out with the formal attempt to quantize the Einstein-Hilbertation of general relativity with the path-integral method. The thus formulated pre-sription to integrate over all possible hoies of the metri tensor onsistent withertain onstraints or, equivalently, over a suitable lass of random (hyper-)surfaesis replaed by a sum over disretised approximations of suh surfaes in order toregularize the onsidered path integral. In the dynamial triangulations approah,these disrete surfaes are taken to be simpliial or ombinatorial manifolds [13,14℄,i.e., surfaes glued together from simpliial building bloks subjet to ertain reg-1



2 CHAPTER 1. INTRODUCTIONularity onstraints. For the ase of two dimensions these surfaes are nothing butrandom triangulations omposed of equilateral triangles. In this way, the problemof Eulidean quantum gravity is redued to a ombinatorial one.For the ase of two dimensions, the resulting random-surfae model an be expli-itly solved to a quite omplete degree. The summation over the triangulations anbe performed, alternatively, by early developed graph-theoretial methods for theounting of triangulations [15℄, or by exploiting the equivalene of this ountingproblem to a perturbative expansion of ertain matrix integrals [16{18℄ originallyonsidered in the ontext of the planar approximation to QCD [19℄, whih ountthe orientable, \fat" �3 graphs dual to the triangulations. For an exellent reviewof the methods applied in this ontext see Ref. [10℄. Apart from that, a numerialtreatment of the model is possible via Monte Carlo simulations of the utuatingsurfaes [20{22℄. Applying these methods, the model is found to exhibit a ontinuousphase transition as a funtion of the fugaity ontrolling the number of triangles andthe orresponding ontinuum limit, orresponding to a diverging size of the triangu-lations, oinides with the Liouville theory of two-dimensional Eulidean quantumgravity [6, 23, 24℄; however, the information that an be extrated from the disretedynamial triangulations model goes beyond that of the ontinuum Liouville theory.The ritial exponents governing the saling in the viinity of this phase transitionan be determined exatly [10, 16, 25{28℄. A key point in the understanding of theproperties of the model is given by the �nding that the ourring triangulations anbe onsidered as self-similar fratals, omposed of \baby universes" attahed to themain body of the lattie via a small number of links, i.e., via \bottleneks" [29℄.The orresponding fratal or Hausdor� dimension is found to be dh = 4 [26{28℄,thus largely exeeding the topologial dimension two of the model.The ontinuum theory predits a renormalization of the ritial exponents of on-formal minimal matter with entral harge 0 � C < 1 oupled to the Liouville �eldexpressed by the KPZ/DDK formula [30{32℄. In the disrete framework of the dy-namial triangulations approah, a deoration of the lattie with matter variablesan be onveniently expressed in terms of suitably adapted matrix models. Some ofthe resulting integrals ould be expliitly performed, inluding the ases of the Isingmodel [33{35℄, the q-states Potts model [36{39℄ and the O(n) loop model [40{44℄oupled to two-dimensional disrete, Eulidean quantum gravity. These and furthermodels have been analyzed numerially via Monte Carlo simulations of the om-bined system of dynamial triangulations and oupled matter variables, see, e.g.



3Refs. [45{52℄. The ritial exponents resulting from all these model studies oin-ide with those predited by the KPZ formula. The KPZ/DDK solution breaksdown for entral harge C > 1, suh that for this region the information about thetheory is still rather inomplete. Speulations about the behaviour of the dynam-ial triangulations model on rossing this \C = 1 barrier" have aused quite somedisussions [53, 54℄. For C ! 1 the geometry of the model is known to ollapseto a branhed polymer phase, i.e., to on�gurations of planar tree graphs [53℄ withHausdor� dimension dh = 2. However, the breakdown of the model for C > 1 is stillnot ompletely understood [12℄. Thus, the limiting ase C = 1 is of obvious speialinterest. ***Vertex models of statistial mehanis, plaed on regular latties, exhibit an exep-tionally rih phase struture, inluding lines of �rst- and seond-order phase transi-tions as well as ritial and multi-ritial points [55℄. A multitude of models knownfrom statistial mehanis an be transformed to or formulated as limiting ases ofthe 6- or 8-vertex models, f. Refs. [55{58℄. This series of models inludes the Isingand q-states Potts models as well as various graph olouring problems and quantumspin models. Hene, vertex models an be onsidered as prototypes for models ofphase transitions in two dimensions. The zero-�eld, square-lattie 8-vertex modelhas been solved exatly by Baxter [59, 60℄, revealing a peuliar type of ontinuousphase transitions with ontinuously varying ritial exponents. The 6-vertex modelis found to orrespond to a ritial surfae in the phase diagram of the 8-vertexmodel. A speial slie of the 6-vertex ase, the anti-ferroeletri F model [61, 62℄,exhibits an in�nite-order phase transition of the Kosterlitz-Thouless type [63, 64℄,whereas other speializations undergo �rst-order phase transitions.On the basis of the well-known results of universality and saling for models ofstatistial mehanis and ondensed matter theory, the analysis of the e�et ofdisorder onto the behaviour of those systems has reeived an inreasing amountof attention during the last deades. The thus desribed area omprises a widerange of separate subjets, inluding suh di�erent topis as spin glasses [65,66℄, thee�et of random �elds on magneti systems [66℄, disordered eletroni systems [67℄or the analysis of generi random graphs and random networks [68℄, eah of whihis a prominent �eld of researh in ondensed matter physis. For the lattie spinmodels of statistial mehanis two major types of disorder are distinguished, namely



4 CHAPTER 1. INTRODUCTIONannealed randomness, where the disorder varies on the same time sale as the spinvariables suh as the ases onsidered in this thesis, and quenhed disorder, wherethe random degrees of freedom are frozen on the time sale of variation of the spins,whih is the ase, e.g., for random-bond models and spin glasses. Depending on thesetypes of randomness, di�erent preditions regarding possible hanges of the orderand harateristis of the ourring phase transitions on appliation of the disorderhave been made [66, 69{71℄. In this ontext, an investigation of the properties ofspin models oupled to the random surfaes of the dynamial triangulations modelonstitutes an analysis of the e�et of a spei� type of annealed geometrial oronnetivity disorder onto the onsidered lattie systems.Vertex models oupled to the latties of the dynamial triangulations model allowone to study the e�et of this geometrial type of disorder on prototypi models ofstatistial mehanis. Sine the most interesting of these models, the 6- and 8-vertexmodels are de�ned on a four-valent lattie, the dynamial triangulations model hasto be generalized to a dynamial quadrangulations model, i.e., a model of surfaesomposed of squares, whose dual \fat" �4 random graphs an be deorated by vertexmodel arrows in the way presribed for the 6- and 8-vertex models. For the ase ofthe 6-vertex model the lak of a global sense of orientation on the random graphsredues the range of sensible hoies of vertex weights to the parameter spae ofthe F model of an anti-ferroeletri. Its ritial regime orresponds to a onformal�eld theory of entral harge C = 1, suh that the resulting vertex model on randomgraphs orresponds to the limiting ase of the \C = 1 barrier" of disrete Eulideanquantum gravity. This model an be formulated in terms of a matrix integral and anasymptoti solution an be found by a saddle-point method [72,73℄, yielding partialinformation about its ontent of saling dimensions. In this thesis, we analyze thismodel by means of an extensive set of Monte Carlo simulations of the ombinedsystem of dynamial, planar �4 random graphs and the oupled vertex model. Ageneral exploration of its phase diagram is followed by a detailed saling analysisof the matter- and graph-related observables of the system and a omparison ofthe outomes to the results of Refs. [72, 73℄ as well as the KPZ/DDK framework ofRefs. [30{32℄. ***The outline of this thesis is as follows. Chapter 2 is devoted to an introdution to thedynamial triangulations model. We review the steps taken from the path-integral



5ansatz for the quantization of gravity and the related string models to the formula-tion of simpliial quantum gravity and ollet the most important analytial resultsavailable for the two-dimensional model as well as the most prominent methods thathave been employed to ahieve them. Finally, the preditions of KPZ/DDK [30{32℄for the e�et of oupling matter systems to Eulidean quantum gravity in two di-mensions are reported.The methods for a numerial, Monte Carlo simulation of dynamial triangulationsare onsidered in Chapter 3. We distinguish di�erent ensembles of triangulationsresp. the dual �3 graphs with respet to the extent of allowed singular ontribu-tions, onsider the lassi sets of update moves for simulations in the anonial andgrand-anonial ensembles and disuss the aspets of ergodiity and detailed bal-ane. Ideas for a generalization of this simulation sheme to the ase of dynamialquadrangulations resp. the dual �4 random graphs �rst presented in Refs. [49, 74℄are piked up and elaborated in depths. As it turns out, for most of the onsideredensembles the update moves resulting from an ad ho generalization of the movesused in the triangulation model have to be augmented by a seond type of movesto ensure ergodiity. To have exat, �nite-graph results at hand for omparison tothe simulation outomes, we onstrut the o-ordination number distribution or er-tain analogues of it for the triangulation as well as the quadrangulation model fromthe graph ounting results of the matrix model approah. To alleviate the knownproblem of ritial slowing down of the onsidered type of dynamis, we adapt andgeneralize the \minBU surgery algorithm" put forward in Ref. [75℄ to the ase ofdynamial quadrangulations resp. �4 random graphs. We ondut a dynamial sal-ing analysis of the autoorrelation times of the di�erent algorithms onsidered toevaluate their performane.Chapter 4 we start by a survey of the known exat results for vertex models onregular latties, fousing on the struture of their phase diagrams and the typeof the ourring phase transitions. The simulation of vertex models an be mosteÆiently performed by algorithms of the luster type, the most prominent of whihis the so-alled loop algorithm [76℄. While its use is well doumented for the aseof regular latties, the intended appliation for the simulation of vertex models onrandom graphs alls for some modi�ations and adaptions. For the ase of theF model onsidered, the de�nition of an order parameter for the anti-ferroeletriphase transition on a random lattie requires a reformulation of the vertex model interms of \plaquette spins".



6 CHAPTER 1. INTRODUCTIONIn Chapter 5 we address the problem of the F model oupled to planar �4 randomgraphs. After a short exposition of the exeptionally important position of vertexmodels in the ontext of integrable models and onformal �eld theory in two dimen-sions and a omparison of the situations on regular and random latties, we reportthe analytial results found for the system in Refs. [72, 73℄. Noting the surprisinglak of numerial work on the 6-vertex model on the square-lattie and in order toalibrate our set of simulation and analysis tools, we analyze the Kosterlitz-Thoulesspoint of the square-lattie F model via a set of Monte Carlo simulations. With thethus gained insight, we perform large-sale simulations of the F model on �4 randomgraphs and analyze the phase struture and the saling properties in the viinity ofits ritial point. The outomes are ompared to the preditions of the KPZ for-mula. The dynamial properties of the used ombined link-ip, minBU surgery andloop algorithm update are determined by a saling analysis of the autoorrelationtimes of several observables. The bak-reation of the matter degrees of freedom onthe properties of the random graphs is investigated by onsidering the distributionof \baby universes" and extrating the string suseptibility exponent as well as ananalysis of the geometrial two-point funtion of the graphs, resulting in an estimateof the Hausdor� dimension of the latties.Finally, Chapter 6 ontains a summary of the results obtained and some outlook onongoing and future work.



Chapter 2
The Dynamial TriangulationsApproah to Quantum Gravity
The dynamial triangulations approah to quantum gravity is a simpliial or lattieregularization of the path integral formulation of the theory of gravity. Indepen-dently, for the ase of two dimensions the same type of expressions our whendisretising the Polyakov interpretation of the bosoni string. While for the ase ofgeneral dimensions very few exat results are available, the quantum gravity modelin two dimensions, orresponding to string theory embedded in D = 0 dimensions,an be solved exatly by several omplementary ombinatorial tehniques. Withinthe framework of Liouville theory one an �nd semi-exat results for the ouplingof C < 1 unitary onformal matter to the gravitating spae time, orresponding tothe Polyakov string embedded in 0 � D � 1 dimensions.2.1 Path Integrals and Geometri Theories2.1.1 Path integrals and quantum pathsThe path integral approah of Dira [77℄ and Feynman [78℄ has proved to be a su-essful and physially appealing formulation of the quantization problem in physis(for an introdution see, e.g., Ref. [79℄). While algebrai shemes like anonial orBRST quantization give quantization presriptions whih look rather arbitrary onthe operator level, the path integral approah is based intuitively on the funda-7



8 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYmental priniples of quantum mehanis. Furthermore, it o�ers various tehnialadvantages like the inherent ovariane of the formulation or the quite natural ex-pression of renormalization theory in terms of path integrals.In quantum mehanis, the transition amplitude of a point partile to move fromposition x1 to x2 in Rd an be expressed in the path integral language asG(x1; x2) = Z x2x1 D[x(t)℄ ei R t2t1 dt L(x; _x)=~; (2.1)where S[x(t)℄ = Z t2t1 dt L(x; _x) (2.2)denotes the lassial ation of the problem in terms of the Lagrangian L. That is,the propagator is given by the funtional integral over all possible lassial paths ofthe partile weighted by exp(iS=~). The lassial limit follows naturally as ~ ! 0sine at the lassial solution one has ÆS = 0, suh that the phase fators arewildly varying and thus destrutively interfering everywhere but in the viinity ofthe lassial path. Proeeding further, in seond quantization the funtional integralDx over paths x(t) is formally replaed by an integral of �elds �(x), i.e.Dx! D�(x): (2.3)Sine the world lines x(t) being summed in the funtional integral (2.1) are (simple)geometri objets, it is natural to think of Eq. (2.1) as an integral over geometriesand formulate the ation (2.2) in terms of the geometri properties of the worldlines. Instead of the expliit parameterization x(t), we onsider an abstrat pathP (x1; x2) 2 P(x1; x2), where P(x1; x2) denotes the set of all smooth paths onnet-ing x1 and x2. The simplest reparameterization-invariant hoie of ation is thenobviously given by S[P (x1; x2)℄ = m ZP (x1;x2) dl; (2.4)i.e., the length of the world line P (x1; x2), where m denotes a oupling parameter.In terms of the parameterization x(t) this beomesS[x(t)℄ = m Z t2t1 dtp( _x�)2; (2.5)suh that the lassial equations of motion are those of a free relativisti partile,ÆSÆx�(t) = ddt � _x�j _xj� = 0; (2.6)



2.1. PATH INTEGRALS AND GEOMETRIC THEORIES 9solved by straight lines _x� = onst. Thus, the free relativisti partile has an eleganto-ordinate free desription via the funtional integralG(x1; x2) = ZP(x1;x2)D[P (x1; x2)℄ eim RP (x1;x2) dl=~; (2.7)whih is formulated entirely in terms of the geometry of the paths. Obviously, theintegral over paths P (x1; x2) should be over equivalene lasses of paths instead ofindividual paths, i.e. reparameterizationsx(t)! x(f(t)); _f > 0; (2.8)should not be ounted as di�erent paths.2.1.2 Random surfaes and stringsA natural generalization of this onept replaes the zero-dimensional partile sweep-ing out urves in time by one-dimensional strings sweeping out two-dimensional sur-faes, the so-alled world sheets. For simpliity we onsider losed strings, i.e. worldsheets M(1; 2) spanned between two boundary strings 1, 2 of topology S1. Theobvious generalization of the ation (2.4) then isS[M(1; 2)℄ = � ZM(1;2) dA; (2.9)with a string oupling �, suh that the ation is given by the area of the world sheetand the propagator now is represented asG(1; 2) = ZM(1;2)D[M(1; 2)℄ ei S[M(1;2)℄=~: (2.10)Then, di�erent interpretations of suh a system are in plae. First, if the swept outmanifolds M are onsidered as parameterized surfaes X : S1 � [0; 1℄ ! RD , witho-ordinates (�1; �2) = � 7! x = (x1; : : : ; xD), the ation (2.9) beomesSNG[X;�℄ = � Z dA(�) = � Z d2�pj det hj= � Z d2�s��x���1 �2��x���2 �2 � ��x���1 �x���2�2; (2.11)where h denotes the metri on the embedded world sheet indued by the mappingX, i.e., h�� = �x���� �x���� : (2.12)



10 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYThis is the elebrated Nambu-Goto ation of string theory [80℄. Inserted in the pathintegral (2.10), the formal integral over surfaes M(1; 2) then beomes an integralover equivalene lasses of maps X under di�eomorphisms. On the other hand,introduing an internal metri g�� on M , Brink, di Vehia and Howe [81℄ proposedthe following re-write of the ation,SP[X; g;�℄ = 12 Z d2�pj det gj g��(h�� + �g��); (2.13)whih is known as the Polyakov string ation. As indiated by the double argumentof SP, the integration of Eq. (2.10) should now be performed independently withrespet to both variables X and g as was proposed by Polyakov [82℄. It an beseen by a simple alulation that the ations (2.11) and (2.13) are equivalent at thelassial level; in a quantized theory, however, their equivalene is not at all obvious(see, e.g., Ref. [10℄).2.1.3 Quantum gravityOf ourse, the Nambu-Goto and Polyakov ations are only the simplest possibleations for random surfaes; for a physial theory one might add further terms,probably involving either the extrinsi urvature H in terms of the indued metrih or intrinsi urvature terms Rk, k = 1; 2; : : :, resulting from the internal metri g.For a quantum theory of gravity in d dimensions, the natural ation to start with isthe Einstein-Hilbert ation of lassial gravity,SEH[g;�; �℄ = ZM dd�pj det gj(�� �R); (2.14)whih, as expeted for a gravity theory, does not refer to an embedding spae, butis entirely formulated in terms of the internal metri properties. The �rst term isstill the area term (generalized to d dimensions), now written as a funtion of theinternal metri g, while the seond term introdues the salar urvature R derivedfrom g. In this ontext, � gains the meaning of a osmologial onstant and � denotesthe gravitational oupling onstant . The ation (2.14) is expliitly invariant underdi�eomorphisms �� 7! ~�� of the o-ordinates, sine the determinant of g transformsas qj~g(~�)j = det����� ~���pjg(�)j; (2.15)suh that the additional determinant just anels the determinant stemming fromthe transformation of the measure dd� (R, of ourse, transforms as a salar). Sine



2.1. PATH INTEGRALS AND GEOMETRIC THEORIES 11for the ase of quantum gravity we do not any more have the propagation of stringsin mind, the path integral is naturally performed over losed surfaes M instead of\tubes" S1 � [0; 1℄ and we thus de�ne the partition funtion of the system asZ(�; �) = Z D[g℄ eiSEH[g;�;�℄=~; (2.16)were the funtional integral overs all di�eomorphially inequivalent metris g oflosed, smooth manifolds.If the quantum gravity path integral (2.16) should be more than a symboli ex-pression of a quantization programme, even from super�ial onsideration severalfundamental problems and the need for interpretation of Eq. (2.16) ome to mind:1. Eq. (2.16) presribes a state sum over a omplex phase fator. Suh sums,however, are generally divergent, see, e.g. Ref. [83℄. Furthermore, Riemannianmanifolds and thus metris o�er a variety of tehnial advantages over theLorentzian metris we are instruted to sum over.2. The integral over equivalene lasses of metri tensors g is not obviously apriori well-de�ned. How is the over-ounting due to di�eomorphially equiva-lent metris aounted for? What about di�erent di�erentiable strutures anddi�erent topologies of the manifolds?3. Sine the urvature term of the ation (2.14) an beome arbitrarily large, theEinstein-Hilbert ation is in general unbounded from below. This obviouslyrenders the path integral (2.16) ill-de�ned, unless the measure term D[g℄ givesnegligible weight to suh on�gurations.The omplex phase fator is ommonly irumvented by the formal substitutiont! i� (2.17)of the time-like o-ordinate of the metri g. Under this Wik rotation the phasefator hanges as ei SEH=~ ! e�SEH=~; (2.18)thus making the path integral Eulidean and therewith potentially onvergent. Afterperforming the integration, a Lorentzian signature of the metri is supposed to bereovered by analyti ontinuation in � or, alternatively, an expliit bak-rotation.



12 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYWhile this presription is a well-established trik in quantum �eld theory on a �xed(Minkowski) bakground based on the Osterwalder-Shrader reonstrution theorem(see, e.g., [84℄), it has been noted [85{87℄ that the possibility of a Wik bak-rotationis far from obvious in quantum gravity. For a dynamial and spatially varying metria Wik (bak-)rotation annot be given by the simple presription (2.17) whih isobviously not invariant under di�eomorphisms; from the spae of metris to beintegrated over almost all will have no geometrially apparent notion of time [87℄.In fat, the lass of metris and thus manifolds in the sense of the path integral(2.16) ompatible with a Lorentzian signature is di�erent from the lass of metriswith Eulidean signature. Thus, the substitution (2.18) is an ad ho assumptionthat (as it turns out) hanges the theory. We will speak about \Eulidean quantumgravity" in ontrast to \Lorentzian quantum gravity" when referring to the Wikrotated theory.As far as the over-ounting of di�eomorphially equivalent metris in the path inte-gral (2.16) resp. its Eulidean ounterpart is onerned, two possible solutions ometo mind [11℄: either only one representative of eah equivalene lass of metris isounted in the funtional integral, whih is, however, pratially quite impossible.Or the integral should be performed over all metris, taking are of the over-ountingby dividing out the \volume" of the di�eomorphism group in the measure, i.e., oneshould make the following replaement:Z D[g℄! Z D[g℄Vol[Di�(g)℄ (2.19)The preise meaning of this transformation depends on the methods applied to fur-ther develop the problem. In a ontinuum theory this additional fator orrespondsto the Fadeev-Popov determinant, whereas in the disretised models onsideredbelow, the symmetry with respet to di�eomorphisms of metris transforms to apermutation symmetry of disrete objets.A sum over di�erent topologies of manifolds, whih should be in priniple inludedin the path integral (2.16), is quite intratable for the ase of general dimensions,sine for d � 3 there is no obvious lassi�ation of topologies in terms of a �nite setof parameters. For d � 4 there additionally ours the problem of di�eomorphiallyinequivalent di�erentiable strutures for the same manifold. Also for those reasonswe now turn to the ase of two-dimensional quantum gravity.



2.1. PATH INTEGRALS AND GEOMETRIC THEORIES 132.1.4 The ase of two dimensionsIn two dimensions the topology of a losed surfae Mh is uniquely haraterizedby its genus1 h given in terms of the Euler harateristi by � = 2 � 2h. Takingthe disussion of the previous setion into aount, the partition funtion of two-dimensional Eulidean quantum gravity readsZ(�; �) = 1Xh=0 Z D[gh℄Vol[Di�(gh)℄ e�SEH[gh;�;�℄; (2.20)with the ation of Eq. (2.14). Here, we have set ~ = 1 for simpliity. Sine the Eulerharateristi is a topologial invariant and related to the integral over the salarurvature as ZMh d2�pj det ghjR = 4�� = 8�(1� h); (2.21)whih is the elebrated Gau�-Bonnet theorem (see, e.g., Ref. [88℄), the path integral(2.20) an be redued to Z(�; �) = 1Xh=0 e4��(h)�Zh(�); (2.22)where the partition funtion Zh(�) at �xed genus h is given byZh(�) = Z D[gh℄Vol[Di�(gh)℄e��Vgh ; (2.23)where Vgh = RMh d2�pj det ghj is the volume of the universeMh. Taking into aountthe topologial triviality of two-dimensional gravity, we note that the Polyakov stringation (2.13) an be alternatively interpreted as two-dimensional quantum gravityoupled to the D independent salar �elds h��. The topologial triviality of theEinstein-Hilbert ation in two dimensions results in a boundedness of the ation forany �xed topology; it remains to be heked, whether a summation over topologiesan be performed after solving the problem at �xed topology. This leads to theso-alled double-saling limit to be disussed below in Setion 2.3.7.A �eld-theoreti solution of the problem of two-dimensional quantum gravity isbased on the uniformization theorem [89℄ for two-dimensional Riemannian surfaeswhih states that every Riemannian surfae is onformally equivalent to (see, e.g.,Ref. [23℄)1Here, h should not be onfused with the external metri h = h�� above.



14 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITY� C P1 , the Riemann sphere, or� H, the Poinar�e upper half plane, or� a quotient of H by a disrete subgroup � � SL(2;R),suh that the metri g an be written asg = e�ĝ (2.24)with respet to some referene metri ĝ on one of the above spaes. Thus, two-dimensional gravity an be formulated in terms of the single Liouville �eld �; thisLiouville �eld theory an be treated analytially on the quantized level, see Refs.[6, 23, 24℄ for reviews. However, the disretised theories presented below an besolved exatly and yield results going beyond those of the ontinuum approah; theresults from both approahes oinide whenever they overlap.2.2 Simpliial Quantum GravityWhile the ontinuum Liouville theory skethed above develops the problem ovari-antly to introdue a short-distane ut-o� only at the end, a disretisation of theproblem makes the involved expressions �nite from the beginning. After solvingthe disretised theory, the relevant oupling onstant(s) should be tuned suh asto de�ne a proper ontinuum limit of the theory; this involves a renormalization ofrelevant parameters.However, a disretisation of the geometries to be integrated over, either by a lattiemodel or the simpliial building bloks desribed below, has to ensure that the sumover disretisations overs all metris to be summed over in Eq. (2.20). That is, thedisretised metris have to be something like a dense subset of the original spae ofmetris. Suh a property an be guaranteed for the ase of \quantum gravity" inone dimension. The disussion of the next setion follows Ref. [10℄.2.2.1 Random walks and the Wiener measureLet f0(x) be the initial distribution of a loud of partiles in RD oupled to a heatbath. Its di�usive spread in time is in the simplest approximation desribed by the



2.2. SIMPLICIAL QUANTUM GRAVITY 15di�usion equation, �f�t = 124f; (2.25)subjet to the initial ondition f(x; 0) = f0(x), whih is solved by [90℄f(x; t) = ZRd dy Gt(x; y) f0(y); (2.26)where the heat kernel Gt(x; y) if de�ned asGt(x; y) = 1(2�t)D=2 e� jx�yj22t : (2.27)From Gaussian integration we have the following deomposition property of Gt(x; y):Gt(x0; xN ) = Z dx1 � � �dxN�1Gt=N (xN ; xN�1) � � �Gt=N (x1; x0); (2.28)for any N � 1. Now, onsider the pieewise linear path ! : [0; t℄ ! RD onnetingthe points (x0; : : : ; xN),!(s) = xk�1 + xk � xk�1t=N (s� k � 1N t); k � 1N t � s � kN t; 1 � k � N: (2.29)Then, the expression DNt ! = �2� tN��D2 N dx1 � � �dxN�1 (2.30)may be onsidered as a measure on the spae 
N;t(x; y) of all suh paths onnetingx and y. Using the identityNXk=1 jxk � xk�1j2t=N = NXk=1 tN � jxk � xk�1jt=N �2 = Z t0 j _!(s)j2ds (2.31)in Eq. (2.28), the propagator Gt(x; y) an be written in a form reminisent of a pathintegral as Gt(x; y) = Z(x;y)DNt ! exp��12 Z t0 j _!(s)j2ds� ; (2.32)whih is alled the random-walk representation of Gt(x; y) on 
N;t(x; y). The expres-sion (2.32), whih is a onventional integral of a �nite number of variables, an beviewed as a disrete approximation to a true path integral, i.e., there exists a mea-sure Dt ! on the spae 
t(x; y) of all ontinuous paths ! : [0; t℄! RD onneting x



16 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYand y, suh that [91℄Z(x;y)DNt ! exp��12 Z t0 j _!(s)j2ds� f �!� 1N t� ; : : : ; !�N � 1N t��= Z(x;y)Dt ! f �!� 1N t� ; : : : ; !�N � 1N t�� (2.33)for all bounded and ontinuous funtions f : R(N�1)D ! R and arbitrary N � 1;i.e., the disrete measures are idential to Dt ! with respet to funtions f uniquelyde�ned by their values at the referene points kN t. The measure Dt ! is alled theWiener measure on 
t(x; y). Thus, we have onstruted a path integral measurefrom the set of pieewise linear paths. Reversing the view, one an ask for the be-haviour and onvergene of di�erent disrete approximations to the Wiener measure.Obviously, given a path ! 2 
t(x; y), we an de�ne disretised paths !N 2 
N;t(x; y)by !N(kt=N) = !(kt=N), k = 0; : : : ; N , suh that !N ! ! uniformly on [0; t℄ andin view of Eq. (2.33) the measuresDNt ! exp[�S(!)℄ ;S(!) = 12 Z t0 j _!(s)j2ds; (2.34)an be onsidered as approximations to the Wiener measure Dt ! for N ! 1. Infat, in an be shown that not only for S(!) given above but for rather generalations one has onvergene DNt ! exp[�S(!)℄! Dt ! of the measures; in statistialphysis terms suh a property is known as universality with respet to \mirosopirealizations". Thus, aording to this theorem of Donsker (see, e.g., Ref. [92℄) forthe ase of one-dimensional manifolds, i.e. urves, a whole variety of disretisationsof the path integral an be hosen whih all properly onverge to the ontinuumformulation in terms of the integral measures.2.2.2 Disretising quantum gravityIn more than one dimension there is no analogue of Donsker's theorem that ouldguarantee di�erent disretisations to onverge to the ontinuum formulation. Nev-ertheless, disretisations similar to the random-walk representation of the Wienermeasure are possible.A disretisation for the Nambu-Goto string of Eq. (2.11) embedded in Rd is perhapsmost naturally de�ned by onsidering random surfaes on a hyperubi lattie Zd.
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Figure 2.1: A small path of a random triangulation (thik lines) embedded in theplane. The dual graph (thin double lines) of the lattie is a �3 graph of the sametopology.Here, the lattie surfae is de�ned as a set of plaquettes in Zd, eah onsisting offour ylially ordered verties in Zd, i.e. a set of squares of the lattie, usuallyonneted to a losed surfae. Due to the over-exponential growth of the numberof these (self-interseting) surfaes with the number of verties, the problem is onlywell-de�ned for �xed topology, usually that of planar graphs. This lattie randomsurfae (LRS) model has been onsidered in early approahes towards disretisingquantum gravity initiated by Weingarten [2℄. We will not disuss this model furtherhere, for a review see Ref. [10℄.A suitable disretisation of the intrinsi, not embedded geometry ourring in the d-dimensional quantum gravity model is given by the onept of pieewise linear (PL)manifolds, i.e. d-dimensional simpliial omplexes subjet to suitable regularity on-ditions. In the ase of two dimensional quantum gravity the simplies of maximaldimension are 2-simplies glued together along their edges, suh that the omplexan be depited as a losed random triangulation. Fig. 2.1 shows a path of suha triangulation embedded in the plane. Suh disrete approximations to quantum



18 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYgravity have originally been proposed by Regge [93℄ for a o-ordinate free desrip-tion of (lassial) gravity. Given these fundamental building bloks, the summationover triangulations should in priniple inlude a variation of the edge lengths of thetriangles as well as the onnetivity of the simpliial omplex2. Simultaneous varia-tion of both of these properties is possible and the orresponding ansatz is known asthe \dynamial Regge approah" [94, 95℄. However, historially two limiting asesof this general sheme have been more intensively developed:(a) Starting from the original disretisation attempt of Regge [93℄ and Regge andPonzano [96℄ the Regge alulus approah to quantum gravity [97{100℄ per-forms the sum over metris by onsidering a triangulation of �xed onnetivityand varying the edge lengths of the triangles. The e�et of this variation thenhas to be inorporated in the path integral measure, whih led to some dis-ussion about how this should be done [101, 102℄. This approah has beenfollowed mainly by numerial methods, inluding studies of the resulting ge-ometry [103, 104℄, the e�et of the oupling of matter to the gravitating uni-verse [105℄ and extensions to the four-dimensional ase [106℄.(b) Stressing the ombinatorial aspet of PL manifolds, the theory of dynamiallytriangulated random surfaes (DTRS) onsiders triangulations onsisting ofequilateral triangles, integrating over all possible gluings of a given number oftriangles to a (usually) losed surfae of a given topology. Thus, its dynamiaspet omes from the onnetivity of the omplex instead of from the edgelengths. This model, originally proposed independently as a model for quan-tum gravity in two dimensions by Ambj�rn et al. [3℄, David [4℄ and Kazakovet al. [5℄, an be solved exatly for the ase of two dimensions in the pure aseand also for the oupling of ertain kinds of matter to it, f. the disussionbelow.The Regge alulus approah (a) will not be disussed further here. Instead, weonentrate on the DTRS approah (b) and disuss the properties of the onsid-ered simpliial manifolds and the therewith disretised ation of two-dimensionalquantum gravity.2Sine in quantum gravity we do not onsider an embedding of the surfaes, the mentioned edgelengths should be onsidered as properties of the internal metri.
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Figure 2.2: 0-, 1-, 2- and 3-simplies.2.2.3 Dynamial triangulations and the disretised ationAn r-dimensional simplex �r = hp0 : : : pri is the point set in Rd de�ned by [88℄�r = (x 2 Rd j x = rXi=0 ipi; i � 0; rXi=0 i = 1) ; (2.35)with geometrially independent points pi 2 Rd . A q-fae of �r = hp0 : : : pri isthe simplex �q = hpi0 : : : piqi. Fig. 2.2 shows the simplies of lowest dimension.A simpliial omplex K is a �nite set of simplies, suh that (i) all faes of eahsimplex of K belong to K and (ii) the intersetion of any two simplies of K is eithera simplex of K or the empty set. The dimension of K equals the maximum of thedimensions of the simplies it ontains. The star starK(�) of a simplex � 2 K is theunion of all simplies of K of whih � is a fae; the link linkK(�) is the union of allfaes �f of all simplies in starK(�) satisfying �f\� = ;. The point set jKj = [�2K�is alled the polyhedron of K, whih provides the underlying topologial spae of theomplex; the polyhedron jKj is said to be triangulated by K. A subdivision K 0 of Kis a simpliial omplex suh that jK 0j = jKj and eah r-simplex of K 0 is ontainedin an r-simplex of K.Then, a pieewise linear or PL manifold M is a polyhedron suh that eah point inM has a neighbourhood whih is simpliially isomorphi to an open set in Rd , where\simpliially isomorphi" means that the orresponding map is invariant under sub-divisions. On the other hand, a simpliial manifold is a d-dimensional omplex Ksuh that link(�r) ' Sd�r�1 [14℄. Thus, simpliialmanifolds are abstrat, ombinato-rial representations (triangulations) of PL manifolds. However, in the DTRS shemetriangulations are not dedued a posteriori as triangulations of manifolds, but on-struted independently by gluings [13℄. There, a set of simplies is endowed withidenti�ations of faes of di�erent simplies suh that eah fae is subjet to exatly



20 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYone gluing proedure. In two dimensions, i.e., when gluing triangles in the indi-ated way, the resulting simpliial omplex is a simpliial manifold3. In general, thegluing of d-simplies to a simpliial manifold M has to obey the Dehn-Sommervillerelations, �(M) = dXi=0 (�1)iNi(M); (2.36)dXi=2k�1(�1)i (i+ 1)!(i� 2k + 2)!(2k � 1)!Ni(M) = 0 ; (2.37)if d is even, where 1 � k � d=2. Whereas if d is odd the seond equation readsdXi=2k(�1)i (i+ 1)!(i� 2k + 1)!2k!Ni(M) = 0; (2.38)where 1 � k � (d� 1)=2 and Ni(M) is the number of i-simplies in M . Eq. (2.36)is the well-known way to ompute the Euler harateristi for a simpliial surfae;for the ase of d = 2 the seond equation redues to the simple property2N1(M) = 3N2(M); (2.39)expressing the fat that eah link is shared between exatly two triangles. Notethat for the d = 2 ase the ombination of Eqs. (2.36) and (2.37) leaves only oneindependent variable, for example the number of triangles N2(M). For d = 3; 4 onehas one additional independent variable, say the number of (d�2)-simplies (bones)Nd�2(M).Now, a d-dimensional dynamial triangulation Ta an be de�ned as a triangulation(subdivision) of a simpliial manifold M built by gluing Nd(Ta) d-simplies with aommon, �xed edge length a. Here, a serves as ut-o� for the disretisation of thepath integral (2.20). As far as the disretisation programme is onerned, it anunfortunately be shown that not every topologial manifold an be triangulated ingeneral dimensions [13℄. Thus, as mentioned above there is no analogue of Donsker'stheorem for d > 1. However, one an prove an approximation theorem whih statesthat for any Riemannian manifold M of bounded geometry there is a ut-o� a andnumbers of d- and d� 2-simplies Nd(Ta) and Nd�2(Ta) suh that there exists a dy-namial triangulation Ta;Nd;Nd�2 with a distane from M in the Gromov-Hausdor�3In dimensions d > 2 the result will in general only be a pseudo-manifold [14℄.



2.2. SIMPLICIAL QUANTUM GRAVITY 21metri smaller than a given arbitrary, positive number [14℄. Stated in other words,any suh manifold an be approximated with arbitrary preision by dynamial tri-angulations. Note that this result is muh weaker than Donsker's theorem in theone-dimensional ase.Given the onept of a dynamial triangulation, the notions of di�erential alulusneessary for the formulation of general relativity should be transferred to the dis-rete language. This programme has been �rst arried out by Regge in the seminalpaper [93℄ and later on adapted to the view of dynamial triangulations in [98℄. Thebasi properties whih have to be translated are those of (geodesi) distane, of area(or volume for d > 2) and of urvature. The lassi distane de�nition stemmingfrom Regge alulus [93℄ is the ontinuation of the generi, at metris of the in-terior of the simplies of the simpliial manifold to the whole of the omplex; theresulting metri, however, is obviously singular at the verties. Instead, onsideringthe simpliial omplexes as ombinatorial objets, the metri should be de�ned interms of the simpliial building bloks of the triangulation, i.e. its faes, edges andverties. The distane between verties p1 and p2 in Ta an be onveniently de�nedas d(p1; p2) = a minl(p1;p2) jl(p1; p2)j; (2.40)where the minimum is taken over all disrete urves l(p1; p2) = (p1 = pi1; pi2 ; : : : ; pin =p2) for arbitrary n � N0(Ta) suh that hpik ; pik+1i is a link belonging to Ta andjl(p1; p2)j = n. Sine the edge length is a onstant, we will frequently onsiderd(p1; p2)=a. Analogously, one an de�ne the distane between edges as the mini-mum number of edges of the dual lattie one has to travel to onnet them and,similarly, distanes between simplies of larger dimension. On the grounds of uni-versality (f. Setion 2.2.1) we expet the preise de�nition of distane to make nodi�erene as long as a ontinuum limit an be de�ned (i.e., the model exhibits aontinuous phase transition). Note that all of those distanes are geodesi for thedisrete surfaes and an thus be used in the plaes where the theory of relativityrefers to geodesi distanes.To disretise the notion of urvature, we onentrate on the ase of two-dimensionalsimpliial manifolds. Reall that (one of the versions of) the Gau�-Bonnet theoremstates that for a geodesi n-angle t with angles �i on a smooth surfae the integralover the salar urvature R,12 ZtR dA =Xi �i � (n� 2)� � �t; (2.41)
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Figure 2.3: The exess angle �t of the geodesi retangle (1234) is equal to the de�itangle �i of vertex i. (a) The geodesi triangle (1234) and an interior vertex i. (b)Embedding of the surroundings of i into the plane, after utting the triangulationopen along the link (1i).does in general not vanish (as in at spae); instead, the n-angle t has an exessangle �t. Alternatively stated, the parallel transport of a vetor around the trianglewill rotate it by the exess angle �t [93℄. On the disretised surfae, the interiorof simplies is at; sine salar urvature is an intrinsi property whih does notdepend on the embedding (this is the \Theorema Egregium" of Gau�), urvaturean also not be attributed to the edges, beause the simpliial surfae an be bentalong the edges without hanging the intrinsi properties. Thus, urvature has to beassoiated with the verties of the simpliial manifold. If for eah vertex we de�nethe de�it angle �i as �i � 2� � Xhpi;pj ;pki2Ta �i[hpi; pj; pki℄; (2.42)we read o� from Fig. 2.3(b) that �i = �t. Thus, from Eq. (2.41) we have12 ZtR dA = Xpi2Ta �i = Xpi2TaRiAi; (2.43)where the area Ai and urvature Ri assoiated to the vertex pi are de�ned asAi = 13 Xhpi;pj;pki2TaA[hpi; pj; pki℄; Ri = 2�iAi ; (2.44)



2.2. SIMPLICIAL QUANTUM GRAVITY 23i.e., the area of eah triangle hp1; p2; p3i is equally distributed between its vertiespi. For the ase of equilateral triangles ourring in the DTRS sheme all anglesequal �=3 and therefore �i = (6� qi)�=3, where qi denotes the o-ordination numberof the vertex pi. Eq. (2.44) then readsAi = a23 qi; Ri = 2�(6� qi)qia2 ; (2.45)where a2 = a2p3=4. Now, the integral over urvature an be evaluated asXpi2TaAiRi = 2�3 Xpi2Ta(6� qi) = 4�[N0(Ta)�N2(Ta)=2℄ = 4��(Ta); (2.46)where we have used the Dehn-Sommerville relation (2.39) in the last step and �(Ta)is given by (2.36). This proves the disrete analogue of the Gau�-Bonnet theorem.Writing the total area of the surfae asXpi2TaAi = a2N2(Ta); (2.47)the path integral of two-dimensional simpliial quantum gravity is given byZ(�; �; a) = 1Xh=0 e4��(h)� 1XN2=1 e��a2N2 XTa2Ta(h;N2) 1C(Ta) : (2.48)In the following, we absorb the \lattie spaing" a formally into the oupling on-stant �, until in Setion 2.3.7 the ontinuum limit of the disrete theory is disussed.The C(Ta) denote the symmetry fators assoiated with dynamial triangulations ofgenus h and with N2 triangles, that is, the volume of the orresponding symmetrygroup. Thus, two-dimensional simpliial quantum gravity is redued to the purelyombinatorial problem of determining the number N [Ta(h;N2)℄ of triangulations ofa given topology and size and the orresponding symmetry fators C(Ta). Theyenode the over-ounting of metris in the path integral measure due to equiva-lent metris, i.e., metris onneted by an orientation-preserving di�eomorphism.For labelled triangulation as they naturally our in omputer simulations of DTRSmodels (see Chapter 3 below), C(Ta) is simply given by the fatorial N0(Ta)! re-eting the number of possible re-labellings of the verties [11℄. In general, thespae of equivalene lasses of metris an be haraterized by a �nite-dimensionalTeihm�uller spae (see, e.g., Ref. [88℄) of metris ĝ(t1; : : : ; tm), ti 2 C , suh that anymetri g on a manifold M is equivalent toe� ĝ(t1; : : : ; tm); (2.49)



24 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYwhere � is a funtion on M . Here, the parameters ti orrespond to the ombina-torial freedom in the gluing of simplies, whereas the onformal fator e� enodesadditional invariants suh as volume and urvature. Without disussion we mentionthat the disretised Einstein-Hilbert ation of a simpliial manifold T in dimensionsd > 2 is given by [107, 108℄ST [�d; �d�2℄ = �dNd(T )� �d�2Nd�2(T ); (2.50)where �d and �d�2 are suitable ombinations of the osmologial and gravitationaloupling onstants (see, e.g., Ref. [9℄). Also, the additional term hab in the Polyakovation Eq. (2.13) adds a term 12 Xhpipji2Ta(xi � xj)2 (2.51)to the disretised ation, where the xk are additional o-ordinates in RD assoiated tothe verties of the lattie. This justi�es the laim presented above, that the Polyakovstring (at �xed topology) an be viewed as two-dimensional quantum gravity oupledto D Gaussian �elds.2.3 Analytial Results for the Disretised TheoryIn the following we onentrate on the ase of the DTRS model in two dimensions,suh that, unless otherwise stated, all results ited apply to the ase d = 2. Havingde�ned a disretised theory of two-dimensional Eulidean quantum gravity in termsof dynamial triangulations, one has to ensure the existene of a ontinuum limit forthe theory to beome a possible andidate for the quantum theory of gravity. If suha limit exists, we expet ertain observables to sale aording to power laws in theviinity of the ritial point, thus de�ning universal ritial exponents of the theory.In a ursory survey, we present the methods whih have been suessfully applied tosolve the ombinatorial problem exatly and the main results of the analysis. Firstof all, one has to hek, whether the sum of Eq. (2.48) over dynamial triangulationsis well-de�ned (that is, �nite) suh as to have a hane to de�ne a ontinuum limit.To entertain the reader and stimulate her imagination regarding the objets to besummed over, Fig. 2.4 shows a sample two-dimensional dynamial triangulationembedded in R3 .
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Figure 2.4: Embedding of a two-dimensional dynamial triangulation with N2 =5000 triangles in R3 (projeted to R2 for obvious reasons). The olour of the trianglesenodes the loal urvature of the surfae aording to Eq. (2.45); blue regions haveurvature R > 0, red pathes denote R < 0. The embedding was generated with anadaptive algorithm desribed in Appendix B.2.3.1 Existene of the disretised partition funtionAdopting the interpretation of the Polyakov string ation (2.13) as two-dimensionalquantum gravity oupled to D Gaussian �elds, we onsider the disretised m-loopfuntion at �xed topology,Gh�(l1; : : : ; lm) = 1XN2=1 e��N2 XTa2Ta(h;N2; li) 1~C(Ta) Z Ypi2Ta dxi e� 12 Phiji(xi�xj)2 : (2.52)Here, the li denote �xed boundary loops onsisting of ni = n(li) links of the triangu-lation. The G�(l1; : : : ; lm) are quite general funtionals, whih inlude the m-point



26 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYfuntions G�(pi; : : : ; pm) when ontrating the loops li to points pi and the parti-tion funtion Z� for m = 0. The symmetry fators ~C(Ta) in general depend on thenumber m of �xed loops or points and are thus not idential to the fators C(Ta) ofEq. (2.48). If we inlude the sum over topologies,G�(l1; : : : ; lm) = 1Xh=0 e4��(h)�Gh�(l1; : : : ; lm); (2.53)where � = 0 for the Polakov string, the number of suh triangulations an be shownto have a lower bound of the form [10℄(N2)!; (2.54)whih grows faster than any exponential. Sine the �elds xi will result for a �xedtriangulation in a free energy F � fN2 for some f > 0, it is obvious thatGh�(l1; : : : ; lm) � 1XN2=1(N2)! eonst�N2 ; (2.55)whih is divergent. Thus, inluding the sum over topologies, the m-loop funtionsare ill-de�ned for any value of the oupling � due to the entropy of the triangulations.We thus onentrate on the problem at �xed topology. A possible inlusion of thesum over topologies using matrix models is disussed below in Setion 2.3.7.For the ase of triangulations of �xed genus h the situation is fortunately more pleas-ant: it an be shown that the number jTa(h;N2)j of suh inequivalent triangulationsis exponentially bounded with respet to the number of triangles [8℄, i.e.,jTa(h;N2)j � eonst�N2 : (2.56)Then, for a spanning tree on a given triangulation Ta the Gaussian integral in Eq.(2.52) an be easily performed due to the absene of losed loops to yield the bound[10℄ Z Ypi2Ta dxi e� 12 Phiji(xi�xj)2 � (2�)N2(Ta)D=2; (2.57)suh that Gh�(l1; : : : ; lm) is �nite for � > D2 log 2�. Thus, for given h and a givennumber of boundary loops l1; : : : ; lm there is a �0(l1; : : : ; lm) > 0 suh that them-loop funtions are �nite and analyti for � > �0(l1; : : : ; lm) and divergent for� < �0(l1; : : : ; lm) (this inludes, of ourse, the partition funtion of the model).Furthermore, it an be proved that �0(l1; : : : ; lm) = �0 does not depend on the



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 27hoie of boundary loops li and is even independent of the genus h [3, 109, 110℄.Sine for � right above the limiting value �0 the sum over N2 in (2.52) is dominatedby the large-N2 terms, the limit � # �0 is the obvious andidate for the ontinuumlimit of the model.For the ase of simpliial quantum gravity in dimensions d > 2 a similar prop-erty ould only quite reently be proved [111{113℄; also there, the number of non-isomorphi triangulations with a given number of d-simplies is exponentially boundedwith Nd.2.3.2 String suseptibility, mass gap and string tensionIntegrating over the marked verties in the m-point funtion, the suseptibilities arede�ned as �h(m)(�) = Z dx2 � � �dxmGh�(0; x2; : : : ; xm): (2.58)In the thermodynami limit N2 ! 1 their singular part an also be expressed asderivative of the partition funtion,�h(m)(�) � (�1)m dd�mZh(�); (2.59)sine in view of Eq. (2.52) di�erentiating with respet to � will pull down a fatorof �N2, whih is, in the limit of a large number of triangles, the same e�et as�xing an additional vertex in the triangulations in going from Gh�(0; x2; : : : ; xm�1)to Gh�(0; x2; : : : ; xm). The di�erenes for small N2 stem from the di�erent symmetryfators assoiated with the triangulations. Sine Zh(�) is singular at the speialpoint � = �0, the suseptibility is expeted to sale with the string suseptibilityexponent s as �h(�) � �h(2) � (�� �0)�hs : (2.60)It turns out that the ritial exponent hs indeed does depend on the genus h of thetriangulations.By separating out the minimum of the Gaussian ation,Smin(Ta) � min(x1;:::;xD) 12Xhiji (xi � xj)2; (2.61)



28 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYthe Gaussian integral in Eq. (2.52) an be written asZ Ypi2Ta dxi e� 12 Phiji(xi�xj)2 = e�Smin(Ta) (2�)N2(Tan�Ta)detC0T 0a !D=2 : (2.62)Here, CT 0a is the adjaeny matrix of the triangulation T 0a onstruted by removingall boundary links from Ta and identifying all boundary sites with one vertex giventhe label 0 and (CT 0a)ij = ( �qij if i 6= jqi if i = j ; (2.63)where qi is the o-ordination number of vertex pi and qij is the number of linksonneting verties pi and pj (i.e., either 0 or 1 for simpliial manifolds). Themodi�ed adjaeny matrix C0T 0a is de�ned by deleting the row and olumn indexed by0. The representation (2.62) allows a ontinuation of the theory to non-integer andeven negative embedding dimensions D; espeially to the ase D = �2, whih anbe solved analytially, see Refs. [5, 21, 114{116℄. Inserting (2.62) into the de�nitionof the suseptibility (2.59), �h(�) an be expressed in terms of the determinantdetC0Ta. Using the fat that this determinant is additive with respet to \gluings"of two spherial universes along two of their boundary lines li, for h = 0 one anprove the inequality [117℄ 0s � 12 ; (2.64)whih is one of the most general results for the DTRS models; this mean-�eld likebound is supposed to hold for any random surfae model with loal interations.Espeially, via the extension of Eq. (2.62) to non-integer and negative dimensionsD, this result is valid for the oupling of onformal matter of any entral hargeto two-dimensional Eulidean quantum gravity. The mean-�eld limit in statistialmehanis is usually found to be equivalent to the limit of in�nite dimensionalityof spae. Considering D ! 1 in the DTRS model, from Eq. (2.62) obviouslyon�gurations minimizing the determinant detC0T 0a will dominate; as it turns out,this minimal weight is attahed to on�gurations of branhed polymers, i.e. planartree graphs. The branhed polymer model (see, e.g., Refs. [118, 119℄) an be solvedexatly and not surprisingly yields the limiting value 0s = 1=2. In Setion 2.3.3 wewill see that for pure gravity, i.e. the ase D = 0, a value di�erent from mean-�eldbehaviour, namely 0s = �1=2 is realized. Bounds similar to (2.64) an be found forhigher-genus surfaes, see Ref. [10℄ and referenes therein.



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 29Considering the long-distane behaviour of the m-loop or m-point funtions, wede�ne the inverse orrelation length or mass gap m(�) as the limit4mh(�) = � limr!1 lnGh�(r)r ; (2.65)where Gh�(r) = Gh�(0; x), jxj = r. The proof of the existene of the indiated limitis tehnially somewhat intriate [7,10℄. It follows from a sub-additivity property ofthe two-point funtion, namelyGh�(r1 + r2) � Gh�(r1)Gh�(r2): (2.66)Qualitatively, the origin of this relation is quite obvious if we onsider the (suitablynormalized) 2-loop funtionGh�(l1; l2) as the probability of the propagation of a stringfrom l1 to l2, where jl1j = jl2j. Then, the probability of the string to propagate froml1 to l2 through a �xed intermediate position, orresponding to the rhs of Eq. (2.66),is naturally smaller than the probability for it to propagate through any possibleintermediate position, represented by the lhs of (2.66) [8℄. It an also be shown thatmh(�) � 0 for � > �0 and mh(�) is a dereasing funtion of �. It is not proved(for the most general ase), but almost ertainly true, that mh(�) really vanishes at� = �0, i.e. that the orrelation length 1=mh(�) diverges at the ritial point �0.From the de�nition (2.65) of the mass gap we infer the following long distanebehaviour of the orrelatorGh�(r) � e�mh(�)r; r � 1=mh(�): (2.67)If the mass sales to zero, whih is essential for the existene of a well-de�nedontinuum limit, we assoiate this saling with the ritial exponent �:mh(�) � (�� �0)�h: (2.68)The exponent � is expeted to be independent of the genus h. As will be demon-strated in Setion 2.3.5 � is related to the fratal struture of the latties harater-ized by the Hausdor� dimension dH as � = 1=dH. The exponents � or dH are notknown exatly for the general ase, i.e., two-dimensional quantum gravity oupledto onformal matter with entral harge C = D. On the other hand, the shortdistane behaviour of the 2-point funtion de�nes the anomalous dimensions �h asGh�(r) � rd�1 1rd�2+�h ; r � 1=mh(�); (2.69)4For the quantum gravity (and not the string theory) point of view, the two-point funtion willbe expliitly de�ned in terms of geodesi distane, see below Setion 2.3.5.



30 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYwhere the additional fator rd�1 stems from the average over spherial shells impliedin onsidering Gh�(r). In view of the saling of the mass mh(�) to zero at the ritialpoint � = �0, the limits of long and short distane onsidered in Eqs. (2.67) and(2.69) an be alternatively interpreted in terms more natural for statistial physiists:sine the region r � 1=mh(�) eventually overs the whole triangulation as �! �0,(2.69) desribes the orrelator in the viinity of the ritial point (the saling region),whereas the exponential deay (2.67) is valid o� ritiality. Combining the de�nition(2.58) of the suseptibility with the saling properties (2.60), (2.68) and (2.69) we�nd(�� �0)�0s � Z dr G0�(r) = Z 1=m0(�)0 dr r1�� / (1=m0(�))2�� � (�� �0)��(2��);(2.70)i.e. the Fisher saling relation 0s = �0(2� �0): (2.71)Finally, onsidering the exponential deay of the 1-loop funtion G0�(l) for a largeplanar loop l enlosing an area A,G0�(l) � A�0e��0(�)A; (2.72)de�nes the string tension for spherial surfaes, �0(�), whih an be interpreted asthe surfae tension of a membrane attahed to the \frame" l. It an be shown [120℄that the string tension �0(�) � 1, suh that it does not sale to zero as �! �0. Aswill be shown below in Setion 2.3.7 this implies that the physial, re-saled stringtension de�ned from the ontinuum limit beomes in�nite.2.3.3 The ombinatorial solutionThe problem of the Polyakov string (2.13) embedded in D = 0 dimensions, i.e. pureEulidean quantum gravity in two dimensions an be solved exatly with a gener-ating funtion tehnique known as the loop equation. An alternative formulation ofthis system in term of a matrix integral , whih an also be performed analytially,will be skethed in the next setion.To dynamially ontrol the presene and weight of boundaries in the triangulations,we add a boundary term to the disretised Einstein-Hilbert ation of Eq. (2.48) at



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 31�xed topology h, i.e. ST [�; �1; : : : ; �b℄ = �N2 + bXi=1 �ini (2.73)should denote the ation of a simpliial manifold T with b puntures enlosed byboundary polygons of geodesi lengths ni = n(li); the �i thus play the rôle ofboundary osmologial onstants. Using the abbreviationswhN2;n1:::;nb = XTa2Ta(h;N2;ni) 1~C(Ta) (2.74)for the number of triangulations of genus h with b boundaries of lengths ni andde�ning fugaities of triangles and boundary links,m = e��; ki = e�i; (2.75)the loop funtions (2.52) for utuating loop lengths ni and at D = 0 now readGhm(k1; : : : ; kb) =XN2 Xn1;:::;nbwhN2;n1:::;nbmN2k1�n1 � � � kb�nb; (2.76)whereas the loop funtions for �xed boundary lengths5 ni, the Hartle-Hawking wavefuntionals [121℄, are given byGhm(n1; : : : ; nb) =XN2 whN2;n1:::;nbmN2 : (2.77)Obviously both kinds of loop funtions are related by a Laplae transform asGhm(k1; : : : ; kb) = Xn1;:::;nb k1�n1 � � � kb�nbGhm(n1; : : : ; nb) (2.78)From a ombinatorial point of view, the Ghm(k1; : : : ; kb) an thus be onsidered as thegenerating funtions of the numbers whN2;n1:::;nb.Considering the e�et of simple surgery operations on the triangulations that hangethe number of triangles or the number of boundary links by units of one, orrespond-ing to a multipliation by fators of m, m�1, k or k�1, one an derive the followingreursion relation for the generating funtion for planar triangulations (h = 0) [15℄6:g0(m; k) = mk g0(m; k) + 1k g20(m; k); (2.79)5Note that the n(li) are di�eomorphism invariant quantities.6The relation originally derived by Tutte [15℄ is for a slightly di�erent lass of triangulationsand inludes orretions for the smallest triangulations; it thus look slightly more ompliated thanthe relation given.



32 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYwhere gh(m; k1; : : : ; kb) = Ghm(k1; : : : ; kb)k�11 � � � k�1b : (2.80)Eq. (2.79), known as the loop equation (a form of the Dyson-Shwinger equation),should be understood order by order in the variables m and k. This type of equationan be used to iteratively generate the numbers whN2;n1:::;nb. In the limit of large N2losed-form expressions an be given (for a review see, e.g. Ref. [10℄); for the ase oflosed triangulations of general genera h one �nds [25℄whN2 � N �h2 e�0N2 [1 +O(N�12 )℄; (2.81)where �h = 5h� 72 : (2.82)The number of losed triangulations with N2 triangles grows exponentially as indi-ated in Setion 2.3.1 with a power-law orretion haraterized by the exponents�h. These exponents are related to the string suseptibility exponents hs as follows.Consider the partition funtion at �xed topologyZh(�) = 1XN2=0 e��N2Zh(N2); (2.83)where Z(N2) = whN2 denotes the anonial partition funtion at �xed volume. In-serting the expression (2.81) into this equation, we have7Zh(�) � 1XN2=0 e�(���0)N2N �h2 � (�� �0)�(�h+1): (2.84)Realling that via Eqs. (2.59) and (2.60) Zh(�) � (� � �0)2�hs , it follows that�h = hs � 3 and thus hs = 5h� 12 : (2.85)Espeially, for planar surfaes h = 0, one �nds 0s = �1=2 in ontrast to the mean-�eld result 0s = 1=2. Along the same lines also the ounting of surfaes onsistingnot only of triangles, but of arbitrary polygons, is possible [122, 123℄.7Conerning the last equality, onsider the ontinuum expressionZ 10 dN2 e�(���0)N2N�h2 = �(�h + 1)(�� �0)�h+1 :



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 332.3.4 Matrix modelsAn alternative path of derivation of the entral result (2.81) for the number oftriangulations of a given number of triangles is given by the analysis of matrixintegrals (for reviews see, e.g., Refs. [6, 23, 124℄), originally onsidered by 't Hooftfor the large-N limit of QCD [19℄; in fat, the onept of \loop equations" has beenoriginally developed in the ontext of matrix models.Consider the Taylor expansion of the zero-dimensional �eld theory integralZ d� e� 12�2+ g3�3 = 1Xk=0 Z d� e� 12�2 1k! �g�33 �k � 1Xk=0 1k! �g3�k 
�3k� ; (2.86)where � is a simple, real-valued variable. Introduing an external soure J , theourring terms an be written asZ d� e��2=2�n = (�i)n �n�Jn Z d� e��2=2+iJ�����J=0 = �n�Jn e�J2=2����J=0 : (2.87)Sine eah derivative �=�J brings down a fator of J , after setting J = 0 onlypairs of suh derivatives give ontributions without fators of J , whih thus do notvanish. Therefore, one has a zero-dimensional version of Wik's theorem (see, e.g.,Ref. [125℄), h�1 � � ��ni = Xperm(i1;:::;in)h�i1�i2i � � � h�in�1�ini: (2.88)Assoiating with eah fator �3=3 a vertex with three external lines,
�the expansion of (2.86) orresponds to the pairwise onnetion of verties via links.The resulting �3 Feynman graphs are generi, \thin" graphs without an orientationof the plaquettes; this is obviously not enough struture for the triangulation ofRiemannian surfaes (even though these graphs are interesting in their own right,see e.g. Refs. [126{128℄). Therefore, onsider the more general integralW (g;N) � Z d� e� 12Tr�2+ g3pN Tr�3 � 1Xk=0 1k! � g3pN�k 
Tr�3k� ; (2.89)
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Figure 2.5: The Wik expansion of the matrix integral (2.89) orresponds to thegluing of oriented triangles mediated by the matrix indies.where now � is a N �N Hermitian matrix andd� �Y��� dRe��� Y�<� d Im���: (2.90)Then, again, the expansion is given by the ombination of all possible Wik on-trations of (Tr�3)k and the two-point funtion ish�����0�0i = Z d� e� 12 P�� j��� j2�����0�0 = Æ��0Æ��0 (2.91)Then, via the pairing of the indies of �, the orresponding verties reeive a rib-boned, \fat" struture,

�leading to orientable plaquettes of the surfae. In terms of the triangulation, i.e. thedual lattie of the �3 graph, the \fat" struture an be understood as follows: toeah fator Tr�3 we assoiate a triangle and to eah term ������� ontributingto Tr�3 a labelling of the verties of the triangle by �, �,  in yli order; thus,the element ��� orresponds to the oriented link between verties � and �. Thenthe Kroneker Æ symbols of Eq. (2.91) ensure that eah link (�; �) is identi�ed withan oppositely oriented link (� 0; �0). This is illustrated in Fig. 2.5.In this way, the integral (2.89) orresponds to a sum over losed, orientable triangu-lations of N2(T ) = k triangles, whih are, however, possibly disonneted. Making



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 35use of a ommon trik in �eld-theory [125℄, taking the logarithm of (2.89) kills all dis-onneted ontributions, leaving only onneted surfaes. Summing over Eq. (2.91)it is obvious that eah vertex of the triangulation piks up a fator of N , suh thatthe overall weight of a triangulation T is given bygN2(T )NN0(T )�N2(T )=2 1C(T ) = gN2(T )N�(T ) 1C(T ) : (2.92)Note that the fatorial k! in (2.89) is partially anelled against the number ofpermutations of the triangles, resulting in the symmetry fator 1=C(T ). In view ofEq. (2.48), the identi�ations N = e4��; g = e�� (2.93)let us onlude that Z(�; �) = lnW (g;N)W (0; N) (2.94)is the partition funtion of the two-dimensional Eulidean quantum gravity problem.Note that the Hermitiity of the onsidered matries is essential for the orientabilityof the triangles and thus the surfaes; using real symmetri matries instead makesthe two indies � and � indistinguishable, thus generating both orientable and non-orientable triangulations. From the weights (2.92) it is obvious that the planar limitN ! 1 leaves only triangulations with minimal � = 2 � 2h, i.e. with h = 0. Onthe other hand, in the limit N = 1 we reover the ase of generi, \thin" graphs,where all genera ome with equal weights. From the disussion up to this point itshould be lear that the partition funtion Z(�; �) de�ned in this way | as a sumover topologies | is divergent and should therefore be onsidered as a symbolirepresentation of the olletion of all orders of a large-N expansion,Z(� = � ln g; � = lnN4� ) = 1Xh=0N2�2h Zh(�) = 1Xh=0N2�2h 1XN2=0 gN2Zh(N2): (2.95)The leading term of this expansion, i.e. the limit N !1 (the planar theory), anbe omputed exatly via the saddle-point method to give [16℄Z0(N2) = 8N2�(32N2)(N2 + 2)! �(12N2 + 1) N2!1� N�7=2 eN2 ln 12p3: (2.96)Comparing with the result (2.81) we �nd agreement for the planar ase and theadditional information that the ritial value of the osmologial onstant for thispartiular model is given by �0 = ln(12p3): (2.97)



36 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYAs mentioned above, the matrix model approah is very losely related to theombinatorial ansatz leading to the loop equations. For example, the numbersgh(g = m; k1; : : : ; kb) an be diretly omputed within the matrix model sheme.If we denote (in ontrast to the above notation) by h�i an average with respet tothe measure W�1(g;N) e� 12Tr�2+ g3pNTr�3d�; (2.98)the generating funtion gh is given bygh(g; k1; : : : ; kb) = N b�2 Xk1;:::;kb 
Tr�k1 � � ��kb�onnkk1+11 � � � kkb+1b ; (2.99)where h�ionn denotes the onneted part of the orrelation funtion.With the same tehnique further models an be onsidered by hanging the matrixpotential. Re-writing (2.89) more generally asW (g;N) = Z d� e�NTrV (�;g); V (�; g) = 12�2 � g3�3 (2.100)whih involves a re-saling � ! pN� for tehnial purposes, it an be easily seenthat, for example, the quarti potential,V (�; g) = 12�2 � g4�4; (2.101)generates the ensemble of \fat" �4 graphs, i.e. the dual latties of quadrangulations.Matrix potentials with more than one matrix or with non-Hermitian matries or-respond to a dressing of the random graphs with matter variables, see Setion 2.4.3.2.3.5 Fratal struture of the lattiesConsidering the features of geometrial observables on random triangulations ofthe introdued type, it quikly beomes lear that the intrinsi geometry of thelatties is far from smooth; instead they have a very ragged and highly detailedstruture reminisent of fratals. This an most eye-athingly be demonstrated byonsidering an embedding of the two-dimensional latties in R3 trying to faithfullyreprodue the property of equal edge lengths of the triangles, f. Fig. 2.6.The prevailing parameter haraterizing the \fratality" of a struture is the Haus-dor� dimension with respet to a given metri, whih de�nes how a suitably de�ned
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Figure 2.6: Embedding of a two-dimensional dynamial triangulation with N2 =5000 triangles in R3 . The triangulation is taken from the same ensemble as themore smooth looking example of Fig. 2.4. The embedding was generated with anadaptive algorithm trying to avoid edge intersetions while uniformizing the edgelengths, f. Appendix B.measure of linear length of the struture sales in terms of its volume. For thease of the Polyakov string embedded in RD the mean square extent with respet todistanes in the embedding spae and in the grand-anonial ensemble of a varyingnumber of triangles N2 is de�ned ashx2i� � R dx x2Gh�(0; x)R dxGh�(0; x) : (2.102)Then, de�ne the average number of triangles in this ensemble ashN2i� � �R dx ���Gh�(0; x)R dxGh�(0; x) ; (2.103)



38 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYsine di�erentiating (2.52) with respet to � brings down a fator of �N2. If thelimit dH = 12 lim�!�0 lnhx2i�lnhN2i� (2.104)exists, it is alled the external Hausdor� dimension of the onsidered ensemble ofrandom surfaes; otherwise, we set dH =1. Alternatively, it an be de�ned in theanonial ensemble of a �xed number of triangles N2 asdH = 12 limN2!1 lnhx2iN2lnN2 : (2.105)Thus, the average area of the surfaes asymptotially sales ashN2i� � hx2idH=2� ; �! �0: (2.106)For the ase of pure quantum gravity, no embedding in a target spae (apart fromillustrative purposes) is available. Reall from (2.52) that the two-point funtion inD = 0 is de�ned asGh�(r) = 1XN2=1 e��N2 XTa2Ta(h;N2; p1;p2) Æ (d(p1; p2)� r) ; (2.107)where d(p1; p2) denotes the internal geodesi distane of Eq. (2.40). Then, we de�nethe analogue of the mean square extent ashr2i� � P1r=0 r2Gh�(r)P1r=0Gh�(r) ; (2.108)and the average number of triangles byhN2i� � �P1r=0 ���Gh�(r)P1r=0Gh�(r) : (2.109)Then, the internal Hausdor� dimension8 dh is given bydh = 12 lim�!�0 lnhr2i�lnhN2i� : (2.110)Obviously, a similar de�nition of an intrinsi Hausdor� dimension an also be givenfor the ase of the Polyakov string. Both dimensions are not neessarily equal;instead, it an be shown that dh � dH , whih is intuitively obvious sine in the8Note the use of upper ase and lower ase subsripts H resp. h to distinguish the external andinternal Hausdor� dimensions.



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 39embedding spae one does not have to follow the surfae to travel between twopoints, suh that distanes are shorter there.It should be emphasized that there are several slightly di�erent de�nitions of internalHausdor� dimensions whih have been used in the literature (see, e.g. Refs. [7, 10,11℄). It is possible, for instane to drop the summation over r in (2.109) and onsiderhN2(r)i� = � ���Gh�(r)Gh�(r) = ��� lnGh�(r) � rdh ; r !1; m(�)r = onst: (2.111)From the de�nition of the mass m(�) Eq. (2.67) and its saling as �� ! 0 Eq.(2.68), we have hN2(r)i� � �m(�)�� r � m(�) ��1� r / r1=�; (2.112)where we have used the saling assumption m(�)r = onst above. Thus we have thesaling relation � = 1=dh; (2.113)whih together with the Fisher saling relation (2.71) determines the number ofindependent exponents.Numerially, the intrinsi Hausdor� dimension of two-dimensional simpliial quan-tum gravity is observed to be muh larger than the topologial dimension d = 2; infat, from the transfer-matrix approah desribed below, it is known that dh = 4for pure quantum gravity in two dimensions. This is related to the struture ofthe latties as depited in Fig. 2.6. The triangulation appears as omposed from\blobs" of all length sales attahed to the main surfae through neks of only afew links; in this way, the whole \universe" an be deomposed into a tree of babyuniverses, whih are (apart from the ut-o� a) similar to the whole graph [29℄. Therelation between the \baby universes" and the fratal dimension an be understoodby means of the real spae renormalization group approah [11, 129, 130℄. De�ningan elementary bloking transformation by utting from the original ensemble a alllast generation minimal nek baby universes (minBUs), i.e. those at the leafs of the\baby universe" tree, to result in a renormalized ensemble b, the sales of lengthsand areas are related asymptotially as [11℄hN2ibN2;a � � hr2ibhr2ia�dr=2 ; N2 !1; (2.114)where the averages are here performed in the anonial, �xed N2 ensemble. Thedimension dr is numerially found to approah dh = 4 for large graphs; thus, the



40 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITY\baby-universe" struture of the triangulations is losely related to their fratalstruture.Two further dimensions are ommonly onsidered in onnetion with random sur-faes, see e.g. Refs. [11, 12℄. Let nTa(r) be the number of verties pi of a giventriangulation Ta whih have a distane d(0; pi) � r from a marked point 0. Thenthe branhing dimension db desribes the saling of the average of the number ofdisonneted omponents n0(r) of the boundary of the ball of volume nTa(r),hn0(r)i � rdb; N2 !1: (2.115)Numerial simulations give results of db & 2:5, signalling indeed a large rate ofbranhing. Finally, to de�ne the spetral dimension ds onsider, in the ontinuumtheory, the di�usion of a test partile on the surfae; in the short-time limit, theaverage probability density for the partile to return to its initial point sales ashP (t)i � t�ds=2; t! 0: (2.116)Surprisingly, it an be shown that, despite of the rather large Hausdor� dimension,the spetral dimension stays at the at-spae value ds = 2 for quantum gravitywith C � 1 [131℄. However, the fratal struture of the triangulations (i.e., thedimension dh) an still be seen also in the di�usion proess, namely in the salingof the travelled distane of the partile with time,hrit � t1=dh ; t!1: (2.117)2.3.6 Further results and the transfer matrixConsidering the saling relations (2.71) and (2.113) and the exat values of the stringsuseptibility exponent of Eq. (2.85), one needs one further exponent, either dH , � or� for a omplete desription of the ritial behaviour of the two-dimensional quantumgravity problem. This missing information an be extrated from a di�erentialequation for the generating funtions of the b-loop funtion mentioned above inSetion 2.3.3 [28℄ or, alternatively, from a transfer-matrix formulation of the problem[26, 27℄.Starting from the general generating funtion (2.76), one an again derive a reursionrelation of the Shwinger-Dyson type with respet to elementary operations at theentrane and exit loops of the orrelators known as the \peeling" and \sliing"



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 41deomposition of the triangulations, see, e.g., Ref. [10℄. Then, writing down andsolving a di�erential equation mimiking the elementary steps used, the orrelatorin the saling limit is found to be [28℄,G0�(r) � osh ��(��)1=4r�sinh3 [�(��)1=4r℄ ; (2.118)where � = p6 exp(�0). In the two limits onsidered in Setion 2.3.2 this redues toG0�(r) � e�2(��)1=4�r; r � 1=m(�); (2.119)and G0�(r) � r�3; r � 1=m(�); (2.120)suh that from the de�nitions (2.67), (2.69) and (2.68) we read o� the exponents� = 1=4 and �0 = 4. From the saling relation dh = 1=� we infer an internalHausdor� dimension dh = 4.Using the above-mentioned sliing deomposition, whih divides a triangulation inspherial shells of triangles of equal geodesi distane from a given point or loop,it is possible to write down a transfer-matrix formulation of the problem. Besidesderiving the result (2.118), this method even yields the so-alled loop distributionfuntion �0(r; l) for spherial topology, that is: �(r; l)dl is the average number ofloops of lengths between l and l+dl at the boundary of a ball with radius r on thetriangulations. In the thermodynami limit N2 ! 1 of the anonial ensemble ofplanar latties (h = 0) it is given by [26℄�0(l; r) = 37p�r2 �x�5=2 + 12x�3=2 + 143 x1=2� e�x; (2.121)where x = r2=l is a saling variable. From this very detailed result, it is alsopossible to derive the saling dimensions dh = 4 and db = 3 whih are related to thesingular behaviour of the distribution. In view of the possibility of a transfer-matrixformulation, the question arose, whether one ould �nd the quantum Hamiltonianorresponding to the ontinuum limit of the transfer matrix whih would yield aompletely new desription of two-dimensional quantum gravity. There, proper timeis identi�ed with the geodesi distane of the sliing deomposition. Approahes inthis diretion an be found in Refs. [132, 133℄.



42 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITY2.3.7 The ontinuum limitAs usual in lattie �eld theory, for the de�nition of a proper ontinuum limit the massm(�) (the inverse orrelation length) has to sale to zero as � approahes �0, sineonly then the resulting ontinuum expressions beome independent of the hosenut-o�. As mentioned above, the saling of the mass annot be proven analytiallyfor the string model and thus has to be assumed there; for the quantum gravitymodel, on the other hand, from the ontinuum expression of the two-point funtionEq. (2.118), the saling of the mass is obvious. For the ase of the string model,the edge length a of the simpliial manifolds orresponds to a length sale ut-o� �in the physial embedding spae RD . For a non-vanishing physial mass mphy withdimension 1=[length℄ to appear, the oupling � has to be sent to �0 depending on �suh that m(�(�)) = mph�; (2.122)i.e., we take the limit � ! 0 and � ! �0 in a orrelated way, keeping mph �xed.Alternatively, the ontinuum limit an be onsidered in terms of the intrinsi ut-o�a ! 0 of the triangulations. The relation between the saling of both quantitiesis found from inserting the physial area of the surfae A = N2a2 and the physialdistane xphy = x� into Eq. (2.106) to givea2 � �dH : (2.123)The physial string tension �phy as a surfae tension has the dimension of 1=�2, suhthat it should obey �(�(�)) = �phy�2: (2.124)Sine, as mentioned in Setion 2.3.2 �(�) � 1, this equation an only be ful�lledfor �phy =1. Physially, this means that the imagined membrane attahed to theframe of a loop l is at up to spiky outgrowths of almost no area. This orrespondsto the piture of a branhed polymer model, whih is known to be the right de-sription in the mean-�eld limit of large target dimensionality D. In terms of theequivalent model of quantum gravity oupled to D Gaussian �elds, this orrespondsto the observed ollapse of the geometry to a branhed polymer phase for entralharge C = D > 1. Obviously, a physially sensible string theory would onsiderphysial dimensions D > 1. However, a saling of the string tension an be possiblyestablished by adding higher (extrinsi) urvature terms Hk, k = 1; 2; 3; : : : to theation (2.13), see Ref. [10℄.



2.3. ANALYTICAL RESULTS FOR THE DISCRETISED THEORY 43In the quantum gravity model, we want a physial osmologial onstant �phy, whihhas dimension 1=[length℄2. Thus, the renormalization ondition is�� �0 = �phya2; (2.125)whih from the saling of the mass implies thatm(�(a)) = mphya2� = mphya2=dh ; (2.126)equivalent to Eq. (2.122)9. Then, in terms of the intrinsi ut-o� a, the ontinuumdistane is rphy = ra2� and the ontinuum propagator Gh(rphy; �phy) should bede�ned as Gh(rphy; �phy) = lima!0 a2�(1��h)Gh�(a)(rphya�2�); (2.127)whih from Eqs. (2.69) and (2.67) yields the intended asymptoti behaviourGh(rphy; �phy) � r1��hphy ; rphy � m�1phy;Gh(rphy; �phy) � e�mphyrphy ; rphy � m�1phy: (2.128)The summation over topology Eq. (2.53) is divergent without further modi�ations.Thus, there is no na��ve saling with respet to the gravitational oupling �. Withinthe matrix model formulation (2.89), the sum over topologies translates into thelarge-N expansion in the dimension of the matries given in Eq. (2.95). It turnsout that the ritial points gh0 = e�h0 of the �xed-topology partition funtions do notdepend on the genus h [10℄. From the dependene (2.85) of the string suseptibilityexponent on the genus,(2� hs ) = (2� 0s)(1� h) = (2� 0s )�(h)=2; (2.129)and the saling of the �xed genus partition funtions,Zh(�) � fh(�� �0)2�hs ; (2.130)it is obvious that the ontribution of the higher genus surfaes inreases as �! �0.Thus it might make sense to take the limits � ! �0 and N ! 1 in a orrelatedmanner. Renormalizing the gravitational oupling onstant ase�phy = N(�� �0)(2�0s )=2; (2.131)9Note, however, that here in ontrast to Eq. (2.122), the intrinsi Hausdor� dimension has tobe used.



44 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYthe saling limit of the all genus partition funtion Eq. (2.95) an be written asZ(�; �) � 1Xh=0N�(h) (�� �0)(2�0s )�(h)=2 � 1Xh=0 e�phy�(h)fh: (2.132)This limit, i.e. � ! �0 and N ! 1 with �phy = onst is known as the doublesaling limit of the matrix model Eq. (2.89) [134{136℄. To give an interpretationto this representation, one an, for example, de�ne a matrix model whih has thesame perturbation expansion as the one given above, but is onvergent. It turns out,however, that there are no real solutions to the resulting Painlev�e I equation [10℄.Thus, the problem of a non-perturbative de�nition of the sum over topologies is stillunsolved.2.4 Dressing Dynamial TriangulationsAs mentioned several times, the D-dimensional Polyakov string an be interpretedas two-dimensional quantum gravity oupled to onformal matter of entral hargeC = D. Most of the results presented above, however, only apply to the ase of puregravity, i.e. D = 0. As disussed in Setion 2.3.2, the limit D ! 1 orrespondsto the mean-�eld limit of the model, whih has 0s = 1=2 indiating the ollapse ofgeometry to branhed polymers. On the other hand, the opposite limit D ! �1orresponds to the lassial or Liouville limit of the theory with surfaes regularup to a �nite number of points with defets, whih has hs = �1. Additionally,the non-unitary ase D = �2 an be solved exatly due to a anellation in thedeterminant (2.62) to give 0s = �1, dH = 1 [21℄10. The behaviour in betweenthese two extremal ases and the question, where transitions between the di�erenttypes of behaviour our, will be disussed now.2.4.1 Annealed and quenhed disorderConerning disorder in systems of statistial mehanis, two fundamentally di�er-ent senarios are ommonly distinguished. Symbolially expressing the probabilitydistribution of the disorder degrees of freedom by P and the partition funtion for10Note that dH =1 makes a proper ontinuum saling impossible due to the relation (2.123).



2.4. DRESSING DYNAMICAL TRIANGULATIONS 45a given realization of the disorder by Z(f�ig;P ), the partition funtion for the fulldisordered system is given byZ(f�ig) = [Z(f�ig;P )℄P ; (2.133)where the square brakets indiate averaging with respet to P and the �i are someoupling parameters. Expetation values an usually be expressed as derivatives ofthe free energy, i.e. hAiannealed � �k lnZ(f�ig)��i1 � � ���ik : (2.134)Thus, the thermal and disorder averages are performed on the same level; thissenario is ommonly referred to as that of annealed disorder . On the other hand,one an ompute expetation values on the level of the partition funtion Z(f�ig;P )and perform the disorder average afterwards, i.e.hAiquenhed � ��k lnZ(f�ig;P )��i1 � � ���ik �P ; (2.135)de�ning the notion of quenhed disorder . Physially, both shemes orrespond tolimiting ases with respet to the time sales of utuation of thermal and disorderrelated properties. While in the annealed senario both types of variables utuateon the same time sale, quenhed disorder an be onsidered as an approximationto the situation that the disorder degrees of freedom utuate so muh slower thanthe thermal variables that they an e�etively be onsidered as �xed on the timesale of thermal utuation.The relevane of the appliation of quenhed disorder to a system of statistialmehanis undergoing a ontinuous phase transition in terms of a hange of theuniversal ritial properties suh as ritial exponents depends on the rate at whihthe utuations of the pseudo-ritial ouplings indued by the disorder die out in thethermodynami limit. A systemati analysis of this observation leads to the Harris[69℄ and Harris-Luk [71℄ riteria for the relevane of quenhed disorder. For thease of a �rst-order phase transition of the model on regular latties, one an expeta disorder-indued weakening to a ontinuous transition. Numerial simulationsof Potts models on the quenhed ensemble of random planar �3 graphs indiate ahange of the ritial exponents in the ases with a seond-order phase transitionand a softening to ontinuous phase transitions of the �rst-order ases [137, 138℄.An attempt to alulate the exponents for the quenhed ase from those observedin the annealed ase via use of the replia trik (see, e.g., Ref. [139℄) an be foundin Ref. [140℄.



46 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYThe senario of annealed disorder in the framework of dynamial triangulationsorresponds to the oupling of matter to the gravitating universe suh that thegeometry indues e�ets on the matter, whih in turn has a bak-reation onto thegeometry of spae-time. The orresponding partition funtion at �xed topology isvery similar to the expression for the loop orrelator (2.52) and readsZ(�; f�ig; a) = 1XN2=1 e��a2N2 XTa2Ta(h;N2) 1C(Ta) Z N2Yi=1 d�i e�Smatter[f�ig;f�ig℄; (2.136)where the �i are matter variables loated on the triangles of the simpliial manifoldand the �i are matter-related oupling parameters11. For annealed disorder, thegeneral relevane riteria of Harris and Luk do not apply. However, it is foundthat the oupling of C � 1 onformal matter to two-dimensional gravity is alwaysrelevant and, even more, it an be demonstrated, how the saling dimensions of thematter part renormalize due to the oupling to gravity.2.4.2 The KPZ/DDK solutionAording to Polyakov, the bosoni string an be interpreted as two-dimensionalquantum gravity oupled toD bosoni �elds. Sine the ation (2.13) does not ontainany oupling onstants to tune, it desribes a ritial theory of entral harge C = D.Thus, solving the Polyakov string model or an approximation to it is diretly relatedto the problem of quantum gravity oupled to matter. By onsidering the problemin the light-one gauge and making some ad ho assumptions, Knizhnik, Polyakovand Zamolodhikov [30℄ ould evaluate the partition funtion of the oupled systemfor the planar ase h = 0. This solution was later on re-derived in the onformalgauge and extended to higher genera by David [31℄ and Distler and Kawai [32℄. Forthe string suseptibility exponent hs they �nd12hs � 2 = �(h)D � 25�p(25�D)(1�D)24 : (2.137)Furthermore, if we onsider a primary �eld � of the matter theory whih has on-formal weight � before oupling it to the gravitating surfae, the operator piks up11It is, of ourse, also possible to plae the matter variables on other types of fundamentalbuilding bloks of the simpliial omplex suh as the verties or the edges.12Note, that the number 25 (and in the following 24) ourring in this formula is related to thefat that the Polyakov string is ritial in D = 26, where the gravity theory essentially deouplesfrom the matter part.



2.4. DRESSING DYNAMICAL TRIANGULATIONS 47a gravitational dressing leading to a new weight ~� satisfying the KPZ equation [30℄,~��� = �12�2 ~�( ~�� 1); (2.138)where � = � 12p3(p25�D �p1�D): (2.139)Solving for ~�, we have ~� = p1�D + 24��p1�Dp25�D �p1�D : (2.140)Note that from the formulae (2.137) and (2.140) hs and ~� pik up imaginary partsas D > 1, suh that the onsidered alulation breaks down in this limit. The aseD = 1 is marginal and therefore logarithmi orretions to saling are expeted.This e�et is known as the C = 1 barrier of two-dimensional quantum gravity. Notethat due to this e�et this alulation does not shed muh light on the string theoryoriginally onsidered sine, of ourse, there dimensions D > 1 onstitute the aseof interest. However, from the point of view of oupling matter to quantum gravityit is highly valuable, sine most of the interesting \toy models" of matter haveentral harge C � 1. Espeially, onsider the unitary onformal minimal models ofRef. [141℄ with entral hargeC = 1� 6m(m + 1) ; m 2 N ; m � 2; (2.141)whih inlude the ritial versions of, e.g., the Ising model (C = 1=2) and the 3-statePotts model (C = 4=5). Within the minimal series of models, a theory is ompletelydesribed by the entral harge C. In ontrast, for the limiting ase C = 1 there areseveral inequivalent realizations suh as the 4-state Potts model, a single masslesssalar �eld or the 6-vertex model. For the minimal series, from Eq. (2.137) we have0s = �1=m.On the same lines of argumentation, i.e. within the Liouville sheme of quantumgravity, by onsidering di�usion on a utuating geometry an expression for theintrinsi Hausdor� dimension of the oupled system an be derived [142℄,dh = 2p25� C +p49� Cp25� C +p1� C ; (2.142)where 0 � C � 1. However, an alternative onjeture was made based on matrixmodel alulations reading [143℄dh = 24p1� C(p1� C +p25� C) : (2.143)



48 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYBoth formulas agree for C = 0, i.e. pure gravity, but yield di�erent results for theother ases. In ontradition to both results, numerial simulations are onsistentwith a onstant dh = 4 for all 0 � C � 1 [51, 144℄. For non-unitary matter C < 0the preditions of Eq. (2.142) agree with numerial results for C = �2 [116℄. Also,the lassial limit C ! �1 yields dh = 2 as expeted. Thus Eq. (2.142) ould beorret for C < 0.What happens beyond the C = 1 barrier? Numerially, in all ases studied thestring suseptibility exponent is found to beome positive [54℄, aompanied bya divergene of the sizes of the \baby universes" in the thermodynami limit13.For C & 4 the value of 0s seems to approah the branhed polymer value 1=2.However, the question whether the ollapse to branhed polymers takes plae exatlyat C = 1 or at some larger \ritial" entral harge is still unsettled. However, arenormalization group study of the problem revealed that the systems probablyollapse to the branhed polymer phase as C exeeds 1 [53℄; but the attrationto the new �xed point is only logarithmi, explaining that numerially one hasto go to rather large entral harges C & 4 to see the branhed polymer phase.The mehanism leading to the geometry of branhed polymers, is physially veryplausible for the ase of multiple opies of spin models generating C > 1. First,the interation between geometry and matter is strongest in the viinity of theritial point, sine only there the spins are orrelated on a marosopi sale. Now,in the ritial region typial spin on�gurations onsist of lusters of di�erentlyoriented spins of all sizes, suh that a onsiderable amount of the total free energyof the system is \stored" in the surfaes (i.e., losed urves in two dimensions)separating pathes of di�erent spin alignments. Sine the orresponding free energyis approximately proportional to the area (or length) of the phase boundaries, itis energetially favourable to have minimal length boundaries between pathes ofequal spin alignment. On a regular lattie, the minimal surfae of a path of �xedvolume annot beome arbitrarily small, but is just given by the shape of a sphere.On a dynamial triangulation, however, at eah point there an grow a baby universeof arbitrarily large volume onneted to the mother universe only via a very smallnumber of links. Thus, if only the energies assoiated to the matter interationsare strong enough (i.e., if C is large enough), the free energy of the ritial systemwill be minimal for latties omposed of \blobs" (\baby universes") deorated with13Note that, sine the entral harge is additive, large C an be generated by oupling severalopies of, say, Ising models to the latties.



2.4. DRESSING DYNAMICAL TRIANGULATIONS 49spins of equal alignment and onneted to eah other by a minimal number of links.This is exatly the geometry of branhed polymers.2.4.3 Matrix model examplesAs mentioned above in Setion 2.3.4, hanging the matrix potential of Eq. (2.89)allows for the representation of deorated random graphs. For the ase of an Isingtype deoration this was �rst noted by Kazakov [33, 145℄, who onsidered a two-matrix model with the potentialV (�1; �2; ; g) = 12(�21 + �22)� �1�2 � g4(�41 + �42); (2.144)where the matrix integral (2.100) should now be performed with respet to bothHermitian N � N matries �1 and �2. Obviously, the quarti terms �41=2 generate\fat" graphs with verties of o-ordination number four instead of three, the duallatties of whih orrespond to dynamial quadrangulations instead of triangulations.Remembering that the propagators Tr�2 orrespond to the links of the graphs, thereare now two types of suh bonds,hTr�21i = hTr�22i = 11� 2 ;hTr�1�2i = 1� 2 : (2.145)Setting  = exp(�2�), we havehTr�21=2i = p1� 2 exp(�);hTr�1�2i = p1� 2 exp(��); (2.146)suh that one an interpret the two types of verties as the two alignments of Isingspins plaed on the �4 verties and the bond (or propagator) weights orrespond tothose of the Ising model up to the ommon fator p=(1�2) whih is just an overallshift of the energy sale. Using the methods developed in [17, 18℄ one an derivea set of parametri equations in the planar limit N ! 1 whih, to eah order inthe number of verties, allows to ompute the partition funtion of the Ising modeloupled to planar �4 graphs [145℄. In the limit of diverging graph size, the model isfound to exhibit a ontinuous, third-order phase transition at the ritial oupling� = ln 2; (2.147)



50 CHAPTER 2. THE DTRS APPROACH TO QUANTUM GRAVITYand with matter-related ritial exponents � = �1, � = 1=2 and dh� = 3 [34℄,whih di�er from the Onsager exponents for the Ising model on a at lattie of� = 0, � = 1=8 and dh� = 2.14 The exponents found agree with those preditedfrom the KPZ equation (2.140). The string suseptibility exponent is found to stayat the pure gravity value 0s = �1=2 everywhere exept at the ritial point � = �,where it is shifted to 0s = �1=3. Thus, only at the ritial point the bak-reationof the matter part on the utuating latties is strong enough to inuene theiruniversal properties. It turns out that the slightly generalized matrix potentialV (�1; �2; ; ; g; h) = 12(�21 + �22)� �1�2 � g4(eh �41 + e�h �42); (2.148)whih obviously orresponds to the additional appliation of a magneti �eld h to theIsing spins, still orresponds to a solvable matrix integral, leading to the remarkablefat that the two-dimensional Ising model in the �eld an be solved exatly whenoupled to utuating planar random latties, in ontrast to the usual stati squarelattie ase. From the above disussion it should be obvious that a very similartreatment is possible for the ase of the Ising model oupled to planar �3 graphs,i.e., the duals of dynamial triangulations. The ritial exponents found there donot di�er from the �4 ase as expeted [34℄. When onsidering a torus of genush = 1, the ritial exponents of the matter part remain unhanged and 1s = 2 asexpeted from (2.137) [146℄. Note that 1s = 2 is valid for all inverse temperatures �sine aording to (2.137) for h = 1, s does not depend on the entral harge. Thise�et is onneted to the speiality of h = 1 that it has a logarithmially divergingpartition funtion.More ompliated systems an be expressed in terms of non-Hermitian matrix mod-els. For instane, the 6-vertex model oupled to \fat" �4 graphs is desribed by thematrix potential [72, 73℄V (�; �y; b; ) = ��y � b �2�y2 � 2(��y)2: (2.149)This will be disussed further in Chapter 5 below.
14It has been noted that the new exponents atually oinide with those of the spherial modelin three dimensions. It is not lear, however, whether this has a physial explanation.



Chapter 3
The Simulation of DynamialGraphs
The ombination of methods presented in the previous hapter led to a rather om-plete solution of the pure two-dimensional Eulidean quantum gravity problem.Quite a few of these results ould only be ahieved by the guidane of numerialwork, i.e., Monte Carlo (MC) simulations of dynamial triangulations. Furthermore,the exat information about the oupling of matter to random latties is by far notas omplete as in the pure ase, suh that numerial simulations are still very wellin plae.Sine the �nal objetive of this thesis are simulations of the 6-vertex model, whihneessarily lives on a four-valent lattie, the well-known methods for simulations ofdynamial triangulations and the dual �3 graphs have to be generalized and adaptedto the ases of dynamial quadrangulations resp. the dual �4 graphs. As it turnsout, the main issue in this ontext is the ergodiity of the hosen set of updatemoves. This will be tested against known exat results for the ases of pure gravityand an Ising model oupled to the graphs. An analysis of the autoorrelation timesof the algorithm alls for more sophistiated update proedures found in the baby-universe surgery method. If not stated otherwise, all disussions of the presenthapter exlusively apply to the ase of dynamial polygoni�ations and their dualgraphs in two dimensions. 51



52 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS
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Figure 3.1: Singular ontributions of the self-energy type in a non-ombinatorialtriangulation. Blak solid lines show the triangulation part, red dashed lines indiatethe orresponding �3 graphs. (a) The three points p1, p2 and p3 de�ne two distinttriangles; the two points p1 and p3 de�ne two distint links. The dual �3 graph hasa loal self-energy ontribution. (b) The points p1 and p4 de�ne two distint links,but all triangles are ombinatorially unique. The dual �3 has a non-loal self-energyontribution or non-trivial two-point subgraph.3.1 Graph Ensembles3.1.1 Triangulations and �3 graphsIn the theoretial disussions of the previous hapter we have omitted some neessaryomments on how the onsidered triangulations or the dual �3 graphs look likein detail. The notion of simpliial manifolds presented in Setion 2.2.3 desribesthe \na��ve" piture of a triangulation omposed entirely of regular, non-degeneratetriangles, whih is in agreement with the representation of Fig. 2.1. Formally, theregularity of the triangulations was desribed in Setion 2.2.3 by the fat that thereferene points de�ning an r-simplex should be geometrially independent in Rd andtheir onsidered linear ombination (2.35) should be onvex. On the other hand,similar assumptions were obviously not made when onsidering the matrix integralsof Setion 2.3.4; there, all orientable graphs of a given topology that an be formedby onneting a given number of verties with three links eah were onsidered,inluding possibly ourring degeneraies.Consider the ase of two-dimensional dynamial triangulations. In ombinatorialterms, the question of singular ontributions an be split into two parts. First, ina regular triangulation the simpliial building bloks of the manifold, i.e. the linksand triangles, are uniquely de�ned by two (links) or three (triangles) verties. The
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PSfrag replaements(a) (b)p1 p2 p3p4Figure 3.2: Singular ontributions of the tadpole type in a non-ombinatorial trian-gulation. (a) A triangle is de�ned by only two points p1 and p2; p1 orresponds totwo identi�ed points, the link hp1p2i represents two identi�ed links. The dual graphhas a tadpole ontribution. (b) The point p1 orresponds to two identi�ed points,but no links are identi�ed. The dual �3 graph ontains a one-point subgraph.degenerate ases of two verties de�ning two distint links or three verties de�ningtwo distint triangles an our in the same situation, whih is depited in Fig.3.1(a). It orresponds to the possibility that two triangles share two links insteadof one. The dual graph of this situation is alled a self-energy ontribution, that is,a loop of length two in the �3 graph. More generally, onsidering only degeneratelinks of the triangulation, these singularities are desribed as double links of thetriangulation or (non-trivial) two-point subgraphs of the dual �3 graph, f. Fig.3.1(b). A two-point subgraph is a omponent of a graph whih an be disonnetedby deleting two edges.The seond singular ontribution stems from the possibility of verties to loose notonly their geometrial independene, but to beome atually identi�ed , whih leadsto an originally degenerate triangle as depited in Fig. 3.2(a), where also two linkshave beome identi�ed. In the �3 graph this situation orresponds to a tadpoleinsertion, alternatively desribed as a loop of length one. Relaxing the ondition ofidenti�ed links, a general singularity of this type is given by a degenerate triangle(without identi�ation of links) or, in the dual graph, a one-point subgraph, f.3.2(b). By \one-point subgraph" we mean a subgraph that an be ut o� from therest of the graph by deleting one vertex.From the point of view of the �3 graphs, the most general singular ontributions anbe onsidered as \dressings" of the elementary self-energy and tadpole diagrams.Thus, a non-trivial two-point subgraph an be depited as a dressed self-energy,



54 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS�and a one-point subgraph orresponds to a dressed version of the tadpole graph,�In the following, the short terms \self-energy" and \tadpole" will be often usedsynonymously for the ontributions depited above.Note that degenerate triangles or one-point subgraphs an only our when the graphalso ontains non-trivial two-point subgraphs1, whereas the latter are independent ofthe existene of one-point subgraphs. Thus, it makes sense to onsider the followinghierarhy of three ensembles of triangulations and dual �3 graphs:(a) The exlusion of all singular ontributions to the triangulations de�nes theregular ensemble of dynamial triangulations and their dual �3 graphs. Allsimpliial building bloks of the triangulations are ombinatorially distint,no double links or degenerate triangles our. In the dual �3 graphs, non-trivial two-point insertions and one-point subgraphs are forbidden.(b) Allowing two verties of the triangulation to de�ne two distint links and threeverties to de�ne two distint triangles, but still exluding degenerate trian-gles, de�nes a set of triangulations whih we all restrited singular ensemble.There, the triangulations an ontain double links, and the dual �3 graphsinlude non-trivial two-point subgraphs as depited in Fig. 3.1.() In addition inluding degenerate triangles, i.e., triangles de�ned by only twopoints, one arrives at the singular ensemble of dynamial triangulations. Theorresponding �3 graphs are unrestrited and ontain non-trivial two-pointsubgraphs as well as the one-point subgraphs depited in Fig. 3.2.Obviously, the regular ensemble orresponds to the lass of triangulations onsideredin the ontext of simpliial manifolds in the previous hapter. On the other hand,1This is obvious from Fig. 3.2(b), where the right vertex of the �3 graph has to be onnetedto a two-point subgraph to beome a o-ordination point of the graph.



3.1. GRAPH ENSEMBLES 55(a) (b)PSfrag replaements(a)(b)p1 p2 p3 p4PSfrag replaements(a)(b)p1 p2 p3p4Figure 3.3: Singular ontributions in a non-ombinatorial quadrangulation (blaksolid lines) and the dual �4 graph (red dashed lines). (a) The points p1 and p4de�ne two distint links; the points p1; : : : ; p4 de�ne two distint quadrangles. The�4 graph ontains a self-energy subgraph. (b) The points p1, p2 and p3 de�ne adegenerate quadrangle. The dual �4 graph ontains a tadpole insertion.the matrix models of Setion 2.3.4 naturally generate graphs of the singular ensem-ble. Espeially, the result (2.96) for the partition funtion of pure, two-dimensionalEulidean quantum gravity and the ritial value �0 = ln(12p3) of the osmologialonstant are for triangulations of the singular ensemble. The restrited singularensemble an be onsidered as an interpolation between the other two extremalases.3.1.2 Quadrangulations and �4 graphsThe notion of ombinatorial uniqueness is easily generalized to the ase of moregeneral polygoni�ations of manifolds. Here, we onsider the ase of quadrangu-lations and their dual �4 graphs. Figure 3.3 shows the loal versions of singularinsertions of the self-energy and tadpole types2. The general, non-loal versions ofthese subgraphs hange slightly. The dressed self-energy subgraph is the same asbefore, �but the dressed tadpole graph now has two external lines,�2The tadpole-type ontribution for the �4 ase is sometimes also alled seagull graph.



56 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS
Figure 3.4: A double link in a random �4 graph (red dashed lines) does not orre-spond to a singularity of the orresponding quadrangulation (blak solid lines), butindiates that two quadrangles share two edges instead of one. These on�gurationsare forbidden in the \strit" ensemble.Note from Fig. 3.3(a) that the loal self-energy ontribution is now no longer rep-resented by a double link, but a triple link in the dual graph. Double links in the�4 graphs an nevertheless our and orrespond to quadrangles sharing two sidesinstead of one as depited in Fig. 3.4. Thus, in the quadrangulation they do notorrespond to singular ontributions in the sense of a loss of the ombinatorial dis-tintness of the fundamental building bloks. However, it turns out that in ertainsituations it is favourable to also exlude double links from the �4 graphs. Thus, forthe ase of quadrangulations or �4 graphs we de�ne an additional ensemble:(a') Quadrangulations of the strit ensemble are those quadrangulations of theregular ensemble that do not ontain neighbouring quadrangles sharing morethan one side. The dual �4 graphs do not have any multiple links and noone-point or non-trivial two-point subgraphs.The notion of universality of ritial phenomena implies that results for the on-tinuum limit of the theory do not depend on the details of the hosen disretisa-tion, i.e., universal quantities suh as ritial exponents and universal amplituderatios should not depend on whether one uses triangulations or quadrangulationsand whih restritions on the inlusion of singular ontributions are imposed. Thishas been expliitly heked by matrix model alulations for the ase of pure two-dimensional quantum gravity [16, 21℄ and, among other ases, for the oupling ofan Ising model to dynamial triangulations and quadrangulations [34,35℄. Even therather rude restrition of the dynamial triangulation model to verties with o-ordination numbers 5, 6 and 7 does not hange its ritial behaviour [147℄; the sameis true when adding an additional R2 (higher urvature) term to the ation [148℄. As



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 57ensemble �3 �4regular ln 25627 � 2:249 ln 274 � 1:910restrited singular ln 272 � 2:603 ln 19627 � 1:982singular ln 12p3 � 3:034 ln 12 � 2:485Table 3.1: Critial value �0 of the osmologial onstant for the pure two-dimensionaldynamial polygoni�ations model for the ases of triangulations resp. �3 graphsand quadrangulations resp. �4 graphs for various graph ensembles. The numbersare taken from Ref. [151℄. For the ase of the strit ensemble of �4 graphs there isno exat result available.mentioned above, the na��ve matrix model ansatz ounts �3 resp. �4 diagrams inlud-ing all possible singular insertions, that is, it orresponds to the singular ensembleof the above lassi�ation. Results for the less singular ensembles an be found byexpliit renormalization tehniques that kill the tadpole and self-energy ontribu-tions [16,149{151℄. Alternatively, it an be shown on quite general grounds that theinlusion or exlusion of singular graph ontributions does not hange the ritialbehaviour of matrix model theories [152℄. Non-universal properties, on the otherhand, naturally depend on the ensemble onsidered. Espeially, the ritial value �0of the osmologial onstant for the ase of pure quantum gravity in two dimensionsis only given by the value of Eq. (2.97) for the singular ensemble of �3 graphs. Forreferene, the values for the other ases are given in Table 3.1.3 Nevertheless, sim-ulations inluding (at least some) singular ontributions in the polygoni�ations ordual graphs an have some advantages over those in the regular or strit ensembles,sine situations have been observed where the �nite-size e�ets dereased with theinlusion of singular ontributions [50℄. This will be disussed further in Setion3.3.2.3.2 Simulation of Dynamial Polygoni�ationsAs for regular latties also for the ase of dynamial polygoni�ations and randomgraphs a statistial, but exat method for the determination of expetation values3A value for the strit ensemble in the �4 ase is not available sine in the Dyson-Shwingerapproah of Ref. [151℄, double links are only part of the ontribution of dressed four-point vertieswhih are removed in one step.



58 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSand the analysis of phase transitions is given by the Monte Carlo integration teh-nique. There, from a given probability distribution, states are sampled by settingup a Markov hain in the on�guration spae of the model. Suessive states ofthe Markovian proess are onneted by a given set of (often loal) hanges to thesystem state, whih are ommonly alled the moves assoiated with a spei� MonteCarlo dynamis. A proper onvergene of this sampling sheme an be guaranteed,when the onditions of ergodiity and detailed balane are ful�lled. The most im-portant formulae are olleted in Appendix A.1. For general introdutions see, e.g.,Refs. [153{155℄. In the next two setions we onsider the aspets of ergodiity anddetailed balane for the dynamial triangulations (or �3) model only. The general-ization of these results to the ase of dynamial quadrangulations of �4 graphs ispresented in Setion 3.2.3.3.2.1 Moves and ergodiityWhile ensuring detailed balane is just a matter of orretly setting up the transitionprobabilities assoiated to the onsidered moves, ergodiity is a property of the lassof applied moves itself. Stated a bit sloppily, a set of update moves is ergodi, i�starting from an arbitrary point in the state spae all of the other points are touhedby the Markov hain with �nite probability and in �nite time4. For the simulationof the dynamial triangulations problem, a set of update moves thus must ensurethat, for a �nite number of simplies, all topologially equivalent triangulations anbe generated from eah other by a �nite series of update moves. This implies thatwe onsider the problem at �xed topology , whih will be the ase for the rest of thisthesis.The notion of equivalene of triangulations is not unique. First, triangulationsan be onsidered homeomorphially equivalent, i.e., onneted by a topologialhomeomorphism. On the other hand, two triangulations are alled ombinatoriallyequivalent, i� they an be subdivided into the same triangulation (up to a re-labellingof the simplies), see Setion 2.2.3. The laim that both notions itself are equivalentis the \Hauptvermutung" of topology and has been proved true for two and threedimensions, but false for d � 5. It is true in general dimensions, however, for thease of smooth triangulations; on the other hand, for dimensions four and above,4For systems with ontinuous variables this ondition an obviously not be the ful�lled. There,one has to onsider probability densities instead of probabilities.
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PSfrag replaements pipi

pjpj q
Figure 3.5: Appliation of the Alexander move [157℄ to a two-dimensional simpliialmanifold (blak solid lines) and its dual �3 graph (red dashed lines). The vertex q isinserted along the link hpipji and its surroundings are triangulated. In the reversedmove q is deleted together with the sub-division it generated.not every topologial manifold admits a smooth triangulation, for details see Ref.[156℄ and referenes therein. Sine we are mainly interested in the ase of twodimensions, we an safely onentrate on the notion of ombinatorial equivalene.Thus, a set of Monte Carlo update moves will be onsidered ergodi, if it generatesall ombinatorially equivalent triangulations.Suh a set of moves has been proposed (in a di�erent ontext, though) by Alexander[157℄ for d-dimensional simpliial manifolds. For eah fae � of a simpliial manifoldM we symbolially write M = �P +Q; (3.1)suh that �P denotes all omponents of M that ontain the fae � and Q theomplement of �P in M . Then, with respet to a fae � of M = �P + Q, theAlexander move is de�ned by �P +Q! q ��P +Q; (3.2)where q is an additional vertex originally not ontained in M and �� denotes theboundary of �. It turns out [157℄ that one an onentrate on the ase of a link� = hpipji without loss of generality. Here and in the following, we use the notationhp0 � � � pri to symbolize an r-simplex, f. Setion 2.2.3 for a preise de�nition of thisonept. Then, the rule (3.2) instruts one to insert a new vertex q on the linkhpipji and re-triangulate the surroundings of the new point. Correspondingly, in thereverse move q and the reated parts of the sub-division have to be deleted. Thisis depited for the ase of two dimensions in Fig. 3.5. It has been shown that allombinatorially equivalent simpliial manifolds an be generated from eah other by



60 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS(a)PSfrag replaements p1
p2p3q1 q2PSfrag replaementsp1p2p3q1q2PSfrag replaements p1

p2p3q1 q2
(b)PSfrag replaementsp1 p2

p3
q1q2
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p3q1q2Figure 3.6: The (k; l) moves in two dimensions applied to a simpliial manifold(blak solid lines) and the dual �3 graph (red dashed lines). (a) The (2; 2) or ipmove. The produt hp1p2ihq1q2i = hp1p2q1i+ hp1p2q2i is replaed by hp1p2ihq1q2i =hp1q1q2i + hp2q1q2i and vie versa for the reversed move. (b) The (3; 1) (insertion)and (1; 3) (deletion) moves. In the (3; 1) move the produt hp1p2p3ihq1i = hp1p2p3iis replaed by hp1p2p3ihq1i = hp1p2q1i+ hp2p3q1i+ hp3p1q1i.a series of these Alexander moves [157℄. However, for omputer simulations thesemoves are not very onvenient, sine it is omputationally demanding to loally �ndlinks and verties where the moves an be applied, espeially in dimensions d > 2.Apart from that, they do not allow simulations in the anonial ensemble of a �xednumber of triangles.Therefore, a di�erent set of moves is muh more ommonly used in numerial sim-ulations. The (k; l) or Pahner moves proposed in Ref. [156℄ are in d dimensionsgiven by the substitutionhp1 � � �plihq1 � � � qki ! hp1 � � � plihq1 � � � qki; (3.3)where k + l = d + 2, k = 1; : : : ; d + 1. Here, overlining of a simplex denotes theappliation of the boundary operator to it, where the boundary of an oriented r-



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 61simplex hp0 � � � pri is given by,hp0 � � � pri � rXi=0 (�1)ihp0 � � � p̂i � � � pri; (3.4)where the vertex pi under \̂" is omitted. The (k; l) move (3.3) is, obviously, onlyde�ned if hp1 � � � plihq1 � � � qki is and hp1 � � � pli is not originally part of the simpliialmanifold. Thus, a (k; l) move replaes the produt of an l � 1-simplex and theboundary of a k � 1-simplex with a on�guration where the boundary operator isexhanged between the two parts. The inverse of a (k; l) move is an (l; k) move. Intwo dimensions, one arrives at a (2; 2) move whih is its own inverse and a set ofmutually inverse moves (3; 1) and (1; 3). These are depited in Fig. 3.6. The (k; l)moves are known to be equivalent to the Alexander moves in dimensions 2, 3 and4 [156℄. An argument for general dimensions has been given in Ref. [158℄. The aseof two dimensions is speial in the respet that the (2; 2) or ip move alone is knownto be ergodi for simulations of the anonial ensemble of a �xed number of trianglesN2 [21,157℄. This ensemble is muh more onvenient for numerial simulations and,apart from that, provides the possibility of making use of the powerful �nite-sizesaling (FSS) tehniques.Although the presented disussion onentrated on updating the triangulations, itshould be obvious from Figs. 3.5 and 3.6 that the Alexander and Pahner movestranslate in a natural way to moves in the dual �3 graphs. Considering the graphsin their own right, by duality the presented statements about ergodiity hold true.For the present work all simulations were performed diretly in the language of thegraphs.Note that the mentioned proofs of ergodiity apply to simpliial manifolds only, i.e.,in the language of the previous setion only for simulations in the regular ensemble ofdynamial triangulations ergodiity of the (k; l) moves is proven. To proof ergodiityat �xed N2 for the restrited singular and singular ensembles also, it suÆes to showthat every triangulation ontaining degenerate links or triangles an be transformedto a regular, ombinatorial triangulation via a series of ip moves. The possibilityto do this an be most easily seen in the dual �3 graph language. There, a one-pointsubgraph an be redued to a regular ontribution by a ip move on the vertiesadjaent to the external line,� �!�



62 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSthus removing the singularity. The right vertex of the original graph belongs to theone-point subgraphs, but is drawn outside of it for illustrative purposes. Of ourse,it an happen that the two external lines of the diagram are themselves onneted tothe same point, thus produing another one-point subgraph after the ip. However,the ips an always be ontinued, until the subgraph is onneted by at least twolines. For the ase of non-trivial two-point subgraphs a similar transformation anbe found, � �!�whih onnets the subgraph by at least three lines to the \mother universe". Notethat the ip move applied in this way annot produe tadpole insertions, suh thatone does not leave the restrited singular ensemble if one starts from it. Thus the(2; 2) ip move is ergodi for dynamial triangulations of a �xed number of trianglesand the dual �3 graphs in all of the de�ned ensembles.3.2.2 Detailed balane and pseudo grand-anonial simula-tionsAs far as the ondition of detailed balane is onerned it is obvious, e.g., fromEq. (2.48) that for a �xed number of triangles the weight fators for single tri-angulations are trivial. Up to overall fators, the only remaining weights are thesymmetry fators C(Ta) of the triangulations. However, for labelled triangulationswhih naturally our in the ontext of omputer simulations, these are just givenby C(Ta) = N2!, whih is a onstant for �xed N2. Therefore, all weight fatorsare equal, unless additional matter is oupled to the triangulations. The detailedbalane ondition is then trivially ful�lled for the (2; 2) ip move, suh that for sim-ulations in the anonial ensemble eah proposed move ompatible with the hosenensemble is aepted.For simulations in the grand-anonial ensemble of a varying number of triangles,however, a detailed balane hek has to be implemented. The Boltzmann weightof a labelled triangulation T is given byW (T ) = 1N2(T )! exp[��N2(T )℄Z(�) : (3.5)



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 63Now, onsider a (3; 1) insertion move to a triangulation T 0 onsisting of N2(T 0) =N2(T ) + 2 triangles. The detailed balane ondition for this move readse��N2N2!Z(�)P (T ! T 0) = e��(N2+2)(N2 + 2)!Z(�)P (T 0 ! T ): (3.6)The transition probability P (T ! T 0) onsists of two parts,P (T ! T 0) = Papriori(T ! T 0)Pakz(T ! T 0); (3.7)where Papriori is the probability to randomly selet a spei� move and Pakz is theaeptane probability for the proposed update. For the insertion move we hoose atriangle at random, whih then is split into three triangles as shown in Fig. 3.6(b);thus, Papriori(T ! T 0) = 1N2(T ) : (3.8)For the opposite (1; 3) deletion move we randomly hoose a vertex with o-ordinationnumber three, and the adjaent triangles are replaed by a single triangle. In the dualgraph language this orresponds to �nding a loop of length three and ontrating itto a point; if there are n3(T 0) of suh loops, we havePapriori(T 0 ! T ) = 1n3(T 0) : (3.9)Thus, for the detailed balane ondition (3.6) to hold, the aeptane probabilitiesshould ful�l Pakz(T ! T 0)Pakz(T 0 ! T ) = e�2�[N2(T ) + 2℄[N2(T ) + 1℄N2(T )n3(T 0) : (3.10)Note that this expression is not symmetri with respet to the original and reversedmoves. Therefore, the usual Metropolis rule for the aeptane probabilities annotbe applied; instead, we hoose Pakz = r = onst for one of the moves and adapt theprobability of the opposite move aordingly.In this thesis we will mainly apply anonial simulations, exploiting their oneptualand tehnial advantages. However, as will beome obvious in Setion 3.3, we havesome interest in the determination of ratios Z(N2)=Z(N2�2) of anonial partitionfuntions. These an be sampled with a di�erent and simpler variant of simulationswith varying number of triangles whih we all pseudo grand-anonial simulations.Suppose that we allow variations of N2 only in a window N2;min � N2 � N2;max.Then, we onsider the sampling of dynamial triangulations in a non-Boltzmanngrand-anonial ensemble at � = 0 with weights~W (T ) � 1Z 0(0) ; (3.11)



64 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSwhere Z 0(0) = N2;maxXN2=N2;minZ(N2): (3.12)In this ensemble, the probability of the appearane of a triangulation with N2 tri-angles is P (N2) = XT2TN2 ~W (T ) = Z(N2)Z 0(0) ; (3.13)suh that ratios of partition funtions an be estimated byhĤ(N2)ihĤ(N 02)i = P (N2)P (N 02) = Z(N2)Z(N 02) ; (3.14)where Ĥ(N2) denotes the sampled frequeny (or histogram) of the ourrene oftriangulations with N2 triangles in the sampling proess. Obviously, in this ensem-ble one has to delimit N2 at least from above, sine otherwise N2 would diverge(until hitting some omputer memory onstraints) in the Monte Carlo proess ofthe proposed ensemble. The detailed balane ondition for this ensemble reads1N2(T )Pakz(T ! T 0) = 1n3(T 0)Pakz(T 0 ! T ); (3.15)whih is solved by Pakz(T ! T 0) = r, r < 1, andPakz(T 0 ! T ) = rn3(T 0)N2(T ) = r n3(T 0)N2(T 0)� 2 ; (3.16)suh that the insertion move is aepted with a onstant probability r and theaeptane probability of the deletion move an be omputed entirely in terms ofthe properties of T 0. If N2 = N2;max and an insertion move is tried or N2 = N2;minand a deletion move is attempted, the moves are rejeted (but nevertheless ountedas links of the Markov hain). Sine the reversed variants of these moves annotour either, detailed balane is not violated. A method related to the approahpresented here has been proposed in Ref. [159℄.3.2.3 Generalization to quadrangulationsWhile simulations of dynamial triangulations have been widely applied (see, e.g.,Refs. [21,159{161℄), also for the more speial ases of modi�ed gravity ations [147,162℄ and the oupling of various types of matter to the latties (see, e.g., Refs.
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Figure 3.7: Generalization of the (2; 2) link ip move for dynamial triangulationsto the ase of a random quadrangulation (blak solid lines) and the dual �4 graph(red dashed lines). Note that, in ontrast to the triangulation ase, there are twoinequivalent ways to ip the link between the two squares.[45, 46, 48, 50{52, 163℄), other dynamial polygoni�ations have attrated muh lessattention. The only simulations of dynamial quadrangulations we know of arereported in Refs. [49, 74℄.As with the simulation of dynamial triangulations, the main issue for the quadran-gulation ase is the neessity of update moves that ergodially sweep out the spaeof quadrangulations and the dual �4 graphs. The rather obvious generalization ofthe (2; 2) ip move was �rst proposed in Ref. [49℄ and is depited in Fig. 3.7. InRef. [74℄ Baillie and Johnston give a justi�ation for this hoie of moves in termsof a break-up of the squares of the quadrangulation into triangles. Obviously, eahvertex of the dual �4 graph an be broken up into two onneted �3 verties,�! .Taking into aount the two possibilities to do suh a break-up, one ends up withfour possible break-ups of the dual diagram of two adjaent squares as shown in Fig.



66 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS(a) (b)
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Figure 3.8: The four possible ways to break the dual �4 graph of two adjaentsquares up into a �3 graph. The red dashed lines denote the newly introdued linksalong whih the verties have been broken up.3.8. Now, one an apply the usual �3 ip move to the resulting graphs. Doing so,one notes that some of the ips onnet two of the newly introdued, dashed linksto the same vertex. To retain the possibility of ontrating the �3 graph bak to a�4 diagram again, these moves should obviously be forbidden. The remaining moveson the diagrams of Figs. 3.8(a)-(d) either leave them unhanged or produe exatlythe �4 ip moves shown in Fig. 3.7 after ontrating bak to the �4 language. Fur-thermore, both orientations of the resulting �4 ip move ome with equal frequeny.Thus, the ip move for quadrangulations or �4 graphs an be traed bak to the(2; 2) ip move for triangulations.Let us onsider the question of ergodiity of suh ip moves in the di�erent ensemblesof quadrangulations and �4 graphs. Obviously, every �4 graph an be transformedto a �3 graph in the way desribed above. If the �4 graph was taken from the stritensemble, the resulting �3 graph will not ontain any singular ontributions. Sinethe (2; 2) link ip for �3 graphs is ergodi in the spae of regular triangulations, onemight argue that thus the orresponding �4 link ip is ergodi in the ensemble ofstrit graphs. This is the view advoated in Ref. [74℄. While numerial simulationsshow that this is very probably true (see Ref. [74℄ and the results presented below),we would like to point out that to our opinion this argument annot be onsidereda proof of ergodiity. This is due to the fat that in the language of the broken-up



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 67diagrams of Fig. 3.8 some of the �3 ip moves are disallowed in order to guaranteethe possibility of a ontration to a �4 graph after the ip. In a regular �3 graphwith only one kind of links, however, these moves would be possible. Theoretially,it is very well possible, though, that the exlusion of these ips raises barriers in theon�guration spae of those �3 graphs that an be ontrated to strit �4 graphs,thus breaking the ergodiity of the proposed ip move. Ergodiity ould be shownif one ould set up a one-to-one orrespondene between �4 graphs of the stritensemble and �3 graphs of the regular ensemble. This question is naturally relatedto the question of the existene of a perfet mathing of the �3 graphs. A perfetmathing of a graph is a subset of its edges, suh that no two of these edges meet ata vertex, but eah vertex of the graph is an end of one of the edges of the mathing.This question in turn is related to a three-olouring problem for the links of the �3graphs; if suh a three-olouring is possible, one an ontrat all pairs of �3 vertiesonneted by a link of, say, olour one to end up with a proper �4 graph. In fat, as aonsequene of the elebrated proof of the four-olouring onjeture it an be shownthat every planar �3 graph from the regular ensemble is three-link-olourable (thisis the so-alled \Petersen-Tait theorem", see, e.g., Ref. [164℄). However, it turnsout that the ontrations de�ned in this way an lead to singular ontributions inthe resulting �4 graph even though the �3 is regular. Thus, the problem is that ofa mixing of the di�erent ensembles, suh that it seems not to be obvious how toprove ergodiity of the �4 ip move for a given (more or less restrited) ensemble.The problem of ergodiity of the �4 moves will be analyzed more thoroughly bynumerial means below.The insertion and deletion moves of the triangulation ase have their obvious general-ization in the moves depited in Fig. 3.9. Move (a) is appliable to quadrangulationsand �4 graphs of all ensembles, whereas move (b) annot be applied in the stritensemble. However, as far as the deletion move is onerned, it is obviously ratherimprobable to �nd a on�guration as the one shown in Fig. 3.9(a), suh that thistype of move su�ers from very small aeptane rates. Sine we will not perform(pseudo) grand-anonial simulations in the strit ensemble, we onentrate on themoves shown in Fig. 3.9(b). The detailed balane ondition for simulations in thepseudo grand-anonial ensemble, Eq. (3.16), is almost unhanged for the ase ofquadrangulations, Pakz(T 0 ! T ) = r2 n2(T 0)N2(T ) = r2 n2(T 0)N2(T 0)� 1 ; (3.17)



68 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS(a)
(b)

Figure 3.9: Two variants of insertion and deletion moves for dynamial quadran-gulations (blak solid lines) and �4 graphs (red dashed lines). (a) Insertion of anadditional square that adds four verties to the �4 graph and its inverse deletion.These moves are appliable in all of the de�ned ensembles. (b) Insertion of a singlevertex on the diagonal of the square, whih adds only one vertex to the graph. Thismove and its inverse are not allowed in the strit ensemble.where now n2(T 0) is the number of two-loops of the quadrangulation T 0. The addi-tional fator 1=2 appearing here as ompared to (3.16) stems from the fat that thereare two ombinatorially distint possibilities to insert a point on the diagonal of thesquare, f. Fig. 3.9(b), whereas the insertion move for triangulations was unique upto re-labellings of the verties.3.2.4 Neessary heks and implementation detailsUp to now, we have not disussed how one ensures that the ip move dynamisfor anonial simulations always generates polygoni�ations or graphs of the sameonsistent ensemble. That this is guaranteed, however, was taken for granted inthe disussion of the ergodiity properties at least in the ase of triangulations. Itis obvious that, starting from a polygoni�ation of the strit or regular ensemblessome of the ips an produe multiple links; furthermore, as soon as those appear,



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 69degenerate triangles resp. squares an be produed by ip moves. We will disussthe ase of triangulations �rst and then generalize to quadrangulations.Triangulations and �3 graphsIn the regular ensemble of triangulations or �3 graphs it suÆes to prevent theappearane of double links in the triangulation or, equivalently, the appearane ofnon-trivial two-point subgraphs in the dual diagram. Degenerate polygons resp. one-point subgraphs an only be produed by link ips from an ensemble that alreadyontains degenerate links resp. non-trivial two-point subgraphs. In terms of the ipmove for triangulations, one has to ensure that the verties q1 and q2 of Fig. 3.6(a)are not already onneted by a link before the ip move. Conerning the dual graph,we distinguish two ways of the ip move,
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b2whih we label with a \hirality" variable � to indiate the diretion of rotating thelinks of the verties a and b as � = +1 (left diagram) and � = �1 (right diagram).Here, and in the following, the blak solid lines denote the graph before the ip andthe blue dashed lines indiate the ipped diagram. For un-labelled graphs, these twoips are idential, sine they an be mapped onto eah other by an exhange a$ b;sine the omputer ode has to work with labelled triangulations, we neverthelessdistinguish them. Then, on omparing the above diagrams with the orrespondingpair of triangles of Fig. 3.6(a), it beomes obvious that the hek for the reation ofa double link of the triangulation translates into the graph language as the hek,whether the faes (or loops) adjaent to the links hbb1i and haa1i have a ommonlink before the ip5. This touhing link test is illustrated in Fig. 3.10. Note thatin terms of the �3 graph this hek is non-loal sine the onsidered faes an bearbitrarily large. In ontrast, the orresponding hek for the triangulation is loal.If the touhing link test fails (or one of the other tests desribed below), the move5Note that, by de�nition, we always traverse the faes or loops of the graphs along their linksounter-lokwise; that is, at eah vertex we turn left.
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ab a1 a2a3b1b2 b3referred to by � = +2 (left) and � = �2 (right). The latter two orrespond to anexhange of the labelled verties a$ b. In the singular ensemble they are equivalentto the double appliation of the � = �1 ips. Furthermore, it an be easily seen byinspetion that the neessary heks on the ip moves for the di�erent ensemblesalways give the same result for � = �2 as for a � = �1 move. Thus, the inlusionof the � = �2 moves annot generate graphs di�erent from those generated by the� = �1 moves alone; also, numerially we �nd no improvement in the de-orrelationof the links of the Markov hain. Therefore, we restrit ourselves to the � = �1moves.The neessary geometry tests to rule out disallowed ips for the regular , restritedsingular and singular ensembles for the �4 ase are almost idential to those of the



3.2. SIMULATION OF DYNAMICAL POLYGONIFICATIONS 73�3 or triangulations ase; the only di�erene is given by the fat that the loops to beonsidered for the \touhing link" test now depend on the hosen variant of move7� = �1. The strit ensemble, whih additionally exludes the appearane of doublelinks in the �4 graph, needs an additional hek whih is depited in Fig. 3.12. Notethat, in ontrast to the other three ensembles, this additional hek is not suÆientto also rule out the appearane of the next singular ontributions, i.e., non-trivialtwo-point subgraphs. Again, the neessary heks on the ip moves are summarizedin the following ode segment for the ase of simulations of �4 graphs:template<> bool Graph<4>::hek_flip_move(onst Link<4>& l, int hir){ if(umode() == strit) {// exlude double link a3=b1/a1=b3if( target(l+1) == target(rl-1) ) return false;if( target(l-1) == target(rl+1) ) return false;// exlude 2-point subgraphs (and thus 1-point subgraphs)if( touhing_link(l+1+(hir>0), rl+1+(hir>0)) ) return false;}else if(umode() == regular)if( touhing_link(l+1+(hir>0), rl+1+(hir>0)) ) return false;else if(umode() == restrited_singular) {// exlude 1-point subgraphsif( uniquely_onneted(l-1, rl+1) ) return false;if( uniquely_onneted(l+1, rl-1) ) return false;}return true;}We note the tehnial point that it is ruial for an aeptable performane of theprogram ode that both, the �3 or �4 graph and the polygoni�ation, given by thefaes or loops of the graph joined by the orresponding links, are held up-to-dateduring the Monte Carlo proess. This is due to the fat that the information of thefaes or loops is needed for the \touhing link" and \uniquely onneted" type oftests during the update.7The details an be seen from the piee of ode shown below.



74 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSFinally, it should be noted that also the grand-anonial moves have to be subjetto some geometry tests in order not to leave the hosen ensemble of graphs. Theinsertion moves in both the �3 and �4 ases do not need any additional heks. Thisholds true for the deletion move of Fig. 3.6(b) for the �3 ase. The �4 deletion moveof Fig. 3.9, however, an produe one-point subgraphs whih have to be exludedunless simulating in the singular ensemble. The orresponding geometry test issimilar to those presented for the ip moves. It will not be disussed in detail here,sine (pseudo) grand-anonial simulations are only used for auxiliary purposes inthis thesis.3.3 The Co-Ordination Number DistributionGiven the rather non-trivial omplexity of the restritions on the ip moves for thesimulation of dynamial graphs or polygoni�ations, it is highly desirable to haveexat results for the models at hand to ompare them with the simulation out-omes. An obvious andidate for this omparison are the exatly known ritialexponents of the dynamial triangulations model presented in the previous hapteror, alternatively, the ritial exponents of the Ising model oupled to dynamial poly-goni�ations found in Refs. [34, 35℄. However, in view of the observed pronounedrobustness of the model, i.e. the universality of the ritial behaviour between the�3 and �4 ases and even with respet to suh drasti hanges as the restrition ofo-ordination numbers to the values 5, 6 and 7 reported in Ref. [147℄, the ritialexponents are not expeted to reat very sensitively on \bugs" in the program ode,unless they are really of paramount importane.There are mainly two areas, where defets in the simulation of dynamial graphsould show up. First, a faulty implementation of the neessary heks on the ipmoves in the ensembles with restritions ould lead to the appearane of disallowedgraph ontributions. This possibility is easily ruled out by heking the whole graphfor suh disallowed ontributions after eah update move. Also, the possibility ofthe graph to hange topology from the (usually) planar ase8 to higher genera by adestrution of the yli order of the links around verties in the updating proess,an be easily heked for and exluded by the appliation of graph planarity tests8Obviously, the notions of planarity and spherial topology of a graph are idential, sine onean always blow up one of the faes of a spherial graph to enlose the whole diagram and thenembed it in the plane.



3.3. THE CO-ORDINATION NUMBER DISTRIBUTION 75(see, e.g., Ref. [164℄). Here, a ombination of the Euler and Dehn-Sommervillerelations Eqs. (2.36) and (2.37) is very useful. While this kind of diÆulty an arisein any suÆiently omplex simulation program, there is an additional and moresubtle problem, whih is not so familiar from, e.g., spin model simulations on regularlatties, namely the question of ergodiity of the update moves. Espeially for thease of �4 graphs, where no ergodiity proofs are available, suh problems of non-ergodiity of the updating sheme an arise. Depending on how \muh" non-ergodithe moves are, the resulting deviations from the true results an be very small andare thus extremely hard to detet, unless the appropriate observable is onsidered.Therefore, a very sensitive, loal property of the graphs or polygoni�ations hasto be used. An exellent andidate for suh a quantity is given by the probabilitydistribution of the o-ordination numbers of the polygoni�ations, whih an beomputed exatly in some speial ases.In the following, we speak synonymously about the o-ordination number distribu-tion of the dynamial polygoni�ations model or the distribution of loop lengths ofthe orresponding dual �3 or �4 graph representation. Sine every link of the graphorresponds to a link of the polygoni�ation it should be obvious from (almost) anyof the �gures presented in this hapter that the number of sides of a fae of thegraph (the loop length) is idential to the o-ordination number of the vertex of thepolygoni�ation whih is dual to the onsidered fae of the graph.3.3.1 Counting planar graphsThe �3 regular aseMatrix model tehniques allow the exat solution of the ounting problem for losed,planar �3 and �4 graphs (f. Setion 2.3.4 above). While originally matrix modelsount graphs of the singular ensemble, the alulations an be extended to the ase ofthe regularized graphs. In addition, it is not only possible to ount losed graphs (orvauum diagrams), but also graphs with a given number of external lines. For planar�3 and �4 diagrams of the singular and regular ensembles this has been �rst doneby matrix model tehniques in Ref. [16℄. Making use of these results, Boulatov etal. [21℄ have proposed a method for deriving the o-ordination number distribution ofdynamial triangulations from the alulated graph numbers. Consider the partitionfuntion of the dynamial triangulations model in the regular ensemble with one of



76 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSthe N0 verties, p0 say, marked and held �xed; this is obviously by symmetry equalto N0Z(N2), where Z(N2) denotes the anonial partition funtion of the dynamialtriangulation model for \universes" with a �xed number N2 of triangles, f. Setion2.3.3. On the other hand, it an also be expressed as [21℄N0Z(N2) =Xq 1qQ(N2)q ; (3.18)where Q(N2)q denotes the ontribution of triangulations that have q triangles joiningat the marked vertex p0. This implies that the o-ordination number distributionfor dynamial triangulations is given byPN2(q) = Q(N2)qqN0Z(N2) : (3.19)Cutting out the q triangles meeting at the marked vertex p0 from the triangulation,one is left with an open triangulation with N2� q triangles. In terms of the dual �3graph this orresponds to a diagram with N2�q verties and q external lines. Then,the ut out part an be re-inserted again in one of q possible ways, aounting forthe fator 1=q in (3.19). This is illustrated in Fig. 3.13(a). Therefore, Q(N2)q is equalto the number G()q;N2�q of onneted, planar �3 graphs with N2 � q verties and qexternal lines. The restrition to onneted diagrams stems from the fat that, forthe regular ensemble, a losed graph annot beome disonneted on removing a\ring" sub-diagram of the form indiated in Fig. 3.13(a).On the other hand, the partition funtion an be expressed in terms of the numberG()3;N2�1 of diagrams with three external lines asZ(N2) = 13 1N2G()3;N2�1; (3.20)where the fator 1=3 aounts for the three distint ways to lose the graphs by theinsertion of a single �3 vertex. Thus, the o-ordination number distribution for theregular ensemble of planar dynamial triangulations is given by [21℄PN2(q) = 3N2q(N2=2 + 2)G()q;N2�qG()3;N2�1 ; (3.21)where we have used that N0 = N2=2+2 for planar triangulations, whih follows fromthe Euler and Dehn-Sommerville relations (2.36) and (2.37). The graph numbersG()q;N2 an be found exatly as the oeÆients of a power series expansion [16℄. If we
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Figure 3.13: Constrution of the o-ordination number distribution of the dynamialtriangulations model from the number of �3 diagrams with a given number of vertiesand external lines. Solid lines show the triangulation, dashed lines indiate the dual�3 graph. (a) Regular ensemble: removing the marked vertex p0 and its q adjaenttriangles from the triangulation leaves, in terms of the dual �3 graph, a diagramwith N2 � q verties and q external lines. Re-inserting the ring diagram of lengthq ut out before results in an additional symmetry fator of 1=q for the q distintexternal legs of the ring. (b) Other ensembles: degenerate links of the trianglesadjaent to the marked vertex p0 enhane the symmetry fator assoiated with theinsertion of the ring diagram.



78 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSwrite for the generating funtion of the number of onneted, regular �3 graphs thefollowing expansion [16, 151℄,G()(z; g) = 1;1Xq=1;N2=0 zq�1gN2G()q;N2; (3.22)the oeÆients G()q;N2 are exatly the numbers of suh graphs with q external linesand N2 verties. This expansion an be expliitly performed [151℄ and one �nds,e.g., for q = 2,G()1 (g) = 1 + g + g3 + 3g5 + 13g7 + 68g9 + 399g11 + 2530g13 (3.23)+16965g15 + 118668g17 + 857956g19 + 6369883g21 + 48336171g23+373537388g25 + 2931682810g27 + 23317105140g29 +O(g31)Inserting these numbers in Eq. (3.21) yields the exat o-ordination number distri-bution for �nite triangulations. Finally, for the limit N2 ! 1 one has the expliitexpression [16, 21℄ P1(q) = 16� 316�q (q � 2)(2q � 2)!q!(q � 1)! : (3.24)This distribution of o-ordination numbers is shown in omparison to that of Pois-sonian random latties onstruted by the Vorono��-Delaunay presription [165℄ inFig. 3.14. While the o-ordination number distribution of Vorono��-Delaunay randomlatties is peaked around the mean value 6, the distribution (3.24) is monotonous;espeially, in the latter ase many more verties have o-ordination numbers 3 and4 and the distribution exhibits a long tail for large o-ordination numbers q. Thedistribution of Poissonian random latties falls o� as exp(��q ln q) with � � 2 asq ! 1 [165℄, whereas the distribution (3.24) delines muh slower proportionalto exp(��q) with � = ln 4=3 � 0:3 [21℄. On the other hand, both distributionshave the same mean, sine in any losed triangulation eah triangle appears in theo-ordination number of eah of its three verties, suh thathqi = 1N0 Xpi q(pi) = 3N2N0 = 6 N2N2 + 4 ; (3.25)whih approahes 6 as N2 !1.�3 graphs with singular ontributionsFor the more singular graph ensembles it is still possible to alulate the graph num-bers G()q;N2 either in the matrix model sheme of Refs. [16, 149℄ or by writing down
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Figure 3.14: Co-ordination number distribution of Poissonian random latties builtby the Vorono��-Delaunay onstrution in omparison to the o-ordination numberdistribution of planar random triangulations (QG) from the DTRS model aordingto Eq. (3.24). Both distributions are for the limit of in�nite-size latties. The resultsfor Poissonian latties are taken from Ref. [165℄.equations of the Shwinger-Dyson type for the graph ounting, see Ref. [151℄. How-ever, the \ut-out and re-insert" presription for the alulation of the o-ordinationnumber distribution desribed for the ase of regular triangulations does not simplyarry over to situations when singular graph ontributions are present. The generalproblem is that the symmetry fator 1=q assoiated with the insertion of the ringdiagram depited in Fig. 3.13(a) hanges when the inserted ring itself ontains mul-tiple links or tadpoles. Consider the ase of a double link present in the restritedsingular and singular ensembles as shown in Fig. 3.13(b). While the o-ordinationnumber of the onsidered vertex of the triangulation is still equal to q, the insertedring diagram has only q� 1 external lines, whih destroys the symmetry argumentsused in writing down Eq. (3.19), sine diagrams with varying numbers of externallines mix.For the restrited singular ensemble, however, it is still possible to apply the sameformula Eq. (3.21) for the o-ordination number distribution with the graph numbers



80 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSG()q;N2 replaed by the number Gq;N2 of (possibly) disonneted diagrams inludingnon-trivial two-point subgraphs. Possibly disonneted graphs have to be taken intoaount sine with the presene of non-trivial two-point subgraphs, utting out aring diagram of the type shown in Fig. 3.13 an leave the remaining graph in severaldisonneted piees. The gluing piture of Fig. 3.13 is still valid sine | in therestrited singular ensemble | there is a one-to-one orrespondene between graphswith q external lines that one an paste the ring of Fig. 3.13(a) into and graphs withq� 1 external lines, whih an be losed by rings of the type shown in Fig. 3.13(b).This is due to the fat that one an always pair o� two of the external lines of agraph with q external lines to end up with a graph with the same symmetry andq � 1 external lines. This redued graphs are still of the same, restrited singularensemble, sine no two of the q external lines are allowed to originate from the samevertex, whih would represent a disallowed one-point subgraph. If the latter wouldbe allowed, the pairing of two external lines ould lead to a tadpole ontributionwhih is forbidden in the restrited singular ensemble. Sine the same reasoning anbe put up for the ases of several double links present on the ring diagram to beinserted, the o-ordination number distribution an be alulated in the same way asfor the regular ensemble. There is one exeptional point where this reasoning breaksdown: if q = N2, whih is obviously the maximum allowed o-ordination number,one is left with a single losed ring-diagram with alternating single and double links;this on�guration an obviously not be deomposed in the way desribed above.As soon as one-point subgraphs are allowed to appear in the graphs, the desribed\ut-out and re-insert" rule an no longer be used to alulate the o-ordinationnumber distribution for general q. While it still works for small q, the alulationbreaks down due to a mixing of symmetry fators for the general ase. Note alsothat the de�nition of a o-ordination number is ambiguous for the singular ensemble.Besides the number of triangles meeting at a vertex, one ould onsider the numberof links joining at a vertex. While these two de�nitions oinide for the regular andrestrited singular ensembles, the appearane of one-point subgraphs in the singularensemble results in the fat that a vertex an have more inident links than triangles.A speial ase of the o-ordination number distribution is given by the ratio ofpartition funtions for N2 and N2 � 2 triangles, whih is by Eqs. (3.20) and (3.21)Z(N2)Z(N2 � 2) = N2 � 2N2 G3;N2�1G3;N2�3 ; (3.26)where the graph numbers G should be suitably hosen to math the ensemble under



3.3. THE CO-ORDINATION NUMBER DISTRIBUTION 81onsideration, i.e., onneted and regular for the regular ensemble and disonnetedand with the orresponding type of singularities for the restrited singular and sin-gular ensembles. Sine the transformation N2 ! N2 � 2 orresponds to the grand-anonial moves presented above, this relation an be used in all of the ensemblesfor omparison to results from the pseudo grand-anonial method. Alternatively,the ratios Z(N2)=Z(N2 � 2) an be determined from simulations in the anonialensemble by onsidering the number of possible insertion or deletion moves in thefollowing way. With respet to the insertion and deletion moves of Fig. 3.6(b), onean write [159℄ Z(N2)Z(N2 � 2) = �P (N2 � 2! N2)P (N2 ! N2 � 2)�N2 ; (3.27)where P (N2 � 2 ! N2) denotes the total probability of performing an insertionmove N2 � 2 ! N2 if the probability for eah single, allowed insertion move is aonstant. Analogously, P (N2 ! N2 � 2) denotes the umulated probability for adeletion step N2 ! N2 � 2. The thermal average is supposed to be taken in theanonial ensemble, i.e., the insertion and deletion steps are never really performed,but only the number of suh possible moves is ounted. An insertion move an beperformed on eah of the N2�2 verties of the smaller �3 graph and a deletion moveis possible for eah of the n3 three-loops of the larger graph. Therefore, we have,�P (N2 � 2! N2)P (N2 ! N2 � 2)�N2 = N2 � 2hn3iN2 : (3.28)Finally, noting that hn3iN2 orresponds to the number of verties of the triangulationthat have o-ordination number three, one an writeZ(N2)Z(N2 � 2) = N2 � 2hn3iN2 = N2 � 2N2=2 + 2 1PN2(3) : (3.29)This relation an be used in all of the ensembles to determine PN2(3).�4 graphsBoldly generalizing the disussion of the previous paragraph, one might be temptedto write down an analogue of the expression (3.21) for the o-ordination numberdistribution, PN2(q) = 4N2q(N2 + 2)G2q;N2�qG4;N2�1 ; (3.30)



82 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSwhere now G2q;N2�q denotes the number of (onneted or disonneted) planar �4graphs of the onsidered ensemble. The orresponding graph numbers an be foundorder-by-order for the regular and singular ensembles in Ref. [16℄ and for all butthe strit ensembles in Ref. [151℄ from a di�erent approah. Finally, Ref. [150℄ givesexpliit, losed-form expressions for the graph numbers for all of the ensembles butthe strit one. However, as will be shown in the next Setion, this approah doesnot give the orret o-ordination number distribution in the general ase. In viewof Eqs. (3.26) and (3.29) one an writeZ(N2)Z(N2 � 1) = N2 � 1N2 G4;N2�1G4;N2�2 = N2 � 1hn02iN2 (3.31)whih uses the analogue of Eq. (3.20) for quadrangulations resp. �4 graphs, namelyZ(N2) = 14 1N2G4;N2�1: (3.32)Here, n02 denotes the number of two-loops of the �4 graph that an be deletedwithout leaving the onsidered ensemble. For the regular and singular ensemblesone has n02 = n2, i.e., all deletion moves are allowed. In the restrited singularensemble, however, the removal of a two-loop belonging to a triple link (self-energydiagram) produes a disallowed seagull ontribution, suh that there n02 6= n2 ingeneral. Therefore, the relationZ(N2)Z(N2 � 1) = 2(N2 � 1)N2 + 2 1PN2(2) ; (3.33)is only valid for the regular and singular ensembles. These relations are again notappliable for the strit ensemble, sine the used ratio of partition funtions orre-sponds to the insertion or deletion of a loop of length two, whih is forbidden inthe strit ase. For the graph numbers in Eq. (3.32), disonneted graphs shouldonly be onsidered in the singular ensemble, sine only there the removal of a singlevertex an split the graph.The reason for the failure of the ansatz (3.30) for general q is similar to that ofthe orresponding formula for singular �3 graphs. The situation is even more om-pliated though, sine the analogue of the ring diagram of Fig. 3.13(a) now has 2qpaired external lines as depited in Fig. 3.15. Thus, even if the graph numbers for thestrit ensemble would be available, the insertion proess would lead to the appear-ane of double links. Even worse, for all of the ensembles the appearane of doublelinks alters the symmetry fator 1=q as in the restrited singular �3 ase; however,
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Figure 3.15: A �4 ring diagram (dashed lines) and the orresponding part of thequadrangulation (solid lines) as a andidate for the onstrution of the o-ordinationnumber distribution of quadrangulations. The marked vertex p0 has o-ordinationnumber four. In ontrast to the �3 ase eah ring vertex has two external lines.in ontrast to the latter situation, for �4 graphs of all ensembles it is possible for twoof the q external lines of the outside graph (i.e., the graph the ring diagram is pastedinto) to originate from the same vertex. This destroys the symmetry assumptionof the insertion proess. Thus, for heks of simulations of �4 graphs one has toentirely rely on the partition funtion ratio method of Eqs. (3.31) and (3.33).3.3.2 Comparison to simulation resultsFor the measurement of o-ordination numbers two types of simulations were per-formed. Firstly, diret measurements of the o-ordination number distribution andthe number of deletion moves n3 resp. n02 by simulations in the anonial ensembleof a �xed number of �3 or �4 verties. Seondly, simulations in the pseudo grand-anonial ensemble, delimiting the range of allowed numbers N2 to a small bandaround the values N2 and N2 � 2 resp. N2 and N2 � 1 needed for the omparisonwith Eqs. (3.26) and (3.31). All simulations were diretly performed in terms of thedual �3 or �4 graphs. Sine ergodiity problems and ode bugs are expeted to show
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Figure 3.16: Distribution of o-ordination numbers of dynamial triangulations withN2 triangles from anonial simulations of �3 graphs with the (2; 2) ip move. (a)Results for graphs of the regular ensemble ompared to the exat expression (3.21)evaluated with the exat �3 graph numbers for the indiated graph sizes (solid lines).The dashed line indiates the in�nite-volume result (3.24). (b) The distribution forgraphs of the restrited singular ensemble. The solid lines denote the outome ofinserting the number of (possibly) disonneted �3 graphs of the restrited singularensemble into Eq. (3.21). As explained in the text, this formula is orret apart fromthe value for the maximum possible o-ordination number. The statistial errors areof similar size as the symbols.
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Figure 3.17: Co-ordination number distribution for dynamial triangulations withN2 triangles of the singular ensemble from MC simulations. The solid lines indiatethe values onjetured by inserting the number of possibly disonneted, singular�4 graphs into Eq. (3.21). As explained in the text, this formula is not generallyappliable here due to a symmetry redution in the inserted ring diagrams ontainingtadpoles and double links.up espeially pronouned for the smallest graph sizes, most of the results presentedin this setion are for graphs with N2 . 40 verties.Triangulations and �3 graphsAording to the above explanations, we expet the o-ordination number distribu-tion to be orretly predited by Eq. (3.21) for the regular and restrited singularensembles. In ontrast, due to symmetry problems with the desribed \ut-out andre-insert" tehnique, the distribution of loop lengths for the �3 singular ensemblewill not be orretly onjetured by the desribed ansatz. These expetations areompletely met by the simulation outomes, whih are presented in Fig. 3.16 for theregular and restrited singular ensembles and in Fig. 3.17 for the singular ensemble.The presented data result from Monte Carlo simulations of planar �3 graphs with a
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Figure 3.19: Partition funtion ratios from simulations of planar �3 graphs belongingto \pseudo" restrited singular and regular ensembles that exlude the loal singu-larities, i.e. tadpoles and double links, but not more general one- and two-pointsubgraphs. The deviation from the exat results for the proper restrited singularand regular ensembles is apparent.in these ensembles. Also, it is obvious that the present restritions introdue hardut-o�s on the allowed values of q. While all q � 1 our in the singular ensemble,the restrited singular ensemble exludes loops of length one, i.e. q � 2; �nally, theregular ensemble does not allow loops of length two either, that is q � 3 there (as isobvious in the dual regular triangulation). Comparing the results for the di�erentnumbers N2 of �3 verties for the regular ensemble to the N2 ! 1 result of Eq.(3.24) it is obvious that �nite-size e�ets are rather weak for the ase of PN2(q).This is typial for loal quantities suh as PN2(q); in ontrast, global properties suhas the mean square extent of the graphs (f. Setion 2.3.5 above) usually su�er fromstrong �nite-size orretions, see e.g. Refs. [51, 166℄. Furthermore, omparing Figs.3.16(a) and (b) and Fig. 3.17, it is obvious that the size of �nite-size orretionsis redued as more of the singular ontributions are inluded in the graphs. Thise�et has been observed before, see e.g. Refs. [50, 167℄. The physial reason behindthis observation lies in the struture of the \universes" of dynamial triangulations



88 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSas trees of \baby universes" inter-onneted by minimal neks [29℄. Depending onthe amount of singularities allowed, the average length of the \baby universe" neksvaries. While in the singular ensembles the smallest neks are of length one or two,the minimal nek in the regular ensemble is given by a loop of length three. Thus,one has an intrinsi length sale for the nek struture, whose size | ompared tothe size of the \universe" | partly determines the strength of �nite-size e�ets.As an alternative omparison to exat results and to test the ode for the singularensemble, we additionally performed simulations in the pseudo grand-anonial en-semble in order to estimate the partition funtion ratios of Eq. (3.26). As shown inFig. 3.18 this test gives perfet agreement with the exat results of Eq. (3.26) forall three ensembles, now inluding the singular one. To probe the sensitivity of thepartition funtion ratios to various possible ode bugs and ergodiity problems, weadditionally simulated graphs in \pseudo" restrited singular and regular ensembles.There, only the loal singular ontributions, i.e. tadpoles and self-energies, were ex-luded, but one- and (non-trivial) two-point subgraphs on larger length sales werenot taken are of. As an be seen in Fig. 3.19 suh a hange an be deteted veryeasily by a omparison to the exat results.Quadrangulations and �4 graphsUsing the generalization of the (2; 2) link ip move to quarti planar graphs, theo-ordination number distribution of planar quadrangulations was determined fromsimulations with the same parameters as in the �3 ase. In addition to the previouslyonsidered ensembles, for the �4 graphs simulations were also performed in the stritensemble without double links. Fig. 3.20 shows the measured distributions for theextremal ases of the strit and singular ensembles. Again, the redution of �nite-size e�ets on inluding singular ontributions is apparent. Also, in the singularensemble the fration of verties with large o-ordination numbers is enhaned asompared to the strit ensemble, whih is another indiation for a redution of �nite-size e�ets, sine verties with large o-ordination numbers typially our in theviinity of the baby-universe bottleneks. Note that, analogous to Eq. (3.25) fortriangulations, for quadrangulations the average o-ordination number is a onstantfor a �xed number of squares, given byhqi = 1N0 Xpi q(pi) = 4N2N0 = 4 N2N2 + 2 : (3.34)
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Figure 3.20: Co-ordination number distribution of dynamial quadrangulations fromanonial simulations utilizing the generalized (2; 2) link ip move. The simulationswere performed in the strit (a) and singular (b) ensembles. In ontrast to the �guresfor �3 graphs, the solid lines do not show exat results, but are merely interpolationsbetween the data points to guide the eye.
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Figure 3.21: Partition funtion ratios Z(N2)=Z(N2�1) of the dynamial quadrangu-lations model from simulations using the generalized (2; 2) link ip. The simulationswere performed in the anonial ensemble, measuring hn02in2 and using Eq. (3.31)to infer Z(N2)=Z(N2 � 1). The statistial error bars are of the size of the plottingsymbols, the apparent utuations stem from the strong dependene on the startingon�guration, whih is due to the non-ergodiity of the update.Thus, in the thermodynami limit N2 ! 1 on average four squares meet at eahvertex of the quadrangulation.To hek the simulation program, a omparison to the exatly known partition fun-tion ratios of Eq. (3.31) had to be performed. Using Eq. (3.31) and the graph enu-meration results of Refs. [16,150,151℄, the partition funtion ratios Z(N2)=Z(N2�1)an be evaluated exatly for small graph sizes N2 and all of the onsidered ensemblesapart from the strit one. While pseudo grand-anonial simulations yield results inagreement with the thus alulated partition funtion ratios, the \indiret" methodof performing anonial simulations and applying Eqs. (3.31) and (3.33) to extratthe ratios Z(N2)=Z(N2 � 1) from the measured averages hn02iN2 yields strong de-viations from the exat results as indiated in Fig. 3.21. These deviations are farfrom being overed by the statistial errors, whih are again omparable in sizeto the used plotting symbols. Furthermore, the sign and strength of deviation is



3.4. THE TWO-LINK FLIP FOR �4 GRAPHS 91strongly orrelated to the used starting on�guration for the anonial simulationsof �4 graphs with N2 verties. Thus, they indiate a non-ergodiity of the used gen-eralized (2; 2) link ip dynamis. In ontrast, although there are no exat results foromparison, for the strit ensemble no suh strong utuations our. It seems that,in ontrast to the �3 ase, the link ip move alone is not ergodi for simulations of�4 graphs with a �xed number of verties apart from graphs of the strit ensemble.Grand-anonial simulations, however, i.e. the inlusion of insertion and deletionmoves, seem to work ergodially with the proposed dynamis.3.4 The Two-Link Flip for �4 GraphsWhat exatly are the barriers in the on�guration spae of dynamial �4 graphspreventing the generalized (2; 2) link ip move from being ergodi for anonialsimulations? In fat, one an easily �nd �4 graph on�gurations whih annot bemapped to eah other by link ip moves. Consider, e.g., the on�gurations depitedin Fig. 3.22, whih an our in all of the ensembles but the strit one. Obviously,in order to onnet the left and right on�gurations one would have to perform asequene of (2; 2) ip moves. However, no matter where it is performed, the �rstmove produes a tadpole (or seagull) ontribution in the graph of Fig. 3.22(b). Thus,no move is possible for the regular and restrited singular ensembles. For graphs ofthe singular ensemble, the �rst move is allowed, but there is nevertheless no sequeneof ip moves onneting the two diagrams. A proof of this more general statementfollows as a orollary from onsiderations about a two-olouring of the verties ofthe quadrangulations disussed below in Setion 4.3.3.On the other hand, the two shown diagrams are still onneted to eah other bya kind of ip move. It orresponds to a ip move of the �3 type, where the inter-onnetion between verties a and b is a double link, i.e.
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Figure 3.22: Con�gurations of a regular quadrangulation (a) and its dual �4 graph(b) that annot be onneted by a generalized (2; 2) link ip move without produinga tadpole ontribution.whih again omes in two hiralities, � = +1 (left) and � = �1 (right)9. This\two-link ip" onnets not only the on�gurations of Fig. 3.22, but | as it turnsout | removes all of the observed barriers in on�guration spae. As far as theneessary geometry tests are onerned, inspetion of the two-link ip move showsthat it annot produe two-point subgraphs in the regular ensemble, but disallowedone-point subgraphs an be produed in the restrited singular ensemble. Thus, anadditional test must only be implemented for the regular ensemble. Guaranteeingdetailed balane when inluding the new move is no issue for the regular and re-strited singular ensembles, sine there only two-link ips are allowed along doublelinks and therefore a two-link ip is always tried when enountering a double linkbetween verties a and b. For the singular ensemble, on the other hand, on hitting adouble link one has to hoose between the two possibilities of performing a \normal"(2; 2) link ip (thus produing a seagull) or doing a two-link ip instead. One of thepossibilities to do this in a way onsistent with detailed balane is to treat doublelinks between a and b as normal one-link ips during the update proess and to in-trodue the two-link ip as an additional type of update that is performed between9Stritly speaking, there are four hiralities if one takes the two possible on�gurations of thedouble link between a and b into aount.
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Figure 3.23: Partition funtion ratios Z(N2)=Z(N2 � 1) for the planar quadrangu-lations model from MC simulations as ompared to the exat result from Eq. (3.31)and the graph enumeration results of Refs. [16,150,151℄. The simulations were per-formed in the anonial ensemble utilizing relation (3.31) for the estimation of theratios. The data result from 50 000 samples.the others at a onstant frequeny. Sine the number of double links hanges duringthe simulation, one hooses one of the double links irrespetive of the number ofdouble links present.Applying the two-link ip additionally to the one-link ip in anonial simulationsseems to ensure ergodiity also for simulations of a �xed number of verties (reallthat simulations in the (pseudo) grand-anonial ensemble already were ergodiwith only the one-link ip). Although we annot present an analyti proof for thislaim, omparison of the indiretly sampled partition funtion ratios Z(N2)=Z(N2�1) from Eq. (3.31) to the exat results from the graph enumeration tehnique ofRefs. [16, 150, 151℄ now shows perfet agreement as illustrated in Fig. 3.23. Notethat the number of samples taken in the Monte Carlo update is idential betweenthe data shown in Figs. 3.21 and 3.23; thus, the apparent di�erene is solely dueto the restoration of ergodiity and not a matter of a redution of the statistialutuations.



94 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSTo summarize, for the �3 and �4 graphs of the di�erent ensembles and the di�erenttypes of simulations the following statements about ergodiity an be made:(a) The (2; 2) link ip move is ergodi for simulations of dynamial triangulationsand the dual �3 graphs at a �xed number of triangles resp. verties of the �3graph. This has been proved for the ase of ombinatorial triangulations, or-responding to the regular ensemble in our sheme, in Refs. [21,156℄. Taking thedisussion of Setion 3.2.1 into aount, this result generalizes to the restritedsingular and singular ensembles as well. For variants of the grand-anonialsimulation method, adding the (3; 1) and (1; 3) insertion and deletion movesto the (2; 2) link ip ensures ergodiity in the spae of triangulations with avarying number of triangles. The proof an be found for the regular ensem-ble in Ref. [156℄. Sine every triangulation or �3 graph of the more singularensembles an be transformed to a regular one by suessive appliations ofthe link ip move, ergodiity of the grand-anonial set of moves for the re-strited singular and singular ensembles is guaranteed by the arguments givenin Setion 3.2.1.(b) For simulations of dynamial quadrangulations and the dual �4 graphs, theinformation about ergodiity is mainly numerial. The generalization of the(2; 2) link ip move to �4 graphs is not ergodi for anonial simulations asan be easily proved. An exeption to this statement is given by the stritensemble, where no double links our. There, the one-link ip dynamisseems to suÆe to ensure ergodiity. Augmenting the one-link ip by a two-link ip around double links obviously restores ergodiity also for the regular,restrited singular and singular ensembles. In ontrary, for simulations in thegrand-anonial type of ensembles of a varying number of �4 verties, thegeneralization of the (3; 1) and (1; 3) insertion and deletion moves togetherwith the one-link ip are seemingly ergodi. That is, the possibility to hangethe number of �4 verties or quadrangles irumvents the on�guration spaebarriers seen by the anonial one-link ip dynamis.Although the information about the ergodiity of simulations of dynamial quad-rangulations or the dual �4 graphs is only numerial, it has been demonstrated thatthe onsidered partition funtion ratios (being related to the small-q limit of the o-ordination number distribution) onstitute an observable whih is highly sensitive to
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Figure 3.24: The spei� heat Cv per vertex of an Ising model oupled to planar�4 random graphs with N2 = 10 verties as a funtion of the oupling � = 1=kBT .The Ising model part was updated on the same time-sale as the graphs using theWol� single luster algorithm [168℄. (a) Appliation of the non-ergodi one-linkip dynamis to graphs of the singular ensemble. The solid line shows the exatresult of Refs. [33, 34, 145℄. The model undergoes a third-order phase transitionat � = ln 2 � 0:693. (b) Comparison between simulations with the non-ergodione-link ip dynamis and the ergodi, ombined one- and two-link ip update forgraphs of the regular ensemble. The solid line is only an interpolation to guide theeye.



96 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSa non-ergodiity of the onsidered update. This is, of ourse, intuitively rather ob-vious, sine the partition funtion of the dynamial polygoni�ations model simplyounts the number of polygoni�ations or graphs of a given ensemble. To demon-strate how muh less sensitive other observables an be to this kind of ergodiityproblems, as an aside in Fig. 3.24 we present the outome of simulations of an Isingmodel oupled to planar �4 graphs. The simulations were performed either with theone-link ip alone and thus were not ergodi, or with the almost ertainly ergodiombination of one- and two-link ips. For the singular ensemble and simulationswith the non-ergodi one-link ip alone, we �nd nevertheless perfet agreement withthe exat solution of the problem found in Refs. [33, 34, 145℄, f. Fig. 3.24(a). Re-membering that the non-ergodiity e�et of the one-link ip was more pronounedin the regular ensemble, we also ompared simulations for the Ising model on regular�4 graphs with the non-ergodi and ergodi set of moves as shown in Fig. 3.24(b).Also there, no obvious deviations are visible.3.5 Enhaning the EÆienyOne the question of ergodiity of the onsidered update is settled, the issue ofperformane of the suggested algorithm deserves some interest. Sine in the anon-ial ensemble of a �xed number of polygons the dynamial polygoni�ations modelshould be onsidered as ritial for all values of N2, we expet the algorithm to behampered by ritial slowing down. Additionally, the onsidered update is loal,suh that fairly large dynamial ritial exponents an be expeted. This is indeedthe ase, suh that more sophistiated, less loal algorithms are highly desirable. Alass of suh updates is given by the baby-universe surgery method.3.5.1 Autoorrelation timesMonte Carlo simulations in the important sampling sheme are governed by an arti-�ial dynamis haraterized by the used set of update moves and the orrespondingenergy hanges that determine the move aeptane rate via the Metropolis rule,f. Appendix A.1. Of major interest for the analysis of stati behaviour suh asthermal averages is the integrated autoorrelation time �int(A), whih determinesthe variane of the mean �2( �A) and thus the auray of the estimate �A of hAi from



3.5. ENHANCING THE EFFICIENCY 97a time series of length N . The relevant relation is given by:�2( �A) � �2(A)N=2�int(A) ; (3.35)that is, in presene of autoorrelations the number of independent measurements ise�etively redued to N=2�int(A), f. Appendix A.2. Numerially, there are severalmethods for the determination of integrated autoorrelation times, the most popu-lar being a diret numerial integration of the normalized autoorrelation funtionand the appliation of a ombined binning/jakkni�ng tehnique. Espeially, theestimation of varianes of the autoorrelation time estimate itself is omputation-ally non-trivial; the relevant formulae are given in Appendix A.4. Sine in bothapproahes some subjetive deision about the degree of onvergene of the respe-tive estimates must still be taken, we apply both methods in parallel to be able todetet runaway results via a lak of onsisteny between the two outomes.As indiated in Eq. (3.35), the integrated autoorrelation time depends on the on-sidered observable A. As far as the eÆieny of the used Monte Carlo dynamis isonerned, one is mainly interested in the slowest mode of the update, i.e., one islooking for the observable with the largest autoorrelation times sine these timesan be taken as the autoorrelation times of the MC proess as a whole. In viewof the loality of the onsidered ip-move dynamis, quantities that depend on theglobal struture of the graphs are the obvious andidates for suh observables. Themain global observable disussed in Chapter 2 was the mean square extent of thepolygoni�ations or dual graphs, whih is, as shown in Setion 2.3.5, diretly relatedto the global struture of the latties, being desribed as a tree of \baby universes".The de�nition of the mean square extent used in the simulations is still slightlydi�erent from the versions used in the analytial onsiderations of Setion 2.3.5. Inthe anonial ensemble of a �xed number of verties used in the simulations, wedeompose the polygoni�ations into spherial shells of verties of equal geodesidistane r from a randomly hosen referene vertex p0; the number of suh points isdenoted by G11(r), i.e.,G11(r) = # verties with a geodesi link distane r from p0: (3.36)Then, the mean square extent of the polygoni�ation or the dual graph is de�nedto be hr2iN2 = �Prmaxr=0 r2G11(r)Prmaxr=0 G11(r) �N2 ; (3.37)



98 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSwhere the maximal ourring distane rmax is determined by the urrent graphon�guration and, for dynamial graphs, varies between measurements10. Here,the average h�iN2 denotes the thermal average in the anonial ensemble of a �xednumber N2 of graph verties. Sine the pure dynamial polygoni�ations model ata �xed number N2 of polygons has no free oupling parameter, it an be onsideredritial for all values of N2. Therefore, the well-known arguments of dynamialsaling apply. Espeially, the integrated autoorrelation times �int(r2) are expetedto sale with the size N2 of the system as�int(r2) = Ar2N zr2=dh2 ; (3.38)f. Appendix A.2. In ontrast to the dynamial ritial exponent z = zexp de�nedfrom the saling of the exponential autoorrelation times �exp, whih is on the basisof universality arguments believed to be independent from the observable underonsideration, see e.g. Ref. [169℄, the exponent zA = zint;A assoiated to the salingof the integrated autoorrelation time of an observable A an in general depend onthe hoie of A, f. Appendix A.2.Exploiting the given relations, one an extrat the ritial exponent zr2 from the MCsimulations of dynamial graphs. Sine the fous of this work lies on �4 graphs, onlythis type of graphs is onsidered in detail here, divided into the di�erent ensembleswith respet to the inlusion of singularities desribed in Setion 3.1. The simula-tions were performed in the anonial ensemble of a �xed number N2 of �4 verties.To generate the initial on�gurations, starting from an otahedron, i.e. a regulareight-sided polygon onsisting of six verties, insertion moves of the type desribedin Setion 3.2.3 were performed until the desired graph size was reahed. From thefollowing series of (one- and two-link) ip-move updates at least the �rst 500 �int(r2)sweeps11 were disarded for equilibration12. The remaining time series of (almost)equilibrium measurements of r2 was then analyzed with the methods desribed inAppendix A.4 to extrat the integrated autoorrelation time �int(r2). Simulationswere performed for di�erent lattie sizes up to 8192 verties to allow for a �nite-size10Here, one ould also onsider averaging on the level of G11(r) instead of the indiated average.For a proper analysis of varianes and autoorrelation times, however, this would require thereording of a huge amount of data.11Here and in the following, a sweep of ip moves refers to one attempted ip move per vertexof the �4 (or �3) graph.12Obviously, this has to be done in a self-onsistent way via an a posteriori hek, sine �int(r2)is not known a priori .



3.5. ENHANCING THE EFFICIENCY 99strit regular restrited singularN2 �int(r2) � jakint (r2) �int(r2) � jakint (r2) �int(r2) � jakint (r2)64 0.708(40) 0.718(46) 0.551(16) 0.546(35) 0.613(20) 0.624(38)128 0.937(55) 0.919(49) 0.681(27) 0.677(33) 0.763(31) 0.715(60)256 1.38(11) 1.33(11) 0.943(81) 0.871(46) 1.062(78) 1.029(50)512 2.19(32) 2.28(23) 1.43(12) 1.47(12) 1.534(95) 1.513(83)1024 3.10(11) 3.12(18) 2.27(13) 2.27(09) 2.32(11) 2.290(77)2048 4.90(35) 4.61(24) 3.37(13) 3.47(14) 3.66(24) 3.80(17)4096 7.16(33) 7.40(36) 5.37(14) 5.51(23) 5.27(16) 4.90(21)8192 8.07(104) 8.66(85)Table 3.2: Integrated autoorrelation times of the mean square extent hr2i for the(one- and two-link) ip-move dynamis for �4 random graphs of the strit, regularand restrited singular ensembles. The graph sizes range from 64 up to 8192 verties.The autoorrelation times are measured in units of ten sweeps of ip moves usingdiret integration of the estimated normalized autoorrelation funtion [�int(r2)℄ and,alternatively, a ombined binning/jakknife tehnique [� jakint (r2)℄; all error estimatesare alulated via the jakknife method, f. Appendix A.4.saling analysis. The results for the integrated autoorrelation time are olleted inTable 3.2. Note that the ited values for �int(r2) are given in units of ten sweeps oflink-ip moves. Sine for the singular ensemble it would be omputationally verydemanding to keep the �4 graph and the quadrangulation up-to-date synhronouslyduring the ip-move proess, simulations of graphs of this ensemble are very inef-�ient. Thus, although �nite-size e�ets have been observed to be least there asdisussed above in Setion 3.1, in our simulational setup, where the graphs and notthe polygoni�ations are the primary objets, simulations in the singular ensembleare not sensible from eÆieny onsiderations. Therefore, we have not performedextensive simulations of graphs of this ensemble. During the simulations, the (quiteexpensive) measurements were taken after ten sweeps of link-ip moves. For the lat-ties with N2 = 64; : : : ; 512 verties 50 000 measurements were taken; for the graphswith N2 = 1024, N2 = 2048 and N2 = 4096 verties we took 200 000, 300 000 and500 000 samples, respetively. For the additional simulation with N2 = 8192 vertiesfor the regular ensemble 100 000 samples were taken.Considering the data presented in Table 3.2 we �nd good agreement between the twomethods of determining the autoorrelation times. The absolute values of �int(r2) for



100 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSthe strit ensemble are learly enhaned as ompared to the results for the other twoensembles, whih in turn are not strikingly di�erent for the used sizes of the graphs.This reets the rather large number of restritions on the number of allowed ipmoves for the strit ensemble, resulting in a quite small aeptane rate of the ipmove proess. In order to extrat the dynamial ritial exponent zr2=dh, we �ttedthe funtional form (3.38) to the results of Table 3.2. Figure 3.25 shows �nite-sizesaling plots of the autoorrelation time in the strit, regular and restrited singularensembles and the orresponding �ts of Eq. (3.38). The �ts were performed usingthe autoorrelation times �int(r2) estimated by diret integration of the normalizedautoorrelation funtion; the �ts to the estimates � jakint (r2) are onsistent with thosepresented within error bars. The �t result for the strit ensemble is given by,Ar2 = 0:050(11);zr2=dh = 0:597(30);Q = 0:94; (3.39)where Q denotes the quality-of-�t parameter (see, e.g., Ref. [170℄). The simulationsfor regular ensemble graphs give,Ar2 = 0:0285(53);zr2=dh = 0:629(24);Q = 0:96; (3.40)while the results for graphs of the restrited singular ensemble are given by,Ar2 = 0:0405(69);zr2=dh = 0:585(23);Q = 0:90: (3.41)All three �ts do not inlude the simulation results for the graphs of sizes N2 = 64 andN2 = 128 in a trade-o� between the attempt to make the best use of the produedsimulation data and the need to keep orretions to �nite-size saling reasonablysmall as ompared to the statistial errors. On the basis of universality argumentsand the results from matrix model alulations [10, 152℄, we expet the exponentzr2=dh not to depend on the onsidered ensemble of graphs. The given results aremarginally ompatible with eah other with respet to the statistial errors. Theremaining variation between the results is attributed to e�ets of orretions to�nite-size saling and give some idea about the total, statistial and systemati,preision of the estimate. Espeially, a omparison of the �t results for the regular
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Figure 3.25: Finite-size saling of the integrated autoorrelation times of the meansquare extent of dynamial �4 graphs from a loal link-ip move simulation. Theautoorrelation times are given in units of ten sweeps of link-ip moves. The solidlines denote �ts of the funtional form (3.38) to the simulation data. The extent ofthe lines indiates the range of graph sizes N2 inluded in the �ts.and restrited singular graphs in view of the fat that the autoorrelation timesthemselves do not di�er muh between the two ensembles, demonstrates niely that,for a small region of graph sizes N2, a slight inrease in amplitude an be ompen-sated by a derease of the exponent and vie versa. However, we do not aim at ahighly preise determination of the dynamial ritial behaviour of the model, butmainly want to know how the simulation parameters have to be tuned to eÆientlyprodue an e�etively unorrelated time series of measurements. Also, onsideringthe di�erent graph ensembles, it is obvious that the regular and restrited singularones are quite equally well suited for simulations from the point-of-view of autoor-relation times, at least on the given level of preision and for the onsidered systemsizes; the dominant restritions on ip moves for graphs of the strit ensemble, onthe other hand, strongly redue the eÆieny of the onsidered update proess. Thispoint will be further disussed in the next setion.To provide a onsisteny hek, we also performed simulations of dynamial �3
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Figure 3.26: Integrated autoorrelation times �int(n3) of the fration n3 of loops(faes) of length three for a MC simulation of dynamial �3 graphs of sizes betweenN2 = 64 and 8192 verties. Up to the present auray, no sign of ritial slowingan be deteted.graphs, utilizing the ergodi Pahner ip-move dynamis desribed in Setion 3.2.1,and determined the integrated autoorrelation times with the methods desribedabove for the ase of �4 graphs. Here, the starting on�guration is given by a tetrahe-dron, blown up to the intended �nal graph size by suessive appliations of the (3; 1)insertion move. For the omparison, we restrited ourselves to simulations of the reg-ular ensemble of �3 graphs. Again, graph sizes ofN2 = 64; 128; 256; 512; 1024; 2048; 4096and 8192 verties were onsidered, taking 150 000 MC samples for eah system size.Fitting the expeted funtional form (3.38) to the estimated autoorrelation times�int(r2), we arrive at the following �t parameters,Ar2 = 0:0238(30);zr2=dh = 0:635(18);Q = 0:99; (3.42)where, again, the results for N2 = 64 and N2 = 128 have been omitted, sinethey were too strongly a�eted by orretions to the leading FSS behaviour. Thedynamial ritial exponent zr2=dh found is in nie agreement with the result for the



3.5. ENHANCING THE EFFICIENCY 103regular ensemble of �4 graphs, whih gave zr2=dh = 0:629(24). This agreement isin priniple expeted on the basis of universality arguments, f. Setion 3.1. Note,however, that the exponent zr2=dh is a property of the utilized graph update movesand not solely of the lass of graphs onsidered. Thus, suh agreement would not beobserved if applying ompletely di�erent sets of update moves to �3 and �4 graphs.Finally, to demonstrate the large range of di�erent relaxation modes present in thesystem, we also onsidered an autoorrelation time assoiated with the o-ordinationnumber distribution, whih is, in ontrast to the mean square extent, a stritlyloal property of the graphs. In partiular, we measured the autoorrelation time�int(n3) of the fration of loops (faes) of length three for the ase of regular �3graphs. Figure 3.26 shows the size dependene of �int(n3) for the onsidered systemsizes. As an be learly seen, with the present auray the estimate of �int(n3) isonsistent with the minimal value 1=2, whih is a theoretial lower bound for allintegrated autoorrelation times aording to the de�nition (A.16). Thus, for thisloal property ritial slowing down is ompletely absent to the ahieved level ofauray and, onsequently, we onlude zn3=dh � 0. For the ase of �4 graphs we�nd an idential situation.3.5.2 The baby-universe surgery methodThe presene of strong autoorrelations with a rather large dynamial ritial ex-ponent13 z=dh has severely hampered the onlusiveness of numerial simulationsof the dynamial polygoni�ations model. As will be shown later in Chapter 5these problems beome even worse when oupling matter to the random graphs(see, e.g., Ref. [75℄). Smaller-sale improvements an be made, e.g., by vetorizedor parallelized updates (\parallel ip algorithm") or, for the speial ase of puretwo-dimensional quantum gravity, by exploiting exat results from the graph enu-meration (\reursive sampling"), see Ref. [161℄. While the orresponding problemfor spin systems on regular latties ould be �nally overome by the introdution ofthe onept of luster algorithms [168, 171℄, a feasible tehnique of similar potenyould up to now not be formulated for the dynamial polygoni�ations model. Nev-ertheless, a suessful push in this diretion resulted in the baby-universe surgery al-13Note that on regular latties one usually onsiders z diretly (and not z=d) suh that, e.g., theresult z � 2 for the single-spin ip dynamis of the two-dimensional Ising model would translateinto z=d � 1 here.
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Figure 3.27: A minBU surgery step for a dynamial �3 graph. The \baby universe"is onneted to the rest of the universe by three external lines (the nek). The motheruniverse has an additional marked vertex. After utting the nek, the marked vertexis removed and used to onnet the three external lines of the mother universe. Atthe old position of the marked vertex, the \baby universe" is re-onneted to themain body.gorithm [75,172℄, whih was developed together with attempts to formulate a renor-malization group transformation for the dynamial triangulations model [129, 130℄.The oneptIt has been shown that the struture of a dynamial triangulation of the quantumgravity type is that of a self-similar tree of \baby universes" [29℄. Thus, an updateoperating diretly on this baby-universe sub-struture appears natural for the prob-lem and, in view of its non-loal harater, promises an appreiable redution ofautoorrelation times. The basi idea is to ut a \baby universe" o� the main uni-verse along its nek, re-triangulate the resulting whole and glue the \baby universe"bak to the main body at a di�erent plae [75℄. In the most general sheme derivedfrom the representation of Ref. [29℄, this transformation would have to be done for\baby universes" of arbitrary sizes and nek lengths. However, it turns out that itis omputationally exeedingly demanding to identify \baby universes" with nekslonger than a few links, thus destroying the potential gain in eÆieny provided bysuh an algorithm. Therefore, one onentrates on the \baby universes" of minimalnek length (minBUs) [75℄. For triangulations of the regular ensemble the minimalnek is given by a loop of length three, i.e., a minBU is given by a triangle thatdoes not belong to the triangulation14. Sine the simulations are done diretly in14The restrited singular and singular ensembles would allow for even smaller neks. However,we want to use the same algorithm for all three ensembles.
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Figure 3.28: A given, oriented link of a �3 graph (dashed line) an be part of aminBU nek with the minBU lying in arrow diretion (right) or opposite to it (left).The minBUs ontained in eah other are found by the algorithm in the order of theirontainment.the graph language, we present the minBU surgery method in terms of dynamial�3 or �4 graphs. Then, a surgery step an be depited as shown in Fig. 3.27 for thease of �3 graphs. Espeially, a nek of length l orresponds to a subgraph with lexternal lines in the graph language. Note, that for simpliity we do not exploit anadditional symmetry of the problem, i.e., the possibility to also hange the vertexof the \baby universe" that onnets it to the mother part. This, however, doesobviously not restrit the generality of the method.Detailed balane and implementation detailsWe onsider �rst the ase of dynamial triangulations and their dual �3 graphsand generalize to �4 graphs afterwards. There have been proposed (at least) twodi�erent variants of implementation of the minBU surgery algorithm. In the originalpaper [75℄ all neks of length three ontained in a given on�guration are �rstidenti�ed in order to hoose one of them at random and perform the surgery stepon it. For simulations in the language of the dual graphs, however, this tehnique israther inonvenient sine the identi�ation of the neks is a omputationally quitedemanding task. While in the triangulation it suÆes to hek whether two vertiesonneted by a link have a ommon neighbour, in the �3 graph one has to traversetwo neighbouring loops (faes) of the graph and all their respetive neighbouring



106 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSloops to hek for a subgraph with three external lines. Therefore, it is muh moreonvenient to only ompute the list of neks ontaining a given, randomly seletedlink of the graph as was proposed in Ref. [172℄. The orresponding situation isdepited in Fig. 3.28. As a seond ingredient, we have to hoose a vertex in themother universe part at random (or at least symmetri with respet to the moveand its inverse) to serve as the additional marked vertex of Fig. 3.27. Sine thegraph is only endowed with a hiral ordering of the links around a vertex, but isnot per de�nition onsidered embedded in Rd , the inside and outside of a \babyuniverse" assoiated with a given nek are not a priori known. In other words:sine the whole graph an be inverted along the nek, the labelling of the two partsseparated by the nek as \baby universe" and \mother universe" an only be deidedwhen the number of verties (the volumes) of the two parts are known. Then, wesimply de�ne the \baby universe" to be the smaller part. However, if one justfollows the given orientation of the hosen link l to �nd the volume of the partlying on the orresponding side of the nek, f. Fig. 3.28, on average one wouldhave to traverse half of the whole graph to deide about whih part to interpret asthe \baby universe". This, obviously, would destroy any potential eÆieny gainof the algorithm. There are several algorithmi triks to overome this diÆulty.One is based on the idea of performing a random walk along the links of the graphstarting from the randomly hosen link l and preventing the walk to touh any ofthe links belonging to the nek. This amounts to ignoring the distintion between\baby" and \mother universe", whih on average leads to a weaker deorrelation ofthe on�gurations between the surgery moves. Another method that does not su�erfrom this weakness and whih will be employed here, is given by interleaving twobreadth-�rst (or depth-�rst) searhes of the graph, starting from either end of therandomly hosen link l of Fig. 3.28 and restriting both searhes to their respetivesides of the hosen nek15. Then, sine it is known that the average minBU is verysmall ompared to the volume of the whole graph [29℄, one of the searhes will onaverage terminate after only a few steps, thus de�ning the smaller part of the graph,i.e., the \baby universe". During the searhes the verties have been labelled, suhthat a vertex of the mother part of the graph an now be hosen at random. Notethat the verties diretly adjaent to the links of the minBU nek should not beseleted here suh as not to produe singular on�gurations. Finally, a link l0 of thehosen vertex is seleted at random.15We thank Z. Burda for ommuniating to us this idea.



3.5. ENHANCING THE EFFICIENCY 107After a minBU and a vertex of the mother universe have been seleted in the de-sribed way, they are exhanged upon ful�lment of a detailed balane ondition. Letn(l) be the number of minBU neks ontaining the link l and n(l0) the orrespondingnumber of neks after the move has been performed, i.e., the link l is loated at itsnew position l0 instead of one of the links of the marked vertex. Then, the detailedbalane ondition reads [172℄,1n(l)Pakz(l ! l0) = 1n(l0)Pakz(l0 ! l); (3.43)where we symbolially denote the minBU surgery move as l ! l0. Thus, we hoosethe aeptane probability aording to the Metropolis rule,Pakz(l ! l0) = min�1; n(l)n(l0)� : (3.44)Note that for the onsidered ase of �3 graphs the ounting of n(l0) is simpli�ed bythe fat that the deomposition of the graph into \baby universes" of nek lengththree is a unique transformation to a tree struture [29℄ and the applied nek searhalgorithm lists the minBUs in the order of their ontainment in eah other, f. Fig.3.28. Thus, the position of the randomly hosen minBU in the list of minBUsassoiated with the link l gives the number of minBUs ontained in the onsideredone. Conerning the di�erent graph ensembles it should be noted that the minBUsurgery moves do not produe singular ontributions when starting from a graphof the regular ensemble, suh that the a priori aeptane rate is one. In order toenhane the eÆieny one might want to limit the size of the used minBUs frombelow and only onsider suÆiently large \baby universes". Sine their sizes are notknown in advane, however, this would be omputationally more expensive thaninluding minBUs of all sizes. Only trivial minBUs onsisting of only one vertex areexluded.Generalizing the desribed update sheme to the ase of dynamial quadrangulationsand their dual �4 graphs, a minBU is now de�ned for the strit and regular ensemblesto be onsidered here as a subgraph with four external lines. Correspondingly, theoperation of �nding the neks adjaent to a given link is now O(m3) instead ofO(m2) for �3 graphs, where m denotes the average o-ordination number of thepolygoni�ation. Additionally, several tehnial ompliations not present in the�3 ase arise. First, a minBU surgery move on a graph of the strit ensemble anprodue a double link, thus making the algorithm inappliable for this ensemble (at



108 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHSleast without major hanges). Triple links, on the other hand, annot be produed,suh that no additional heks are neessary for simulations in the regular ensemble,whih we will hene exlusively fous on. Seond, due to the presene of double linksin the graphs the number of verties adjaent to a onsidered nek, whih would befour without multiple links, an be redued to three or two. This is relevant for theseletion of a vertex \outside" of the minBU as desribed above. Sine this e�etan be asymmetri with respet to the situations before and after the surgery move,it has to be inluded in the detailed balane ondition, whih therefore now reads1n(l) 1Vout(l)Pakz(l! l0) = 1n(l0) 1Vout(l0)Pakz(l0 ! l); (3.45)where Vout denotes the number of verties of the mother universe that are not diretlyadjaent to the onsidered minBU. The aeptane probability for the surgery moveis therefore given by, Pakz(l ! l0) = min�1; n(l)n(l0) Vout(l)Vout(l0)� : (3.46)Finally, the mentioned simpli�ation in the evaluation of n(l0) for the �3 ase abovedoes not apply here, sine di�erent minBUs an overlap for the ase of quadrangu-lations or �4 graphs. Therefore, the proposed move has to be ompletely performedin order to evaluate n(l0); if the detailed balane ondition (3.46) is not met, themove must be reversed to restore the original situation.Autoorrelation timesFor ergodiity reasons, the minBU surgery update has to be mixed with the loallink-ip move dynamis. Sine, at least for the �4 ase, the baby-universe surgerymoves are omputationally muh more expensive than the loal updates, we foundit an aeptable ompromise to mix the loal and global updates at a ratio of threeto one. Then, a sweep of the new, mixed update onsists of N2=4 attempted surgerymoves and 3N2=4 one- and two-link ip updates. Traversing the same steps as forthe loal link-ip update in Setion 3.5.1, we determined the integrated autoor-relation times for the ombined, \mixed" update by a �nite-size saling analysisof simulations for N2 = 26; 27; : : : ; 213 verties for �3 and �4 graphs of the regularensembles. For the �3 graphs, we took 150 000 samples eah and for the �4 graphs100 000 samples. The results for �3 and �4 graphs are ompiled for omparison inTable 3.3. The orresponding FSS plot for the ase of �4 graphs is shown in Fig.



3.5. ENHANCING THE EFFICIENCY 109�3 graphs �4 graphsN2 �int(hr2i) � jakint (hr2i) �int(hr2i) � jakint (hr2i)64 0.497(15) 0.496(13) 0.506(13) 0.541(25)128 0.510(14) 0.497(19) 0.513(13) 0.532(18)256 0.581(14) 0.556(20) 0.593(16) 0.586(25)512 0.742(25) 0.744(23) 0.814(28) 0.783(32)1024 1.115(43) 1.090(43) 1.151(52) 1.144(50)2048 1.764(73) 1.781(98) 1.896(86) 1.906(118)4096 2.97(15) 3.27(20) 2.97(17) 2.93(19)8192 4.76(28) 4.79(21) 4.95(29) 5.27(40)Table 3.3: Integrated autoorrelation times of the mean square extent hr2i for the\mixed" link-ip and minBU surgery dynamis for �3 and �4 random graphs of theregular ensemble. The autoorrelation times are measured in units of ten sweepsof mixed moves using diret integration of the estimated normalized autoorrela-tion funtion [�int(hr2i)℄ and, alternatively, a ombined binning/jakknife tehnique[� jakint (hr2i)℄. For the estimation methods, see Appendix A.4.3.29, inluding the data for the purely loal update for omparison. Fitting thefuntional form (3.38) to the data, for the �4 ase we �ndAhr2i = 0:0139(22);zhr2i=dh = 0:646(22);Q = 0:26; (3.47)while the data for �3 graphs �t best with the parametersAhr2i = 0:0112(17);zhr2i=dh = 0:668(21);Q = 0:49: (3.48)For both ases, the data points for N2 < 512 have been omitted due to too strongorretions to the leading FSS behaviour. The results for both types of graphs arerather niely ompatible with eah other as expeted from universality arguments,sine we apply the same kind of update proedure to both graph types.Obviously, the surgery update onsiderably redues the amplitude of the ritialslowing down proess as ompared to the results (3.40) and (3.42) of the purely loalupdate. However, somewhat surprisingly the dynamial ritial exponent zhr2i=dh is



110 CHAPTER 3. THE SIMULATION OF DYNAMICAL GRAPHS

64 256 1024 4096
N

2

0.5

1

2

4

8

τ in
t(r

2 )

local update
mixed update

Figure 3.29: Finite-size saling of the integrated autoorrelation times of the meansquare extent of dynamial �4 graphs from a simulation applying one part of minBUsurgery updates and three parts of one- and two-link ip moves (mixed update). Theresults from the pure link-ip dynamis of Fig. 3.25 are shown for omparison (loalupdate). The autoorrelation times are given in units of ten sweeps of the ombinedupdate. The graphs are taken from the regular ensemble. The solid lines denote �tsof the funtional form (3.38) to the simulation data.not redued, but ompatible with the value for the loal algorithm within statistialerrors. This might be partly an e�et of the onsidered rather small system sizes,whih ould entail di�erent orretion to saling terms for the two onsidered up-dates. We think, however, that the main reason for this disappointing performaneis given by the fat that the utting and gluing proess of \baby universes" doesnot hange very e�etively the overall size of the universe, whih is measured bythe mean square extent hr2i. This observation is in qualitative aordane with theresults of Ref. [75℄ for the Polyakov string, where the authors �nd zhr2i=dh = 0:76(3)for an update of the mixed type and dynamial triangulations. As will be shownbelow in Chapter 5, the performane gain of the minBU surgery method is overallbetter for di�erent observables and when oupling matter to the dynamial graphs.Finally, it should be noted that, of ourse, the integrated autoorrelation times re-



3.5. ENHANCING THE EFFICIENCY 111lated to the o-ordination number distribution are again ompatible with a onstantvalue of 1=2 as was found for the ase of the purely loal update in Setion 3.5.1.



Chapter 4
Vertex Models and TheirSimulation
Ie-type or vertex models on regular latties form one of the most general lassesof models of statistial mehanis with disrete symmetry (for reviews see, e.g.,Refs. [55, 56, 173℄). Speial ases of this lass of models an be mapped onto morewell-known problems suh as Ising and Potts models or graph olouring problems[55℄. For the ase of two-dimensional latties, a whole variety of suh vertex modelsan be solved exatly, yielding a very rih and interesting phase diagram inludingvarious transition lines as well as ritial and multi-ritial points [55℄. Thus, fortwo-dimensional vertex models one has the rare ombination of a rih strutureof phase transitions and an exeptional ompleteness of the available analytialresults. In view of these appealing properties it is of obvious interest to analyzethe behaviour of vertex models oupled to the random latties ourring in theframework of dynamial polygoni�ations.In this hapter we introdue the onept of vertex or ie-type models and summarizethe known exat results for the ase of regular latties. Due to the enoding of thevertex-model interations in restritions on the allowed on�gurations it is non-trivial to formulate eÆient algorithms for the simulation of suh models. The loopalgorithm [76℄, a luster algorithm for the simulation of rather general vertex models,will be used for the vertex-model simulations of this thesis. While its implementationfor ie-type models on regular latties is well doumented [174℄, for random lattiessome speial onsiderations have to be taken into aount. After summarizing thepriniples and implementation details of the loop algorithm, the speial neessities112



4.1. SQUARE-LATTICE VERTEX MODELS 113of a simulation of vertex models on random graphs will be addressed.4.1 Square-Lattie Vertex Models4.1.1 De�nition and basi propertiesAn ie-type or vertex model was �rst proposed by Slater [175℄ as a model for (type I)ie. It was known that ie forms a hydrogen-bonded rystal, i.e., the oxygen atomsare loated on a four-valent lattie and the bonding is mediated by one hydrogenatom per bond, whih has the additional property of being near one or the otherend of the bond. Slater proposed that the four hydrogen atoms surrounding anoxygen atom should satisfy the ie rule, stating that always two of them are in the\lose" position and two are in the \remote" position with respet to the onsideredoxygen atom. Denoting the position of the hydrogen atom by a deoration of thebond with an arrow pointing to the oxygen atom the hydrogen atom is loser to,this leads to the arrow on�gurations depited in Fig. 4.1 when plaing the oxygenson a square lattie; the other possible arrow on�gurations are exluded by the ierule. This annot, of ourse, be a realisti model for physial ie, whih is obviouslythree-dimensional; some properties of ie are, however, astonishingly well desribedby this square-lattie model. For instane, the per-site free energy of this square-lattie ie model an be shown [176℄ to be f = (43)3=2 � 1:540 in the thermodynamilimit, whih is surprisingly lose to the experimentally observed value for real ie off � 1:507 [56℄.In the original ie model all of the shown on�gurations our with equal probability,suh that the energies assoiated with the arrow on�gurations 1; : : : ; 6 shown in Fig.4.1 are all equal and an thus, by a suitable shift of the referene point, be arrangedto be all zero. More generally, one assigns energies �1; : : : ; �6 to the on�gurations,suh that the Hamiltonian of the model is given byH =Xi E(vi); E(vi) 2 f�1; : : : ; �6g (4.1)where the sum runs over all sites of the lattie and vi denotes the on�guration ofvertex i of the lattie. The vertex energies give rise to the orresponding Boltzmannweights, !j = exp(��j=kBT ); (4.2)



114 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATION- -661 � �??2 - -??3 � �664 - �?65 � -6?6Figure 4.1: Allowed arrow on�gurations for the 6-vertex model on the square lattie.In the ie model the arrows symbolize the position of the hydrogen atoms on thebonds onneting the sites where the oxygen atoms are loated. The allowed arrowon�gurations are restrited by the ie rule, stating that eah site must have twoinoming and two outgoing arrows.and the partition funtion of the model is given by,Z =Xfvig exp "�Xi E(vi)=kBT# : (4.3)Depending on the respetive hoie of the vertex energies �j, this more general 6-vertex model inludes models known by other names. As mentioned before, thehoie �1 = : : : = �6 = 0 (4.4)orresponds to the ie model. On the other hand, taking�1 = �2 = 0; �3 = : : : = �6 > 0; (4.5)results in the so-alledKDP model [175℄, whih is supposed to desribe the behaviourof KH2PO4, a hydrogen-bonded four-valent rystal that exhibits ferroeletri orderat low temperatures. Finally, setting�1 = �2 = �3 = �4 > 0; �5 = �6 = 0; (4.6)one arrives at the F model of anti-ferroeletris [61℄. In view of the vertex arrange-ments of Fig. 4.1 and the given energy hoies it is obvious that the KDP modelwill have a ground state onsisting entirely of the on�gurations 1 or 2 indiatingferroeletri order when interpreting the arrows as dipoles. On the other hand, thehoie of energies of the F model shows that its ground state will onsist of theon�gurations 5 and 6 and therefore is anti-ferroeletrially ordered with the arrow



4.1. SQUARE-LATTICE VERTEX MODELS 115- �6?7 � -?68Figure 4.2: Additional vertex on�gurations of the 8-vertex model. These on�g-urations form sinks and soures for the arrows and violate the ie rule. They areompatible, however, with the rule that eah vertex should have an even number ofinoming and outgoing arrows.diretions alternating between suessive bonds when traversing the lattie on hori-zontal or vertial lines. For a general hoie of the �j, symmetry onsiderations stillimpose some restrition. Namely, the fat that the model should be invariant undera reversal of all the arrows of the lattie implies that,�1 = �2; �3 = �4; �5 = �6: (4.7)Given the interpretation of the arrows as eletrial dipoles, this symmetry shouldbe present whenever no external eletrial �eld is applied1. In this thesis, we willexlusively onsider this zero-�eld model.As will beome obvious in the next setion, the 6-vertex model has some pathologieswhen onsidered as a model for solid state physis, whih follow from the strongonstraint on the allowed vertex on�gurations. This observation led Sutherland[177℄ and Fan and Wu [178℄ to the proposal to relax the ie rule and replae it bythe postulate that eah vertex should have an even number of arrows going into andout of it. This, obviously, inludes the on�gurations satisfying the ie rule, butadditionally allows \sinks" (7) and \soures" (8) of arrows as depited in Fig. 4.2.Assigning energies �7 and �8 to the newly introdued on�gurations, this de�nes the8-vertex model of statistial mehanis. Whenever periodi boundary onditions areimposed on the lattie, one has �7 = �8; (4.8)in addition to the restritions (4.7). To simplify notation, we introdue the variables1Note that the third ondition, �5 = �6, is always ful�lled on a lattie with periodi boundaryonditions, even if an eletri �eld is applied.



116 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATION(a) (b)

Figure 4.3: A on�guration of the square-lattie 6-vertex model in the original arrowformulation (a) and its transformation to the worldline piture (b) of losed, non-interseting lines. Periodi boundary onditions are assumed.a; b; ; d for the vertex weights,a = !1 = !2; b = !3 = !4;  = !5 = !6; d = !7 = !8; (4.9)whih are also used to label the verties of type 1 and 2 (a), 3 and 4 (b) et.Finally, we note for future referene that the 6- and 8-vertex models have alternativerepresentations as worldline models. Consider drawing a line on an edge of the squarelattie whenever its arrow points down or to the left and leaving it empty otherwise.In this way a given on�guration of the 6-vertex model is translated as shown in Fig.4.3 to a number of losed, non-interseting lines on the lattie (we assume periodiboundary onditions). For the 6-vertex model the number of present line-segmentsis idential for eah horizontal row of vertial edges of the lattie, while for the8-vertex model this number an vary between rows. This worldline piture is thenatural representation for the quantum spin models equivalent to ertain vertexmodels as will be desribed in Setion 4.1.3.4.1.2 Exat solution of the zero-�eld asesThe 6-vertex modelThe square-lattie, zero-�eld 6-vertex model has been solved exatly in the thermo-dynami limit by means of a transfer matrix tehnique by Lieb [62, 176, 179℄ andSutherland [180℄. As it turns out [55, 173℄, the analyti struture of the free energy
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Figure 4.4: The phase diagram of the square-lattie, zero-�eld 6-vertex model interms of the re-saled weights a= and b=. Phase boundaries are indiated by solidlines. The phases I and II are ferroeletrially ordered, phase IV exhibits anti-ferroeletri order and phase III onstitutes the disordered regime. The dashed linesdo not indiate phase boundaries, but denote the parameter ranges of the KDP andF models, respetively.is most onveniently parameterized in terms of the variable� = a2 + b2 � 22ab ; (4.10)suh that the free energy takes a di�erent analyti form depending on whether� < �1, �1 < � < 1 or 1 < �. This leads to a phase diagram of the modelonsisting of four distint phases as shown in Fig. 4.4. The phases I and II areboth haraterized by � > 1, thus orresponding to the same analyti form ofthe free energy. For phase I one has a > b + , suh that the on�gurations aredominated by the verties 1 and 2. Therefore, at low temperatures the systemorders ferroeletrially; the orresponding ground state is of the form shown in Fig.4.5(a). Phase II is haraterized by b > a + , i.e., it is related to phase I by asimple exhange of verties 1 and 2 by 3 and 4, whih orresponds to a rotation ofthe whole lattie by �=2. Thus phase II is also a ferroeletrially ordered phase. Inthe intermediate ase �1 < � < 1, orresponding to phase III, the vertex weightsful�l the relation a; b;  < (a+ b+ )=2. Sine this inludes the in�nite temperaturepoint a = b =  = 1, this region orresponds to the disordered phase. However, itan be shown [55,173℄ that the orrelation length is in�nite everywhere in phase III,
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Figure 4.5: Parts of the ground-state on�gurations of the 6-vertex model in phasesII and IV. (a) One of the two ferroeletrially ordered ground states in phaseII. It onsists entirely of the vertex on�guration 4. (b) One of the two anti-ferroeletrially ordered ground states of phase IV. The state onsists of verties5 and 6 at equal proportions. The dashed lines show one of the two tilted sub-latties, whih are ferroeletrially ordered.i.e., orrelations deay algebraially instead of exponentially. Nevertheless, there isno long-range ordering in this phase. This peuliarity an be traed bak to the fatthat the 6-vertex model orresponds to a ritial surfae in the phase diagram ofthe 8-vertex model [55℄. Finally, for � < �1 one has  > a + b, suh that in phaseIV the vertex on�gurations 5 and 6 dominate, leading to anti-ferroeletri order;the orresponding ground state is depited in Fig. 4.5(b).While the ferroeletrially ordered phases exhibit an overall polarization, whih anbe used as an order parameter for the orresponding transition, the anti-ferroeletriorder of phase IV is aompanied by a staggered polarization with respet to a sub-lattie deomposition of the square lattie. That is, when deomposing the squarelattie into two new square latties tilted by �=4 against the original one as shown inFig. 4.5(b), the anti-ferroeletri ground states orrespond to a ferroeletri orderingof the verties of the sub-latties with opposite signs of the overall polarization ofthe sub-latties. An order parameter for the orresponding transition an be de�nedby introduing overlap variables �i for eah vertex of the lattie suh that [55℄,�i = vi � v0i ; (4.11)where v0i denotes the anti-ferroeletri ground-state on�guration depited in Fig.



4.1. SQUARE-LATTICE VERTEX MODELS 1194.5(b) and the produt \�" denotes the overlap given byv � v0 � 4Xk=1 Ak(v)Ak(v0); (4.12)where k numbers the four edges around eah vertex and Ak(v) should be +1 or�1 depending on whether the orresponding arrow of v points out of the vertex orinto it. Then, the spontaneous staggered polarization h�ii=2 = h�i=2 vanishes in thedisordered phase and approahes unity for low temperatures in phase IV and anthus be used as an order parameter for the anti-ferroeletri transition.The transitions between the phases I{IV an be analyzed from the exat expressionfor the free energy of the model [62, 176, 179, 180℄. We onsider the temperatureT as the external parameter to be tuned, whereas the vertex energies �j are kept�xed. Then, starting from one of the ordered, low-temperature phases I, II or IV,inreasing the temperature one traes out a path in the phase diagram whih alwaysends at the in�nite-temperature point a = b =  = 1 in phase III, f. Fig. 4.4. Thetransition temperatures an be easily inferred from the exat phase boundaries ofthe phase diagram Fig. 4.4. The transitions I! III and II! III are disontinuous or�rst-order phase transitions between the ferroeletrially ordered and the disorderedregimes [55℄. However, in the ferroeletrially ordered phases the model has thepeuliarity of stiking to the ground states throughout the whole phase, i.e., alsofor non-zero temperatures. This is due to the fat that the simplest deformation ofthe ground state depited in Fig. 4.5(a) onsists of reversing the arrows of a wholeline of bonds spanning the lattie2. In the thermodynami limit, this orresponds toan in�nite amount of energy and thus does not our within the phases I or II. Onthe other hand, the anti-ferroeletri transition III! IV is also rather pathologial.The singular part of the free energy density an be shown to behave as [55℄fsing / exp(�onst=jtj 12 ); (4.13)i.e., all temperature derivatives exist and vanish exponentially as jtj ! 0. Thisorresponds to a phase transition of in�nite order, known from the XY model asKosterlitz-Thouless (KT) phase transition [63, 64℄.2Obviously it is also possible to ip the arrows around one of the elementary plaquettes, i.e.squares. This, however, would produe verties of the types 5 and 6, whih are strongly suppressedin the ferroeletrially ordered phases at low temperatures.



120 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONThe 8-vertex modelThe inlusion of the verties 7 and 8 of Fig. 4.2 allows one to make loal, �nite-energydeformations of the ferroeletri ground states and thus one expets less pathologialbehaviour from the resulting 8-vertex model. In the thermodynamial limit, it anbe solved exatly by means of the method of \ommuting transfer matries" andthe \star-triangle relation" [59, 60℄. The parameter � lassifying the phases is nowgeneralized to � = a2 + b2 � 2 � d22(ab + d) : (4.14)Depending on the value of �, the system is on�ned in one of �ve phases [59, 60℄:I. Ferroeletri: a > b + + d, � > 1,II. Ferroeletri: b > a+ + d, � > 1,III. Disordered: a; b; ; d > (a+ b + + d)=2, �1 < � < 1,IV. Anti-ferroeletri:  > a+ b + d, � < �1,V. Anti-ferroeletri: d > a + b+ , � < �1,whih an be mapped onto eah other exploiting ertain symmetry relations of themodel [55℄. In the generi ase, the phase boundaries de�ned by the above relationsorrespond to seond-order phase transitions. It an be shown [59, 60℄ that for thisgeneri ase the singular part of the free energy sales in the viinity of the phaseboundaries as fsing � jtj�=�; (4.15)where now t is a generalized redued temperature variable and the ritial value of� is given by tan(�=2) =pd=ab: (4.16)From the given saling form of the free energy it is obvious that the ritial exponentsresulting from this saling also depend on �; in partiular, one �nds [60℄� = �=16�; � = �=2�;  = 7�=8�; (4.17)suh that the ritial exponents vary ontinuously with the parameter �. Obviously,this is in ontradition with the usual notion of universality of ritial exponents.



4.1. SQUARE-LATTICE VERTEX MODELS 121The situation an be reoniled with the expetations based on the onept of weakuniversality [181℄, whih suggests that instead of expressing the saling ansatz interms of the parameter jtj, one should formulate saling in terms of the orrelationlength �. This leads, very similar to the ase of �nite-size saling, to an additionalfator of 1=� multiplying all of the other exponents, and the renormalized exponents,� 0 � �=� = 18 ; 0 � =� = 74 ; (4.18)are onstant and independent of the value of �. At the exeptional points � = �=n,where n is an integer, the saling relation (4.15) is no longer valid and must beeither augmented by a logarithmi orretion (n even) or is even replaed by aompletely di�erent formula (n odd). This latter ase espeially inludes the �rst-order ferroeletri transitions present in the phase diagram of the 6-vertex model,whih obviously must be inluded in the more general 8-vertex model as the limitingase d = 0. The speial ase � = 0 orresponds to the Kosterlitz-Thouless typeanti-ferroeletri phase transition of the 6-vertex model. From the point of view ofthe 8-vertex model it is found that the disordered phase III of the 6-vertex modelorresponds to a ritial surfae of the 8-vertex ase; this explains the divergene ofthe orrelation length throughout this whole phase.4.1.3 Transformations and speializationsThe quite general 8-vertex model inludes several interesting speial ases. Ad-ditionally, it an be mapped onto a multitude of di�erent problems of statistialmehanis and graph theory. We will only briey summarize the most important ofthese orrespondenes. The most obvious limiting ase is that of the 6-vertex model,whih is obtained for d = 0 and in turn omprises as speial ases the ie and Fmodels, among others. The ie model itself an be mapped to a variety of ountingproblems, inluding that of dimers on the square lattie [56℄ and the three-olourfae-olouring problem of the square lattie [55℄.The 8-vertex model, on the other hand, is equivalent to a non-interating many-fermion system for the speial hoie of weights [182℄a2 + b2 = 2 + d2; (4.19)whih thus de�nes the free-fermion model , whih is of interest sine it an be solvedusing PfaÆans, suh that one does not need the muh more elaborate ansatz used



122 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONto solve the general 8-vertex model [55℄. One of the most important transformationsis that of the 8-vertex model in an eletri �eld to a zero-�eld Ising model3 on thesquare lattie, inluding nearest-neighbour, next-nearest-neighbour and four-spininterations [55, 182℄. Espeially, by means of a suitable sub-lattie deomposition,this model an be onsidered as the sum of two ordinary, nearest-neighbour Isingmodels on the sub-latties oupled by four-spin interations. For a ertain hoieof the vertex weights this oupling an be removed suh that the resulting model isthat of two unoupled Ising models [56℄ and the partition funtions are related asZ8V = 2ZIsing: (4.20)Alternatively, the 8-vertex model an be mapped onto an Ising model with only two-spin interations, whih are then between nearest neighbours and next-next-nearestneighbour spins [55℄.Furthermore, the 8-vertex model is equivalent to the XYZ hain quantum spinmodel with HamiltonianH � �12Xhji Hjj+1 = �12Xhji [Jx�xj �xj+1 + Jy�yj �yj+1 + Jz�zj�zj+1℄; (4.21)where the �j are quantum spin-1=2 operators at the sites j and hji denotes sum-mation over the hain assuming periodi boundary onditions. Here, \equivalene"means identity of the eigenvalues of the respetive transfer matries [177℄. Thetransformation revealing this equivalene an be demonstrated in the worldline rep-resentation of the XYZ hain [183℄, whih an be skethed as follows (see, e.g.,Ref. [155℄). Split the Hamiltonian (4.21) into ommuting piees,H = Heven +HoddHeven;odd = Xj: even;oddHjj+1; (4.22)and perform a Trotter-Suzuki breakup [184, 185℄,Z = Tr e��H = limLt!1ZTr = limLt!1Tr �e� �LtHevene� �LtHodd�Lt ; (4.23)where Lt denotes the number of (imaginary) time slies used in the disretisation.Inserting omplete sets of �z eigenstates, one arrives at the worldline representation,ZTr =XSzjt W (fSzjtg) =XSzjt Yp Wp(fSpg); (4.24)3Note that the most general 16-vertex model on the square lattie (whih has not been solved)is equivalent to two Ising models in a magneti �eld (whih has also not been solved) [56℄.
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Figure 4.6: Worldline and vertex-model representations of the XYZ quantum spinhain. (a) Classial spin variables Sz = �1 living on the orners of the shaded pla-quettes and denoted by arrows pointing upward (+1) or downward (�1) in the ver-tial time diretion. The arrow on�gurations orrespond to those of a tilted square-lattie 8-vertex model with speial boundary onditions. (b) The same on�gurationin the worldline representation. () Plaquette on�guration of the Heisenberg-Isinghain orresponding to an arrow on�guration of the 6-vertex model. (d) The or-responding worldlines.whih is a sum over lassial spin variables Szjt = �1 living on a hekerboardlattie with the original spae diretion j = 1; : : : ; N and an additional (imaginary)time diretion t = 1; : : : ; Lt, f. Fig. 4.6(a). The on�gurational weights W (fSzjtg)an be broken up into weights Wp(fSpg) assoiated with the elementary plaquettesp = [(j; t); (j+1; t); (j; t+1); (j+1; t+1)℄ of the lattie. As it turns out [155℄, only theweights of plaquettes with an even number of up and down spins give non-vanishingontributions. Thus, depiting the spin values Sz by arrows pointing upwards ordownwards in imaginary time diretion as shown in Fig. 4.6(a), the resulting arrow



124 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONon�gurations on the shaded plaquettes ful�l the generalized ie-rule of the 8-vertexmodel4. On the other hand, as mentioned above, the on�gurations of the square-lattie vertex model an be depited as losed, oriented, non-interseting lines (orpolygons), f. Fig. 4.3(b); thus one arrives at the worldline representation of theXYZ quantum hain depited5 in Fig. 4.6(b).Speial ases of the XYZ quantum hain are the (quantum) Heisenberg model (Jx =Jy = Jz), the XY model (Jz = 0), the XZ hain (Jy = 0) and the so-alledHeisenberg-Ising orXXZ model (Jx = Jy). As it turns out, theXZ limit orrespondsto the speial ase of the 8-vertex model equivalent to two unoupled, nearest-neighbour Ising models, the XY model orresponds to the free-fermion model limitand the Heisenberg-Ising hain is equivalent to the 6-vertex model [55℄. For thelatter ase, the number of orresponding worldlines is onserved in the imaginarytime diretion as depited in Figs. 4.6() and (d).Further transformations an be found when onsidering the 8-vertex model on theKagom�e lattie (whih is four-valent like the square lattie). This model is alsoexatly solvable and has further orrespondenes to well-known models of statisti-al mehanis. Namely, it inludes the triangular and honeyomb lattie nearest-neighbour Ising models, the triangular and honeyomb ritial q-state Potts modelsand an Ising model with (only) three-spin interations on the triangular lattie [55℄.4.2 The Loop AlgorithmAs mentioned above in the introdution of this hapter it is hard to formulate aneÆient update for vertex models due to the strong onstraints on the allowed ar-row on�gurations. A trivial loal update would be to ip the arrows around theelementary plaquettes of the lattie, e.g., the squares for the ase of the squarelattie. This algorithm, however, su�ers from ritial slowing down with the dy-namial ritial exponent z � 2 typial for loal algorithms [174℄. For the 6-vertexmodel one has the additional ompliation of a massless disordered phase, suh that4Note, however, that due to the tilting of the lattie the equivalent 8-vertex model aquiresrather unonventional boundary onditions.5Note that the way the worldlines are drawn is slightly di�erent from the presentation of Fig.4.3(b), sine here the line segments are drawn on the links of the hekerboard lattie and not onthose of the lattie formed by the vertex model arrows.



4.2. THE LOOP ALGORITHM 125autoorrelation times are expeted to be large throughout this whole region. When-ever luster algorithms [168, 171, 186, 187℄ an be found they are usually the mosteÆient updates in the viinity of ontinuous phase transitions. This was for the�rst time ahieved for the ferromagneti, nearest-neighbour Ising, Potts and O(n)models [168, 171℄. As ould have been onjetured from the lose relation of vertexmodels to spin models suh as the Ising and Potts models, it is possible to formulateluster algorithms for vertex models, too. The most prominent of these algorithmsis given by the loop algorithm [76, 174, 188, 189℄.4.2.1 Idea and outlineIn a formal desription, the basi idea of luster algorithms is that of a transfor-mation of the representation of the model under onsideration from the \natural"state spae variables suh as, e.g., the spin variables of the Ising model, to an en-larged spae of states, additionally omprising graph variables, whih are usually asubgraph of the lattie under onsideration and are for eah on�guration \ompat-ible" with the original (e.g. spin) variables [186, 187, 190℄. This is the generalizednotion of a Fortuin-Kasteleyn representation [191℄. Then, new statistial weightsare hosen in the enlarged phase spae in whih the luster simulation is performed.While for the Ising model the relevant graph variables are bonds of the lattie thatare hosen to be ativated or passive, for the loop algorithm the graph variables aredeompositions or breakups of the verties and the surrounding edges. The possiblebreakups for a four-valent lattie are shown in Fig. 4.7. As for the bonds in the Isingase, whih an only be set between parallel spins, not every breakup is ompatiblewith a given on�guration of the vertex model.After the graph transformation, i.e., after hoosing a breakup for eah vertex of thelattie, a new on�guration, whih is also in agreement with the hosen breakup,is ahieved by a suitable ipping of the arrows on the lattie bonds. This an bedone in the following way. Interpreting the vertex arrows as a disrete vetor �eld,the ie-rule of the 6-vertex model translates to the ondition of zero divergene ofthis �eld. Analogously, the generalized ie-rule of the 8-vertex model is equivalentto the statement that the orresponding vetor �eld should have zero divergene\mod 4". As a onsequene, every on�guration of the 6- or 8-vertex models anbe onstruted from a given referene on�guration by a reversal of the arrows of
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1 2 3 4Ga, Gbd Gb, Gad Gab, Gd G��Figure 4.7: Possible vertex breakups for the 8-vertex model. The breakups G�� arelabelled by the vertex energies a; b; ; d, suh that a symbolizes verties 1 and 2, bverties 3 and 4 et. of Figs. 4.1 and 4.2. The breakup G�� is possible for a vertexof type � 2 fa; b; ; dg and it is taken to on�guration �, if the orresponding loop isipped. For the 6-vertex model, transitions with label d do not our. The breakupsG�� orrespond to a freezing of the onsidered vertex, i.e., a ip does not hangethe vertex weight sine all arrows are ipped together.a number of losed loops on the lattie6, with an \almost onstant" diretion ofthe arrows along them [76℄. Here, the restrition to \almost onstant" takes areof the verties 7 or 8 of the 8-vertex model, where the loops have to hange theirarrow diretion. This set of loops is uniquely de�ned from the arrow on�gurationof the vertex model in ombination with the hosen breakups of the verties. Toonstrut it, start to \grow" a loop at a given bond of the lattie, walking in thediretion of the arrows. Eah time you hit a site of the lattie, the walk ontinues inthe diretion indiated by the breakup of the orresponding vertex, i.e., it turns tothe left or right for breakups 1 and 2 or it goes straight on for breakup 3 (breakup4 will be disussed later), f. Fig. 4.7. For verties of the types 7 or 8 the loophanges its arrow diretion at that site. Due to the (generalized) ie rule, eahwalk onstruted in this way eventually returns to the vertex it originated from,thus losing it to a loop. Repeating this onstrution until eah bond of the lattiehas been visited, deomposes the lattie into a set of suh loops. Then, the newvertex-model on�guration is found by independently proposing to invert the arrowdiretion along eah loop with a probability of, say, one half. This is ompletelyanalogous to the proposal of luster ips in the Swendsen-Wang luster algorithmfor the Ising model [171℄.6Note that the suh de�ned loops are possibly self-interseting, in ontrast to the worldlinesonsidered above.
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Figure 4.8: A loop luster (blak solid lines) built on top of a on�guration of the6-vertex model on a 8� 8 lattie with periodi boundary onditions. The numbers1{4 near the verties indiate the hosen breakups aording to Fig. 4.7. At thevertex with breakup 4 (blak dot) two loops are glued together to form the loopluster. For illustration purposes, the breakups are only shown along the path ofthe presented loop luster.The type-4 breakup of Fig. 4.7, also alled freezing of a vertex, requires a di�erenttreatment. On oming aross a frozen vertex, one hooses (at random) one of thebreakups 1 to 3 ompatible with the given vertex on�guration to determine thediretion to leave the vertex. After losing the loop, one has to grow a seond loopstarting from one of the bonds of the frozen vertex that have not yet been touhed.Then, these two loops are glued together to form a loop luster , i.e., one proposes toip them together. As a onsequene, the statistial weight of the frozen vertex doesnot hange, sine all four of the adjaent arrows are ipped or left unhanged. Thisfreezing proedure orresponds to the ativation of bonds in the Swendsen-Wangalgorithm, whih there entails that two spins are always ipped together. Thus,



128 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONtaking the onept of freezing into aount, eah vertex on�guration is deomposedinto a set of loop lusters, whih then are ipped independently with a given proba-bility to arrive at the new vertex model on�guration. Figure 4.8 shows an exampleof suh a luster of loops ourring in a loop algorithm simulation of the 6-vertexmodel.Thus, we have the following reipe for the luster algorithm for the 6- and 8-vertexmodels:(a) For eah site of the lattie, hoose one of the breakups 1{4 with suitably hosenprobabilities, whih solely depend on the vertex on�guration at the respetivesite.(b) Deompose the vertex on�guration into a set of loop lusters. To do so,hoose a lattie edge at random and walk along the bonds following the arrowdiretions. At eah site, hoose the diretion presribed by the breakups de-termined in step (a). If freezing ours at a site, hoose one of the breakups1{3 at random to ontinue the loop and (after �nishing the urrent loop) growanother loop at the same site, whih is glued to the �rst loop to a loop luster.For the 8-vertex model, when hitting upon a vertex of types 7 or 8, hangethe orientation of the loop. Repeat this proess, until all bonds are touhedby a loop.() Flip eah loop luster independently with a onstant probability of, e.g., onehalf. Here, \ipping" means reversing the diretion of all the vertex arrowsalong the loop.(d) With the new vertex-model on�guration, start again with the breakup step(a).4.2.2 Choie of the breakup probabilitiesIn the general sheme of Refs. [186, 187, 190℄ the enlargement of phase spae toinlude the breakups is expressed by the fat that the weight funtion of Eq. (4.3),W (V = fvig) = exp[�Xi E(vi)=kBT ℄; (4.25)



4.2. THE LOOP ALGORITHM 129is replaed by a generalized weight funtion W (V;G), suh thatXG W (V;G) = W (V); W (V;G) � 0; (4.26)where G = fGig denotes the set of hosen vertex breakups. This results in a Fortuin-Kasteleyn type representation of the partition funtion (4.3),Z =XV XG W (V;G): (4.27)Then, a luster-update Monte Carlo simulation onsists of the two steps of hoosingthe breakups with probabilityp[V ! (V;G)℄ = W (V;G)W (V) ; (4.28)seleting a new on�guration V 0 of the spin or vertex variables and aepting themove V ! V 0, e.g., with the heat-bath probabilityp[(V;G)! (V 0;G)℄ = W (V 0;G)W (V;G) +W (V 0;G) ; (4.29)where we have already assumed that the graph on�guration is not hanged by theip, i.e., G 0 = G [186℄. Sine the breakup proess is done independently for eahvertex, the generalized weight funtion fatorizes,W (V;G) =Yi w(vi; Gi); (4.30)where the index i runs over all sites of the lattie7. In order to be able to ip theloop lusters independently, one additionally assumes that the loal weights are nothanged by the ip operation, i.e.,w(v;G) = w(v0; G): (4.31)Then, the luster ip probability (4.29) beomes a onstant and an be hosen tobe, e.g., p[(V;G) ! (V 0;G)℄ = 1=2. The ondition (4.31) an be obviously realizedby onsidering a �xed set of vertex breakups G��, whih allow exatly the transitionof a vertex from type � to type �, suh that the orresponding weights are given byw(v;G��) = ( w��; if v is of type �;0; otherwise; (4.32)7In general, one has to take an overall fator Aglobal(V) into aount here. However, for thease of zero-�eld vertex models, one an hoose Aglobal(V) = onst [76℄.



130 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONwhere the onstants w�� = w�� are taken symmetri in their indies to honour Eq.(4.31).Suitable onstants w�� an always be found, see Refs. [76, 188℄. However, theyare not uniquely de�ned by the present onstraints. Within the range of allowedvalues, an optimum an be attained guided by the priniple of minimal freezing :it is intuitively obvious that freezing of verties, i.e., the assignment of breakupsof the type G�� of Fig. 4.7, whih glues two loops together to a loop luster to beipped together, tends to inrease the orrelation between suessive on�gurationsgenerated by the loop algorithm. This onjeture is on�rmed by numerial results[174℄. Thus, minimizing w�� should result in the most eÆient algorithms. Wepresent here the optimal weights for the ase of the 6-vertex model. As it turnsout [188℄, the ondition of minimal freezing gives distint solutions for di�erentregions of the fa; b; g parameter spae. In fat, these regions oinide with thephases I{IV of the 6-vertex model disussed above in Setion 4.1.2. Depending onthe phase, the optimal weights are given in the following list [76℄.(I) Ferroeletri phase I : Here, a > b +  and the non-zero weights arewab = wba = b;wa = wa = ; (4.33)waa = a� � b;i.e., freezing ours only for verties of the types 1 and 2.(II) Ferroeletri phase II : For b > a + , the weights are given by interhangingindies b and  from phase I and freezing of b verties instead of a verties,wab = wba = ;wa = wa = b; (4.34)wbb = a� � b:(III) Disordered phase III : For a; b;  � (a+b+)=2 one an avoid freezing and has,wab = wba = (b+ a� )=2;wa = wa = (a+ � b)=2; (4.35)wb = wb = (+ b� a)=2:



4.2. THE LOOP ALGORITHM 131(IV) Anti-ferroeletri phase IV : For  > a+ b one has,wa = wa = a;wb = wb = b; (4.36)w = � a� b;suh that freezing only ours for verties 5 and 6.For eah phase, the weights not listed above are taken to be zero in the orrespondingregion.4.2.3 Pratial appliation and testsFor the further disussion we speialize on the ase of the 6-vertex model, whih isof main interest in this thesis.Ergodiity and detailed balaneThe issues of ergodiity and detailed balane an be quite straightforwardly settledfor the loop algorithm. Ful�lment of the detailed balane ondition follows triviallyfrom the onstrution of the weights from Eq. (4.28). Sine, as a onsequene ofthe (generalized) ie rule, any two vertex on�gurations are related to eah otherby a unique set of loop ips [56℄, ergodiity of the algorithm is obvious if all w��are hosen non-zero. For the speial hoies of weights presented above, where someof the breakups do not our, one has to hek expliitly that ergodiity is stillguaranteed. This is in general easy to see by inspetion [76℄. The only region,where some problems an our is the anti-ferroeletri phase IV. In terms of theequivalent quantum spin model in its worldline representation, the magnetizationorresponds to the number of worldlines present as an be seen from Fig. 4.6. Itan only be hanged by ipping loops that wind around the lattie in temporaldiretion. With the given hoie of weights for phase IV, however, the loops hangediretion at every site of the hekerboard lattie of Fig. 4.6. Thus, if the lattiehas an odd number of rows (orresponding to a frustrated anti-ferromagnet), loopswith non-trivial temporal winding numbers annot be onstruted with the givenweights. In that ase, one has to introdue breakups of the type Gab with a �niteprobability and adapt the other weights orrespondingly [76℄. However, for the



132 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONsimulations on random latties of the topology of a sphere onsidered in this thesis,this \topologial" problem an obviously not our.Implementation and testIt should be obvious from the previous disussion that the loop algorithm is withsuitable adaptions in the treatment of the lattie part appliable to any four-valentgraph with orientable faes, i.e., with a ylial ordering of the links. Thus, it anbe easily employed for vertex models on the �4 graphs disussed in the previoushapter. We hoose a four-bit enoding of the vertex arrows in order to have aneasy aess to the diretions of the arrows on the links as well as the total type 1{6of the on�guration of the vertex. To hek the proper funtioning of the algorithm,we performed simulations for the F model (f. Eq. (4.6)) on a 4� 4 square lattiewith periodi boundary onditions with the same program used for the true randomlattie simulations, but with no lattie-update moves employed. Deviations from theexpeted orret results are expeted to be most prominent for suh small lattiesizes. The outomes of these simulations are ompared to the exat expression forthe F model on the onsidered lattie, found by a brute-fore summation of thepartition funtion (4.3), whih an be somewhat simpli�ed by exploiting the speialsymmetries of the F model. As shown in Fig. 4.9 the loop algorithm simulationswith the hoie of weights given above give results in perfet agreement with theexat expressions. From the ondition  = a + b for the boundary line betweenphases III and IV of the 6-vertex model, one �nds the KT transition to happenat � = 1=kBT = ln 2, assuming �a = �b = 1 for simpliity. The loation of thepeaks of the spei� heat and the polarizability are in qualitative agreement withthis transition point.PerformaneSine the typial extent of the objets onsidered in a luster algorithm oinideswith the orrelation length when operating at ritiality, luster algorithms promisethe most substantial eÆieny gain for a system in the viinity of a ontinuousphase transition. The dynamial ritial exponent z is usually largely redued, and,in some ases, even ompatible with an only logarithmi growth implying z = 0, see,e.g., Ref. [193℄. A similar redution of ritial slowing down has been observed for the
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Figure 4.9: Spei� heat per site (a) and the polarizability belonging to the stag-gered polarization of Eq. (4.11) (b) of the F model on a 4 � 4 square lattie withperiodi boundary onditions from loop-luster Monte Carlo simulations of 5� 105measurements eah. The solid lines show the exat results from a brute-fore sum-mation of the partition funtion exploiting the symmetries of the model. The drawnerror bars are mostly hidden by the plotting symbols. The F model exhibits aKosterlitz-Thouless type phase transition at � = ln 2 � 0:693.
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Figure 4.10: Integrated autoorrelation time of the energy E for a loop-algorithmsimulation of the F model on a 4�4 square lattie with periodi boundary onditions.As typial for luster algorithms, the performane is optimal in the ritial regime(for a similar presentation for the Swendsen-Wang dynamis of the Potts model,see Ref. [192℄). The autoorrelation times and the related statistial errors wereestimated using the methods presented in Appendix A.4.
loop algorithm. As an example, for the F model at ritiality one �nds z = 0:71(5)as ompared to z = 2:2(2) for the loal algorithm ipping the arrows around theelementary plaquettes [174℄. Sine phase III is massless, one expets dynamialsaling to work for all � < � and �nds z to derease with dereasing � [174℄. We didnot perform a detailed analysis of dynamial saling for the loop algorithm applied tovertex models on regular latties sine we are mainly interested in the random lattiebehaviour. However, to illustrate the fat that a major performane improvementfor luster algorithms as ompared to loal updates an only be expeted in theviinity of a ritial point, in Fig. 4.10 we present the integrated autoorrelationtime of the internal energy for the loop-algorithm simulation of the F model on a4� 4 lattie disussed above.



4.3. VERTEX MODELS ON RANDOM �4 GRAPHS 135Single luster variantIt should be noted that the loop algorithm an be easily adapted to the onept ofa single luster update [168℄, whih often yields even further redutions of z and/orthe orresponding saling amplitude. This is done by just growing a single loopluster and doing the breakups \on the y". However, sine we �nally have to mixthe loop update with the (di�erent) updates of the random graphs, it is desirable tohave a �xed proportion between updates of the graph and matter parts. Therefore,we prefer to use the desribed multi-luster variant. As will be demonstrated in thenext hapter, the autoorrelations related to the graph dynamis are muh largerthan those of the vertex model, suh that the minor di�erenes between variants ofthe loop algorithm do not matter here.
4.3 Vertex Models on Random �4 Graphs4.3.1 Additional symmetryPutting a vertex model onto a random four-valent graph suh as the quantum gravity�4 graphs disussed in the previous hapters imposes some additional restritionson the lass of vertex weights that an be sensibly onsidered. The ferroeletriallyordered phases I and II of the 8-vertex model and the order parameter desribingthe orresponding phase transition depend on the existene of a global notion ofdiretion. The (plain, not staggered) polarization assoiated with the transitionorresponds to the reation of the system to an exterior eletri �eld of onstantdiretion. On a random graph, the notions of suh a global orientation and onstantdiretion are malde�ned. The only loal orientational struture available is that ofthe verties and faes of the graph and their distanes from eah other in terms ofthe geodesi metri of the graph.To demonstrate the onsequenes of this \loss of diretion", onsider the KDP 6-vertex model oupled to planar �4 random graphs. On the square lattie this modelexhibits a �rst-order phase transition to a ferroeletrially ordered phase onsistingof verties 1 and 2, f. Fig. 4.4. The mehanism driving this transition is a symmetrybreaking between the verties of types a and b. The transition ours at the point



136 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONwhere the verties a attain the same weight as the sum of the other two types, i.e.,1 = a = b +  = 2 exp(��); (4.37)where we have re-saled �b = � = 1 for simpliity; this implies � = ln 2. Now, on arandom graph of the desribed type verties of the types a and b an obviously notbe distinguished, sine they are related to eah other by rotations (of an angle of�=2). Sine we only have a yli ordering of the links around eah vertex, di�erentrotational orientations of the vertex on�gurations annot be distinguished. Thus,for an 8-vertex model oupled to quantum-gravity random �4 graphs, one has toassume that a = b; (4.38)while the other vertex types an still be distinguished with only a yli ordering ofthe links around eah vertex. For the 6-vertex model this leaves only two prinipallydi�erent hoies of models to be sensibly onsidered: the F model with �a = �b = 1,� = 0 and the so-alled inverse F (IF ) model with �a = �b = �1, � = 0. The latter,however, an be shown to have no ordered phase and thus no phase transition. Sinethe additional disorder introdued by the random graphs an be hardly expeted tomake an ordered phase appear, this model is of little interest for statistial mehanisand �eld theory and will thus not be onsidered further. For the 8-vertex model oneis left with a generalized F model. On the square lattie it has two anti-ferroeletriphases dominated by verties of types  or d, respetively. The square-lattie phasediagram of this model is illustrated in Fig. 4.11.In a omputer program for the simulation of vertex models oupled to �4 graphsthe rule a = b an obviously be broken, sine a formal distintion between vertiesa and b is automatially made. Sine, however, the dynamis of the random graphsdoes not respet this distintion, a ferroeletri order an impossibly our. As ademonstration of this we present a short san of the behaviour of a formally de-�ned \KDP model" oupled to planar random �4 graphs. As an be seen from Fig.4.12, the spei� heat of the model exhibits a maximum for very low temperatures,mimiking the behaviour at a physial phase transition. However, this is only aonsequene of the fat that the graph dynamis is subjet to freezing as the tem-perature is lowered. Eventually, no allowed ip moves remain and, onsequently,no energy hanges our, leading to a derease of the spei� heat. This meha-nism obviously annot orrespond to a physial phase transition, sine an allowedyli re-labelling of the links of some verties of the graph orresponds to the same
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Figure 4.11: Phase diagram of the 8-vertex generalized F model on the squarelattie, whih is a ut of the phase diagram of the full 8-vertex model resulting fromthe ondition a = b. The phases IV and V are anti-ferroeletri and verties of types and d, respetively, dominate. Phase III is the disordered phase.physial situation, but would (in general) lead to an energy hange sine vertiesof the type a are transformed into verties of type b and vie versa, and a 6= b isassumed. As a omparison, in Fig. 4.12 we plot the spei� heat of the F modelon the same graphs, whih | as will be shown in the next hapter | exhibits aphysial, ontinuous phase transition to an anti-ferroeletrially ordered phase.4.3.2 The order parameterFor the square lattie an order parameter for the anti-ferroeletri transition ofthe F model ould be de�ned by a suitably alulated overlap between the atualstate and one of the two anti-ferroeletrially ordered ground states of the model.On a random graph, the orresponding ground states are not so easily found and,moreover, vary between di�erent realizations of the onnetivity of the graph. Thus,this notion of an order parameter annot easily be generalized to the vertex modelson random graphs.To enable a generalization of the anti-ferroeletri order parameter to the ase ofrandom graphs, the vertex model has to be transformed to one of its numerous equiv-alent representations. Struturally, the anti-ferroeletrially ordered state has been
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Figure 4.12: Spei� heat of a formally de�ned \KDP model" oupled to randomplanar �4 graphs with labelled links and N2 = 256 verties as a funtion of theinverse temperature � = 1=kBT . Its maximum for very low temperatures does notindiate a phase transition, but is merely an artefat of the labelling of the links.For omparison, the spei� heat of the F model oupled to the same latties isshown, whih exhibits a physial phase transition.desribed as one of ferroeletri order on two omplementary sub-latties, with theoverall diretion of the polarization hosen opposite to eah other on the sub-latties.A deomposition of the square lattie of this kind orresponds to a bipartition ortwo-olouring of its sites, f. Fig. 4.5(b). This property of the deomposition pre-vents an immediate generalization to a random �4 graph, whih is, in ontrast tothe square lattie, not neessarily bipartite. This follows from the following lemma:a graph is bipartite if and only if it has no yles, i.e. losed paths, of an odd length.Obviously, suh an odd-length yle would not allow a labelling of the verties metwhen traversing it with alternating olours. The proof of the inverse statement,namely that a graph without odd yles is bipartite, is a bit more intriate and anbe found, e.g., in Ref. [194℄. However, the planar random �4 graphs onsidered inthe previous hapter obviously inlude yles of odd lengths, for example triangularfaes; this an be expliitly heked by inspetion of the o-ordination number dis-
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Figure 4.13: Transformation of the square-lattie 6-vertex model to a \spin" modelon the dual lattie. The four links of eah plaquette of the lattie are traversedounter-lokwise. The \spin" values written in the entres of the plaquettes arethe sum of �1 around the plaquettes, where +1 is hosen for arrows pointing in thediretion of the traversal and �1 for arrows pointing against it. Thus, the ourring\spin" values are 0;�2;�4.tributions presented in Fig. 3.20, whih have non-zero entries for odd o-ordinationnumbers of the quadrangulations, orresponding to odd-length fae yles (loops) ofthe �4 graphs.As mentioned above, when interpreting the vertex-model arrows as a disrete vetor�eld on the lattie, the ie rule for the 6-vertex model translates to a zero-divergeneondition for this �eld. Therefore, it is essentially haraterized by its url. We thustransform the vertex model from its interpretation as a �eld on the links of theoriginal lattie to a representation of the url of this �eld on the faes of the lattieor, equivalently, the sites of the dual lattie. This is done by integrating the vertexmodel arrows around the elementary plaquettes; by Stokes' theorem, the result ofthis integral is the url assoiated with the enlosed plaquette. By onvention, theplaquette boundaries are traversed in a ounter-lokwise orientation. Then, arrowsalong the diretion of motion ontribute +1 to the integral and, orrespondingly,



140 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONarrows pointing against the orientation of traversal add �1. On the square lattiethe resulting \spins" on the plaquettes an assume the values 0, �2, �4. This isdemonstrated in Fig. 4.13. In this way, the 6-vertex model an be transformed to asort of \spin model" on the dual of the original lattie (whih is also square for theonsidered ase). Note, however, that one still has restritions for the \spin" valuesallowed between neighbouring plaquettes, whih would lead to rather umbersomeinteration terms when trying to write down a Hamiltonian for this \spin" model8.Obviously, the mapping between both representations is not one-to-one, sine therean be more than one arrow on�guration ompatible with a given url around theplaquettes. As a onsequene of the de�nition, the sum of the plaquette valuesinside any yle of the lattie is equal to the integral of the arrow diretions alongthe yle. Espeially, for a (�nite) losed lattie the sum of all plaquette \spins"vanishes exatly for eah on�guration of the vertex model9.In the new representation, the anti-ferroeletrially ordered state of the model againhas a sub-lattie struture as is depited in Fig. 4.14. However, in ontrast tothe sub-lattie deomposition of the original representation, now the dual lattie isbroken down into sub-latties, i.e., the plaquettes of the lattie are either shaded orplain, suh that no two plaquettes of the same olour share a link. Then, an orderparameter for the anti-ferroeletri transition an be de�ned as the thermal averageof the sum of the plaquette \spins", e.g., for the shaded plaquettes. Reeting theonstrution of the plaquette \spins" in Fig. 4.13 it is obvious that this de�nitionof the order parameter exatly oinides with the original de�nition of Setion 4.1.2on the level of on�gurations. The di�erene is, however, that the new de�nitionan be easily generalized to the ase of arbitrary latties, as long as their duals arebipartite. This is the ase for the planar random �4 graphs we are onsidering sineany planar quadrangulation is bipartite. This an be seen from the equivalene ofbipartiteness and the non-existene of odd-length yles. The smallest yles of suha lattie are the faes, whih are quadrangles. All other yles an be generated bygluing fae yles together to losed paths, whih in eah step either leaves the length8Note also, that the presented transformation is vaguely similar to the transformation of the6-vertex model to a BCSOS (body-entred solid-on-solid) model suggested by van Beijeren, seeRefs. [195, 196℄. The resulting models, however, are not the same. Related is also the pure looprepresentation of Refs. [197,198℄.9This onstraint should be ompared, e.g., to the magnetization of the Ising model, whosethermal average also vanishes for any �nite lattie. On the level of on�gurations, however, non-zero values our.
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Figure 4.14: One of the two anti-ferroeletri ground states of the square-lattie Fmodel in the \plaquette-spin" representation. The system is fully ordered on thesub-latties of the shaded and plain plaquettes, with opposite total \magnetization"of �4 per plaquette. Thus, the total staggered polarization of Eq. (4.39) is �2 persite, the sign depending on the way �1 is assigned to the two olours.of the yle invariant or hanges it by �2. Thus, a planar quadrangulation has noodd-length yles and is hene bipartite. For latties with inequivalent yles, i.e.,with non-spherial topology, the situation is somewhat more ompliated, sine thena yle winding around the lattie an have an odd length if the lattie has an oddlength in one diretion. For the vertex-model simulations we will only be onernedwith planar graphs. Due to the bipartiteness of the orresponding quadrangulations,we an introdue a two-olouring of the faes (loops) of the graphs. While for thesquare lattie the numbers of shaded and plain plaquettes are always the same, theoloured and plain faes of the �4 random graphs not neessarily our at equalproportions. Thus, one should take the \spins" of both types of faes into aount,however \weighted" with the olour of the loops. Therefore, the on�gurationalvalue of the staggered polarization of the F model on a planar �4 random graph Gan be de�ned as P � 12 Xv2V (G�)CvSv; (4.39)



142 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONwhere G� denotes the dual of the graph, i.e. the quadrangulation, V (G�) the set ofverties of G�, Cv = �1 the \olour" of the plaquette of G orresponding to thevertex v of G� and Sv the plaquette \spin" at v. Realling the onstrution of theplaquette \spins", this an also be written in terms of the �4 graph G asP = 12 Xf2F (G)Xlf2f CfA(lf ); (4.40)where F (G) denotes the set of faes (loops) of G, lf the links of fae f , Cf = �1the \olour" of f and A(lf) = �1 the diretion of the vertex-model arrow on link lfwith respet to the presribed anti-lokwise traversal of the loops. Note that thisde�nition oinides with the approah of ounting only the shaded plaquettes for thesquare lattie, sine now eah vertex-model arrow is ounted twie, whih is orretedfor by the additional fator of 1=2. The thermal average hP i=2 is now taken as theorder parameter of a possibly ourring anti-ferroeletri phase transition of the Fmodel oupled to planar �4 random graphs. Note, however, that due to the overallarrow reversal symmetry of the vertex model the expetation value hP i will vanish atany temperature for a �nite graph. Thus, for �nite graphs we onsider the modulushjP ji instead, in omplete analogy to the usual treatment of the magnetization ofthe Ising model.4.3.3 Implementation of the simulation shemeOrder parameterFrom the preeding disussion it is obvious that for the measurement of the staggeredpolarization of the F model on random �4 graphs one needs a two-olouring of thefaes of the graph. Sine in the dynamial polygoni�ations approah, the graphsthemselves are dynami entities, during the ourse of a Monte Carlo simulationsuh a two-olouring has to be found anew for eah graph on�guration observed.While in general graph olouring problems are NP hard and thus omputationallypratially intratable (see, e.g., Ref. [164℄), �nding a two-olouring of the faes ofa graph whose dual is bipartite (or, equivalently, �nding a two-olouring of the sitesof a bipartite graph) is simple. Obviously, there are only two inequivalent ways oftwo-olouring suh a graph. One of these ways an be found by olouring a startingfae at random, olouring the neighbouring faes with the other olour and so onuntil all faes have been oloured. This algorithm is guaranteed to lead to a valid



4.3. VERTEX MODELS ON RANDOM �4 GRAPHS 143two-olouring of the lattie [164℄. The other olouring is found by inverting theolours of all faes. Although this algorithm is polynomial in time it is learly stillundesirable to ompletely re-olour the faes after eah link-ip or minBU surgerymove of the graph.However, as an be easily seen, this is not really neessary. Consider one of theone-link ips for �4 graphs disussed in Setion 3.2.4. Here, a proper two-olouringbefore the ip stays valid after the ip without hanging any olours,
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suh that the two-olouring is invariant under the one-link ip move updates. Inthis and the following skethes the \�" and \	" symbols denote the olours of thefaes adjaent to the two depited �4 verties. On the other hand, for a two-linkip around a double link,
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��the olour of the fae enlosed by the double link has to be inverted. Thus, the two-link ip move is the only move apable of hanging the ratio of \�" and \	" faes ofthe graph. It is obvious that in general the onsidered lass of graphs inludes graphswith varying proportions of \�" and \	" faes, at least for the non-strit ensembles.This exeptional property of the two-link ip provides a somewhat belated proof forthe laim that the one-link ip dynamis alone is not ergodi even for the ase ofsingular �4 graphs put up above in Setion 3.4. Finally, the minBU surgery movesdesribed in Setion 3.5.2 do not hange the adjaeny properties of the faes, suhthat no re-olouring is neessary there. Thus, with a slight intervention for the aseof the two-link ip moves, the fae-two-olouring of the graphs an be easily kept



144 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONup-to-date during the graph part of the update and measurements of the staggeredpolarization beome omputationally heap.Graph updates in the presene of matterThe graph update moves desribed in the previous hapter were there disussed forthe ase of plain graphs, i.e., of pure quantum gravity without oupling to matter.In the presene of a deoration of the graphs with matter variables some additionalonsiderations ome into play. First of all, in all ases the hange in energy of thematter part indued by a proposed ip, insertion/deletion or surgery move has to beomputed and taken into aount in the aeptane probability, whih is, however,straightforward. For the vertex models, a ip move ould in priniple produedisallowed vertex on�gurations violating the arrow reversal symmetry. Suh movesare prevented by assigning in�nite energies to unwanted vertex on�gurations (also,e.g., to the verties 7 and 8 for the ase of the 6-vertex model), suh that forbiddenmoves are never aepted. For the F model one heks by expliit inspetion thatthis restrition still leaves some allowed link-ips to perform, whih is maybe notself-evident.The insertion and deletion moves used in (pseudo) grand-anonial simulations andto build up the initial graph need some di�erent treatment. For the deletion moveone has to hek, whether the resulting vertex-model on�guration on the reduedgraph is valid for the onsidered vertex model. If it is not, the move has to berejeted. Otherwise, the orresponding energy hange has to be taken into aountfor the aeptane probability. On the other hand, for the insertion moves one hassome freedom in the deoration of the newly inserted links of the graph. For the 6-vertex model one an guarantee a valid vertex-model on�guration after the insertionstep irrespetive of the initial on�guration both, for the simple insertion move forthe non-strit ensembles as well as for the more ompliated insertion move for thestrit ensemble. The reipe for the deoration is illustrated in Fig. 4.15. Again, theenergy of the additional vertex on�gurations has to be taken into aount whenformulating the detailed balane ondition for this type of move.Finally, the minBU surgery moves disussed in Setion 3.5.2 have to pass the addi-tional hek of whether the arrow on�guration on the external lines of the minBUmathes that of the marked vertex on the \mother universe" the minBU is re-onneted to. For the F model, one an additionally exploit the rotational symme-
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Figure 4.15: Finite-energy insertion moves for the F model oupled to planar ran-dom �4 graphs. These moves are always allowed, irrespetive of the original arrowon�guration, i.e., they involve a �nite energy hange. The dashed lines indiatethe newly inserted arrows. (a) Insertion move for the strit ensemble. The arrowdiretions are simply opied in either of the four diretions. The new \ring" isdeorated onsistently with arrows in a lokwise or ounter-lokwise orientation.(b) Insertion move produing a double link used for the non-strit ensembles. Thezero-divergene ondition ensures that the double link an always be onsistentlydeorated.try of the vertex-model weights and hek whether the minBU an be pasted at theposition of the marked vertex in one of four possible rotational orientations. Notethat no non-trivial hange of energy is possible here; either the move is forbiddenand thus rejeted or it does not hange the vertex-model energy and is hene alwaysaepted. Therefore minBU surgery steps have a non-vanishing aeptane rate asthe temperature goes to zero. In ontrast, the (one- and two-link) ip-move dy-namis freezes as T ! 0 for the F model, sine a ip in a on�guration onsistingentirely of verties of type 5 and 6 (maybe up to small frustration e�ets) would



146 CHAPTER 4. VERTEX MODELS AND THEIR SIMULATIONalways produe verties of the types 1{4 and thus has a vanishing aeptane ratein the zero-temperature limit.



Chapter 5
The 6-Vertex Model on Random�4 Graphs
Having developed the neessary tools for Monte Carlo simulations of dynamial �4random graphs and simulations of vertex models, an analysis of the 6-vertex modeloupled to Eulidean disrete quantum gravity or, equivalently, an exploration of theinuene of annealed onnetivity disorder on the 6-vertex model, an be attempted.As will be disussed below, the 6-vertex model is at the heart of all integrablemodels of statistial mehanis in two dimensions. Transferring vertex models fromthe square lattie to planar �4 random graphs, they take on a similar rôle for thestatistial mehanis of matter oupled to Eulidean quantum gravity. An analysisof the saling properties of the F model on the ensemble of planar �4 graphs dualto dynamial quadrangulations provides an understanding of an important exampleof the marginal ase of a C = 1 theory oupled to quantum gravity.After a short survey of the densely meshed net of inter-relations between two-dimensional integrable models on regular and random latties, we re-onsider thesquare-lattie F model and the saling properties at its Kosterlitz-Thouless tran-sition point, mainly in order to �ne-tune the needed simulational mahinery, butalso as an interesting problem in itself. Combining the tehniques desribed in theprevious two hapters, we perform extensive simulations of the F model oupledto random �4 graphs and analyse its behaviour in the viinity of the Kosterlitz-Thouless transition point. Having explored the phase struture of the model, thedynamial behaviour of the simulation algorithm for the ombined system of u-tuating geometry and oupled matter will be disussed. Finally, the bak-reation147



148 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSof the matter variables on the utuating geometry, expressed in the string susep-tibility exponent and the intrinsi Hausdor� dimension of the random graphs, isexplored.5.1 Analytial ResultsThe lassi�ation of the saling properties of onformal �eld theories [199{201℄ ou-pled to the dynamial polygoni�ations model has reeived onsiderable interestin the past deades. The KPZ/DDK ansatz [30{32℄ predits a renormalization or\dressing" of onformal weights for models with entral harges C � 1, whih hasbeen on�rmed by exat results from matrix model alulations in all ases treatedso far, inluding the Ising [33{35℄, Potts [36{39℄ and O(n) [40{44℄ models, f. Setion2.4.5.1.1 The ase of regular lattiesVertex models on regular latties are losely linked with di�erent series of integrablemodels, whih in turn are related to an exhaustive enumeration of ertain onformal�eld theories. In fat, it turns out that the 6-vertex model, being the ritial versionof the 8-vertex model, inludes in suitable generalizations the ritial points of allof the well-known two-dimensional lattie models of statistial mehanis. Alter-natively, a ommon point of referene for all these ritial models is given by theirasymptoti equivalene to a Coulomb gas. In the following, the net of these inter-relations is shortly exposed to underline the extraordinary importane of 6-vertextype of models for statistial mehanis.SOS and minimal modelsOn regular latties, the relation between lattie models, onformal �eld theories andintegrability has been quite omprehensively explored. A partiularly interestinglass of onformal �eld theories is given by the unitary minimal series of Ref. [141℄,where the entral harge assumes a disrete set of values labelled by an integervariable m, C = 1� 6m(m+ 1) ; m = 2; 3; 4; : : : (5.1)



5.1. ANALYTICAL RESULTS 149A series of lattie models, whih realizes eah entral harge of this unitary series[202℄ is given by the restrited solid-on-solid (RSOS) models of Andrews, Baxterand Forrester [203℄. There, one assigns height variables hi to the sites of a lattie,whose values are restrited to a �nite set of integers, hi = 1; : : : ; m. Moreover,the heights of neighbouring sites of the lattie are onstrained to di�er by plus orminus one unit. The interations depend of the height values at the orners of theelementary plaquettes or faes of the onsidered graph whih are assumed to besquares, whene the RSOS models are also alled interation-round-a-fae (IRF)models [55℄. In Ref. [203℄ it was shown that these models an be asymptotiallymapped onto the 8-vertex model, suh that the ritial RSOS models orrespondto a 6-vertex model. A more abstrat generalization of this lass of models, the so-alled ADE series of models provides an even loser orrespondene between lattiesystems and the onformal minimal models. These are de�ned as mappings from thelattie into the Dynkin diagrams of a simply-laed Lie algebra [204℄. These simply-laed Lie algebras ome in two disretely labelled series, Am and Dm, and the singleexeptional ases E6, E7 and E8, see, e.g., Refs. [205, 206℄. Compared to the RSOSmodels, the restrition of unity di�erenes in the heights of adjaent sites is relaxedand replaed by the ondition that neighbouring heights should onform to the labelsof neighbouring verties of the orresponding Dynkin diagram. The RSOS modelsan be shown to orrespond to the A series of ADE models. Pasquier [204, 207℄has shown that eah minimal model is realized in one of the ADE models. Thisgoes beyond the exemplary realisations of the RSOS models of Refs. [202,203℄, sinethere are usually di�erent realizations for a given entral harge, di�ering in thepart of the Virasoro algebra atually ourring. Thus, the ADE model lassi�ationresolves the \�ne struture" of models of a given entral harge.The Coulomb gas and loop representationsBefore the pioneering papers Refs. [141, 199℄ on the lassi�ation of ritial be-haviour by methods of onformal �eld theory, a treatment of a variety of modelsin two dimensions had been suessfully attempted by mapping them (exatly orasymptotially) to a two-dimensional gas of interating eletri and magneti point-like harges, i.e., the Coulomb gas [196℄, whih an also be used for an exhaustivelabelling of ritial theories in two dimensions [208℄. This sheme was pioneered bythe �nding of Kosterlitz and Thouless [63,64℄ that the in�nite-order phase transitionof the two-dimensional XY or O(2) model ould be desribed by vortex exitations



150 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSinterating like a gas of harges. A speially tailored version of the XY model withHamiltonian,��H =Xhiji V (�i � �j); exp[V (�)℄ = 1Xk=�1 exp[�J(� � 2�k)2℄; (5.2)introdued by Villain [209℄ an be mapped exatly onto a Coulomb gas. TheCoulomb gas method rests on the fat that the renormalization group equationsof the Coulomb gas an be formulated exatly to leading order and thus yield exatritial exponents [196℄1. The Villain model, whose ritial behaviour is numeriallyfound to oinide with that of the original XY model as expeted [210,211℄, an beidentially transformed to a model of the SOS type [212℄ by a duality transforma-tion [213℄. This so-alled disrete Gaussian model is an unrestrited solid-on-solidmodel, i.e., with heights ranging from �1 to 1, and (disretised) Gaussian inter-ations between neighbouring heights.An impressive series of models an be mapped onto the Coulomb gas, inluding the8-vertex, Ashkin-Teller, q-state Potts and O(n) vetor models [196℄. In all asesan intermediate step is a mapping to an SOS type model and the orrespondingloop representation. The general RSOS models of Ref. [203℄ themselves an also bemapped onto the Coulomb gas [195℄. For the F model, the equivalene with the so-alled BCSOS (body-entred SOS) model has been shown by van Beijeren [214℄. Theorresponding transformation onsists of mapping the bond arrows of the square-lattie F model to arrows on the dual lattie, turning all the arrows by a right-angleto the left. Interpreting the original arrow on�guration as a divergene-free vetor�eld, this transformation results in a url-free vetor �eld on the dual lattie. Thusit an be understood as the gradient of salar height variables residing on the sitesof this dual square lattie and di�ering by unit amounts between neighbouring sites,whih deomposes the lattie into sub-latties with only even and odd heights. Thisequivalene suggests that the Kosterlitz-Thouless (KT) transition point of the Fmodel is indeed equivalent to the orresponding transition of the XY model bytheir ommon equivalene to a Coulomb gas. It should be noted that the vorties ofthe XY model, triggering the Kosterlitz-Thouless phase transition there, naturallyorrespond to the soure and sink on�gurations 7 and 8 of the 8-vertex model andbeome identi�ed in the Coulomb gas limit.1Note, however, that in general some exat input found by other means is needed to �x thevalue of the renormalized oupling.



5.1. ANALYTICAL RESULTS 151Loop or polygon representations [215℄ an also be given for the disussed models,inluding the general RSOS model [216℄. For the 6- and 8-vertex models this poly-gon representation oinides with the loop representation disussed in the previoushapter in the ontext of the loop-luster algorithm. To mention another example,it has been shown [217℄ that a suitably adapted version of the O(n) vetor model(sometimes denoted as the O(n) loop model) is idential to a model of losed polygonrings with partition funtion Z = XgraphsKLn; (5.3)where  is the number of present loops and L denotes their total length. The loopsorrespond to the ontour lines of the spin lusters ourring in a high-temperatureexpansion. Thus, the model is equivalent to a Coulomb gas and its ritial exponentsan be evaluated [218℄. Suh loop models have attrated muh attention due totheir obvious relation to on�gurations of polymers suh as protein hains et. [219℄.Note that the loops of this O(n) model do not normally over the whole lattieand, instead, the model has \dilute" and \dense" phases, whereas the loop modelonsidered in the ontext of vertex models is a \fully paked" loop model [220℄ withthe loops overing eah site of the lattie. In the ontext of SOS type models, suhloops our as domain walls between regions of equal height.Combining the desribed equivalenes, the 8-vertex model is found to be the \swiss-army jakknife" of statistial mehanis. Its ritial version, the 6-vertex model,an be onsidered as the basi element of two-dimensional ritial systems and theassoiated onformal �eld theories [57, 58℄.5.1.2 Vertex models oupled to quantum gravityThe KPZ/DDK formula shows that rational onformal �eld theories stay in thesetor of minimal models on oupling them to two-dimensional Eulidean quantumgravity, the orresponding ritial exponents merely being renormalized due to thepresene of a utuating bakground. From the skethed various equivalenes be-tween models of statistial mehanis not all survive the transformation to randomlatties. A loop representation in the spirit of the Coulomb gas treatment, however,has turned out to be the starting point for most of the solutions found so far. Itallowed for an evaluation of ritial-point properties of the ADE interation-round-a-fae models [221{223℄, being still related to the orresponding RSOS models, and
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(a) (b) ()Figure 5.1: (a) Unique breakup of a vertex of type a = b into upper-left and lower-right orners. (b) One of the possible breakups of a vertex of type  into upper-leftand lower-right orners. () The other possible breakup of a vertex of type  intoupper-right and lower-left orners.a treatment of the O(n) loop model [40, 41, 224℄.The F model on a random lattieThe F model on a (regular or random) four-valent graph an be represented asa gas of oriented loops [55, 225℄. To see this, one applies the breakup operationsde�ned in the ontext of the loop algorithm in Setion 4.2, restriting oneself to the\orner-type" breakups 1 and 2 of Fig. 4.7. Thus, verties of type a and b allowexatly one breakup into orners, while verties of type  an be broken up in bothways, f. Fig. 5.1. As has been shown in Setion 4.2, hoosing suh a breakup foreah vertex of the graph (uniquely for verties of types a and b and at random forverties of type ), deomposes it into a set of fully paked, oriented loops, f. Fig.5.2. Conversely, summing over all possible lose-paked loop arrangements and thetwo orientations of the loops yields all possible on�gurations of the F model on theonsidered graph. The original weights of the 6-vertex model translate into weightsfor the oriented loops by assigning a phase fator exp(i��=2) to eah left turn anda phase fator exp(�i��=2) to eah right turn of an oriented loop [55, 225℄. Here,the oupling � is related to the weights of the F model as2,a= = b= = [2 os(��)℄�1: (5.4)On the square (or any other regular) lattie the phase fators around eah loopalways sum up to a total of exp(�i�2�) due to the absene of urvature. On a2Note that, in terms of the parameter � of Eq. (4.10), this hoie of weights overs only therange �1 < � < 1, whih orresponds to the disordered phase of the square-lattie F model.



5.1. ANALYTICAL RESULTS 153

Figure 5.2: A piee of a random quadrangulation and a on�guration of a fullypaked gas of oriented loops on the dual �4 graph, orresponding to a on�gurationof the 6-vertex model. This �gure is reprodued from Ref. [73℄.random graph, however, a loop l in general reeives a non-trivial weight exp[i��(l)℄with �(l) denoting the integral of the geodesi urvature along the urve l, i.e.,�(l) = �2 (# left turns�# right turns) ; (5.5)f. Setion 2.2.3.This loop expansion is related to the loop representation of the O(n) model men-tioned above. On a regular lattie, due to the absene of urvature all loops reeivethe same onstant fugaity n = 2 exp(�i�2�) of Eq. (5.3), leading to the ritialO(n) model. On the onsidered random graphs this piture only remains valid forthe limiting ase � = 0, where the urvature dependene anels. Thus, the � = 0point of the F model on random planar �4 graphs is equivalent to the ritial O(2)loop model [41, 72, 226℄ and thus, by universality, the original XY model3. Notethat this orresponds to the same ritial point a= = b= = 1=2 as on the regularsquare lattie, whih is natural sine the symmetry breaking is indued by the hoieof the vertex weights. The KT point itself has been onsidered before within theframework of the XY model [227{229℄ and the O(n) loop models [40{44℄ oupled3Note that the loops ourring in the expansion of the O(n) model are not in general losepaked on the lattie as are the loops of the presented loop expansion of the F model. However,the ritial O(2) model lies at the boundary of the dense phase of the O(n) model, where loops arelose paked [224℄.



154 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSto dynamial polygoni�ations. Also within the framework of ADE models onsid-ered in Refs. [221,222℄ the symmetri 6-vertex model is naturally inluded and someexat results were given at ritiality. Finally, it should be noted that the ritialF model oupled to the random graphs is equivalent to the ritial point of a freemassless boson ompati�ed on a irle and oupled to quantum gravity [226℄.The matrix model solutionAn exat solution of the F model oupled to planar random �4 graphs in its formu-lation as a matrix model has been found independently by P. Zinn-Justin [72℄ andI. Kostov [73℄. As was �rst noted by Ginsparg [124℄ the model an be formulated asthe perturbative expansion of the matrix integralW (a; ; N) = Z d� d�y exp h�NTr ���y � a �2�y2 � 2(��y)2�i ; (5.6)suh that the partition funtion of the F model on planar graphs is the leading termof the 1=N expansion of Z(a; ; N) = ln W (a; ; N)W (0; 0; N) ; (5.7)f. Eq. (2.94). Here, in ontrast to the Hermitian matrix models onsidered inSetion 2.3.4 above, � is taken to be a general N�N omplex matrix, thus endowingthe links of the �4 graphs represented by the propagators hTr��yi with a sense ofdiretion, whih in turn an be interpreted as the deoration of the graph edges withthe arrows of a vertex model, see also Refs. [128, 230℄. The pairing of two \heads"� and two \tails" �y at eah vertex in the matrix model potential ensures that thegenerated on�gurations satisfy the ie rule.Introduing an additional auxiliary Hermitian matrix, the resulting matrix modelan be interpreted as a deformation of the O(2) loop matrix model and the inte-gration over the omplex � matries an be performed [73℄. Employing the usualsaddle point tehnique, the planar N !1 limit of the model an be solved. Whatis found is that for eah value of the oupling � of Eq. (5.4) the model has a ritialpoint4 with entral harge C = 1. In terms of the vertex model oupling a these4Note that, as mentioned above, real values of � only over the parameter range of the disorderedphase of the square-lattie F model. Thus, also the square-lattie model is ritial for all �.



5.1. ANALYTICAL RESULTS 155ritial points are parameterized as [72℄,arit = 132 sin(��=2)��=2 1os3(��=2) : (5.8)Note that in ontrast to the regular lattie model, where only the ratio a= = b=had physial signi�ane, the ouplings a = b and  of the F model an be variedindependently here, sine a takes on the rôle of the osmologial onstant, i.e.,the fugaity ontrolling the ost of adding a new site to the graph. Exploring theviinity of this ritial point, it is found that the string suseptibility exponent s = 0for all �, leading to only logarithmi divergenes of the free energy [72, 73℄. Thisbehaviour is indeed expeted from the C ! 1 limit of the KPZ/DDK preditionEq. (2.137). The spetral density of the matrix integral has a singularity with anexponent (1 � �)=(1 + �) varying ontinuously along the ritial line, whih leadsto an also ontinuously varying exponent for the saling of the typial length ofloops on the worldsheet, whih is a generally onsidered observable within the loopmodel sheme [41, 73, 224℄. Finally, the vortex operators, whih orrespond to thedeformation of the 6-vertex model to an 8-vertex model by insertion of sinks andsoures, i.e., verties of the types 7 and 8, are found to have dimension 1� � [73℄.Thus, the general phase struture of the F model oupled to planar random �4graphs in the grand-anonial ensemble of a varying number of verties has beenfound in Refs. [72,73℄. The existene of a Kosterlitz-Thouless type phase transitionat � = 0 was obvious beforehand from the equivalene to the O(2) loop model atthis point. Details of the behaviour of matter-related observables in the viinityof this point, suh as the saling of the staggered anti-ferroeletri polarizability,however, ould naturally not be extrated from the matrix model ansatz.Further vertex modelsFrom the given interpretation of the matrix model (5.6) it is obvious that a omplexmatrix model with potential,V (�; �y; a; ; d) = 12��y � a �2�y2 � 2(��y)2 � d4(�4 + �y4); (5.9)introdues the soure and sink on�gurations 7 and 8 and thus desribes an 8-vertexmodel oupled to random �4 graphs. For the speial hoie of weights  = d, thismatrix model, written as a two-matrix model of real matries, an be solved by a



156 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSharater expansion method [231℄. As expeted, the model is found to have a ritialpoint as it rosses the parameter spae of the 6-vertex model at d = 0, implying = 0, whih orresponds to the point � = 1=2 of the above parameterization (5.4)of the F model. Along its ritial line the model exhibits entral harge C = 0behaviour with s = �1=2, the only exeption being its ritial point, where is hasentral harge C = 1 and, orrespondingly, a string suseptibility exponent s = 0.Varying the potential of the omplex matrix integral, one an easily onstrut matrixmodel formulations of further vertex models, inluding matrix models on three-valent �3 graphs [128, 230℄. In the limit N ! 1, the matries beome replaed bysalar variables and one desribes generi, \thin" random graphs without a de�nedtopology. The orresponding salar integrals an be generally solved by a saddle-point alulation. For the vertex models on thin �3 and �4 graphs, a lever hoieof the parameters of a simple linear transformation of the matries maps the modelsonto known (and solved) problems suh as Ising and Potts models in the mean-�eldlimit [128℄. For planar, \fat" �3 and �4 graphs, while a general solution is laking,it is still possible to formulate well-known solved two-matrix models, espeially theIsing model, as speial ases of vertex models [128℄. Also, the solution of a so-alledbond vertex model for the �3 ase, where the links of the graph do not arry arrowsbut are rather oupied or unoupied, ould be found by transformation to an Isingmodel in a �eld [230℄.5.2 The Anti-Ferroeletri Phase TransitionObviously, the in�nite-order phase transition to an anti-ferroeletrially orderedphase predited to our at the partiular hoie of weights a= = b= = 1=2 ofthe F model oupled to planar random �4 graphs is the main point of interestin analyzing this model. The saling and �nite-size saling theories assoiated withsuh a phase transition of the Kosterlitz-Thouless type are quite di�erent from thoseat �nite-order phase transitions and will thus be reviewed shortly. Even though theKT point of the F model is known to be equivalent to the ritial point of the XYmodel, the two models do not exhibit ompletely idential saling behaviour dueto di�erenes in the relevant observables. Sine we will �nd a numerial salinganalysis of the KT point of the F model on random latties extremely diÆult dueto the ombined e�et of the logarithmi orretions assoiated with every C = 1theory and the smallness of the aessible e�etive linear extensions of the latties



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 157resulting from their large Hausdor� dimension, the mahinery of analysis is testedand re�ned for the ase of the F model on the square lattie, where at least theseond orretion e�et is absent.5.2.1 Saling at an in�nite order phase transitionEssential singularities and the XY modelEven though a transition of in�nite order was found by Lieb [56, 62℄ in the phasediagram of the F model before Kosterlitz and Thouless formulated their famoustheory for the phase transition of the two-dimensional XY model [63, 64℄, the o-urrene of essential singularities at a phase transition point is invariably linked tothe latter two names5. As a onsequene of a theorem by Mermin, Wagner andHohenberg [233, 234℄, the two-dimensional XY model annot develop an orderedphase with a non-vanishing value of a loally de�ned order parameter for non-zerotemperature. Instead, the transition is desribed as the binding or unbinding of vor-tex pairs superimposed on an e�etive spin-wave behaviour of the low-temperaturephase. Above the ritial temperature, spin-spin orrelations deay exponentially,G(r) � e�r=�(T ); T > T; (5.10)while below T long-range orrelations are enountered,G(r) � r��(T ); T � T; (5.11)suh that the orrelation length �(T ) = 1 for all T � T and the massless low-temperature phase orresponds to a ritial line terminating in the ritial pointT [63, 64, 235℄. The ritial exponent � varies ontinuously along this ritial line.Approahing the ritial point T from above, the orrelation length diverges expo-nentially instead of algebraially as for a usual ontinuous phase transition6,�(T ) � exp(a=t�); t > 0; (5.12)5It should be noted that the notion of topologial exitations triggering the phase transition ofthe XY model was introdued before the works of Kosterlitz and Thouless by Berezinskii [232℄.6For the KT point of the square-lattie F model it an be shown that in fat all temperaturederivatives of the free energy exist and are ontinuous aross the transition point [55℄.



158 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSwhere t = (T � T)=T and7 � = 1=2. The behaviour of further observables at thetransition point an be onveniently expressed in terms of this singularity of theorrelation length. In partiular, the magneti suseptibility diverges as�(T ) � �=� = �2��; T > T; (5.13)where � � �(T) = 1=4. The spei� heat, on the other hand, is only very weaklysingular, behaving as Cv � ��2: (5.14)Finite-size salingFinite-size saling (FSS) analyses of the KT transition of the XY model are ham-pered by the ourring essential singularities and the presene of a ritial phase. Asa onsequene of the latter, magneti observables suh as the suseptibility do notexhibit maxima in the viinity of the ritial point, whih otherwise ould be usedfor an estimation of the transition temperature from �nite systems. As will be shownbelow, the situation is di�erent for the KT point of the F model, where the analogueof the magneti suseptibility, the staggered anti-ferroeletri polarizability, showsa maximum for �nite latties. Nevertheless, the general arguments for �nite-sizeshifting and rounding remain valid, suh that suitably de�ned pseudo-ritial pointsT �(L) for systems with linear extent L sale to the ritial point T as [236℄[T �(L)� T℄=T � (lnL)�1=�; (5.15)f. Eq. (5.12). SuÆiently lose to the ritial point the growth of the orrelationlength beomes limited by the linear extent L of the system and, orrespondingly,� an be replaed by L to yield the �nite-size saling law�(L; T) � L=� = L2�� ; (5.16)whih for � = 1=4 predits a rather strong divergene. On �nite latties, thespei� heat is found to exhibit a smooth peak, whih is however onsiderably shiftedaway from the ritial point into the high-temperature phase and does not sale asthe lattie size is inreased [236℄. Thus, with the main strengths of FSS being7Note that the exponent � is often alled �. However, to underline the fat that this exponent,albeit being related to the singular behaviour of the orrelation length like � for an ordinary phasetransition, does not desribe a power-law singularity, we prefer to use a di�erent symbol.



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 159not exploitable for the KT phase transition, the fous of numerial analyses of theXY and related models has been on thermal saling, see, e.g., Refs. [210, 237{239℄.In addition, renormalization group analyses predit logarithmi orretions to theleading saling behaviour [240,241℄, as expeted for a C = 1 theory, whih have beenfound exeptionally hard to reprodue numerially due to the presene of higherorder orretions of omparable magnitude (for the aessible lattie sizes) [211℄.5.2.2 The square-lattie F modelAs mentioned above, an analysis of the square-lattie F model is put in front of theinvestigation of the random graph problem to allow for a detailed omparison andto alibrate the needed numerial mahinery. To begin, we present some spei�exat results and onjetures for the square-lattie F model, whih have not yetbeen reported in Setion 4.1.2 above.Analytial resultsWe assume a parameterization of the F model oupling parameters, whih involvesa temperature variable and thus stiks more losely to the language of statistialmehanis than to that of �eld theory. It thus di�ers from the parameterization(5.4) used in the ontext of the matrix model solution, whih only overs the ritialdisordered phase of the F model. Assuming �a = �b = 1 in Eq. (4.6), we havea = b = e��;  = 1; (5.17)where � = 1=kBT , suh that the KT point ours for � = ln 2. From Lieb's exatsolution of the square-lattie F model [62℄, the orrelation length and the free energyare expeted to exhibit the essential singularities found for theXY model, f. Setion4.1.2. Additionally, the exat solution provides the amplitudes and orretion terms.In the thermodynami limit, one �nds [55℄��1(�) � 4 exp(��2=2�);fsing(�) � 4kBT exp(��2=�); (5.18)where � is related to the redued oupling � of Eq. (4.10) as � = � osh �, whihovers the anti-ferroeletrially ordered phase � < �1 for real values of �. Ingeneral, the oupling � is related to the oupling � de�ned in (5.4) as � = 2�i�. As



160 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSthe ritial point is approahed from the low-temperature side, � behaves as � � t1=2to leading order8, i.e., � = 1=2 as for the XY model. Here, fsing denotes the singularpart of the free energy per site. The spei� heat diverges as ��2 as expeted. Forlater referene, we also note the ritial values of the internal energy U and spei�heat Cv, whih are given by [56℄U(T) = 1=3;Cv(T) = 28(ln 2)2=45: (5.19)Conerning properties related to the order parameter, the situation for the F modelis somewhat di�erent from that of the XY model. The order parameter de�ned inEq. (4.11) for the square lattie resp. in Eqs. (4.39) or (4.40) for general (inludingrandom) latties, is non-vanishing for �nite temperatures in the ordered phase9.Thus, the orresponding staggered anti-ferroeletri polarizability,� = N�12 (hP 20 i � hjP0ji2); (5.20)where N2 as usual denotes the number of verties of the onsidered graph, showsa lear peak in the viinity of the ritial point for �nite latties. However, in thelimit N2 ! 1 the polarizability diverges throughout the whole high-temperaturephase, whih is ritial as mentioned in Setion 4.1.2. Note that ompared to theXY model the rôles of high- and low-temperature phases are exhanged in thisrespet, as expeted from duality [213℄. Although the F model has not been solvedin a staggered eletri �eld for general temperatures, the spontaneous staggeredpolarization is known exatly for all temperatures [242℄,P0(�) = " 1Yn=1 tanh(n�)#2 ; (5.21)whih in the viinity of the ritial point sales asP0(�) � ��1 exp(��2=4�): (5.22)8Note that the deviation t from the ritial point is de�ned in terms of the weights a, b and instead of the temperature T in Ref. [55℄. For small t, however, both de�nitions asymptotiallyoinide.9Note that the Mermin-Wagner-Hohenberg theorem [233, 234℄ does not apply to the F modelwith its disrete symmetry.



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 161Assuming the Widom-Fisher saling relation �+2�+ = 2 to be valid10, from Eqs.(5.18) and (5.22) Baxter onjetured the following saling of the zero-�eld staggeredpolarizability [242℄, �(�) � ��2 exp(�2=2�) � (ln �)2�; (5.23)whih implies =� = 2 � � = 1. The apparent disrepany with the XY modelresults should not be interpreted as an indiation of di�ering universality lasses ofthe models (whih are equivalent at their ritial points), but reets the fat thatthe F model staggered polarizability is not equivalent to the magneti suseptibilityof the XY model. Sine the whole high-temperature phase is ritial, saling of thepolarizability is expeted throughout this phase. In fat, the F model in a staggered�eld an be solved exatly at the point a= = 1=p2 (orresponding to � = 0 or� = i�=2), where its parameter spae rosses that of the free-fermion model, f.Eq. (4.19) [243℄. At this point, a logarithmi divergene of the polarizability isfound, implying 2�� = 0, suh that, obviously, the divergene of � beomes weakerwithin the ritial phase, in ontrast to the XY model, where � is found to dereasefrom its ritial value � = 1=4 when moving further into the ritial phase, see,e.g., [237℄.Monte Carlo analysisIn ontrast to the exatly solvable Ising model in two dimensions, whih has servedas a playground and referene point for the Monte Carlo method right from its �rstbeginnings (see, e.g., Ref. [155℄), the exatly solved 6-vertex model has reeivedonsiderably less attention as far as numerial work is onerned. The only MonteCarlo analyses of the square-lattie F model we found are reported in Refs. [244,245℄in the ontext of the equivalene of the F model to the BCSOS surfae model, whoseroughening transition orresponds to the KT point of the F model11.To alibrate our set of simulation and analysis tools, we performed simulations of thesquare-lattie F model and investigated the saling behaviour of the spei� heat and10Although the KT transition is haraterized by essential singularities and thus the onventionalritial exponents are meaningless, one an re-de�ne them by onsidering saling as a funtion ofthe orrelation length � instead of the redued temperature t, f. Setion 4.1.2. The exponents�, � and  used here and in the following should be understood in that sense. The exponent �,however, has its speial meaning de�ned by (5.12).11Note that in ontrast to the \stati" F model onsidered here, various dynami extensions ofthe 6-vertex model have been extensively explored as models of surfae growth, see, e.g., Ref. [246℄.
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Figure 5.3: Non-saling of the spei� heat Cv of the square-lattie F model fromMonte Carlo simulations. The square lattie is onsidered wrapped around a torus.From the simulated lattie sizes ranging from N2 = 162 = 256 up to N2 = 2562 =65 536 sites, only three are shown for the sake of learness of the diagram.
the staggered anti-ferroeletri polarization and polarizability. The fous was laidon the inuene of di�erent orretion terms as well as the onsidered lattie sizes onthe �t results, suh as to develop an intuition for the analysis of the random graphase, guided by the available exat results for the muh simpler square-lattie model.Simulations were performed for square latties with periodi boundary onditionsusing the same simulation program as later on for the random graph systems (butwith the graph ip and surgery moves omitted) to ensure maximal omparabilitybetween the regular and random graph results. Sine the loop algorithm is foundto be very eÆient in eliminating the ritial slowing down at the F model KTpoint [174,188℄, measurements were taken after eah multi-luster loop-update step.Lattie sizes up to N2 = 10242 � 106 sites were simulated, whih is by far largerthan the aessible sizes for the random graph ase, taking between 1 � 105 and2� 105 measurements.



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 163N2;min � A� Q256 0.73822(48) 1.419(25) 0.00576 0.73270(59) 1.813(35) 0.001024 0.73033(74) 2.007(50) 0.002116 0.72635(110) 2.365(89) 0.464096 0.72409(172) 2.581(154) 0.888464 0.72322(261) 2.667(249) 0.7816 384 0.72077(463) 2.923(469) 0.79Table 5.1: Parameters of least-squares �ts of the funtional form (5.24) to thesimulation estimates for the peak loations of the staggered polarizability of thesquare-lattie F model. From the set of simulated lattie sizes from N2 = 256 toN2 = 65 536 sites, the smallest sizes are suessively exluded from the �ts, whihare performed for the data points between N2 = N2;min and N2 = 65 536. Q denotesthe quality-of-�t parameter, see Ref. [170℄.Non-saling of the spei� heatThe spei� heat of the square-lattie F model exhibits a broad peak shifted awayfrom the ritial point into the low-temperature phase [56℄12. The essential singu-larity predited by Eq. (5.14) annot in general be resolved, sine it is overed bythe presene of non-singular bakground terms. Thus, a non-saling of the broadspei�-heat peaks (together with a saling of the suseptibility or polarizability tobe onsidered below) is ommonly taken as a good indiator for a phase transitionto be of the KT type [236℄. Indeed, this is what is found from the simulation dataas is shown in Fig. 5.3. Neither does the width of the peaks shrink nor do theirheights sale as the lattie size is inreased. In fat, for the broad range of lattiesizes from N2 = 162 = 256 up to N2 = 2562 = 65 536 sites, all data almost ollapseonto a single urve with only small deviations for the smallest latties.The ritial ouplingTo determine the ritial oupling, we exploit the fat that the maxima of the stag-gered polarizability for �nite latties should be shifted away from the ritial point12Note that the spei� heat of the 2D XY model exhibits a peak in the high-temperature phase,as expeted from duality.
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Figure 5.4: Peak positions of the staggered anti-ferroeletri polarizability of thesquare-lattie F model from MC simulations, as a funtion of the number of sitesN2 of the onsidered latties. The solid lines show �ts of the funtional form (5.24)to the data, the range of the �ts indiating the window of lattie sizes inluded inthe �t.aording to the saling relation Eq. (5.15). The peak loations were determinedfrom simulations at nearby ouplings � by means of the reweighting tehnique, f.Appendix A.5. Transforming the saling ansatz (5.15) to the oupling � instead ofthe temperature T , we have to �rst order,��(N2) = � + A�(lnN2)�2; (5.24)where saling is formulated in terms of the number of sites N2 of the lattie, an-tiipating the notation of the random graph ase, and ��(N2) denotes the loationof the maximum of the staggered polarizability � for a pN2 �pN2 square lattie.The determined peak loations of the polarizability together with several �ts of thefuntional form (5.24) to the data, omitting more and more of the smaller lattieresults, are shown in Fig. 5.4. The orresponding �t parameters are ompiled inTable 5.1. Apparently, the presented urves �t the data rather poorly, at least forthe smaller lattie sizes. Compared to the exat transition point � = ln 2, the esti-mates are learly too large, dropping only very slowly as points from the small-N2



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 165(a) N2;min � A� 1=~� Q256 �155.34 156.21 0.00033 0.00576 �17.033 17.92 0.0032 0.821024 �14.42 15.31 0.0038 0.722116 0.63(21) 0.357(33) 0.48(82) 0.964096 0.69(11) 0.481(835) 0.88(157) 0.91(b) N2;min � A� B� Q256 0.6957(25) 13.8(7) �2.64(2) 0.51576 0.7020(42) 11.7(14) �2.56(5) 0.881024 0.6974(64) 13.4(22) �2.63(8) 0.932116 0.7050(117) 10.4(44) �2.47(31) 0.97Table 5.2: (a) Parameters of non-linear �ts of the funtional form (5.25) to thesimulation estimates for the peak loations of the staggered polarizability of thesquare-lattie F model. For small N2;min the �t routine gives huge or even unde�nederror estimates, whih are thus omitted. (b) Parameters of �ts with log-log orretionterm of the funtional form (5.26) to the simulation estimates for the peak loationsof the staggered polarizability.side of the list are suessively omitted. Thus, the expeted logarithmi orretionsto the leading saling behaviour (5.24) have to be taken into aount to yield reliableresults. Note that this e�et here ours for rather large latties, where for a �nite-order ontinuous phase transition the presene of orretions would not be muh ofan issue for the determination of the leading saling behaviour. The linear extentsof the latties onsidered here are in fat muh larger than the sizes aessible forthe random graph ase to be disussed below.Sine for the polarizability an exat, losed-form expression is not available even forthe square-lattie model, orretions annot be taken into aount with their exatform. Instead, an e�etive desription will have to be employed. One possible ansatzis to relax the onstraint on the exponent of the logarithm of Eq. (5.24), introduingas an additional �t parameter an exponent ~� as��(N2) = � + A�(lnN2)�1=~�; (5.25)resulting in an e�etive exponent ~� 6= � = 1=2, inorporating the present orretionterms in a phenomenologial way. This approah yields very unstable results, sine



166 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSto a wide extent an inrease in the amplitude A� an be ompensated by an inreaseof the e�etive exponent ~� and vie versa, f. Table 5.2(a). Only for the two largeststarting sizes N2;min a sensible result is obtained. A di�erent hoie of orretionterm yields muh more reliable results, namely a log-log orretion of the form��(N2) = � + A�(lnN2)�2 �1 +B� ln lnN2lnN2 � ; (5.26)whih has the advantage of still being a linear �t, thus promising muh more stable�t results. This is indeed the ase, as an be seen from Table 5.2(b) and Fig. 5.5.This hoie of funtional form is somewhat ad ho; however, similar orretions havebeen observed for the ase of the XY Villain model [211,240,241℄. In priniple, onewould at least want to admit the log-log orretion term to have an additional,variable exponent. However, we �nd the data not preise enough to reliably �t tothem a non-linear funtion with more than two independent parameters. Using thusthe ansatz (5.26) and taking, e.g., the result with N2;min = 1024, our estimate forthe ritial oupling is � = 0:6974(64), in good agreement with the exat answer� = ln 2 � 0:693.FSS of the polarizabilityFrom Baxter's onjeture (5.23) for the saling of the staggered anti-ferroeletripolarizability of the square-lattie F model one dedues the following ritial-point�nite-size saling behaviour of �,�(N2; �) � N=d�2 (lnN2)2; (5.27)where d denotes the dimensionality of the lattie and, from Eq. (5.23), =d� = 1=2.Taking only the leading term into aount, i.e. �tting the form�(N2; �) = A�N=d�2 ; (5.28)to the simulation data, again a very slow drift from slightly too large values for =d�towards the orret result is observed, just as for the ase of the peak positions. Fig-ure 5.6 shows the simulation results for the ritial polarizability together with a �t ofthe funtional form (5.28) to the data, resulting in an estimate =d� = 0:53892(85),whih is learly too large. Here, the results from lattie sizes between N2 = 642 andN2 = 10242 sites have been taken into aount. Thus, again, orretions to salinghave to be taken into aount, even though the lattie sizes have now been inreased



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 167

0 10000 20000 30000 40000 50000 60000
N

2

0.74

0.75

0.76

0.77

0.78

0.79

βχ

Figure 5.5: Peak positions of the staggered anti-ferroeletri polarizability of thesquare-lattie F model from MC simulations, as a funtion of the number of sitesN2 of the onsidered latties. The solid line shows a �t of the log-log orretionform (5.26) to the data, where the range of inluded lattie sizes was taken to beN2 = 1024; : : : ; 65 536.up to N2 � 106 sites. Fitting to the exat form given in Eq. (5.27), we �nd poor �tresults with exponents =d� around 0:3 and quality-of-�t parameters Q vanishingto mahine preision. However, letting the orretion exponent vary, i.e., �tting thefuntional form �(N2; �) = A�N=d�2 (lnN2)!; (5.29)with an additional heuristi �t parameter ! yields stable and good-quality �t results.Fitting the range N2 = 242; : : : ; 10242 to (5.29), we �nd the following �t parameters,A� = 1:27(06);=d� = 0:5083(45);! = 0:32(04);Q = 0:78; (5.30)in reasonable agreement with the exat result =d� = 1=2.
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Figure 5.6: Finite-size saling of the ritial staggered polarizability � of the square-lattie F model for lattie sizes from N2 = 162 up to N2 = 10242 in a log-log plot.The solid line shows a least-squares, power-law �t of the funtional form (5.28) tothe data.FSS of the spontaneous polarizationThe saling form (5.22) of the spontaneous staggered polarization translates intoFSS as P0(N2; �) � N��=d�2 lnN2; (5.31)where �=d� = 1=4 from Eq. (5.22). As for the previously disussed observables, asimple �t to the leading term,P0(N2; �) = AP0N��=d�2 ; (5.32)yields exponents �=d� approahing the expeted value logarithmially slow on su-essively omitting data points from the small-N2 side of the list. For instane, forthe range N2 = 922; : : : ; 10242 we �nd �=d� = 0:23290(98), whih is still far fromthe exat value in terms of the quoted statistial error. On the other hand, inludingthe logarithmi orretion term of (5.31) as it stands, leads to estimates for �=d�even farther away from the true answer, with values around 0:3 and standard error



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 169around 10�3. Again taking higher-order orretions into aount via an e�etiveorretion exponent ! as P0(N2; �) = AP0N��=d�2 (lnN2)!; (5.33)leads to stable �ts and a satisfatory agreement with the exat result for the on-sidered lattie sizes, the parameter estimates beingAP0 = 2:002(78);�=d� = 0:2436(38);! = 0:109(33);Q = 0:14; (5.34)where lattie sizes from N2 = 242 to N2 = 10242 were inluded.Thermal salingThe disussed FSS of the ritial polarization and polarizability is independent of thevalue of the ritial exponent �. Thus, to diretly verify the exponential type of theobserved divergenes and to estimate the parameter �, one has to onsider thermalinstead of �nite-size saling. Figure 5.7 shows an overview of the thermal behaviourof the staggered polarizability for di�erent lattie sizes. The lear saling of � for thehigh-temperature region � < � = ln 2 indiates the presene of a ritial phase. Inontrast, for the low-temperature phase to the right of the peaks, the polarizabilityurves essentially ollapse and only start to diverge as the orrelation length reahesthe linear extent of the onsidered lattie. Therefore, a thermal saling analysis mustbe performed in the low-temperature viinity of the ritial point, the behaviour inthe high-temperature phase being ompletely governed by �nite-size e�ets.Here, we do not onsider the saling of the orrelation length itself, sine for thease of random latties to be disussed below it is a non-trivial and not ompletelyresolved question, how to reliably determine onneted orrelation funtions (andthus the orrelation length) in an ordered phase [247℄. Instead, we onsider thethermal saling of the staggered polarizability for a single lattie size of N2 = 2562 =65 536 sites. Simulations were performed for a losely spaed series of temperaturesin the low-temperature viinity of the ritial point. From the saling onjeture(5.22), we expet the following saling relation,ln�(�) � A� +B�(� � �)�� + C� ln(� � �); (5.35)
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Figure 5.7: Saling of the polarizability peaks of the square-lattie F model fromMonte Carlo simulations. The lines simply onnet the data points and are drawn forillustrative purposes. The urves show a lear saling of the polarizability in the rit-ial high-temperature phase (to left of the peaks), whereas in the low-temperaturelimit � !1 the urves ollapse, only diverging as the orrelation lengths reah therespetive linear extents of the latties when approahing the ritial point.whih should be valid as � ! �+ in the thermodynami limit N2 !1. Note thatthis relation is essentially independent of the value of the ritial exponent , whihonly enters the amplitude A�. The window of validity of (5.35) for the thermalsaling of � for a �nite lattie is limited for small deviations � � � by �nite-sizee�ets and for large deviations ��� by higher-order orretions to saling. Ideally,one would want to monitor the e�et of the �nite lattie size by omparing thevalue of the orrelation length � at a given � > � with the linear extent L of thelattie and ensuring the ratio �=L not to exeed a given threshold, say 1=15 [210℄.However, sine we do not want to onsider orrelation lengths in view of the moreompliated random graph problem, the onset of �nite-size e�ets is estimated bythe beginning of the rounding of the exponential inrease of � as � is approahed.Furthermore, with the given auray of our data we �nd it impossible to reliably�t the �ve-parameter family of funtions (5.35) to the data. Thus, we �rst drop
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Figure 5.8: Thermal saling of the polarizability of the square-lattie F model on aN2 = 2562 = 65 536 lattie. The solid line shows a �t of the funtional form (5.35)to the data, where the parameters C� = 0 and � = ln 2 were kept �xed. The extentof the urve indiates the window of data points inluded in the �t.the logarithmi orretion term, i.e., we enfore C� = 0. The resulting non-linearfour-parameter �t yields � = 0:56(24) and � = �2:4(33), whih is onsistent withthe exat result, but obviously not very useful. Thus, we additionally either �x theritial oupling � at its exat value � = ln 2 and determine � from the �t, or we�x � = 1=2 and determine �. The simulation results together with a �t with ��xed are shown in Fig. 5.8. The �t parameters are,A� = �2:18(39);B� = 2:37(27);� = 0:519(27);Q = 0:12; (5.36)
indiating good agreement with the expeted result � = 1=2. The other type of �t,



172 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSi.e., with � = 1=2 �xed, yields, A� = �2:38(13);B� = 2:531(67);� = 0:6944(19);Q = 0:12; (5.37)for the same set of simulation points, whih should be ompared to � = ln2 � 0:693.5.2.3 The F model on planar �4 random graphsWhile it is already rather non-trivial to resolve the Kosterlitz-Thouless nature ofthe phase transition of the square-lattie F model via MC simulations due to thepresene of logarithmi orretion terms, an analysis of the F model on planarrandom �4 graphs is additionally ompliated by the strongly redued linear extentsof the latties resulting from their large fratal dimension. We performed simulationsof the ombined system exlusively for latties of spherial topology, i.e., planargraphs, of sizes up to N2 = 65 536 sites. The graph geometry is being updated withthe ombined (one- and two-) link-ip and minBU surgery dynamis desribed inChapter 3 and the loop algorithm of Setion 4.2 is applied for the vertex model part.Unless otherwise stated, all simulations were performed for the regular ensemble of�4 graphs. A pro�ling analysis of the exeution times of the simulation programshows that more than half of the total run time is spent for �nding the minimalneks of the minBU surgery part. This proedure is muh more time onsuming, ifthe problem is formulated in terms of the �4 graphs, as it is when onsidering thedynamial quadrangulations. The simulations were performed partly on the CrayT3E 1200 of the \John von Neumann-Institute for Computing" (NIC) in Juelih (a.12 000 CPU hours) and on the heterogeneous luster of i386 PC's of the Institutefor Theoretial Physis of the University of Leipzig (a. 50 000 CPU hours) as wellas its 40 Athlon MP1800+ luster omputer \Hagrid" (a. 60 000 CPU hours).The spei� heatAs for the ase of the square-lattie F model, for the random graph ase we �ndno signal of a saling of the spei� heat. Instead, it exhibits a broad peak in thelow-temperature phase, whih is found to be independent from the lattie size up
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Figure 5.9: Non-saling of the spei� heat of the F model oupled to planar random�4 graphs. The solid urves are line setions onneting the data points and aredrawn for illustrative purposes only. Note the muh stronger shift of the peakpositions towards lower temperatures as ompared to the square-lattie F model ofFig. 5.3.to small �nite-size orretions, f. Fig. 5.9. Comparing Figs. 5.3 and 5.9, note thatthis peak appears for muh lower temperatures around �Cv � 1:2 for the �4 randomgraphs as ompared to �Cv � 0:85 for the square-lattie model. This behaviour ofthe spei� heat is ommonly onsidered as a �rst good indiator for the preseneof an in�nite-order phase transition [236℄.Loation of the ritial pointAs for the square-lattie model, we determine the loation of the KT point from thesaling of the maxima of the staggered anti-ferroeletri polarizability, now de�nedfrom the generalized polarization of Eqs. (4.39) or (4.40). Again, the peak loationsare expeted to sale logarithmially to the true ritial point; to leading order wehave, ��(N2) = � + A�(lnN2)�1=�; (5.38)
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Figure 5.10: Saling of the peak loations of the polarizability of the F model onplanar �4 random graphs from MC simulations. The solid lines show �ts of thesimple analyti form (5.38) to the simulation data, where � = 1=2 was kept �xed.The ranges of the urves indiate the windows of inluded graph sizes N2.f. Eq. (5.24). For the determination of the peak positions we made use of thetemperature-reweighting tehnique desribed in Appendix A.5. Note that the quotederrors do not over the potential bias indued by the reweighting proedure. Weperformed simulations for graph sizes between N2 = 256 and N2 = 25 000 sites, tak-ing some 106 measurements after the systems had been equilibrated. Measurementswere taken after every tenth sweep of the ombined link-ip and minBU surgery dy-namis, on�ning the graphs to the regular ensemble of Setion 3.1. All statistialerrors were determined by the ombined binning/jakknife tehniques desribed inAppendix A.3.Figure 5.10 shows the FSS of the peak loations resulting from the simulations.Comparing to the orresponding presentation for the square-lattie model, Fig. 5.4,we �rst note that the aessible part of the saling regime is strongly shifted towardslower temperatures, being rather far away from the onjetured ritial oupling� = ln 2 � 0:693. We start with �ts of the simple form Eq. (5.38) without inludingany orretion terms. Additionally, we assume � = 1=2 here as in the square-lattie



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 175N2;min � A� Q256 1.0011(18) 2.049(77) 0.00512 0.9810(24) 3.28(13) 0.001024 0.9676(32) 4.22(19) 0.002048 0.9361(59) 6.69(44) 0.534096 0.9265(84) 7.49(66) 0.82Table 5.3: Parameters of �ts of the analyti form (5.38) to the simulation data forthe peak loations of the staggered anti-ferroeletri polarizability of the F modelon random �4 graphs. The exponent � was kept �xed at the value � = 1=2 for the�ts. Here, N2;min denotes the minimum graph size inluded in the �t.ase, whih has to be justi�ed a posteriori by the thermal saling analysis. Withinthis sheme, the inuene of orretion terms is taken into aount by suessivelyomitting lattie sizes from the small-N2 side. As an be seen from the �ts of thistype presented in Fig. 5.10 and the orresponding �t parameters listed in Table 5.3,this ansatz does not lead to good �ts when the small latties are inluded. The�t with N2;min = 2048 yields a reasonable �t quality, resulting in an estimate of� = 0:9361(59) for the ritial oupling. However, in analogy with the square-lattie ase and guided by the matrix model onjeture, we interpret the slowlydereasing values of � as more and more of the small-N2 graphs sizes are exludedfrom the �t as an indiator of a bad �t form for the onsidered graph sizes andonlude that the resulting estimate for � is still learly too large. Thus, we revertto �ts inluding e�etive orretion terms.Adding the exponent � to the �t parameters amounts to a �t with an e�etiveexponent ~� as in Eq. (5.25), i.e.,��(N2) = � + A�(lnN2)�1=~�; (5.39)The parameters resulting from the orresponding non-linear three-parameter �tsare listed in Table 5.4(a) as a funtion of the minimum inluded graph size N2;min.Obviously, the available auray of the data hardly allows suh a non-linear �t,whih yields rather non-sensial results for small values of N2;min. Additionally, we�nd that the �t results for small N2;min partly depend on the hoie of the startingvalues for the �t parameters, i.e., that the �t routine gets stuk in loal minimaof the �2 distribution. Thus, at least the results for small N2;min annot be takenseriously. Only for the hoies N2;min = 2048 and N2;min = 4096 the �ts yield



176 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS(a) N2;min � A� 1=~� Q256 �0.4 1.6 0.06 0.00512 �0.4 1.7 0.08 0.001024 �0.2 1.6 0.1 0.002048 0.3(40) 1.2(30) 0.3(15) 0.764096 0.83(58) 1.7(62) 1.0(31) 0.69(b) N2;min � A� B� Q256 0.856(11) 42.6(27) �2.737(10) 0.13512 0.823(18) 49.3(53) �2.774(22) 0.171024 0.758(33) 70.6(104) �2.862(28) 0.632048 0.834(65) 42.9(229) �2.659(414) 0.80Table 5.4: (a) Parameter results of least-squares �ts of the funtional form (5.39) forthe FSS of the peak loations of the staggered polarizability of the F model on �4random graphs to the simulation data. ~� denotes an e�etive exponent and N2;minsymbolizes the minimum graph size inluded in the �ts. (b) Parameter results oflinear three-parameter �ts of the form (5.40) to the simulation data with more andmore of the small-N2 data points omitted.reasonable parameters, whih are in priniple in agreement with the expeted value� = ln 2 for the ritial oupling, but are endowed with statistial errors whih arefar too large for the estimate to be of muh pratial use. As in the square-lattiease, the result for the exponent ~� annot be taken as a serious estimate for �, sineit inorporates orretion terms in an e�etive way.Sine for the square-lattie ase we found a linear �t inorporating an additive log-logorretion of the form��(N2) = � + A�(lnN2)�2 �1 +B� ln lnN2lnN2 � (5.40)to be the best of the onsidered desriptions for the available �nite-size data (and aorresponding orretion is found for the KT phase transition of the XY model onregular latties [211, 240, 241℄), we also onsider this �t for the random graph data.This funtional form �ts the data rather well already for small values ofN2;min, as anbe seen from the olletion of �t parameters in Table 5.4(b). Nevertheless, the �tsstill show some inherent instability as an be seen from the result for N2;min = 1024,where obviously a slightly di�erent loal minimum of the �2 distribution is favoured
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Figure 5.11: Fits of the funtional forms (5.40) resp. (5.39) with the onstant �xedto � = ln 2 � 0:693 to the simulation data for the peak loations of the staggeredpolarizability of the random graph F model.over the minimum obtained for the other values of N2;min. However, the ritialoupling � estimated for, e.g., the N2;min = 2048 ase is still notieably larger thanthe expeted value of � = ln2. Nevertheless, it an be onsidered still marginallyonsistent with the onjetured value, the deviation being about 2:2 times the quotedstandard error of the estimate. On the other hand, if we �x the ritial oupling atthe expeted value ln 2, reduing the number of �t parameters to two, we still get aproper �t result of reasonable quality Q, the parameters being,A� = 92:51(167);B� = �2:920(19);Q = 0:27; (5.41)where N2;min = 2048 was hosen. This �t is shown in Fig. 5.11 to onvine thereader of our opinion that the simulation data are well ompatible with the expetedasymptoti behaviour, the auray of the data and, espeially, the reahable graphsizes just being not suÆient to properly resolve the �nite-size approah to ritiality.It should be noted that also the other type of �ts presented here still yield goodquality-of-�ts when �xing the parameter � at ln 2. For example, a �t of the form



178 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS(5.39) to the data with N2;min = 2048 gives,A� = 1:071(81);1=~� = 0:541(35);Q = 0:84: (5.42)The orresponding urve is also shown in Fig. 5.11.Universality of the ritial ouplingOne might be tempted to suspet that the observed rather large distanes of the�nite-size positions of the polarizability maxima from the expeted value � = ln 2 �0:693 are due to the fat that we use graphs of the regular ensemble, whereas thematrix model alulations of Refs. [72, 73℄ naturally onern graphs of the singularensemble. Indeed, quite generally one does not expet the ritial oupling of a modelof statistial mehanis to be universal . Instead, one �nds that the loation of thetransition points of problems suh as perolation, Potts or O(n) models dependson the type (e.g., the valeny) of the onsidered lattie. Similarly, for the Isingmodel oupled to dynamial polygoni�ations or the dual graphs, the loation ofthe observed third-order phase transition depends on whether one onsiders spinsloated on the verties of triangulations, quadrangulations, �3 or �4 graphs [34, 49,74℄13. Additionally, depending on the onsidered ensemble of graphs with respetto the inlusion or exlusion of ertain types of singular ontributions as de�ned inSetion 3.1, one arrives at di�erent values for the ritial oupling [34, 35, 152, 248℄.However, the situation is quite di�erent for the ase of the F model oupled torandom latties. As has been mentioned above in Setion 5.1.2, in the matrixmodel desription of the problem, Eq. (5.6), the matrix potential beomes equivalentto that of the O(2) model in the limit � = 0 [73℄; aording to Eqs. (5.4) and(5.17), this limit orresponds to the hoie a= = b= = 1=2 or � = ln 2. Thus,renormalizing the matrix model for restrited singular or regular �4 graphs merelyhanges the ritial point arit of Eq. (5.8), whih takes on the rôle of the osmologialonstant in the grand-anonial ensemble. But the KT point still ours for theratio a= = b= = 1=2 of oupling onstants14. This universality aspet is maybe13However, it is found that the loation of the ritial point does not depend on the topology ofthe latties [146℄.14This universality an already be expeted from the fat that the loation of the ritial pointis the same for the square-lattie and random �4 graph models.
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Figure 5.12: Finite-size approah of the peak loations of the staggered polarizabilityof the F model on �4 random graphs of the singular and regular ensembles. Thesolid lines show �ts of the funtional form (5.40) to the data. The lower limits inN2 of the urves are idential to the hoie of N2;min for the �ts.most strikingly demonstrated by the loop representations of the F and O(2) modelsas desribed in Setion 5.1.2: the loop expansion of the F model assigns urvaturedependent weights exp[i��(l)℄ to the loops on the �4 graphs; for � = 0, the urvaturedependene disappears and one is left with the loop weights of the O(2) model.Obviously, the struture of this onstrution does not depend on the detailed type ofthe onsidered graphs, i.e., whether they do or do not ontain singular ontributionssuh as self-energy and tadpole terms. Thus, the orrespondene of the � = 0 pointof the F model and the KT point is not inuened by lattie details, hene endowingthe ritial oupling � = ln 2 with an universality aspet.We have not performed extensive simulations of graphs of the singular ensemble todemonstrate this behaviour numerially. This is due to the fat that our implemen-tation of the simulation sheme for the ase of singular graphs is rather ineÆientsine it does not inorporate the minBU surgery moves and, additionally, the \on-line" updating of the dual lattie information used for the other ensembles annotbe easily adapted to the ase of singular graphs sine it would entail a separate
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Figure 5.13: FSS of the square-rootphr2i of the mean square extent of the square-lattie on a torus and planar �4 random graphs at the peak positions of the polar-izability of the oupled F model. The solid lines show �ts of the simple power-lawform phr2i � N1=dh2 to the data. The range of the urves indiates the lattie sizesinluded in the �t.treatment of numerous speial ases; thus, the dual lattie has to be onstrutedanew for eah measurement yle. Hene, simulations for graphs of the singularensemble are by orders of magnitude less eÆient for the onsidered graph sizesthan simulations of the other graph ensembles. Nevertheless, we performed somesimulations for smaller graph sizes and analyzed the FSS of the peak loations of thestaggered polarizability just as for the the ase of regular graphs. The orrespondingFSS data are shown in Fig. 5.12 together with the results for regular graphs. A �tof the log-log form Eq. (5.40) to the data inluding all �ve points from N2 = 128 toN2 = 2048 yields the following parameters,� = 0:76(19);A� = 114:9(364);B� = �2:676(22);Q = 0:95; (5.43)in agreement with the expetations. Note that from Fig. 5.12 the �nite-size orre-
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Figure 5.14: Collapse of the FSS approah of the saling of the peak loations ofthe staggered anti-ferroeletri polarizability of the F model on random �4 graphs(left sale) and on the square lattie (right sale).tions for the singular graph ase are muh larger than those for the regular graphmodel. This is in ontrast to previous observations for the ase of the Potts modeloupled to random triangulations [50℄ and the resulting ommon belief that theinlusion of singular graph ontributions redues FSS e�ets, at least for the on-sidered small lattie sizes. Exploratory simulations for the other graph ensemblesde�ned in Setion 3.1 imply that the polarizability peak loations our in the order��(strit) � ��(regular) � ��(restrited singular) � ��(singular), at least for smallgraph sizes.As has been previously mentioned, the reason for the observed very slow approahto the expeted asymptoti behaviour lies in the double e�et of the presene oflogarithmi orretions to saling and the small linear extent of the highly fratallatties. In priniple it should be possible to resolve the resulting saling orretionsby inluding higher-order orretion terms in the �t ans�atze. However, it mustbe admitted that, refraining from any arti�ial \good-will" tinkering with the �tparameters, the auray of the present data is not suÆient for reliable multi-parameter, possibly non-linear �ts. The strength of this ombined e�et is niely



182 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSdemonstrated numerially by the fat that the �ts to the FSS of the polarizabilitypeak loations with � �xed to its true value � = ln 2 shown in Fig. 5.11 ome aslose as ��(N2) = 0:7 to the ritial value only for graph sizes N2 � 1050 for theform (5.40) or even N2 � 105000 for the form (5.39). Instead of �guring out moreelaborate �ts, we try to disentangle the two orretion e�ets by a omparison tothe square-lattie model, where only the logarithmi orretions are present, but theonsidered latties are not fratal. For this purpose, we plot the polarizability peakloations as a funtion of the square-root of the mean square extent of the onsideredlatties as de�ned by Eq. (3.37), whih is the relevant measure for the linear extentof the graphs. The mean extents phr2i sale very di�erently for the two types ofonsidered latties as an be seen from Fig. 5.13. Here, the values for the squarelatties are exat up to mahine preision. From the simple saling ansatzhr2i � N1=2dh2 ; (5.44)without onsidering any orretion terms for the random graph ase, we �nd dh =2:000(20) for the square lattie, the deviation stemming from disretisation e�ets forthe smallest latties. For the ase of �4 random graphs the �t yields dh = 3:336(11).Note, however, that the result for dh is slowly inreasing as more and more ofthe small-N2 latties are exluded and we expet the true value of the Hausdor�dimension to be somewhat larger, see Refs. [115, 249, 250℄ and Setion 5.4.3 below.From Fig. 5.13 one reads o� that, in order to obtain results for the F model atomparable linear extents of the square and random latties, one has to onsiderrather small volumes for the square-lattie ase. For the omparison we use L � Lsquare latties with edge lengths L hosen suh that the resulting mean square extentomes as lose as possible to the hr2i values for the �4 random graphs of volumesbetween N2 = 256 up to N2 = 8192, inreasing in powers of two.In Fig. 5.14 we present a omparison of the FSS approah of the peak loations ofthe polarizability for the �4 graph and square-lattie models plotted as a funtionof the linear extent phr2i of the latties. Here, the absissae of the plot have beensaled suh as to aount for the di�erene in the overall orretion amplitude, butassuming the same value ln 2 for the o�set . From the two simulation points nearphr2i � 10 we �nd the ratio of the orretion amplitudes as15A� = �rl� (N2 = 1024)� ln 2�sl� (N2 = 324)� ln 2 � 4:23; (5.45)15These two simulation points have been hosen sine there the di�erene in phr2i between thesquare and random latties is minimal within the set of onsidered lattie sizes.



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 183where �rl� denotes the peak position for the random �4 graph model and �sl� thevalue for the square-lattie ase. The thus ahieved ollapse of the FSS data isobvious from Fig. 5.14. Consequently, we ome to the lear onlusion that the largerdeviations of the peak loations for random graphs are simply due to an about fourtimes larger overall amplitude of the orretion terms as ompared to the square-lattie model, the details of the FSS approah being otherwise surprisingly similarbetween the two onsidered lattie types. Espeially, the fat that for the �4 graphase the asymptoti value � = ln 2 annot be learly resolved by the onsidered �tsto the data is an obvious onsequene of the omparative smallness of the aessiblelattie sizes in terms of their e�etive linear extentsphr2i. To underline this �nding,we performed �ts of the simple form (5.38) to the data for both types of latties(there are not enough data points for �ts with orretion terms), inluding sizesstarting from the points nearphr2i � 10, whih result in estimates � = 0:7554(18)for the square lattie resp. � = 0:9416(89) for the random graphs. In terms ofthe quoted statistial errors these are obviously both far away from the asymptotiresult. The deviation from � = ln 2 is, however, just about four times larger forthe random graph ase than for the square-lattie model, in agreement with theprevious disussion of the saling ollapse of Fig. 5.14.Critial energy and spei� heatWe note in passing that for the largest lattie we have simulated, i.e., forN2 = 65 536,at � = � = ln 2 we �nd the following values of the internal energy and spei� heatper site, U(� = ln 2) = 0:333355(11);Cv(� = ln 2) = 0:2137(12): (5.46)Comparing these results to the values (5.19) found analytially for the square-lattieF model, we see that U(� = ln 2) is very lose to the value 1=3 found for the squarelattie, whereas Cv(� = ln 2) is far away from the square-lattie result 28(ln 2)2=45 �0:2989. On the basis of these results, we onjeture that the ritial value of theinternal energy of the F model is not a�eted by the oupling to random graphs,while the ritial spei� heat is. Thus, as one would expet, the ritial distributionof vertex energies naturally hanges its shape on moving from the square-lattie tothe random graph model, but, uriously, its mean is not shifted by this proedure.Interestingly, this situation seems to be spei� to the ritial point � = ln 2 of themodel, whereas for other inverse temperatures the square-lattie and random graph
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Figure 5.15: Temperature dependene of the internal energy U of the square-lattieand random �4 graph F models. Simulations have been performed for a N2 = 462 =2116 square lattie and random graphs with N2 = 2048 sites. The lines drawn onlyonnet the data points.energies diverge, see Fig. 5.15. This probably indiates the presene of an additionalsymmetry ommon to the ritial square-lattie and random graph models.FSS of the polarizabilityOn oupling the vertex model to quantum gravity we expet a renormalization of theritial exponents as presribed by the KPZ/DDK framework desribed in Setion2.4. The work of KPZ/DDK [30{32℄ onsiders onformal minimal models with C < 1oupled to the Liouville �eld, however it should also marginally apply to the limitingase C = 1 of the model onsidered here. As desribed above in Setion 2.4, theritial exponents of the random graph model an be found from the KPZ formulain terms of the onformal weights of the saling operators of the theory. To �nd theusual ritial exponents from the weights, one assumes that the well-known saling



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 185relations stay valid (see, e.g., Refs. [46, 140℄) and thus arrives at,� = 1� 2��1��� ;� = �P1��� ; = 1� 2�P1��� ; (5.47)dh� = 11��� ;2� � = (1� 2�P )dh:Here, �� denotes the weight of the energy operator and �P symbolizes the weightof the saling operator orresponding to the spontaneous staggered polarization P0,whih here takes on the rôle of the magnetization operator � of magneti models.As before, dh is the internal Hausdor� dimension of the random graphs. For thespeial ase of an in�nite-order phase transition onsidered here, the usual exponentswritten above are not well-de�ned in the sense of desribing power-law singularities,as has been mentioned above. Espeially, the energy operator does not arry aonformal weight �� in the usual sense. However, the orresponding �nite-sizesaling exponents, i.e., �=dh� = �P ;=dh� = 1� 2�P ; (5.48)have a well-de�ned meaning in the sense of Eqs. (5.27) and (5.31). Note that weannot solve for �=� resp. =� sine the Hausdor� dimension of the graphs in thepresene of the vertex model is not known a priori . From the exponents �=dh� = 1=4and =dh� = 1=2 ited above for the square-lattie F model, we �nd the orrespond-ing anti-ferroeletri \spin" operator to have onformal weight�P = 1=4; (5.49)leading to the intended ritial exponents �=dh� = 1=4 and =dh� = 1=2 via Eq.(5.48). Note that the weight �P = 1=4 is di�erent from the weight �� = 1=16 foundfor the magnetization of the ritialXY model in two dimensions, see e.g. Ref. [201℄.For the present limiting ase of onformal harge C = 1, the KPZ formula (2.140)redues to the simple relation ~� = p�; (5.50)



186 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSsuh that one has ~�P = 1=2 and the dressed ritial exponents beome�̂=dh� = ~�P = 1=2;̂=dh� = 1� 2 ~�P = 0; (5.51)implying a merely logarithmi singularity of the staggered polarizability16. Note,that the dimension xP = 2�P = 1=2 does not appear in the list of saling dimensionsof the primary operators of the Coulomb gas, whih are given by [58, 196, 201, 251℄xe;m = 12 � e2R2 +R2m2� ; e;m = �1;�2; : : : ; (5.52)where R denotes the ompati�ation radius and is given by R = 1=2 for the square-lattie F model [73℄, in ontrast to R = 2 for the two-dimensional XY model [201℄(the lowest present vortex operator has m = �4, see below). This fat, however,should not be taken too seriously, sine it has been observed that the identi�ationof operators of the Gaussian line of �xed points (i.e., the Coulomb gas) and of theorresponding 8-vertex model (resp. its ritial version, the 6-vertex model) is arather deliate task, whih annot be redued to reading o� the dimensions fromEq. (5.52) [252{255℄. As far as the appliation of the KPZ formula for the preditionof the \dressed" exponents is onerned, one should additionally keep in mind that,although the Coulomb gas piture in priniple survives the transformation to a ran-dom graph model, one has always the possibility of additional di�erenes betweenthe regular and random graph models with respet to the spetrum of operatorsatually realized (i.e., having non-vanishing amplitude)17. One rather obvious dif-ferene between both models is that for the square-lattie ase the lowest vortex (ormagneti) operator with non-vanishing amplitude is that with vortiity m = �4,orresponding to an insertion of a vertex of type 7 resp. 8. On a random graph,vorties with smaller vortiity an be realized due to the irregularity of the faes [73℄.However, this is not important for the onsidered ase of the F model, sine therethe fugaity of all vorties is stritly zero (d = 0).For a numerial hek of the exponents onjetured by the KPZ formula, there arethe two prinipal possibilities of onsidering the FSS of the staggered polarizabilityat its maxima for the �nite graphs or at the �xed asymptoti transition oupling� = ln 2. While in the asymptoti regime both approahes are expeted to lead to16In the following we will drop the tilde (~) from the dressed exponents to improve readability.17Note that there are even di�erent opinions about whether the KPZ sheme should be appliedat all for the ase of the XY model oupled to random latties, see Refs. [45, 256℄.



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 187(a) N2;min A� =dh� Q256 0.9110(41) 0.7255(7) 0.00512 1.0582(78) 0.7048(11) 0.001024 1.238(16) 0.6853(17) 0.002048 1.581(44) 0.6575(32) 0.004096 1.864(87) 0.6395(52) 0.15(b) N2;min A� =dh� ! Q256 0.1975(97) 0.4749(81) 1.698(55) 0.00512 0.116(14) 0.406(16) 2.22(12) 0.001024 0.039(12) 0.281(37) 3.24(30) 0.242048 0.047(37) 0.301(79) 3.07(68) 0.16Table 5.5: Results of �ts of the funtional form (5.53) to the simulation data for thepeak values of the staggered polarizability of the F model on random �4 graphs. (a)Fits with the e�etive orretion exponent �xed at ! = 0, i.e., �ts without orretionterm. (b) Fits inluding ! as an additional �t parameter.idential results, this is not at all obvious in the presene of large, not ompletelyontrolled orretion e�ets for the aessible graph sizes. In both ases, we startfrom an FSS form inluding a leading e�etive orretion term as in the square-lattie ase, namely, �(N2) = A�N=dh�2 (lnN2)!; (5.53)where �(N2) is taken to be either the peak value as a funtion of � or the valueat � = � = ln2. We onsider the peak value ase �rst, taking the simulationresults for the graph sizes quoted in the previous setion for the determinationof the ritial oupling, i.e., N2 = 256; : : : ; 25 000. Omitting the orretion term,i.e., foring ! = 0, and trying to ontrol the e�et of orretions to saling bysuessively omitting data points from the small-N2 side, results in quite poor �tswith an exponent estimate =dh� � 0:7 steadily dereasing with inreasing lowerut-o� N2;min, f. Table 5.5(a). Allowing the e�etive orretion exponent ! to vary,the resulting leading exponent estimate =dh� is onsiderably redued, still showinga tendeny to deline as N2;min inreased, f. Table 5.5(b). However, the �t qualityis still not very good and the resulting exponent estimate for, e.g., N2;min = 2048,=dh� = 0:301(79) is not onsistent in terms of the statistial error with the purelylogarithmi singularity expeted from the KPZ/DDK predition. Figure 5.16 shows
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Figure 5.16: FSS of the peak values of the staggered polarizability of the random-graph F model together with a �t to the funtional form (5.53) inluding the pointswith N2 � N2;min = 2048.the simulation data for the peak heights together with this last �t.For the data at �xed oupling � = ln 2 simulations up to slightly larger graph sizesould be performed sine no reweighting analysis is neessary there. Hene, resultsare available for graph sizes between N2 = 256 and N2 = 32 768 sites, inreasing bypowers of two. Again, the funtional form (5.53) is �t to the resulting �nite-size datafor the polarizability at � = ln 2. For the onstrained �ts with ! = 0 we do not �nda quality-of-�t of at least 10�2 for N2;min up to 4096 and thus do not onsider thisform further. The parameters of �ts inluding the logarithmi term are olleted inTable 5.6. Note that the fat that the data sale at all annot in itself be taken asan indiret justi�ation of the laim that � = ln 2 is the ritial oupling sine, asmentioned several times, the whole high-temperature phase of the model is ritialand thus shows saling behaviour. As is obvious from Table 5.6, the funtional forminluding a logarithmi orretion �ts the data rather well already for quite smallvalues of N2;min, leading to exponent estimates =dh� at least marginally ompatiblewith the onjeture =dh� = 0 in terms of the quoted statistial errors. In fat, ifwe assume a purely logarithmi inrease of �(N2), i.e., if we �x =dh� = 0, the data



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 189N2;min A� =dh� ! Q256 0.491(19) 0.0194(55) 2.117(40) 0.66512 0.543(42) 0.0304(91) 2.026(72) 0.911024 0.569(75) 0.035(14) 1.98(12) 0.85Table 5.6: Parameters resulting from �ts of the funtional form (5.53) to the simu-lation data for the staggered polarizability at � = � = ln 2 of the random-graph Fmodel as a funtion of the minimum graph size N2;min inluded in the �t.yield good-quality �ts for N2;min & 512; for N2;min = 2048 the parameters of thispurely logarithmi �t are A� = 0:3960(96);! = 2:295(11);Q = 0:39: (5.54)
The simulation data at � = ln 2 together with this last �t are shown in Fig. 5.17.Note that for the peak height data disussed before, suh a purely logarithmi �t isnot possible with aeptable values of Q. To enable a somewhat better judgementof the observed disrepany between the saling at the peak maxima and at theasymptoti ritial oupling for the random graph model, we shortly onsider thesame two lines for the square-lattie model, using a range of lattie sizes omparableto that of the random graph ase in terms of the e�etive linear extents as it hasbeen disussed in the previous setion. Fitting the funtional form (5.6) to thesetwo data sets, we �nd =dh� = 0:475(46) for the saling at � = ln 2 also onsideredabove, but an estimate of =dh� = 0:598(36) from the saling of the peak values of�. Thus, also for the square-lattie model, the saling of the peak values yields anexponent estimate lying o� the expeted result (=dh� = 1=2 in this ase), while�ts at the ritial oupling are in good agreement with the expetations. However,this e�et is muh less pronouned for the regular-lattie model and, in fat, atthe given level of auray at the verge of statistial signi�ane. This observation,on the other hand, �ts well into the general piture drawn in the ontext of thesaling of the polarizability peak positions above, implying a general enhanementof orretion amplitudes on moving from the regular lattie to the random-graphmodel.
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Figure 5.17: Finite-size simulation data of the polarizability of the F model onrandom �4 graphs at the asymptoti ritial oupling � = ln2. The solid urveshows a �t of the form (5.53) to the data, where =dh� = 0 was kept �xed.FSS of the spontaneous polarizationFor the saling of the spontaneous polarization the situation is found to be verysimilar to the above disussed ase of the polarizability. Hene, we do not presentthe results in suh detail as for the latter observable. We assume the same FSS formas in the square-lattie ase, i.e.,P0(N2) = AP0N��=dh�2 (lnN2)!; (5.55)where, again, P0(N2) is taken to be either the value at the peak position of the po-larizability or, alternatively, the result at the asymptoti ritial oupling � = ln2.Fits without the logarithmi orretion term show unaeptable quality throughoutthe whole region of hoies of the ut-o� N2;min and are thus not expliitly presentedhere. Table 5.7(a) shows the parameters resulting from �ts of the funtional form(5.55) to the spontaneous polarization at the peak positions of the polarizability. Forall hoies of N2;min shown in Table 5.7(a) the quality-of-�t parameter Q assumesvalues below 10�2. This, however, seems not to be due to a prinipally bad hoie



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 191(a) N2;min AP0 �=dh� ! Q256 1.031(17) 0.1378(24) 0.468(17) 0.00512 0.850(32) 0.1615(4) 0.653(37) 0.001024 0.681(58) 0.1855(96) 0.853(78) 0.002048 2.15(42) 0.076(20) 0.12(17) 0.004096 1.46(109) 0.064(40) 0.23(37) 0.00(b) N2;min AP0 �=dh� ! Q256 1.583(35) 0.4633(30) 0.726(22) 0.74512 1.658(68) 0.4581(50) 0.684(39) 0.911024 1.58(11) 0.4633(79) 0.728(64) 0.982048 1.48(23) 0.469(15) 0.779(134) 1.00Table 5.7: Parameters resulting from �ts of the form (5.55) to the �nite-graphspontaneous polarization at (a) the peak position of the staggered polarizabilityand (b) the in�nite-volume ritial oupling � = ln 2.of the funtional form of the �t, but rather is the e�et of one or two outliers, whihare rather far away from the �tted urve in terms of their statistial error. Apartfrom pure hane, a plausible explanation for this �nding is the presene of system-ati reweighting errors (bias) whih are muh more important for the spontaneouspolarization than they were for the polarizability due to the muh smaller statistialerrors. The situation is illustrated by the plot of suh a �t in Fig. 5.18. As far asthe results for the exponent �=dh� are onerned, as a funtion of N2;min we observetwo regions orresponding to two di�erent loal minima of the �2 distribution; thejump between both minima ours for N2;min = 2048, f. Table 5.7(a). At least forthe minimum orresponding to the smaller values of N2;min, the results for �=dh�are slowly inreasing as a funtion of N2;min, but are still far away from the value�=dh� = 1=2 onjetured within the KPZ/DDK framework disussed above. Again,an analysis of the FSS of the spontaneous polarization at the polarizability peak po-sitions for the square-lattie model reveals a similar behaviour for omparable graphsizes in terms of the e�etive linear extent, however with the size of the deviationsfrom the expeted result being muh smaller.Table 5.7(b) shows the parameters resulting from least-squares �ts of Eq. (5.55) tothe simulation data at the �xed oupling � = � = ln 2. The overall quality of the�ts is muh better than for the data at the polarizability peak loations disussed
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Figure 5.18: Saling of the �nite-size spontaneous polarization of the random-graphF model at the peak loations ��(N2) of the polarizability. The urve shows a �tof the funtional form (5.55) to the data, inluding all graph sizes starting fromN2;min = 2048.before. This is at least partially due to the fat that for the results at �xed ouplingno bias e�ets indued by a reweighting proedure are present sine the simulationswere performed diretly at � = ln 2. We do not observe a lear overall drift of theexponent estimate �=dh� resulting from the �ts as a funtion of the ut-o� N2;minand the quality-of-�t is found to be exeptionally high already for small values ofN2;min, f. Table 5.7(b). Figure 5.19 shows the simulation data at � = ln 2 togetherwith the �t orresponding to N2;min = 2048. The �ts yield values for �=dh� loseto the expeted result �=dh� = 1=2. The result for N2;min = 2048 is onsistent withthe KPZ/DDK onjeture within about two times the quoted standard deviation.Thermal salingIn order to extrat information about the ritial exponent � and possibly to �ndadditional evidene for the loation of the ritial point, we try to perform a ther-mal saling analysis and onsider the dependene of the staggered anti-ferroeletri
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Figure 5.19: Saling of the spontaneous polarization of the F model on �4 randomgraphs at the asymptoti ritial oupling � = ln 2 and a �t of the funtional form(5.55) to the data, inluding graph sizes starting from N2;min = 2048 (solid urve).polarizability on the inverse temperature � in the viinity of the ritial point. Sinethe high-temperature phase of the F model oupled to �4 random graphs is expetedto be ritial as for the ase of the square-lattie F model, suh a saling analysishas to be performed on the low-temperature side of the polarizability peak. Figure5.20 shows a survey of the thermal and FSS saling properties of the staggered po-larizability of the random graph F model. As for the square-lattie model (f. Fig.5.7), we �nd saling throughout the high-temperature phase to the left of the peaks.However, the ontrast of a non-saling polarizability in the low-temperature phaseannot be demonstrated here as easily as for the regular lattie model. Due to theexponential slowing down of the link-ip and minBU surgery dynamis of the �4graphs above � to be disussed in Setion 5.3 below, simulations annot proeedarbitrarily deep into the ordered phase. Comparing the regions to the right of thepeaks of Figs. 5.7 and 5.20, we see that the �nite-size e�ets in the low-temperaturephase are extremely strong for the random graph model, muh stronger than forthe square-lattie ase. Thus, up to the inverse temperature � = 1:4 shown in Fig.5.20, there is no sign of a onvergene of the urves for di�erent lattie sizes as it is
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Figure 5.20: Saling of the polarizability peaks of the F model on planar �4 randomgraphs from Monte Carlo simulations. The lines are drawn for illustrative purposesonly.already found for � � 0:8 in Fig. 5.7. This e�et is, again, attributed to the relativesmallness of the linear extents of the random graphs as ompared to those of thesquare lattie.The requirements of a proper thermal saling analysis of the polarizability resultingfrom these observations are almost impossible to ful�l: one has to keep enough dis-tane from the ritial point for the linear extent of the graph to be large omparedto the orrelation length of the matter part to keep �nite-size e�ets under ontroland, on the other hand, one should not proeed too deep into the ordered phasesuh as not to leave the thermal saling region in the viinity of the ritial point.Thus, one would have to go to huge graph sizes to get rid of these onstraints to apratially aeptable extent. Nevertheless, we attempt a thermal saling analysisof the polarizability from simulations of graphs of size N2 = 30 000 with inverse tem-peratures ranging from � = 0:9 up to � = 1:6 taking about 800 000 measurementsat eah �. The expeted saling form is given by Eq. (5.35), i.e.,ln�(�) � A� +B�(� � �)��; (5.56)



5.2. THE ANTI-FERROELECTRIC PHASE TRANSITION 195whih should hold for � ! �+ as N2 !1 and where logarithmi orretions havealready been omitted. We �nd it impossible to reliably �t all four of the parametersinvolved in Eq. (5.56) to the available data. Varying the starting values we �nd amultitude of loal minima of the �2 distribution, suh that virtually any result anbe \found" for � and � in this way. Fixing one or the other of both parametersat the expeted values � = ln 2 resp. � = 1=2, the �ts beome more stable. Thedependeny on the range of inluded values of � is found to be rather small and for� � 1:25 we arrive at the following �t parameters,A� = �101(4662);B� = 106(4662);� = 0:02(103);Q = 0:03; (5.57)for � �xed at ln 2 resp. A� = �86(1083);B� = 324(5744);� = �11(147);Q = 0:04; (5.58)with � �xed at 1=2. Obviously both �ts are not very useful, suh that we are �nallyfored to �x both parameters at their expeted values to �nd,A� = 0:91(41);B� = 4:20(33);Q = 0:03: (5.59)This �t is shown in Fig. 5.21 together with the simulation data. Thus, the bestwe an onlude about the thermal saling behaviour of the polarizability of the Fmodel oupled to �4 random graphs is that there is no obvious ontradition withthe expetations onerning the parameters � and �. However, in view of the fatthat already for the regular lattie model thermal saling �ts were not at all easilypossible, this �nding is probably not a too astonishing one.Long-range orderTo omplete the piture, we try to visualize graphially how the anti-ferroeletriorder parameter, i.e., the staggered polarization, hanges on passing from the dis-ordered high-temperature to the ordered low-temperature phase. For this purpose
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Figure 5.21: Thermal saling of the polarizability of the random graph F model forgraphs with N2 = 30 000 sites. The urve shows a �t of the funtion (5.56) to thedata, where � = ln 2 and � = 1=2 have been kept �xed.we use the graph embedding and 3D visualization sheme desribed in Appendix B,whih yields 3D omputer graphis of an embedding of the dynamial polygoni�a-tions into three-dimensional Eulidean spae without edge rossings. For the ase of�4 graphs and the orresponding quadrangulations onsidered here, the square faesare divided into two triangular parts for tehnial reasons. To visualize the loalvalue of the order parameter we use the \plaquette spin" representation de�ned inSetion 4.3.2, where to eah fae of the �4 graph a salar variable is attributed,whih represents the integral over the arrow diretions around the fae with respetto the referene diretion de�ned by the two-olouring of the faes of the graph. Inthe language of polygoni�ations this orresponds to salar \spin" variables residingon the sites of the quadrangulation. These variables we symbolize with olours,positive \spins" being drawn in red and negative \spins" in blue. The faes of thequadrangulations are �lled with olour gradients interpolating between the oloursof the quadrangulation sites. In this way a smooth impression of the loal behaviourof the order parameter an be reated.Figures 5.22 and 5.23 show the outome of suh a visualization attempt starting
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(a)

(b)

Figure 5.22: Con�guration snapshots of the F model oupled to �4 random graphsat � = 0:4 (a) and � = 0:75 (b). Depited is the dual quadrangulation with eahsquare fae divided into two triangles. Red and blue regions denote positive andnegative values of the \plaquette spins" de�ned in Setion 4.3.2.
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Figure 5.23: Con�guration snapshots of the F model oupled to �4 random graphsat � = 0:8 (a) and � = 0:9 (b). Depited is the dual quadrangulation with eahsquare fae divided into two triangles. Red and blue regions denote positive andnegative values of the \plaquette spins" de�ned in Setion 4.3.2.



5.3. DYNAMICAL SCALING AND AUTOCORRELATION TIMES 199from �4 graphs with N2 = 1000 sites. Figure 5.22 shows on�guration snapshots ofthe high-temperature phase and the viinity of the ritial point � = ln 2, whereasFig. 5.23 represents on�gurations for inverse temperatures, whih in the thermo-dynami limit belong to the low-temperature phase. Obviously, as the temperatureis dereased from the high-temperature phase, the snapshots show the expeted or-dering behaviour with pathes of equal \spin" orientations of all sizes around theritial point and a lear long-range ordering in the low-temperature phase. Notethat the presented snapshots also give a good impression of the overall variationof the extent and fratal struture of the graphs during the link-ip and surgeryupdating proess, whih to most of the extent visible from Figs. 5.22 and 5.23 isindependent from the variation of the inverse temperature � and would be seen fordi�erent snapshots at the same temperature in quite the same way.5.3 Dynamial Saling and Autoorrelation TimesThe dynamial behaviour of the graph-update dynamis for the ase of pure Eu-lidean quantum gravity has been studied in Setion 3.5. For the two ases of thepurely loal (one- and two) link-ip update and the ombined dynamis of link-ip and minBU surgery moves the dynamial ritial exponents zhr2i=dh belongingto the integrated autoorrelation time of the mean square extent have been deter-mined. Coupling a spin model to the dynamial graphs introdues an additionaltype of updates related to the matter variables (i.e., the loop algorithm for the aseof the vertex model). Sine both types of variables utuate on the same time sale(annealed disorder), the oupling of the geometry and matter subsystems naturallyindues hanges in the dynamial behaviour of both kinds of observables, those re-lated to geometry (suh as the mean square extent) and those referring to the matterdegrees of freedom (suh as the energy and polarization of the vertex model).In this setion, dynamial saling analyses will be presented for the purely loal andthe ombined link-ip/surgery updating shemes at the asymptoti ritial oupling� = ln2 of the model. An analysis of the behaviour at the pseudo-ritial pointsof systems of �nite size is not easily possible sine the reweighting sheme doesnot properly transform the autoorrelations of the involved time series. This isobvious from the fat that these temporal orrelations are not themselves desribedby the Boltzmann distribution of the model, whih only overs the stati, equilibriumproperties of the system. Additionally, some attention will be paid to the dynamial



200 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSbehaviour of the onsidered updates beyond the KT point in the high- and low-temperature phases.5.3.1 Loal updateAs has been mentioned above in Setion 3.5, the mean square extent of the ran-dom graphs is generially found to onstitute the slowest mode of relaxation of thegeometri setor of the theory. Thus, for the geometri part we again onentrateon this observable, de�ned as desribed in Setion 3.5.1. Among the observables ofthe oupled F model we onsider the internal energy of Eq. (4.1) and the staggeredanti-ferroeletri polarization de�ned by (4.39) resp. (4.40). For the determination ofthe dynamial ritial exponent zO=dh � zint;O=dh of the observable O the followingfuntional form is �tted to the the �nite-size results,�int(O) = AON zO=dh2 ; (5.60)i.e., no orretion terms are taken into aount in this exploratory study. From theusual universality arguments, the exponents zO=dh are not expeted to depend onthe ensemble of graphs onsidered. On the other hand, in ontrast to the ase ofdynamial exponents assoiated to the exponential autoorrelation times, zO=dh ingeneral an depend on the onsidered observable O [169℄. As for the ase of the purepolygoni�ations model, loal (one- and two-) link-ip simulations were performedfor graph sizes N2 between 64 and 4096 sites, where the number of measurementswas inreased with N2, ranging between 50 000 and 300 000 samples. As for allsimulations of random graph models presented in this thesis, measurements weretaken every ten sweeps of the respetive graph update under onsideration. Theloop-luster update of the vertex model part, on the other hand, was performedonly one per measurement, sine the dynamis of the loop-luster update is foundto be muh faster than that of the graph-related updates.Table 5.8 shows the integrated autoorrelation times �int(r2) orresponding to themean square extent of graphs of the strit, regular and restrited singular ensemblesoupled to the F model. The simulations were performed at the asymptoti ritialoupling � = ln 2. Simulations for the singular ensemble have not been performeddue to the omputational ineÆieny of the update for this ensemble, whih hasbeen mentioned several times. As for the ase of pure dynamial polygoni�ationsanalyzed in Setion 3.5.1, we �nd learly larger autoorrelation times for graphs of



5.3. DYNAMICAL SCALING AND AUTOCORRELATION TIMES 201N2 strit regular restr. sing.64 3.78(76) 2.03(56) 2.96(64)128 6.40(135) 4.32(120) 4.44(60)256 8.86(59) 6.34(87) 7.51(75)512 14.6(17) 10.3(11) 12.04(90)1024 24.8(34) 17.7(16) 18.0(11)2048 38.8(64) 27.6(34) 29.5(39)4096 58.7(73) 47.6(61) 44.8(56)Table 5.8: Critial integrated autoorrelation times �int(r2) of the mean square extenthr2i for the loal link-ip dynamis of planar random �4 graphs of the strit, regularand restrited singular ensembles oupled to the F model. The autoorrelationtimes are given in units of ten sweeps of ip moves. They were evaluated using thediret integration method for the normalized autoorrelation funtion desribed inAppendix A.4. The results from the ombined binning/jakknife tehnique agreewith those quoted within the estimated statistial errors.the strit ensemble than for graphs of the other two ensembles, but no dramatidi�erene between the regular and restrited singular ases. Also, independent fromthe onsidered ensemble, oupling the vertex model to the random graphs stronglyinreases the autoorrelations between suessive measurements of the mean squareextent, indiating a strong reation of the oupled matter bak onto the graphgeometry, f. Table 3.2 and Fig. 5.24. On the on�guration level, these enlargementof autoorrelation times an be traed bak to the ie-rule restrition of the vertexmodel, whih leads to a strong redution of the ip-move aeptane rate. Figure5.25 shows FSS plots of the autoorrelation times of the mean square extent for thestrit, regular and restrited singular ensembles. For the �ts of the power-law form(5.60) to the data, the graph sizes N2 = 64 and N2 = 128 were omitted sine therelear deviations from linearity an be reognized from the logarithmi plots of Fig.5.25. For graphs of the strit ensemble we �nd,Ar2 = 0:194(56);zr2=dh = 0:691(45);Q = 0:95: (5.61)
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Figure 5.24: Comparison of the ritial integrated autoorrelation times �int(r2)of (one- and two-) link-ip simulations of pure �4 random graphs of the regularensemble and the same graphs oupled to the F model. The times are given in unitsof ten sweeps of link ips. The lines show �ts of the funtional form (5.60) to thedata.The ase of regular graphs yields the following �t parameters,Ar2 = 0:114(46);zr2=dh = 0:724(58);Q = 0:98; (5.62)whereas for the restrited singular ensemble of graphs we arrive atAr2 = 0:218(73);zr2=dh = 0:640(50);Q = 0:97: (5.63)Obviously, the dynamial ritial exponents found for the di�erent graph ensemblesare statistially onsistent with eah other as expeted from universality, f. Setion3.5. Comparing these results to the �t parameters found in Setion 3.5.1 for thepure polygoni�ations model, we �nd an overall inrease of zr2=dh from zr2=dh � 0:6
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Figure 5.25: Critial integrated autoorrelation times �int(r2) of the mean square ex-tent of loal (one- and two-) link-ip simulations of �4 random graphs of the strit,regular and restrited singular ensembles oupled to the F model. The autoorre-lation times are given in units of ten sweeps of link ips. The solid lines show �tsof the power-law form (5.60) to the data.to zr2=dh � 0:7, reeting the e�et of the ie-rule restrition of the vertex modelon the link-ip graph dynamis.As far as the autoorrelations of the matter-related observables are onerned, we�nd almost no size dependene of �int(E), i.e., the integrated autoorrelation timeassoiated with the internal energy of the vertex model. This is illustrated in Fig.5.26, whih also shows that the values for �int(E) are only very slightly above thetheoretial minimum of 1=2, f. Eq. (A.16). The same e�et has been observedfor simulations of the F model on the square lattie via the loop algorithm andother luster algorithms, f. Refs. [174, 257℄. There, this e�et is attributed to thesub-lattie struture of the anti-ferroeletri model. For the square lattie, one aneasily de�ne sub-lattie energies assoiated with the vertex on�gurations on the twosquare sub-latties. These are found to exhibit temporal orrelations for di�erentonsidered updates, however with a strong anti-orrelation between the two sub-lattie energies indued by the ie-rule onstraint [174, 257℄. Thus, for the total
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Figure 5.26: FSS plot of the ritial integrated autoorrelation times �int(E) of theinternal energy of loal link-ip simulations of �4 random graphs of the regularensemble oupled to the F model. The autoorrelation times are given in units often sweeps of link ips.energy signi�ant temporal orrelations are expeted to show up only for extremelylarge latties. For the ase of �4 random graphs, on the other hand, sub-lattieenergies annot be easily de�ned sine the graphs are not bipartite (although theirduals are). Hene, we do not further onsider the energy-related observables here,but onentrate on the spontaneous staggered polarization P0. Figure 5.27 depitsthe FSS of the integrated autoorrelation times �int(P0) at � = � = ln 2 for graphsof the strit, regular and restrited singular ensembles. Fits of the power-law form(5.60) to the �nite-size data yield the following parameters,AP0 = 0:295(54);zP0=dh = 0:190(28);Q = 0:86; (5.64)for graphs of the strit ensemble,AP0 = 0:320(58);zP0=dh = 0:155(27);Q = 0:88; (5.65)
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Figure 5.27: Finite-size saling of the ritial integrated autoorrelation times of thespontaneous staggered polarization of the F model on planar �4 random graphs ofthe strit, regular and restrited singular ensembles from MC simulations with theloal link-ip dynamis. The solid lines show power-law �ts aording to Eq. (5.60)to the data.for the ase of the regular ensemble andAP0 = 0:281(55);zP0=dh = 0:173(29);Q = 0:85; (5.66)for simulations in the restrited singular ensemble. Here, the points orrespondingto N2 = 64 and N2 = 128 have been omitted from the �ts to aommodate for theirapparent deviation from linearity (in the log-log plot). Again, the estimates of zP0=dhare onsistent between the di�erent graph ensembles, the remaining deviations indi-ating the size of the orretions to the leading saling behaviour. Comparing zP0=dhto the exponent zr2=dh found for the mean square extent, however, we �nd a largedisagreement of the dynamial exponents assoiated with both types of variables,whih is, however, not unexpeted for dynamial ritial exponents de�ned fromintegrated autoorrelation times, see the disussion above in Setion 3.5.1.



206 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSAn overview of autoorrelation times o� the ritial point is given in Fig. 5.28, wherea temperature san of �int(r2), �int(E) and �int(P0) is shown for the ase of regulargraphs. For all of the high-temperature regime � < � = ln 2 we expet salingsine the orresponding phase is ritial. The absolute values of the autoorrelationtimes of the matter-related observables, however, derease largely as one movesfurther into the disordered phase, suh that for the pratial purposes onsideredhere autoorrelations beome less and less important in this regime. For � > ln 2,on the other hand, we �nd a systemati inrease of autoorrelation times of di�eringintensity. The autoorrelations of the mean square extent inrease only quite slowly(albeit starting from a high level) and �int(E) starts to signi�antly exeed its trivialvalue � 1=2 as � is inreased above �. On the other hand, �int(P0) explodesexponentially above � = ln 2 (mind the logarithmi sale of the absissa in Fig.5.28). This reets the ergodiity breaking of the dynamis between the two anti-ferroeletrially ordered states in the low-temperature phase of the model. Oneagain, on the on�guration level it is obvious how the dynamial properties of thevertex model part at bak onto the graph dynamis: to the extent that vertiesof types a and b disappear from the on�gurations due to the suppression of theirBoltzmann weights as � is inreased above �, the aeptane rate of the link-ipmoves is redued, thus slowing down the relaxation of, e.g., the mean square extent.In fat, it is easy to see that the aeptane rate of the link-ip moves vanishes as� ! 0.5.3.2 Surgery updateThe ombined link-ip and minBU surgery dynamis utilized for the main part ofthe F model simulations has only been implemented for the ase of the regularensemble of �4 graphs, f. Setion 3.5.2. For all simulations presented, link-ipand surgery updates were mixed at a ratio of three to one, suh that a sweep nowdenotes N2=4 attempted surgery moves and 3N2=4 one- and two-link ip updates.Again, loop-luster updates of the vertex model part were performed only one permeasurement due to the muh higher eÆieny of this luster update as omparedto the graph update. For the determination of autoorrelation times, simulationsat � = � = ln 2 were performed for graphs between N2 = 64 and N2 = 8192 sites,taking between 50 000 and 300 000 measurements after equilibration and inreasingthe length of the time series with the number of sites. As for the loal update, the
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Figure 5.28: Temperature san of the integrated autoorrelation times of the internalenergy, the spontaneous staggered polarization and the mean square extent of link-ip simulations of the F model on �4 random graphs of the regular ensemble. Thepresented data orrespond to graphs with N2 = 2048 sites. Note the logarithmisale of the absissa.simple power-law form (5.60) was �tted to the �nite-size data in order to extratthe dynamial ritial exponents.Figure 5.29 shows the autoorrelation times for the mean square extent of the graphsas ompared to the results for the purely loal link-ip update. From the power-law�t (5.60) to the data, again omitting the results for N2 = 64 and N2 = 128, we �ndthe parameters Ar2 = 0:0097(24);zr2=dh = 0:863(33);Q = 0:86: (5.67)Thus, in agreement with the ase of pure graphs onsidered in Setion 3.5.2, om-pared to the purely loal update we �nd a onsiderable redution in the overall sizeof autoorrelations and thus the saling amplitude, but no redution of the dynam-ial ritial exponent zr2=dh. Instead, the exponent found for the global updatemarginally agrees with that found for the loal update above, with a tendeny to
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Figure 5.29: Autoorrelation times �int(r2) at � = ln 2 of the mean square extent of�4 random graphs oupled to the F model resulting from simulations utilizing theombined, \global" link-ip and surgery move dynamis. The results for the purelyloal link-ip update are shown for omparison. The lines show �ts of the power-lawEq. (5.60) to the data. The times are given in units of ten sweeps of graph updates.be even larger. This last fat, however, only hints at the size of the present system-ati errors (i.e., orretions to saling), sine obviously the additional appliation ofsurgery moves an asymptotially only derease the value of z=dh or leave it on-stant. As a rule of thumb for the onsidered graph sizes, at � = ln 2 the ombinedlink-ip and surgery update redues the autoorrelation time of the mean squareextent to about a �fth of the value for the purely loal update18.Considering the matter-related observables, the energy is again found to lak anysign of ritial slowing down at � = ln 2. The integrated autoorrelation timesof the spontaneous polarization are olleted in Table 5.9 in omparison to thoseof the loal update simulations for the ase of regular graphs. This omparison isadditionally illustrated by the FSS plot of Fig. 5.30. The power-law �t (5.60) applied18Note, however, that the loal link-ip dynamis is about three times faster than the ombined\global" update in terms of omputer time.



5.3. DYNAMICAL SCALING AND AUTOCORRELATION TIMES 209N2 loal global64 0.692(41) 0.605(14)128 0.774(45) 0.631(15)256 0.760(34) 0.652(23)512 0.841(77) 0.666(17)1024 0.905(52) 0.687(22)2048 1.091(91) 0.762(36)4096 1.160(78) 0.901(47)8192 1.050(58)Table 5.9: Integrated autoorrelation times of the spontaneous staggered polariza-tion of the random graph F model from \loal" simulations (link-ip moves only)and from \global" simulations (ombined link-ip and surgery move dynamis) at� = � = ln 2. The times are given in units of ten sweeps of link-ip or ombinedlink-ip/surgery moves. Both types of simulations were restrited to the regularensemble of graphs.to the range N2 = 512; : : : ; 8192 yields the following �t parameters,AP0 = 0:249(31);zP0=dh = 0:153(17);Q = 0:27: (5.68)Again omparing to the result for the purely loal dynamis disussed in the previoussetion, we �nd no signi�ant hange of the dynamial ritial exponent. In fat, themeasured autoorrelation times at � = ln 2 are still so lose to the lower bound of 1=2that even in the amplitude no di�erenes between the two updates an be deteted19.However, onsidering the exponential inrease of �int(P0) above � = ln2, we �nd anappreiable redution of autoorrelations by the appliation of the ombined link-ip and surgery update, f. Fig. 5.31. For the shown example of N2 = 4096, theautoorrelation times for the purely loal update are about four times larger thanthose for the ombined, global dynamis. This is of some importane sine, as hasbeen disussed above in Setion 5.2.3, most of the FSS analysis of the stati ritialbehaviour had to be performed in the region � > ln 2 were the �nite-size peaks ofthe staggered polarizability are loated. For the mean square extent above � asimilar situation is found.19Reall the fat that all autoorrelation times have been measured in units of ten sweeps ofupdate moves.
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Figure 5.30: Comparison of the FSS of the ritial integrated autoorrelation timesof the spontaneous polarization of the random graph F model from loal updateand global update simulations. The solid lines denote �ts of the form (5.60) to thedata.5.4 Geometrial PropertiesThe annealed nature of disorder applied to the vertex model via its plaement ontodynamial �4 random graphs indues a bak-reation of the matter variables onto theunderlying geometry and thus a possible hange in the (loal and global) geometrialproperties of the graphs. Sine the general mehanism of matter bak-reation ontothe graphs is the tendeny to minimize interfaes between pure-phase regions of thematter variables, a \strong" oupling between matter and graph variables is onlyexpeted if the ombined system of spin model and underlying geometry is ritial,i.e., when lusters of ordered on�gurations exist on all length sales. Thus, oneexpets the universal graph properties suh as the graph-related ritial exponentsto remain at the values of pure Eulidean quantum gravity, unless the oupled mattersystem has a diverging orrelation length, see, e.g., Ref. [258℄.From the graph properties disussed in Chapters 2 and 3, we onsider the o-ordination number distribution as a typial loal property as well as the string
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Figure 5.31: Temperature dependene of the integrated autoorrelation times of thespontaneous staggered polarization of the random graph F model from simulationsutilizing the link-ip only (\loal") and the ombined link-ip and surgery move(\global") update. The data points orrespond to a graph size of N2 = 4096 sites.suseptibility exponent desribing the tendeny of the area of the graphs to divergein the grand-anonial ensemble and the fratal or Hausdor� dimension as globalgeometrial properties. As for the analysis of the KT transition in Setion 5.2.3above, we return to exlusively using graphs of the regular ensemble.5.4.1 The o-ordination number distributionThe distribution of ring lengths of the random graphs or, equivalently, the o-ordination number distribution of the dual polygoni�ations has been rather ex-tensively studied for the ase of pure Eulidean quantum gravity in Chapter 3.When oupling matter to the graphs, it is obvious that the bak-reations of thematter variables on the graphs in priniple are able to alter this loal graph har-ateristi. Espeially, for the ase of the vertex model onsidered here, the ie-ruleforbids ertain link-ip update moves and thus potentially hanges the distributionPN2(q) of o-ordination numbers. Note that the ie-rule restrition of the vertex
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Figure 5.32: Co-ordination number distribution of �4 random graphs (resp. the dualquadrangulations) withN2 = 512 sites oupled to the F model fromMC simulations.The error bars are of the size of the plotting symbols. The solid urve shows thedistribution for pure �4 random graphs of the same size.model leads to a oupling between matter variables and geometry whih is quitedi�erent from that of, say, an Ising model plaed on random graphs. While for thelatter ase the energy di�erenes of the spin model on�gurations beome irrelevantin the in�nite-temperature limit � ! 0, thus leading to a omplete deoupling ofspin and graph variables, the forbidden on�gurations of the F model orrespondto ontributions of in�nite energy suh that even in the limit � ! 0 there is abak-reation of the vertex model on�gurations on the underlying graphs. To putit di�erently, the matter bak-reation is of entropi instead of energeti nature forthe ase of the vertex model.Figure 5.32 shows the distribution of o-ordination numbers for �4 random graphsof the regular ensemble and with N2 = 512 sites oupled to the F model at thethree di�erent inverse temperatures � = 0:001, � = ln 2 and � = 1:5. Obviously,on the sale of the whole distribution PN2(q) no dramati di�erenes between thetemperature extremes an be distinguished and all three distributions look verysimilar to the ase of pure �4 random graphs of the same size also shown in Fig.
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Figure 5.33: Fration n2 of loops (faes) of length two of planar �4 random graphswith a oupled F model as a funtion of the inverse temperature �. The drawnerror bars are mostly overed by the size of the symbols. The solid line shows thevalue of n2 for the ase of pure �4 random graphs of the regular ensemble and withN2 = 2048 sites.5.32. As it turns out, however, the distribution of o-ordination numbers an bedetermined very preisely from the simulations. Thus, onentrating on a singlepoint of the distribution, namely the fration of quadrangulation sites with o-ordination number two or, equivalently, the fration n2 of length-two loops of the�4 graphs, whih already has been onsidered in Chapter 3, a lear variation withthe inverse temperature � an be resolved, f. Fig. 5.33. Also, in terms of thequoted statistial errors, whih are of the order of 10�5 for the measurements ofn2, the pure graph result of n2 = 0:296365(32) is very far away from the whole ofthe shown variation of the F model ase. We �nd a pronouned peak of n2 around� � 0:7 with only rather small variations with the size of the onsidered graph.A similar peak of the fration of three-loops for di�erent spin models oupled todynamial triangulations has been observed before, see Refs. [45, 46, 259℄. Sinethe o-ordination number distribution is normalized and (for the regular ensemble)monotonous, suh an inrease of n2 is neessarily aompanied by a derease of the



214 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSN2 �n2 n2(�n2)256 0.6941(27) 0.3151620(81)512 0.6904(25) 0.3149714(76)1024 0.6961(55) 0.3148749(93)2048 0.6926(46) 0.3148528(68)4096 0.6894(54) 0.3148274(68)Table 5.10: Maxima of the fration of loops of length two of �4 graphs oupled tothe F model as a funtion of the inverse simulation temperature � for di�erent sizesof the graphs.probability to �nd very large loops in the graph. The latter, on the other hand,typially our in the viinity of bottleneks onneting \baby universes" to themain body of the graph. Thus, at ritiality one would expet slightly less \babyuniverses" to our, thereby resulting in a dominane of more ompat on�gurationsof the graphs. However, if this e�et is indeed present, it is too small to be detetedby measurements of the mean square extent of the graphs, whih are muh lesspreise than measurements of the o-ordination number distribution, see Fig. 5.40below.Sine, as has been mentioned above, a pronouned bak-reation of the matter vari-ables onto the underlying graphs is only expeted at ritiality, we interpret theloation of the observed peak of n2(�) as a pseudo-ritial point �n2 whih shouldsale20 to the asymptoti ritial oupling � = ln 2. As before, the preise loa-tion of the maxima an be determined from the simulation data via the reweightingtehnique desribed in Appendix A.5. This has been done for the data from simu-lations of graphs of sizes between N2 = 256 and N2 = 4096 sites with time series oflengths between 8� 105 and 4� 106 measurements. The results of this analysis areompiled in Table 5.10. As is additionally illustrated in Fig. 5.34, we �nd only verysmall hanges of this peak position on variation of the size of the graphs, suh thatwithin the present statistial errors �n2 an be onsidered onstant. Thus, we donot perform a �nite-size �t to the data of the peak loations, but instead quote theresult from the largest onsidered lattie as an estimate for the asymptoti ritial20Note, however, that this is in ontrast to the interpretation of Refs. [45, 46, 259℄ for the or-responding peak of n3 in the triangulation model, whih was that it should stay away from theritial point even in the thermodynami limit.
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Figure 5.34: Inverse pseudo-ritial temperatures �n2 de�ned by the maximum ofthe fration n2 of loops of length two of �4 random graphs oupled to the F modelas a funtion of the graph size N2. The solid line shows the error-weighted mean ofthe estimates, whih is ��n2 = 0:6934(20).oupling, namely �n2 = 0:6894(54); (5.69)resulting from the simulations for N2 = 4096. This is in nie agreement with theexpeted value of � = ln 2 � 0:693 and almost two orders of magnitude morepreise than the results found above from the saling of the polarizability peakloations. From simulations of Potts models, it has been argued in Ref. [46℄ thatthe maximum value n2(�n2) of the fration of two-loops itself (resp. the maximumvalue of the fration of three-loops for the dynamial triangulations model onsideredthere) ould be a universal property whih only depends on the entral harge of thematter oupled to the latties. An analysis of the XY model oupled to dynamialtriangulations by the same authors [45℄, however, showed a lear disrepany to thisonjeture.



216 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS5.4.2 The string suseptibility exponentIn the grand-anonial ensemble of the dynamial polygoni�ations model the stringsuseptibility exponent s governs the leading singularity of the partition funtionZ(�) via21 Z(�) � (�� �0)2�s ; (5.70)f. Eqs. (2.59) and (2.60). Thus, a diret measurement of s requires omputation-ally demanding simulations with a varying number of polygons or graph verties.Additionally, sine (as for all the graph properties) a shift of s due to the presene ofsome matter variables oupled to the polygoni�ations model an only be expetedat ritiality, a numerial setup for the detetion of suh a hange needs to tune twooupling onstants, namely � and �, to ritiality. Due to the ombination of thesetwo problems a reliable estimation of s from grand-anonial MC simulations hasproved diÆult, see e.g. [109, 110℄.The methodAs it turns out, the string suseptibility exponent is related to the baby-universestruture of the dynamial polygoni�ations [29℄. This observation an be turnedinto a method for the determination of s from simulations at a �xed number ofpolygons or graph verties [258℄. The distribution of volumes B ontained in theminBUs of the dynamial polygoni�ations model an be expressed in terms of theanonial partition funtion of the model in the following way; for simpliity, westart with the ase of dynamial triangulations. Consider the situation of a minBUof volume B onneted to the \mother universe" of volume N2 � B via its nekof length three. This whole triangulation an be imagined as onstruted in thefollowing way: take two \universes" of volumes B + 1 and N2 � B + 1 with onetriangle marked on eah \universe", remove the marked triangles and glue bothparts together to give the triangulation disussed before. Thus, the total number ofsuh on�gurations is given by the following produt of partition funtions,3Z 0(B + 1)Z 0(N2 � B + 1); (5.71)where the fator of three aounts for the three possible ways to glue both partstogether along the omitted triangles and Z 0(B) denotes the anonial partition fun-21Sine we always onsider planar graphs here, s orresponds to the genus zero exponent 0s ofChapter 2.



5.4. GEOMETRICAL PROPERTIES 217tion of dynamial triangulations with B triangles and one marked triangle, i.e.,Z 0(B) = BZ(B); (5.72)where Z(B) denotes the usual anonial partition funtion of Setion 2.3.3. Now,the average number hnN2(B)i of minBUs of volume B for triangulations of volumeN2 is given by the absolute number (5.71), normalized by the total partition funtionZ(N2),hnN2(B)i / 3Z(N2)(B + 1)Z(B + 1) (N2 � B + 1)Z(N2 � B + 1): (5.73)From Eq. (2.81) the anonial partition funtion to leading order sales asZ(N2) � e�N2Ns�32 : (5.74)Inserting this expression into Eq. (5.73) the leading exponential part anels and wearrive at, hnN2(B)i � (B + 1)s�2(N2 � B + 1)s�2Ns�22� N2�s2 [B(N2 � B)℄s�2; (5.75)where from (5.74) one has to demand that B � 1 and N2 �B � 1 for this relationto be valid. A very similar argument an be given for \baby universes" with larger(than minimal) nek length [29℄. For the ase of minBUs of the dynamial quadran-gulations model the argument is obviously unhanged apart from the replaement3 ! 4 in Eq. (5.71). Also, it an be shown that the same relation should hold forthe ase of C < 1 onformal matter oupled to the polygoni�ations or dual graphswith s then denoting the orresponding dressed string suseptibility exponent [29℄.For the limiting ase C = 1, on the other hand, it is argued in Ref. [29℄ that thedistribution of minBUs should aquire logarithmi orretions and look like,hnN2(B)i � N2�s2 [B(N2 � B)℄s�2[lnB ln(N2 � B)℄�; (5.76)with � = �2.An estimate �nN2(B) for the volume distribution of minBUs of the dynamial polygoni-�ations model an be easily found numerially from a deomposition of the graphsinto \baby universes". When the minBU surgery algorithm desribed in Setion3.5.2 is applied, suh an estimate an even be produed as a simple by-produt



218 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSof the updating sheme, sine there the relevant information has to be gatheredanyway for the update proess. Then, an estimate for s an be found from a �tof the onjetured funtional form (5.75), resp. (5.76) for the C = 1 ase, to theestimated distribution �nN2(B) [258℄. In order to honour the onstraints B � 1 andN2 � B � 1 of Eqs. (5.75) and (5.76) one has to introdue ut-o�s Bmin and Bmax,suh that only data with Bmin � B � Bmax are inluded in the �t. Here, the hoieof the lower ut-o� Bmin is found to be muh more important for the outome ofthe �t than the hoie of Bmax. As a onsequene of this observation we use thefollowing reipe for the determination of the ut-o�s: as a rule of thumb, we hooseBmax = N2=8, whih has turned out to be a good hoie for most situations. WithBmax �xed, the lower ut-o� Bmin is steadily inreased from Bmin � 0, monitoringthe e�et of those inreases on the resulting �t parameters, espeially the estimatedstring suseptibility exponent s. Finally, with the resulting value of Bmin �xed, aseond adaption of Bmax is attempted, usually hanging Bmax by fators of two resp.one half. Additionally, the quality-of-�t parameter Q is utilized as a further indi-ator of whether negleted orretions to saling are important for the onsideredwindow of minBU volumes B. As far as orretions to the leading saling behaviourare onerned, it is speulated in Ref. [258℄ that a good e�etive desription of theleading orretion term results from the replaementBs�2 ! Bs�2�1 + DsB +O(1=B2)� : (5.77)Hene, the atual �ts were performed to the funtional formln �nN2(B) = As + (s � 2) ln [B(N2 � B)℄ + DsB ; (5.78)for C < 1, resp. to the formln �nN2(B) = As + (s � 2) ln[B(N2 � B)℄ + � ln[lnB ln(N2 �B)℄ + DsB ; (5.79)for the limiting ase of C = 1. Here, the dependeny on the total volume N2 hasbeen ondensed into the onstant As . Note that both of these �ts are linear and thenumber of data points is of the order of 103 for the lattie sizes we have onsidered,suh that a �t with four independent parameters is not utterly unrealisti. In Eq.(5.79) we keep � as a free parameter sine its presumable value � = �2 is onlya onjeture and, additionally, further orretions to saling an be overed in ane�etive way by letting � vary.
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Figure 5.35: Distribution ln �nN2(B) of minBUs of the dynamial quadrangulationsmodel with N2 = 1024 quadrangles. Note the preision down to a probability of10�12.Results for pure �4 graphsFor the ase of pure dynamial triangulations and planar topology the string sus-eptibility exponent is exatly known to be s = �1=2, f. Setion 2.3.3. In orderto hek the orret funtioning of the desribed analytial mahinery and to ex-pliitly hek for the expeted universality of s with respet to the hange fromtriangulations to quadrangulations, we performed simulations for pure �4 randomgraphs and measured the distribution nN2(B) of minBUs. Sine the measurementsare taken as a by-produt of the minBU surgery update, a large number of eventsis built up rather automatially. As an be seen from the presentation of the mea-sured distribution for graphs with N2 = 1024 sites of Fig. 5.35, this results inhigh-preision results even down to the very improbable events of minBU volumesaround B � N2=2. Table 5.11 shows the gradual derease of the estimated s asthe lower ut-o� Bmin is inreased to aommodate for higher orretions to saling.Note that the quoted error estimates, being the usual error estimates resulting froma least-squares �t routine, annot be taken seriously sine they do not aount for



220 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSBmin s Q0 �0.24879(11) 0.0010 �0.43439(64) 0.0020 �0.4613(18) 0.4530 �0.4722(37) 0.7240 �0.4722(72) 0.6250 �0.463(13) 0.5860 �0.474(25) 0.79Table 5.11: Inuene of the hoie of the lower ut-o� Bmin on the string susep-tibility exponent estimate resulting from �ts of the funtional form (5.78) to themeasured minBU distribution �nN2(B) for pure �4 random graphs of size N2 = 1024.The upper ut-o� has been hosen to be Bmax = 128. Note that the given error es-timates do not fully reet the statistial utuation due to the orrelation betweenthe individual points of the distribution Bmin.the apparent orrelations of the points of �nN2(B) for di�erent sizes B of the minBUs.These orrelations generially lead to an underestimation of varianes. The drift ofs as a funtion of Bmin shown in Table 5.35 is found to beome small against the ap-parent statistial utuations between di�erent hoies of the ut-o� for Bmin � 60,whih then was hosen as the �nal lower ut-o� for the graph size N2 = 1024. Theauthors of Ref. [258℄ have proposed to additionally extrapolate the results s(Bmin)with an ad ho exponential ansatz towards B ! 1. Apart from the fat that itis in general arguable, whether one should try extrapolations of noisy data, in thepresent situation we �nd the ombination of wrongly estimated errors from the �tsto �nN2(B) and the apparent strong orrelations of suessive values of s(Bmin) aswell as the lak of justi�ed assumptions of the funtional form of the approah ofs(Bmin) towards s suÆient arguments to refrain from using suh additional �ts.We note that statistially reliable error estimates for s ould be found when takinginto aount the full ovariane matrix of the individual entries of �nN2(B). This,however, in pratie would be a huge matrix and one ould hardly take enough MCsamples to reliably estimate eah of its entries. Instead, we revert to a more tratablejakkni�ng tehnique: �rst the upper and lower ut-o�s in B are determined asdesribed using the full estimate �nN2(B). Then, of the order of ten jakknife bloksare built from the times series the estimate �nN2(B) is based on and �ts with the sameonstant ut-o�s are performed for eah blok to yield jakknife-blok estimates of



5.4. GEOMETRICAL PROPERTIES 221N2 Bmin Bmax As s Ds Q1024 60 128 18.36(49) �0.474(40) �2.9(30) 0.792048 70 256 20.34(14) �0.495(10) �3.8(12) 0.564096 70 512 22.030(90) �0.4915(63) �3.78(74) 0.058192 100 1024 23.853(72) �0.4977(47) �4.80(87) 0.04Table 5.12: Parameters of �ts of the funtional form (5.78) to the simulation data forthe distribution �nN2(B) of minBUs for pure �4 random graphs. The parameter errorestimates were found by jakkni�ng over the whole �t proedure, keeping the ut-o�s Bmin and Bmax �xed. Note that the small values of the quality-of-�t parameterQ for the two largest graph sizes are simply an e�et of the under-estimation oferrors resulting from the ross-orrelations in �nN2(B).s and the other �t parameters. Using the formulas of Appendix A.3, then reliableerror estimates for the �t parameters an be given. For the pure gravity ase we haveperformed simulations for graphs of sizes N2 = 1024 up to N2 = 8192 inreasing byfators of two, taking about 109�N2 minBUs into aount for eah graph size. Table5.12 ollets the resulting estimates of s together with the remaining �t parametersfor the di�erent graph sizes. As far as �nite-size e�ets with respet to N2 areonerned, we onlude that the estimates for s for N2 � 2048 are ompatible witheah other and, onsequently, e�ets of �nite N2 an be negleted at the given levelof auray. Thus, as our best estimate of s we quote the result for N2 = 8192,whih is s = �0:4977(47). Obviously, this is in very good agreement with the exatresult s = �1=2.Results for the F model aseFor the ase of the F model oupled to �4 random graphs we expet a variation ofthe string suseptibility exponent s with the inverse temperature � of the F model.Sine the whole high-temperature phase is ritial, in the thermodynami limit sshould vanish for all � � � = ln 2, whereas in the non-ritial ordered phase theexponent should stik to the pure quantum gravity value of s = �1=2. To getan impression of the temperature dependene of s we measured the distribution�nN2(B) of minBUs over an inverse temperature range of 0:2 � � � 1:3 for graphsof size N2 = 2048 and performed �ts of the funtional form (5.78) to the data toextrat s. The lower and upper ut-o�s Bmin resp. Bmax were adapted aording
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Figure 5.36: Estimates of the string suseptibility exponent s from �ts of thefuntional form (5.78) to the measured distribution �nN2(B) of minBUs for �4 randomgraphs of size N2 = 2048 oupled to the F model as a funtion of the inversetemperature �. As is explained in the main text, the displayed error bars do notrepresent the full statistial error.to the proedure desribed above for the ase of pure dynamial �4 graphs. Theresulting estimates for s presented in Fig. 5.36 show a plateau value of s � �0:25within the ritial phase � � ln 2 and a slow drop down to s � �0:5 at � = 1:3in the low-temperature phase. Note that the error bars displayed in Fig. 5.36 arethose resulting from the �t proedure itself and are thus not representing the fullstatistial variation due to the above mentioned ross-orrelations between the valuesof �nN2(B) at di�erent B. As shall be shown below, the fat that s is found to bestill onsiderably smaller than zero in the high-temperature phase is due to a �nite-size e�et. In priniple, this ould be redued by performing �ts of the form (5.79)inluding the logarithmi orretions expeted at entral harge C = 1. For thequite small graph size of N2 = 2048, however, this type of (four parameter) �t is ingeneral found to be too unstable to yield reliable results.More preise estimates for s are found from a �nite-size saling study of three seriesof simulations, one at the ritial point � = ln 2, one in the ritial high-temperature



5.4. GEOMETRICAL PROPERTIES 223N2 Bmin Bmax As s Ds2048 70 256 20.48(23) �0.496(18) �5.9(18)4098 70 256 22.48(34) �0.515(25) �8.2(26)8192 100 512 23.75(51) �0.482(35) �5.9(41)16 384 100 2048 25.39(27) �0.478(17) �3.5(31)Table 5.13: Parameters of �ts of the form (5.78) to the distribution of minBUs of�4 random graphs oupled to the F model at � = 1:4. Larger graphs ould not beproperly relaxated due to the exponential slowing down of the MC dynamis foundin the low-temperature phase.phase at � = 0:2 and one deep in the ordered phase at � = 1:4, using �4 graphsof the regular ensemble. For the latter ase, the exponential slowing down of theombined link-ip and surgery dynamis of the graphs reported in Setion 5.3 limitedthe maximum aessible graph size to N2 = 16 384, while for the simulations at theritial point and in the high-temperature phase graphs with up to N2 = 65 536 siteswere onsidered. The �t results at � = 1:4 are olleted in Table 5.13. Obviously,within the present auray of the data no relevant �nite-size e�ets are visible, allresults being ompatible with the onjetured value of s = �1=2. Thus, as our�nal estimate for � = 1:4 we report the value found for N2 = 16 384,As = 25:39(27);s = �0:478(17);Ds = �3:5(31);Q = 1:00; (5.80)where Bmin = 100 and Bmax = 2048 have been used. For the quoted statistial errorestimates the jakkni�ng proedure desribed above for pure dynamial �4 graphshas been used, thus taking full aount of the present utuations.At the ritial point � = ln 2 �ts of the form (5.78) without logarithmi orretionsshow onsiderable �nite-size e�ets, f. Table 5.14(a). For the largest graph sizeonsidered, the thus found estimate s = �0:2075(17) is still far away from theexpeted result s = 0. Taking the logarithmi orretions into aount, these resultsan be onsiderably improved. The parameters of �ts of the orresponding funtionalform (5.79) are olleted in Table 5.14(b). The relatively large statistial errors ofthe estimates for the smaller graph sizes are explained by the fat that the �ts showa ompetition of two distint loal minima of the �2 distribution, suh that for some



224 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS(a) N2 Bmin Bmax As s Ds2048 80 256 17.80(17) �0.259(13) 1.1(15)4098 100 512 19.25(13) �0.2498(92) 2.0(13)8192 140 1024 20.70(23) �0.2426(15) 4.1(32)16 384 150 2048 21.87(17) �0.2193(10) 10.7(25)32 786 170 4096 23.525(59) �0.2263(34) 9.9(15)65 536 180 8192 24.73(30) �0.2075(17) 15.6(53)(b) N2 Bmin Bmax As s � Ds2048 60 256 19.7(37) �0.06(41) �1.2(24) �5.5(116)4098 65 512 22.3(13) 0.04(13) �1.81(81) �9.4(45)8192 90 1024 23.6(19) �0.01(19) �1.6(12) �9.7(73)16 384 100 2048 25.7(15) 0.05(13) �1.97(89) �10.9(69)32 768 110 4096 27.08(93) 0.013(70) �1.80(50) �12.6(47)65 536 120 4096 27.5(14) �0.05(12) �1.27(82) �6.9(71)Table 5.14: Parameters of �ts to the distribution �nN2(B) of minBUs for �4 randomgraphs oupled to the F model at � = � = ln 2. (a) Fits to the funtional form(5.78), i.e., without inlusion of logarithmi orretions expeted for C = 1. (b) Fitsto the form (5.79) inluding logarithmi orretions.of the jakknife bloks the �t yields s � �0:2. This e�et, however, vanishes forthe larger graphs. Apart from this �nding, no relevant �nite-size dependene of theestimate s ould be deteted. The ourring values for the \orretion exponent" �are not too far away from and indeed statistially ompatible with the onjetured(however not exatly known) value of � = �2. Sine for the ase of N2 = 65 536only a muh shorter time series than for the smaller graph sizes was reorded, wepresent as our �nal estimate of the ritial value of s the result at N2 = 32 768,As = 27:08(93);s = �0:013(70);� = �1:80(50);Ds = �12:6(47);Q = 1:00; (5.81)
where the ut-o�s have been hosen at Bmin = 110 and Bmax = 4096.Finally, in the high-temperature phase at � = 0:2 the simulation results behave very
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Figure 5.37: Estimates of s from �ts to the funtional form (5.78), i.e., withoutthe inlusion of logarithmi orretions expeted at C = 1, for the random graphF model at � = 0:2 as a funtion of the graph size N2. The statistial errors wereevaluated using the jakknife tehnique desribed in the main text.similarly to the ritial point ase. When applying �ts of the form (5.78) withoutlogarithmi orretions, onsiderable �nite-size e�ets are found, the resulting expo-nent estimates s only very slowly approahing the expeted value of s = 0. Thissituation is depited in the FSS plot of Fig. 5.37. On the other hand, the estimatesresulting from �ts of the form (5.79) to the data are ompatible with s = 0 forthe larger of the onsidered graph sizes. For graphs of sizes up to N2 = 4096 the\other" minimum of the �2 distribution wins against the \true" minimum relevantfor the larger graphs. We report here the estimate resulting from graphs of sizeN2 = 32 768: As = 26:25(79);s = �0:041(73);� = �1:38(47);Ds = �8:1(30);Q = 0:05; (5.82)



226 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSwith ut-o�s Bmin = 100 and Bmax = 2048.22 To omplete the piture, it shouldbe mentioned that the funtional form (5.79) does not �t the data in the low-temperature phase at � = 1:4 well and does not give estimates of s ompatiblewith s = 0.5.4.3 The Hausdor� dimensionThe non-trivial (internal) Hausdor� dimension dh of the latties of the dynamialpolygoni�ations model, de�ned by the relations of Setion 2.3.5, is one of its moststriking features. Apart from the present physial impliations, this fat results ina quite inonvenient obstale for the numerial analysis of the model, namely theomparable smallness of the e�etive linear extent of the graphs at a given totalvolume N2 as ompared to at latties.As matter variables are oupled to the dynamial graphs, the strong oupling be-tween graph and matter variables at ritiality ould lead to a hange of the frataldimensionality of the latties. In a phenomenologial piture, suh a strong ou-pling of matter and geometry should set in as soon as the intrinsi length sale ofthe graphs or polygoni�ations, usually de�ned as their mean square extent, beomesomparable to the orrelation length of the matter system. For onformal minimalmatter, there has been quite some debate about how dh should depend on the entralharge C of the oupled matter system, see, e.g., Refs. [51, 116, 166, 172, 249, 250℄.For C = 0 the result dh = 4 is exatly known [26{28℄ as has been mentioned inChapter 2. On the other hand, the branhed polymer model [109℄ desribing theC ! 1 limit [53℄ yields dh = 2 (see, e.g., Ref. [119℄), f. the disussion of Setion2.4. For the intermediate region 0 < C � 1 two di�ering onjetures have been madefor dh, f. Eqs. (2.142) and (2.143). All numerial investigations up to now, on theother hand, are onsistent with a onstant dh = 4 for 0 < C � 1 [51, 144, 172, 250℄.Naturally, the limiting ase C = 1 also onsidered here is of speial interest for theinvestigation of the transition to the branhed polymer regime C � 1.Numerially, it has proved exeptionally diÆult to extrat the Hausdor� dimensionsfrom the statistis of the numerially aessible graph sizes, see, e.g., Refs. [22,161,22Note that due to the present orrelations, as has been mentioned above, the quoted valuesof the quality-of-�t parameter annot be really taken seriously as far as their absolute values areonerned. However, they still serve a helpful purpose in omparing the quality of di�erent �ts tothe same data.
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Figure 5.38: Measured geometrial two-point funtion GN211 (r) for pure �4 randomgraphs of the regular ensemble with N2 = 4096 sites. For omparison, we alsoshow the two-point funtion of a perfet sphere of the same size, i.e., the funtionGN211 (r) = N0=(2pN0=4�) sin(r=pN0=4�) with N0 = 4098.172℄. Before the exat result dh = 4 for the ase of pure Eulidean quantum gravityhad been found, an analysis of very large, reursively onstruted pure dynamialtriangulations even implied an only logarithmi growth of the mean square extentwith the area of the mesh, orresponding to the limit dh !1 [161℄. Only in the lastseveral years, the development and appliation of suitable FSS tehniques allowedfor a more suessful and preise determination of dh [166, 249, 250℄.Saling and the two-point funtionInformation about the fratal struture of the graphs or polygoni�ations is enodedin the loop-loop orrelator or geometrial two-point funtion of the latties. It anbe de�ned in terms of di�erent geometrial entities, i.e., the verties or faes of thepolygoni�ations or the dual graphs and employing di�erent notions of geodesi dis-tane of these geometrial entities as disussed above in Setions 2.2.3 and 2.3.5. Theasymptoti, large-volume behaviour of the two-point funtions should not depend
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Figure 5.39: FSS plots of the peak loations rmax (left sale) and peak heightsGN211 (rmax) (right sale) of the two-point funtion of pure dynamial �4 randomgraphs as a funtion of the number of sites N2. The solid lines show �ts of thefuntional form (5.89) to the data. The extent of the lines indiates the range of N2inluded in the �ts.on these mirosopial details of its de�nition (apart from trivial re-salings). Here,as in Setion 3.5.1 above, we de�ne the geometrial two-point funtion GN211 (r) as theaverage number of verties of the polygoni�ations at a distane r from a markedvertex, where \distane" denotes the minimal number of links one has to traverse toonnet both verties. In terms of the dual graphs onsidered here, GN211 (r) denotesthe number of loops or faes of the graphs at a distane r from a marked fae, withthe distane measured in dual links.Sine the intrinsi length of the model sales as N1=dh2 by de�nition of the intrinsiHausdor� dimension dh, from the usual FSS arguments one an make the followingsaling ansatz (see, e.g., Ref. [166℄),GN211 (r) � N�2 F (r=N1=dh2 ); (5.83)i.e., GN211 (r) is a generalized homogeneous funtion and one an de�ne a salingfuntion F (x) of the single saling variable x = rN�1=dh2 and a ritial exponent �.
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Figure 5.40: Mean extent phr2i of regular �4 random graphs oupled to the Fmodel as a funtion of the inverse temperature �. The onsidered graphs haveN2 = 2048 sites. The horizontal line indiates the mean square extent of pure �4random graphs of the same size.As a simple alulation shows, due to the obvious onstraintN2 =Xr GN211 (r); (5.84)resp. its ontinuous analogue with the sum replaed by an integral, the exponent �is not independent, but simply related to dh as � = 1� 1=dh. As it has turned out,for pratial purposes the saling variable has to be shifted to yield reliable results,see, e.g., Refs. [116, 247, 249℄. The neessity of suh a shift an be most easily seenby a phenomenologial saling disussion of the mean extent de�ned byhriN2 = 1N2 Xr r GN211 (r) � F0N1=dh2 ; (5.85)with F0 = Pr F (r). As usual in FSS theory, one expets analytial orretions tothis leading behaviour, i.e. orretion terms ontaining negative integral powers ofthe linear length sale L of the onsidered lattie. For the random latties onsidered



230 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSN2;min Ar a dh Q256 1.4476(93) 1.063(23) 3.6347(76) 0.00512 1.501(13) 1.219(35) 3.675(10) 0.051024 1.535(21) 1.326(63) 3.700(16) 0.152048 1.549(33) 1.37(11) 3.709(24) 0.094096 1.669(61) 1.78(20) 3.789(41) 0.98Table 5.15: Parameters of �ts of the funtional form (5.89) to the peak loationsrmax of the geometrial two-point funtion of random �4 graphs oupled to the Fmodel at � = 0:2 as a funtion of the minimum inluded graph size N2;min.here, the mean extent hri itself takes on the rôle of L, suh that one an write [249℄hriN2N1=dh2 � F0 + aN1=dh2 + bN2=dh2 + � � � : (5.86)Combining the terms proportional to 1=N1=dh2 on both sides, one arrives athr + aiN2 � F0N1=dh2 +O( 1N2=dh2 ); (5.87)Thus, to inorporate �rst-order orretions to saling, the ansatz (5.83) is replaedby GN211 (r) � N�2 F [(r + a)=N1=dh2 ℄; (5.88)i.e., the saling variable is now de�ned to be x = (r + a)=N1=dh2 . Although one angive physially more profound arguments speaking in favour of the inlusion of suha shift parameter, see Ref. [247℄, we will restrit ourselves to the phenomenologialexplanation given above.Saling of the maximaA typial form of the measured two-point funtion GN211 (r) for pure dynamial �4graphs of size N2 = 4096 is shown in Fig. 5.38. It exhibits a pronouned peak anddelines exponentially for r ! 1. The two-point funtion of a sphere also shownin Fig. 5.38 illustrates the omparably small linear extent of the random lattieas ompared to a regular geometry. From the saling ansatz (5.88) one infers thefollowing leading saling behaviour of the position and height of the maxima of the



5.4. GEOMETRICAL PROPERTIES 231peak loations� N2;min Ar a dh Q0.2 4096 1.669(61) 1.78(20) 3.789(41) 0.98ln 2 4096 1.641(79) 1.73(26) 3.769(53) 0.251.4 2048 1.611(84) 1.53(25) 3.754(60) 0.21peak heights� N2;min An Bn dh Q0.2 4096 0.740(44) 6.7(36) 3.446(68) 0.76ln 2 4096 0.753(63) 6.2(51) 3.426(92) 0.551.4 2048 0.567(84) 12.7(60) 3.94(23) 0.55Table 5.16: Parameters of �ts of the form (5.89) to the data for the peak loationsand heights of the geometrial two-point funtion GN211 (r) of dynamial �4 graphsoupled to the F model at the inverse temperatures � = 0:2, � = ln 2 and � = 1:4.For � = 0:2 and � = ln 2 graph sizes between N2;min and N2 = 65 536 were inludedin the �ts; for � = 1:4 the maximum graph size was N2 = 32 768.two-point funtion GN211 (r),rmax + a = ArN1=dh2 ;GN211 (rmax) = AnN1�1=dh2 +Bn: (5.89)Sine the loation and height of these maxima an be determined numerially fromsimulation data, these relations an be used to estimate the intrinsi Hausdor�dimension dh of the latties. A tehnial diÆulty is given by the fat that r anonly take on integer values for the disrete graphs onsidered. This problem isirumvented by a smoothing out of the viinity of the maximum by a �t of a �nite-order polynomial to GN211 (r) around its maximum. For pratial purposes, we �nd afourth-order polynomial suÆient for this �t. The position and height of the maximaare then taken to be the orresponding properties of the �tted polynomial. To arriveat reliable error estimates for the position and height estimates, the simulationdata for GN211 (r) are ombined into jakknife bloks to whih the �tting proedure isapplied separately, with a subsequent appliation of the jakknife variane estimatorto the set of thus determined jakknife blok estimates of the peak positions andheights, f. Appendix A.3. The �ts themselves are done with equal weights givento the points of GN211 (r) around the maximum inluded in the �t. This hoie ofweights is found appropriate sine only a very small number of between �ve and



232 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSpeak loations� N2;min Ar Br a dh Q0.2 2048 2.34(43) 9.2(39) 5.5(21) 4.13(20) 0.86ln 2 2048 1.96(39) 5.6(43) 3.7(20) 3.93(21) 0.111.4 1024 2.18(49) 6.0(37) 4.4(22) 4.07(26) 0.44Table 5.17: Parameters of �ts of the form (5.92) to the peak loations of the two-point funtions of �4 random graphs oupled to the F model at di�erent inversetemperatures �. The maximum graph size was N2 = 65 536 for � � ln 2 resp.N2 = 32 768 for � = 1:4.�fteen adjaent points around the maximum are inluded in the �t, whose individualstatistial errors are found to be almost idential. Thus, one arrives at estimates forthe peak loations rmax and heights GN211 (rmax) as a funtion of the graph size N2, towhih then the funtional forms of Eq. (5.89) are �tted.Figure 5.39 shows FSS plots of the peak loations and heights for the ase of puredynamial �4 random graphs and the orresponding �ts of (5.89) to the data. Asusual, we tried to aount for the e�et of negleted saling orretions by sues-sively dropping data points from the small-N2 side. We �nd the value of dh tosteadily inrease on omitting more and more points. The �ts of Fig. 5.39 inludethe lattie sizes N2 = 4096 up to N2 = 32 768 with the following �nal �t parameters,Ar = 1:705(42);a = 1:84(14);dh = 3:803(28);Q = 0:22; (5.90)for the peak loations and, An = 0:606(27);Bn = 12:0(26);dh = 3:814(63);Q = 0:44; (5.91)for the peak heights. Thus, in terms of the statistial errors both estimates arestill quite far away from the exat result dh = 4 for the pure gravity ase, whih is,however, in agreement with previous attempts to determine dh with similar methods,see e.g. Ref. [166℄. It should be noted, on the other hand, that the results are already



5.4. GEOMETRICAL PROPERTIES 233muh improved by the introdution of the shift parameter a; enforing a = 0, the�t to the peak loations yields dh = 3:4313(20). We note that by varying thede�nition of the two-point funtion one an probably redue the amount of �nite-size orretions, but we will not attempt to do this here [166℄. Instead, in view ofthe suess of introduing a �rst-order saling orretion via the shift parameter a,we add the next analyti orretion term to the �t, i.e., for the peak loations wemake the ansatz rmax + a = ArN1=dh2 +BrN�1=dh2 ; (5.92)whih, again, is found to improve the estimate for dh onsiderably. Inluding graphswith N2 = 512 up to N2 = 32 768 sites, we �nd the following �t parameters,Ar = 2:007(77);Br = 4:50(61);a = 3:55(35);dh = 3:964(42);Q = 0:24; (5.93)
whih gives now good agreement with dh = 4 at the prie of an inreased statistialerror.For random �4 graphs oupled to the F model, we �nd a small dependene of themean square extent on the inverse temperature � of the oupled F model and also aslight shift ofphr2i as ompared to the ase of pure �4 random graphs, f. Fig. 5.40.Thus, it is at least not impossible for the Hausdor� dimension dh to be temperaturedependent, too. We performed the same analysis as desribed above for the aseof pure dynamial graphs for three spei� inverse temperatures of the F model,namely � = 0:2, � = ln 2 and � = 1:4, overing the ritial high-temperaturephase, the ritial point and the non-ritial low-temperature phase, respetively.Simulations were performed for graphs of sizes between N2 = 256 and N2 = 65 536for � = 0:2 and � = ln 2 resp. between N2 = 256 and N2 = 32 768 for � = 1:4. Theresults for dh from �ts of the funtional form (5.89) to the data steadily inrease onomitting more and more points from the small-N2 side. This is exempli�ed for thease of the peak loations of the � = 0:2 data in Table 5.15. A similar situationis found for the saling of the peak heights and the data at the other simulatedouplings �. The �nal results from �ts of the form (5.89) to the data are olletedin Table 5.16. Obviously, the estimates of dh extrated from the saling of the peakloations are signi�antly smaller than dh = 4 in terms of the statistial errors,



234 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHSN2;min Ahri a dh Q256 1.601(41) 1.49(11) 3.657(30) 0.01512 1.592(54) 1.47(15) 3.651(39) 0.001024 1.85(10) 2.23(28) 3.821(66) 0.302048 2.14(21) 3.08(59) 3.99(12) 0.81Table 5.18: Parameters of �ts of the form (5.94) with Bhri = 0 to the simulationestimates for the mean extent hri of pure �4 random graphs as a funtion of theut-o� N2;min. Graphs with up to N2 = 32 768 sites were inluded in the �ts.however in good agreement with the results found from the same �ts to the datafor pure �4 random graphs. The estimates of dh resulting from the saling of thepeak heights, on the other hand, are muh lower than they were for the ase ofpure �4 graphs. The rather di�erent result for � = 1:4 as ompared to the otherinverse temperatures again indiates the presene of ompeting loal minima of the�2 distribution | an e�et whih is always rather likely to our in non-linear �ttingproedures.As for the pure gravity model, we try to improve on the found estimates for dh byinluding the next sub-leading orretion term into the �ts to the peak loations ofthe two-point funtion, using the �t ansatz (5.92). With this type of �t we �nd nosigni�ant dependeny of the results on the lower ut-o� N2;min in the graph sizes.The parameters of �ts of this form are shown in Table 5.17. The resulting estimatesof dh are ompatible within statistial errors with dh = 4, suh that from this datawe have no reason to suspet that dh di�ers from its pure gravity value dh = 4 forany inverse temperature � of the F model.Saling of the mean extentAs an alternative to the saling of the maxima of the two-point funtion, one an alsoonsider the behaviour of mean properties of the distribution GN211 (r), espeially thesaling of the mean extent (5.85). Taking the next sub-leading analyti orretionterm into aount, we make the saling ansatzhr + aiN2 = AhriN1=dh2 +BhriN�1=dh2 : (5.94)Estimates for hri an be easily found from the simulation data for GN211 (r) togetherwith statistial error estimates evaluated by a jakknife bloking of the time se-



5.4. GEOMETRICAL PROPERTIES 235(a) N2;min aopt �dh �2=dof256 1.47(41) 3.67(11) 2.5512 1.57(63) 3.69(16) 3.01024 2.22(49) 3.83(11) 0.72048 2.97(100) 3.97(21) 0.1(b) N2;min aopt �dh �2=dof256 1.46(10) 3.657(28) 2.3512 1.52(14) 3.672(37) 2.71024 2.20(23) 3.818(55) 0.72048 2.98(60) 3.97(12) 0.1Table 5.19: Estimates of the shift a and the internal Hausdor� dimension dh fromthe adaption method proposed by the authors of Ref. [249℄. (a) Estimates resultingfrom the original presription of Ref. [249℄. (b) Results from the same method,however with the average (5.98) replaed by (5.100) and error estimates evaluatedby a jakknife tehnique. In the adaption proess graph sizes from N2 = N2;min upto N2 = 32 768 sites were inluded.ries. Setting Bhri = 0 �rst and adapting the lower ut-o� N2;min of the graph sizessuessively as before, for the ase of pure dynamial �4 graphs we �nd the esti-mates listed in Table 5.18. As for the results from the saling of the peaks of thetwo-point funtion, the resulting estimates of dh are signi�antly too small in termsof the statistial errors with an obvious tendeny to inrease as more and more ofthe points from the small-N2 side are omitted. On the other hand, inluding theorretion term of Eq. (5.94) largely redues the dependeny on the ut-o� N2;min.For N2;min = 256 we �nd the following �t parameters,Ahri = 2:01(27);Bhri = 3:1(18);a = 3:3(11);dh = 3:90(15);Q = 0:01; (5.95)with an estimate of dh in nie agreement with dh = 4. Obviously, in view of theresults already found without inlusion of the orretion term, the use of this addi-tional orretion is more questionable here than it was for the saling of the peakloations above. Also, the �ts beome very unstable as less points are inluded;



236 CHAPTER 5. THE 6-VERTEX MODEL ON RANDOM �4 GRAPHS� N2;min Ahri a dh Q0.2 4096 1.54(20) 1.60(74) 3.57(12) 0.04ln 2 4096 1.23(19) 0.50(80) 3.35(14) 0.841.4 2048 1.95(33) 2.67(94) 3.89(21) 0.31Table 5.20: Parameters of �ts of the funtional form (5.94) with Bhri = 0 to themean extents of �4 random graphs oupled to the F model at inverse temperatures� = 0:2, � = ln 2 and � = 1:4. The �ts for � = 0:2 and � = ln2 inlude graph sizesup to N2 = 65 536 sites, whereas the �t at � = 1:4 inludes graphs up to N2 = 32 768sites.this explains the use of the ut-o� N2;min = 256 above, although the quality-of-�t israther poor.The authors of Ref. [249℄ have proposed a di�erent and less onventional method toextrat a and dh from data of the mean extent, whih they laim to be espeially wellsuited for obtaining high-preision results. They onsider the following ombination,Ra;N2(dh) � hr + aiN2N1=dh2 ; (5.96)and evaluate it for a series of simulations for di�erent graph sizes N2. Then, fora given a and for eah pair (N i2; N j2 ) they de�ne dijh (a) suh that Ra;N i2(dijh ) =Ra;Nj2 (dijh ), i.e., dijh (a) = lnN i2 � lnN j2ln(hriN i2 + a)� ln(hriNj2 + a) ; (5.97)where we have used that hr + aiN2 = hriN2 + a. By a binning tehnique, an errorestimate �(dijh ) is evaluated and the estimates dijh (a) are averaged over all pairs(N i2; N j2 ) of volumes, �dh(a) = 1#pairsXi<j dijh (a): (5.98)Then, the optimal hoie aopt of the shift is found by minimizing�2(a) =Xi<j [dijh (a)� �dh(a)℄2�2[dijh (a)℄ ; (5.99)being aompanied by an optimal estimate �dh(aopt). The authors of Ref. [249℄ sug-gest to estimate the statistial error of this �nal estimate by onsidering the variationof (a; �dh) in an interval of a around aopt de�ned by �2(a) < min[1; 2�2(aopt)℄.



5.4. GEOMETRICAL PROPERTIES 237� N2;min Ahri Bhri a dh Q0.2 512 2.58(48) 11.4(33) 7.0(22) 4.08(21) 0.10ln 2 512 1.37(22) 0.4(29) 1.1(12) 3.45(14) 0.411.4 512 2.6(10) 9.1(58) 6.2(42) 4.15(47) 0.29Table 5.21: Parameters of �ts of the form (5.94) inluding the orretion term tothe mean extent of dynamial �4 graphs oupled to the F model at di�erent inversetemperatures �.We implemented this whole proedure to ompare its outomes to the results ofthe �ts to Eq. (5.94); the resulting estimates for a and dh are ompiled in Table5.19(a). First of all, we �nd the ad ho assumption for the estimation of the errorsof (a; �dh) not adequate. We apply a seond-order jakkni�ng tehnique as desribedin Appendix A.3 to be able to give error estimates for dijh (a) as well as the �nalestimate (a; �dh) and �nd error estimates largely di�ering from that resulting from therule �2(a) < min[1; 2�2(aopt)℄. For the set of simulations onsidered, the jakknifeestimated errors are about three to four times smaller than those estimated by therule for �2(a); however, for the simulations of the F model oupled to the randomgraphs we also �nd situations where the jakknife errors are up to ten times largerthan the errors estimated from �2. As far as the estimate of dh itself is onerned,we �nd indeed slightly inreased values as ompared to the �t method, f. the dataompiled in Table 5.19(a). However, this inrease an be traed bak to the fatthat the individual estimates dijh (a) all reeive the same weight in the average (5.98),irrespetive of their preision. This gives an extra weight to the results for largergraphs, whih annot be justi�ed on statistial grounds. If, instead, we replae theaverage (5.98) by the variane-weighted average�dh(a) = Pi<j dijh (a)=�2[dijh (a)℄Pi<j 1=�2[dijh (a)℄ ; (5.100)the resulting estimates for dh and a are statistially equivalent to those found fromthe �ts to (5.94), f. the parameters listed in Table 5.19(b). Thus, we do not �ndany speial bene�ts of this omputationally rather demanding method as omparedto a plain �t to (5.94) with Bhri = 0 and hene do not present further detailed resultsfor this method.For the ase of the F model oupled to the �4 random graphs we proeeded asbefore, again using simulation data for � = 0:2, � = ln 2 and � = 1:4. The results
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Figure 5.41: Collapse of the two-point funtions GN211 (r) of �4 graphs oupled to theF model at � = 0:2, re-saled aording to Eq. (5.88) with dh = 3:57 and a = 1:60.from �ts of the mean extent hriN2 to the form (5.94) with Bhri = 0 show very muhthe same behaviour as the results from the saling of the maxima of the two-pointfuntion, with estimates of dh learly below dh = 4 and slowly inreasing as moreand more points from the small-N2 side are omitted from the �ts. In Table 5.20we only show the �nal estimates with N2;min already adapted. The outomes of themethod of Ref. [249℄ desribed above, with the average (5.98) replaed by (5.100)and the �2(a) rule replaed by a jakknife error estimate, are again very lose to the�t results. Only oasionally it gives a result being marginally di�erent in terms ofthe statistial errors; we interpret this as di�erent loal minima of the orresponding�2 distribution being found by di�erent methods resp. from di�erent starting values.Inluding the orretion term of (5.94), i.e., relaxing the onstraint Bhri = 0, on theother hand, yields estimates onsistent with dh = 4 for � = 0:2 and � = 1:4, howeverwith rather large statistial errors, f. the parameters olleted in Table 5.21. Notethat, as mentioned before, the results for � = 1:4 are in general less preise thanthose for the other two inverse temperatures, whih is due to the exponential slowingdown of the ombined link-ip and surgery dynamis in the low-temperature phase,f. Setion 5.3. The �t for � = ln 2 settles down at a ompletely di�erent minimum of



5.4. GEOMETRICAL PROPERTIES 239the �2 distribution, yielding a non-sensial result for dh, whih is almost unhangedas ompared to the outome of the orresponding �t without orretion term. Thisunderlines the fat that the omplexity of the hosen �t is at least at the verge ofbeing too large for the available data. Nevertheless, ombining the data for dh fromthe presented methods and inluding the omparison to the pure gravity ase, we�nd no reason to assume that dh di�ers from dh = 4 for the ase of the F modeloupled to �4 random graphs.Finally, we note that the parameters a and dh determined from the �ts disussedabove lead to a nie saling ollapse of the two-point funtions GN211 (r) when re-saled aording to the saling ansatz of Eq. (5.88). Figure 5.41 shows this ollapse ofdistributions for the ase of � = 0:2 and the hoie of parameters listed in Table 5.20,i.e., dh = 3:57(12) and a = 1:60(74). The visible deviations around the distributionpeaks indiate the presene of higher-order orretions not inorporated into thesaling ansatz (5.88).



Chapter 6
Conlusions and Outlook
In this thesis, we have reported the results of large sale Monte Carlo simulations ofthe F model of statistial mehanis oupled to planar �4 quantum gravity graphs.This system is of signi�ane as a model of annealed onnetivity disorder applied toa prototypi spin model of statistial mehanis and as a realization of a onformal�eld theory with entral harge C = 1 oupled to disrete Eulidean quantum gravityin two dimensions.For the ase of dynamial triangulations or, equivalently, \fat" �3 random graphs,a set of ergodi update moves for simulations in the anonial and grand-anonialensembles is given by the Pahner or (k; l) moves of Ref. [156℄. For simulations of dy-namial quadrangulations and the dual �4 random graphs a ip move for anonialsimulations was proposed in Refs. [49,74℄. To this ip move we add suitable general-izations of the insertion and deletion moves for triangulations to the quadrangulationmodel. Aording to the extent of singular ontributions in the polygoni�ationsor dual graphs (suh as self-energies and tadpoles), we distinguish di�erent graphensembles, whih we label as strit , regular , restrited singular and singular ; al-though the original ergodiity proof of Ref. [156℄ for the Pahner moves for thetriangulation model onsidered ombinatorial triangulations orresponding to theregular ensemble of our lassi�ation, this proof an be easily extended to the otherensembles onsidered here. Comparing the simulation results for �4 graphs to ex-at results from the graph ounting via matrix models, we �nd the \one-link ip"of Refs. [49, 74℄ to be suÆient to ensure ergodiity for anonial simulations at a�xed number of graph verties for the ase of the strit ensemble, whih forbidsthe ourrene of any multiple links in the graphs. For the other three ensembles,240



241however, this update an be shown to be not ergodi. Introduing a seond type ofip move, whih we all \two-link ip", the visible e�ets of ergodiity breaking forthe regular, restrited singular and singular ensembles disappear, and we onludethat the ombination of one- and two-link ip is ergodi for all of the onsideredensembles for simulations of �4 graphs at a �xed number of graph verties. On theother hand, for simulations in the grand-anonial ensemble of a varying number ofgraph verties, the additional two-link ip move it found to be not neessary.We attempt to formulate exat expressions for the o-ordination number distribu-tion of the polygoni�ations or, equivalently, the distribution of loop lengths of thedual graphs in the spirit of a proposal put forth in Ref. [21℄. This is found tobe possible for the regular and restrited singular ensembles of the triangulationmodel. For singular triangulations and the quadrangulation model this approahfails due to a hange in the symmetry fators assoiated to the graphs indued bythe ourrene of multiple links. The values of the o-ordination number distribu-tion for small o-ordination numbers are shown to be related to ratios of anonialpartition funtions; these ratios an be determined exatly for �nite sizes of thepolygoni�ations or graphs and all of the onsidered ensembles of the triangula-tion and quadrangulation models. Setting up a grand-anonial simulation shemewith non-Boltzmann weights whih we all \pseudo grand-anonial simulations",these partition funtion ratios are estimated numerially. Alternatively, they anbe measured by onsidering suitable observables in anonial simulations of a �xednumber of polygons resp. graph verties. With the help of these tools, very sensitiveomparisons between exat and simulation results an be performed.A saling analysis of the integrated autoorrelation times of the mean square extentof pure �3 and �4 random graphs shows that the onsidered anonial link-ip dy-namis as a loal update su�ers from ritial slowing down whih a�ets only globalproperties of the graphs, whereas loal harateristis suh as the o-ordinationnumber distribution are not onerned. To improve the dynamial performane ofthe simulations, the minBU surgery algorithm proposed in Ref. [75℄ is adapted forsimulations of quadrangulations and �4 graphs. A dynamial saling analysis of analgorithm ombined from loal link-ip and non-loal minBU surgery steps shows aonsiderable redution of autoorrelation times of non-loal observables, however noredution of the dynamial ritial exponents z=dh, whih is in ontrast to previouslaims [75, 172℄. Additionally, the performane of the algorithm for �4 graphs ishampered by the higher omputational ost of the searh for minBU neks for the



242 CHAPTER 6. CONCLUSIONS AND OUTLOOKase of quadrangulations as ompared to the triangulation model.For simulations of the 6-vertex model oupled to �4 random graphs, we adapt theloop algorithm of Ref. [76℄ to the needs of random latties. Due to the lak of aglobal sense of diretion on the random graphs, the de�nition of the staggered anti-ferroeletri polarization as an order parameter of the Kosterlitz-Thouless phasetransition of the F model annot be trivially transferred to the random graph model.However, sine the dynamial quadrangulations onsidered are bipartite latties, atwo-olouring of the quadrangulations together with a \plaquette spin" representa-tion of the vertex model allows for a generalization of the order parameter to therandom graph model, whih oinides exatly on the on�guration level with theonventional de�nition when applied to the square-lattie model.In view of the lak of numerial work on square-lattie vertex models and to al-ibrate the applied simulational and analytial mahinery, a �nite-size and thermalsaling analysis of the square-lattie F model is performed. Although the Kosterlitz-Thouless point of the model is known to be equivalent to the ritial point of thetwo-dimensional XY model, observables related to the order parameters of bothmodels show di�erent saling behaviour. Additionally, due to duality, the high-and low-temperature phases of both models appear exhanged with respet to eahother. The saling analysis is found to be onsiderably ompliated by the natureof the in�nite-order phase transition as well as the presene of logarithmi orre-tions expeted for a ritial point of entral harge C = 1. Nevertheless, we �ndgood agreement between the simulation results and the exat solution of Lieb forthe zero-�eld model [62℄ as well as further results and onjetures of Baxter [242℄for the observables related to the staggered anti-ferroeletri polarization.For the F model oupled to planar �4 random graphs, we performed large-salesimulations and a �nite-size saling analysis guided by the results for the square-lattie ase. In addition to the present logarithmi orretions, the �nite-size salinganalysis is hampered by the large fratal dimension of the random graphs, whihleads to very small e�etive linear extents at a given volume as ompared to thesquare lattie. Thus, �nite-size e�ets are found to be very strong. The appar-ent non-saling of the spei� heat together with a lear divergene of the staggeredanti-ferroeletri polarizability are taken as indiators for the presene of an in�nite-order phase transition of the Kosterlitz-Thouless type. The results of Refs. [72, 73℄and further symmetry arguments imply that the ritial oupling of the randomgraph model is idential to that of the square lattie. However, we �nd the peaks



243of the polarizability for the numerially aessible graph sizes to be shifted very farinto the low-temperature phase as ompared to the asymptoti ritial oupling.Thus, �nite-size saling �ts to the shifts of the polarizability peaks are at best inmarginal agreement with the onjetured value of the asymptoti ritial oupling.A omparison of the peak positions re-saled aording to the mean linear extentsof the latties between the random graph and square-lattie models, however, showsthat the �nite-size approahes of both models are indeed very similar, but withlarger orretion amplitudes for the random graph model. Thus, the identity of theritial ouplings between both models an be made very plausible numerially. Aursory omparison of the saling behaviour of the model for di�erent ensembles re-garding the inlusion of singular ontributions in the graphs reveals that orretionsto saling inrease as more and more singular ontributions are inluded. This isin ontrast to the behaviour of the pure polygoni�ations model found here and byother authors [50℄. As far as the ritial exponents related to the order parameterare onerned, a �nite-size saling analysis of the values of the spontaneous polariza-tion and the polarizability at the asymptoti ritial oupling yields ritial indiesin agreement with the preditions from the KPZ formula. An attempted thermalsaling analysis of the polarizability around its peak remains inonlusive due tothe huge size of present �nite-size orretions. This, however, was to be expetedin view of the problems already enountered in the analysis of the square-lattiemodel (and, similarly, the diÆulties in the analysis of the two-dimensional XYmodel enountered by many authors before) and the additional ompliation of themuh smaller linear extents aessible for the random graph model as ompared tomodels on regular latties. As before for the square-lattie model, we �nd signs ofsaling throughout the whole high-temperature region of the model, indiating aritial phase. As a uriosity, we report the �nding of a ritial internal energy ofthe model, whih is idential between the square-lattie and random graph ases.A dynamial saling analysis of the ombined Monte Carlo update of graph-relatedand matter-related moves at the asymptoti ritial point of the model reveals in-reased autoorrelation times for the global, graph-related properties, exempli�edby the mean square extent, for the loal link-ip as well as the global minBU surgerydynamis as ompared to the pure polygoni�ations model. Although the global,minBU surgery algorithm is found to perform overall better than the pure loal link-ip dynamis, as for the pure graph model we �nd no hange in the orrespondingdynamial ritial exponents. This identially applies to the behaviour of matter-



244 CHAPTER 6. CONCLUSIONS AND OUTLOOKrelated observables suh as the spontaneous polarization. On proeeding into theordered phase, however, the gain of using the minBU update is found to inrease,sine the link-ip dynamis is there found to be subjet to \freezing" indued bythe ie-rule onstraint of the vertex model, leading to vanishing aeptane rates forthe link ips there.Several aspets of the bak-reation of the matter variables onto the properties of the�4 random graphs are analyzed as a funtion of temperature. The distribution of o-ordination numbers of the quadrangulations an be determined very aurately. Thefration of quadrangulation sites of o-ordination number two is found to be sharplypeaked around the asymptoti ritial oupling, thus de�ning a pseudo-ritial pointwhih determines the in�nite-volume ritial oupling quite aurately and in goodagreement with the analytial preditions. A saling analysis of the distribution of\baby universes" of the graphs in the spirit of Refs. [29, 258℄ allows to extrat thestring suseptibility exponent of the model. It is found to oinide with the values = 0 expeted for a C = 1 theory throughout the ritial high temperature phase.The pure-gravity value s = �1=2 is found in the non-ritial low-temperaturephase. Exploiting �nite-size saling relations, we analyze the geometrial two-pointfuntion of the graphs and extrat the fratal Hausdor� dimension. We �nd itto be onsistent with the pure gravity value dh = 4 for all temperatures of theoupled vertex model. Determining all these graph properties also for the ase ofpure �4 random graphs, we �nd agreement with the results previously found for thedynamial triangulations model, thus on�rming the expeted universality of thedynamial polygoni�ations model with respet to the form of the polygons.Using an adaptive algorithm and a 3D omputer graphis pakage, the latties of thedynamial polygoni�ations model an be visualized by an embedding into three-dimensional Eulidean spae. For the pure gravity model, this yields a valuableimpression of the fratal struture of the latties as well as a visualization of the largevariation of the graph properties in the onsidered ensembles. For the vertex modeloupled to random graphs, it provides helpful snapshots revealing the interationbetween the matter variables and the underlying geometry as the system passes fromthe disordered to the ordered phase.From the point of view of statistial mehanis an obvious generalization of theonsidered model is given by the generalized 8-vertex type F model disussed inSetion 4.3, whih | on the square lattie | exhibits two di�erent ordered phasesand a rih phase diagram. This model has been onsidered in a matrix model



245formulation in Ref. [231℄ and a speial, one-dimensional slie of the parameter spaeould be solved analytially. The general phase diagram of this model oupled to�4 random graphs, however, is as yet unknown. From the quantum gravity pointof view, a very promising appliation of the oupling of vertex models to randomgraphs ould be given in an alternative formulation of disrete Lorentzian quantumgravity proposed in Ref. [230℄. There, the arrows of the vertex model on linksonneting neighbouring sites allow to distinguish between spae-like and time-likeedges (�3 ase) or, alternatively, forward and bakward light ones (�4 ase) andthus provide a Lorentzian signature of the on�gurations in the spirit of spin networkevolution [260℄. This approah ould lead to a formulation of disrete Lorentzianquantum gravity starting out with less initial assumptions than the formulation ofAmbj�rn et al. [12, 85, 86, 261℄.



Appendix A
Methods of Simulation and DataAnalysis
A.1 The Monte Carlo ProessA.1.1 Simple samplingThe Monte Carlo (MC) method is a general tehnique for the statistial evaluationof (typially) high-dimensional integrals. Consider, e.g., a thermal average of anobservable A for a system of statistial mehanis,hAi = 1ZXfsig A(fsig) exp[��H(fsig)℄; (A.1)where S � fsig denotes the state-spae variables (e.g., spin degrees of freedom), His the Hamiltonian of the model and Z denotes the partition funtion. Here, thesum symbolizes either an integral for systems with ontinuous degrees of freedomor a true summation for disrete variables. The number N of variables si, e.g. thenumber of spins of a lattie model, is typially huge and, eventually, a onsiderationof the thermodynami limit N ! 1 is intended. For the vast majority of theases, the integral (A.1) annot be performed analytially, suh that one has torevert to a numerial integration (or other approximation methods). Unlike forlow-dimensional integrals, however, a numerial integration using a regular (e.g.hyper-ubi) grid of evaluation points in the phase spae S is not very well suited.The standard rationale for this failure rests on the observation that the fration of246



A.1. THE MONTE CARLO PROCESS 247interior points of a regular grid vanishes as the grid dimension N tends to in�nity(see, e.g., Ref. [153℄). That is, in this limit all points are loated on the boundaryof the onsidered phase-spae region, whih is a surfae of vanishing N -dimensionalvolume. To guarantee a proper onvergene of the numerial integration one needs amore sensible, e.g. uniform, distribution of evaluation points. This an be ahievedby hoosing phase-spae points at random instead of regularly leading to a statistialor Monte Carlo evaluation of the integral (A.1).In this sheme, a time sequene of integration points S(t), i.e. a realization of adisrete stohasti proess, is hosen aording to some probability density1 Psim(S)and an estimate of hAi is then given by�A = PtA[S(t)℄Peq[S(t)℄=Psim[S(t)℄Pt Peq[S(t)℄=Psim[S(t)℄ ; (A.2)where Peq(S) denotes the integration measure of the integral (A.1), i.e., the Boltz-mann equilibrium distribution of statistial mehanis,Peq(S) = 1Z exp[��H(S)℄: (A.3)Choosing a uniform distribution Psim(S) of evaluation points results in the so-alledsimple sampling MC sheme. Then, suessive integration points S(t) an be hosenompletely independent of eah other, orresponding to a true random sampling.This is a sensible proedure for ases where the Boltzmann fators in Eq. (A.1) areonstant, suh that all regions of phase spae ontribute equally to the integral, i.e.,when � tends to zero or the temperature to in�nity. Typially, however, this is notthe ase and, instead, the Boltzmann fators give large weight to a omparably smallregion of the state spae. This largely unequal distribution of \importane" overthe phase spae should then be taken into aount when hoosing the integrationpoints, leading to the importane sampling MC method.A.1.2 Importane samplingObviously, the optimal probability density Psim(S) for the hoie of integrationpoints is the integration measure of Eq. (A.1) itself, i.e., the ase Psim(S) = Peq(S).1For systems with disrete phase-spae variables the densities have to be replaed by simpleprobabilities.



248 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISIf this hoie of integration points an be ahieved, every region of phase spae re-eives attention exatly aording to its importane for the integral (A.1) and theestimate (A.2) redues to a simple arithmeti time-series average,�A = 1T TXt=1 A[S(t)℄; (A.4)where T denotes the length of the time series. In order to realize this goal, adisrete Markov proess (or Markov hain) S(t) is utilized. There, the transition oronditional probabilities are independent of all but the last predeessor states,Psim[S(t + 1)jS(t); : : : ;S(1)℄ = Psim[S(t + 1)jS(t)℄; (A.5)i.e., at eah time the hoie of the next integration point S(t + 1) depends only onthe urrent state S(t) of the system. Additionally, one requires the Markov hain tobe homogeneous, i.e., the transition probabilityW (S ! S 0) � Psim[(S 0; t+1)j(S; t)℄should not depend on t. It an be easily shown (see, e.g., Ref. [262℄) from this Markovproperty and the normalization of probability densities that the probabilities of thehain have to ful�l the so-alled Master equation,Psim(S; t + 1)� Psim(S; t) =XS0 [Psim(S 0; t)W (S 0 ! S)� Psim(S; t)W (S ! S 0)℄ ;(A.6)whih is simply a ontinuity equation for the onserved quantity Psim(S); on the rhsof Eq. (A.6) the �rst term denotes the amount of probability entering the state Sand the seond term the amount of probability leaving S in the time step t! t+1.Thus, a suÆient, though not neessary, ondition for the Boltzmann distributionto be a stationary probability density P (S; t) = P (S) of the hain is given by thepostulate of detailed balane for the transition probabilities W ,W (S ! S 0)Peq(S) =W (S 0 ! S)Peq(S 0): (A.7)To guarantee not only stationarity of the Boltzmann distribution, but the onver-gene of Psim to Peq, is more intriate. However, this onvergene an be provedunder the additional ondition of ergodiity of the Markov hain. For a �nite num-ber of states, ergodiity means that with a �nite probability the hain will adopt anyof these states after a �nite number of steps, irrespetive of the initial onditions.For an in�nite number of disrete states or a ontinuum of states this notion has tobe suitably generalized. For the ase of a �nite number of states, the onvergene



A.2. AUTOCORRELATIONS AND DYNAMICAL SCALING 249property is known as Markov's ergodiity theorem [262℄. A reent ompilation ofproofs of the onvergene of the MC proess an be found in Ref. [263℄.Therefore, an importane sampling Monte Carlo simulation sheme satisfying theonditions of detailed balane and ergodiity is guaranteed to onverge to the Boltz-mann distribution and thermal averages are given by the simple time-series average(A.4). While ergodiity is a property of the set of onsidered update moves S ! S 0(suh as, e.g., single spin ips for a spin model), whih have to be ensured to onnetany two states of the system within a �nite number of steps (at least for the aseof a �nite number of states), detailed balane is a ondition to be ful�lled by thehosen transition probabilities W (S ! S 0). The most ommonly adopted hoie isgiven by the Metropolis formula [264℄,W (S ! S 0) = min f1; exp (��[H(S 0)�H(S)℄g ; (A.8)whih satis�es Eq. (A.7) as an be easily heked.A.2 Autoorrelations and Dynamial SalingThe Markovian nature of the stohasti proess involved in the importane sam-pling Monte Carlo sheme entails the fat that subsequent system states generatedin the hain are not statistially independent. The degree of orrelation betweensubsequent realizations of a random variable A at times s and t is measured by theonneted, unnormalized autoorrelation funtionCA(s; t) � hAsAti � hAsihAti; t � s: (A.9)The stationarity of the proess implies translation invariane hAsi = hAti � hAiand hAsAti = hA0At�si, so that we an onsider CA(t) � CA(0; t). One an alsode�ne the normalized autoorrelation funtion of A,�A(t) � CA(t)=CA(0); (A.10)suh that �A(0) = 1 and limt!1 �A(t) = 0. The autoorrelation funtion is generi-ally expeted to deline exponentially, i.e.CA(t) � CA(0)e�t=�(A); (A.11)



250 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISwhih de�nes the exponential autoorrelation time �(A) whih is spei� to theonsidered proess (i.e., MC dynamis) and the random variable (i.e., observable)A. Obviously, CA(0) is idential to the variane �2(A) of A. In general the dynamisof a Monte Carlo proess will be haraterized by a set of di�erent orrelation times�0 � : : : � �n, where, potentially, n ! 1. By the exponential orrelation length�(A) of an observable A we refer to the largest orrelation length �0(A) present withnon-vanishing amplitude in the dynami spetrum of A, i.e. [169℄�0(A) = lim supt!1 t� ln �A(t) (A.12)Note, however, that due to the possibility of a very small amplitude of the leadingexponential, this orrelation length ould be suppressed as ompared to the non-leading terms even for long, but �nite time series.The degree of dependene in time of suessive states of a Markov hain generatedby loal moves (like single spin ips in a lattie spin model) is obviously linkedto the strength of orrelations of the system's degrees of freedom in spae, i.e.,the autoorrelation times are expeted to grow with the spatial orrelation length�. In the viinity of a ritial point, where lusters of pure phase states of allsizes onstitute the typial on�gurations, autoorrelation times (in units of lattiesweeps) are observed to grow algebraially (ritial slowing down),� / min(�; L)z; (A.13)where the dynamial ritial exponent z is now on the basis of universality argumentsexpeted to be independent of the observable under onsideration. In a simpli�eddynamial model for a general loal algorithm, the information about a loal exi-tation within a pure phase region is assumed to travel di�usively, thus implying arandom-walk exponent of z = 2. In real-world models, however, z like stati riti-al exponents takes on a non-trivial value, whih is for loal dynamis lose to butdi�erent from z = 2.The preision of a time-series average �A = (PtAt)=N from a Monte Carlo simulationis maximal for unorrelated measurements At; here, N denotes the length of thetime series. The variane of the mean �2( �A) � h �A2i�h �Ai2 for the ase of orrelatedmeasurements is given by�2( �A) = 1N2 NXs;t=1CA(s; t) = 2CA(0)N "12 + N�1Xt=1 �A(t)�1� tN�# : (A.14)



A.2. AUTOCORRELATIONS AND DYNAMICAL SCALING 251Abbreviating the fator in square brakets as ~�int;N(A), this expression an be re-arranged with CA(0) = �2(A) to give�2( �A) = �2(A)N=2~�int;N(A) � �2(A)N=2~�int;1(A) ; N � 1: (A.15)For historial and tehnial reasons (stemming from spetral analysis, f. Ref. [265℄),the integrated autoorrelation time is not de�ned as ~�int;1(A), but omitting the fator(1� t=N) as �int(A) � �int;1(A) � 12 + 1Xt=1 �A(t); (A.16)whih, for an exponentially deaying autoorrelation funtion �(t) only di�ers by anexponentially small amount from ~�int;1(A), suh that, for pratial purposes, bothde�nitions are equivalent. Thus, if we de�ne,Ne� = N2�int(A) ; (A.17)the variane still vanishes inversely linear with the number of measurements, butwith N replaed by the e�etive number of independent measurements Ne� .The relation between the exponential and integrated autoorrelation times, �0(A)and �int(A), is obvious for the purely exponential form of �A(t) of Eq. (A.11); then,we have �int(A) = 12 �1 + e�1=�0(A)1� e�1=�0(A)� � �0(A): (A.18)For a spetrum of �A(t) ontaining higher order exitations �i(A), i > 0, one anshow that Eq. (A.18) has to be replaed by [266℄�int(A) � �0(A): (A.19)Also, then, one an ask, whether the dynamial ritial exponents of Eq. (A.13)assoiated with the two types of autoorrelation times oinide. This is not generallythe ase; instead from Eq. (A.19) it is obvious thatzint � z0; (A.20)and ases where zint < z0 have been observed [267℄.



252 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISA.3 Binning and the JakknifeA.3.1 The binning tehniqueAs disussed in Appendix A.2 above, the fat that the importane sampling methodutilizes a stohasti Markov proess for the generation of the Monte Carlo integra-tion points, entails autoorrelations between suessive on�gurations of the system.As far as the analysis of the resulting time series At of observable measurements isonerned, these autoorrelations are rather unpleasant, sine the statistial anal-ysis of time series is muh simpler for unorrelated data, see, e.g., Refs. [265, 268℄.For instane, to evaluate the variane of the mean value �A of an autoorrelatedtime series, aording to Eq. (A.15) one has to estimate the integrated autoorrela-tion time �int(A) �rst, whih is not ompletely straightforward and omputationallyquite expensive, f. Appendix A.4. Apart from that, advaned analysis tools suh asthe \jakknife" method to be desribed below an only be applied to a set of \iid"(identially and independently distributed) random variables. The bloking proessdisussed in the following re-arranges the simulation data in a way suh as to gen-erate an e�etively unorrelated time series, thus alleviating the above-mentionedproblems.The binning approah exploits the observation that the ombination of neighbouringentries of the time series of length N to sub-averages,A0t = 12(A2t�1 + A2t); N 0 = N2 ; (A.21)results in a less orrelated new time series A0t of (smaller) length N 0 as long as theorrelations of the original time series deay fast enough. This has some importantonsequenes for the estimation of the variane of the mean from the transformedtime series. Obviously, the mean value �A and its variane �2( �A) are not a�eted bythis transformation. However, the variane �2(A) = CA(0) of a single measurementtransforms as [269℄, �2(A0) = 12[CA(0) + CA(1)℄; (A.22)where CA(t) denotes the autoorrelation funtion of A de�ned by Eq. (A.9). Thatis, a part of the autoorrelations, namely the one-step-distane part CA(1), is beinginorporated into the variane �2(A0) of the transformed variable A0. Now, from Eq.(A.14) it is obvious that CA(0)=N is a lower bound of the variane �2( �A) and for



A.3. BINNING AND THE JACKKNIFE 253the transformed variables one �nds,�2( �A) = �2( �A0) � C 0A(0)N 0 = CA(0)N + CA(1)N ; (A.23)suh that the sequene C(k)A (0)=N (k) resulting from k suessive appliations of thebinning transformation (A.21) is bounded and monotonous as long as the autoorre-lation funtion CA(t) deays faster than 1=t [269℄. Thus, the sequene C(k)A (0)=N (k)is onvergent, and its �xed point value C�A(0)=N� is the variane �2( �A) of the mean.On the other hand, from Eq. (A.14) this implies that the higher order autoorre-lations C�A(t)=N�, t > 0 vanish at this �xed point. Therefore, the �xed point timeseries is unorrelated and for the estimate of the variane of its mean, the na��veformula an be employed [268℄,�2( �A) = �2( �A�) = h 1N� � 1Ĉ�A(0)i � h 1N�(N� � 1) N�Xt=1 (A�t � �A�)2i: (A.24)In pratie, the estimates Ĉ(k)A (0)=(N (k) � 1) are evaluated after eah appliationof the binning transformation. Aording to the preeding disussion, they areexpeted to grow monotonously and to settle down on the plateau value Ĉ�A(0)=(N��1) as soon as \enough" binning transformations have been performed. While intheory this requires in�nitely many of suh transformations, in pratie it suÆesto do this k = � log2 �int(A) times with a fator � of the order of 101 to shift thee�et of autoorrelations below the noise of the statistial utuations. This is dueto the fat that for the usual Monte Carlo dynamis autoorrelations in fat delineexponentially and not only algebraially, f. Appendix A.2 above.A.3.2 Jakknife bias and variane estimatesIn this setion we onsider a Monte Carlo time series At whih is unorrelated,i.e., whih either omes from a simple sampling MC simulation or is already theresult of a re-bloking of the original time series via the binning sheme of theprevious setion. The length n of the time series then orresponds to the number ofbloks used in the binning transformation. The analysis of stationary, unorrelatedtime series an be generally desribed as the estimation of some parameter f(F ) ofthe underlying probability density F (A) of the random variable (observable) A byonsideration of the sampled density F̂ = [Pt Æ(A � At)℄=n. The two main issuesrelated to this estimation are the question of its bias, i.e. how far on average the



254 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISestimate is from the expeted value, and the need to determine the auray of theestimate in terms of the present statistial utuations. For reviews of the jakknifeand other resampling shemes see Refs. [270, 271℄.Bias redutionThe bias of the estimate f(F̂ ) of the parameter f(F ) is given byBIAS � hf(F̂ )i � f(F ): (A.25)For the parameters f ommonly onsidered in MC simulations, the bias dependsanalytially on the length n of the time series, so one an expand2hf(F̂ )i = f(F ) + a1n + a2n2 + � � � : (A.26)For time series analyses of MC data, the parameter f will most often be a funtion ofthe expetation value hAi, i.e. f(F ) = f(hAi), and the estimate is given by replaingthe expetation by the mean, i.e. f̂ � f(F̂ ) = f( �A). We will disuss this ase here,the generalization to more general situations being straightforward. Obviously, theidentity f(hAi) = hAi an be estimated without bias by f( �A) = �A. For non-linearfuntions f , however, in general a bias will our that, to �rst order, vanishes as 1=nfor large lengths n of the time series. Denoting the expetation value hf( �A)i froma time series of length n as En, from Eq. (A.26) one reads o� that, to �rst order in1=n, En � E1En�1 � En = 1=n1=(n� 1)� 1=n; (A.27)suh that the true expetation value E1 = f(hAi) an be estimated byE1 = nEn � (n� 1)En�1: (A.28)Thus, if one an onstrut an estimate for the expetation values En�1 for timeseries of length n� 1 from the original series of length n, a bias-redued estimatorfor E1 = f(hAi) an be easily found. The simple trik on whih the jakkniferesampling sheme is based, is the observation that n time series of length n � 1an be onstruted from a series of length n by omitting in eah series a singlemeasurement As. That is, one onsiders the jakknife empirial densitiesF̂(s)(A) � 1n� 1Xt6=s Æ(A� At); s = 1; : : : ; N: (A.29)2Note, that in ontrast to many of the textbook formulae of statistis we do not have to assumea Gaussian distribution here.



A.3. BINNING AND THE JACKKNIFE 255From the orresponding jakknife blok averages,�A(s) = 1n� 1Xt6=s At; (A.30)jakknife estimates for the expetation value En�1 and their average are given byf̂(s) = f( �A(s));f̂(�) = 1n nXs=1 f(s): (A.31)From Eq. (A.28) the jakknife bias-redued estimator of f(hAi) is therefore givenby ~f = nf̂ � (n� 1)f̂(�); (A.32)and, orrespondingly, the jakknife or Quenouille estimator of bias is given by [270℄,[BIAS(f̂) = (n� 1)(f̂(�) � f̂): (A.33)From the expansion (A.26) it is obvious that the improved estimator ~f now merelyhas a bias proportional to 1=n2 instead of 1=n. In priniple, this proess of biasredution an be iterated to also remove higher-order bias ontributions. It shouldbe lear, however, that the variane of ~f will in general be larger than that of theoriginal estimator f̂ . Thus, a redution of bias is paid for by an inrease in statistialutuations. Therefore, a (further) redution of bias is only sensible if the bias is (atleast) of the same order of magnitude as the variane of the onsidered observable.Variane estimationA quanti�ation of the statistial auray of a parameter estimation is given by itsvariane. While, again, an estimation of this parameter is straightforward for thetrivial ase f̂ = f( �A) = �A, where an unbiased estimate of variane is given by�̂2( �A) = 1n(n� 1) NXt=1 (At � �A)2; (A.34)for non-linear funtions f( �A) an unbiased variane estimate an in general not beonstruted. This problem is often solved by the appliation of well-known errorpropagation formulae [170℄. These assume a Gaussian distribution of the observable�A, whih is approximately the ase for long enough time series thanks to the entral



256 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISlimit theorem. However, there is no simple way to quantify the systematial errorentailed by this approximation. Furthermore, the analyti form of the funtion f isneeded for the error propagation, whih is not always known, for example when fdenotes the operation of �nding the loation of the maximum of the spei� heat asa funtion of temperature found by a reweighting analysis of a time series of energymeasurements.A brute-fore ansatz for the evaluation of varianes of parameter estimates wouldbe to perform k independent MC simulations of length n=k eah and to evaluatethe desired parameter estimates f̂i, i = 1; : : : ; k. Then the analogue of the na��vevariane estimate (A.34) an be applied to this set of time series,�̂2(f̂) = 1k(k � 1) kXi=1 (f̂i � �̂f)2; (A.35)with a bias of at most O(k=n) and a variane of O(1=k). In ontrast, applying (A.34)diretly on the level of the measurements of a single time series would result in abias whih is O(1). Eq. (A.35) orresponds to the plain bloking or binning shemepresented in the previous setion applied to an unorrelated time series. However,one an improve on this and �nd an estimator with bias and variane O(1=n) usingthe jakkni�ng idea. Interpreting the jakknife bloks of Eq. (A.31) as the outomesof n simulations with time series of length n�1 one an write down an estimate of thetype (A.35). This, however, would neglet the large but trivial orrelations betweenthese n series, whih di�er only by one measurement eah. Yet, as it turns out [270℄,the e�et of these orrelations is simply an under-estimation of the variane by afator of 1=(n�1)2, whih an be easily amended. Therefore, the jakknife estimateof variane of f̂ is given by[VAR(f̂) = n� 1n nXs=1 [f̂(s) � f̂(�)℄2; (A.36)with a bias whih is O(1=n). The fat that the e�et of the orrelations between thejakknife bloks an simply be orreted for by a multipliation with (n�1)2 an beeasily heked for the trivial ase of f̂ = �A. For more general parameter estimates,one has to assume ertain analytiity properties of the parameters f as a funtionof n [270℄. In general, it an be shown [270℄ that the jakknife variane estimate isonservative in the following sense,h nn� 1[VAR(f̂)i � �2n�1(f̂); (A.37)



A.4. ESTIMATION OF AUTOCORRELATION TIMES 257where �2n�1(f̂) denotes the true variane of the estimate f̂ from time series of lengthn� 1.Finally, it should be noted that the jakknife bias redution and variane estimationtehniques an be ombined to assess the variane of the bias-redued estimates~f of Eq. (A.32). For this purpose, the jakknife bloking sheme has to be iter-ated to seond order, leading to a matrix of jakknife bloks of length n � 2. Theorresponding formulae are given in Ref. [272℄.A.4 Estimation of Autoorrelation TimesGiven a realisation of the time series At of length N the autoorrelation funtionEq. (A.9) an be estimated asĈA(t) = 1N � t N�tXs=1(As � �A)(As+t � �A); (A.38)where �A = 1N NXt=1 At: (A.39)However, the estimate Eq. (A.38) is not unbiased; in fat, it an be shown [268℄ thatits bias is approximately given by ��2(A)�int(A)=N , so that it is still asymptotiallyunbiased for N � �int(A), whih is anyway a neessary ondition for reliable andaurate parameter estimates from �nite-length time series. Alternatively, CA(t)an be estimated by ĈA(t) = 1N � t N�tXs=1 AsAs+t � �A2; (A.40)whih is also not unbiased due to the bias of the seond term. For time serieswith, e.g., N & 10 000 �int, typially ourring in Monte Carlo simulations, thetwo estimates (A.38) and (A.40) are nearly indistinguishable. The seond estimateEq. (A.40) is omputationally somewhat more onvenient sine the estimate �A anbe omputed within the same loop as the estimate for hAsAs+ti. From this, thenormalized autoorrelation funtion an be estimated by�̂A(t) = ĈA(t)=ĈA(0); (A.41)whih is also a biased estimate; for the rather long times series needed for theestimation of autoorrelation times, however, this bias an be rather safely negleted.



258 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISAn estimate of the exponential autoorrelation time �0(A) follows from a three-parameter �t of ĈA(t) to the funtional formĈA(t) = ĈA(0) exp(�t=�̂0(A)) + onst; (A.42)where the additive onstant should be inluded to aount for the statistial uner-tainty in the estimation of the disonneted part hAi2 [273℄. An alternative set ofestimates that eliminate variane and bias onneted to the additive and multiplia-tive onstants is given by [274℄�̂0(A; t) = �"ln ĈA(t)� ĈA(t��)ĈA(t +�)� ĈA(t)#�1; (A.43)where the free parameter � an be used to tune the signal-noise ratio to an optimum.For a �nal estimate of �0(A) an average over di�erent distanes t in Eq. (A.43) shouldbe performed, taking the ovarianes of the estimates �̂0(A; t) for di�erent o�sets tinto aount [274℄.Of more interest also for the analysis of stati behaviour of model systems is theintegrated autoorrelation time �int(A). Unfortunately, the obvious estimator,�̂int;N(A) = 12 + N�1Xt=1 �̂A(t); (A.44)whih would also be used to approximately estimate �int(A) � �int;1(A), is verybadly-behaved statistially. Sine the number of data points used for the estimate�̂A(t) of Eq. (A.41) dereases with the distane t as (N � t), the estimate �̂A(t)beomes very noisy for large separations t. These varianes of �̂A(t) sum up to atotal variane of �̂int;N(A) of Eq. (A.44) that does not vanish with N ! 1 [265℄,thus destroying the reliability of the estimate �int(A). To irumvent this problem,one introdues a ut-o� M < N � 1 in the distanes t, i.e.,�̂int;M(A) = 12 + MXt=1 �̂A(t); (A.45)whih, on the other hand, introdues an additional bias. Sine an inrease of Minreases the variane of �̂int;M(A), but redues the bias, the hoie ofM is a tradeo�between bias and variane. In pratie, a self-onsistent determination of the ut-o�turns out to be useful [169℄, i.e. M is suessively inreased to the point whereM � � �̂int;M(A): (A.46)



A.4. ESTIMATION OF AUTOCORRELATION TIMES 259For the usual lengths of time series in Monte Carlo simulations of N > 10 000 �int, aut-o� parameter of � � 6 turns out to be a sensible hoie [210℄. The variane ofthe estimate �̂int;M(A) an be approximately found from straightforward but tediousalulations [169, 265, 268℄ for �int �M � N to be�2 [�̂int;M(A)℄ � 2(2M + 1)N � 2int(A): (A.47)A more aurate determination of the estimator variane an be onstruted withthe jakknife tehnique, f. Appendix A.3. De�ne jakknife blok estimates for nbloks of the autoorrelation funtion asĈ(�)A (t) � 1N nn� 2 Xs2T�AsAs+t � 1N nn� 2 Xs2T�As!2 ; t < N=n (A.48)where � = 1; : : : ; n andT� � f0 < i � (�� 1)N=ng [ f�N=n < i � (n� 1)N=n)g; i 2 N : (A.49)Then, from the resulting jakknife blok estimates of �int(A),�̂ (�)int;M(A) � 12 + MXt=1 Ĉ(�)A (t)=Ĉ(�)A (0);�̂ (�)int;M(A) � 1n nX�=1 �̂ (�)int;N(A); (A.50)the jakknife estimate of variane for �̂int;M(A), M < N=n, is given by[VAR[�̂int;M(A)℄ = n� 1n nX�=1 h�̂ (�)int;M(A)� �̂ (�)int;M(A)i2 : (A.51)An alternative estimate of �int(A) an be found from Eq. (A.15),�int;n(A) � 12 �2( �A)�2(A)=N ; (A.52)where the \�" aounts for the di�erene between �int;n(A) and the fator in squarebrakets of Eq. (A.14) that is negligible for all pratial purposes. Considering theusual n-blok jakknife estimate of the variane of �A,[VARn( �A) � n� 1n nXs=1 [A(s) � A(�)℄2; (A.53)



260 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISa jakknife estimate of the integrated autoorrelation time is given by�̂int;n(A) � 12[VARn( �A)=[VARN ( �A); (A.54)where, as usual, n has to be hosen suh that the jakknife bloks are approximatelyindependent statistially; this is ommonly ahieved by monitoring the value of[VARn( �A) on inreasing n, until a plateau value is reahed. An estimate for thevariane of �̂int;n(A) an be found from iterating the jakknife proedure to seondorder, i.e., in the usual notation,[VARn([VARn( �A)) = n� 1n nXs=1 [[VAR(s)n�1( �A)�[VAR(�)n�1( �A)℄2; (A.55)suh that �̂2[�̂int;n( �A)℄ � 14[VARn([VARn(A))[VAR2N( �A) ; (A.56)where the variane of[VARN( �A) has been negleted due to its suppression by �int(A)=Nompared to the variane of [VARn( �A).A.5 Histogram ReweightingAs it has been desribed in Setion A.1, a single importane-sampling Monte Carlosimulation yields statistially exat information about thermal averages of a systemof statistial mehanis only at a single point of the oupling parameter spae. Forsimpliity, we restrit ourselves to the ase of the (inverse) temperature � as the onlypresent oupling. Impliitly, however, the gathered data ontains temperature in-dependent information about the system. Within the importane sampling sheme,the probability density of the system energies at the inverse temperature �0,p�0(E) = 1Z�0
(E)e��0E; (A.57)is sampled by the normalized energy histogram Ĥ�0(E), i.e., hĤ�0(E)i = p�0(E).Here, 
(E) denotes the density of energy states of the system. Sine the temperaturedependene of p�0(E) is expliit, i.e., the non-trivial term 
(E) does not depend on�0, one has the following basi relation,p�(E) =W���0(E) p�0(E) � exp[�(� � �0)E℄PE p�0(E) exp[�(� � �0)E℄ p�0(E); (A.58)



A.5. HISTOGRAM REWEIGHTING 261whih is the starting point for the reweighting proedure in the importane samplingsheme [275, 276℄. Thus, obtaining information about the system at the oupling� from a simulation at �0 amounts to the appliation of the reweighting fatorsW���0(E). Therefore, from the estimate Ĥ�0(E), the distribution at a di�erentinverse temperature � an be evaluated asĤ�(E) = Ŵ���0(E) Ĥ�0(E) � exp[�(� � �0)E℄PE Ĥ�0(E) exp[�(� � �0)E℄ Ĥ�0(E): (A.59)Consequently, estimates of expetation values of temperature dependent observablesA(E) at � are given by Â� =XE Ĥ�(E)A(E): (A.60)In terms of the time series (Et; At) of energy and observable measurements at �0,this an be written asÂ� =Xt Ŵ���0(t)At �Xt exp[�(� � �0)Et℄Pt exp[�(� � �0)Et℄At: (A.61)For the reweighting of observables A, whose value for a given system on�guration isnot uniquely de�ned by the on�gurational energy (suh as, e.g., the magnetization),one has to onstrut miro-anonial (�xed-energy) averages hAiE, whih then anbe treated as the observables A(E) above.While the given relations are statistially exat for arbitrary hoies of �, in pratiethe quality of the estimates strongly depends on the separation � � �0. Sine inthe importane sampling proess events are sampled only in the viinity of therather narrow peak(s) of the energy histogram, whose positions strongly depend onthe inverse temperature �, for too large separations � � �0 the histogram Ĥ�0(E)eventually ontains no entries for the region of E reeiving large weights from thereweighting fators Ŵ���0(E). The reliability of the reweighting proess for a giveninverse temperature � is onveniently assured by monitoring the overlap OE(���0)of the orresponding energy histograms at the ouplings �0 and �, i.e.,OE(� � �0) =XE min[Ĥ�0(E); Ĥ�(E)℄ =Xt min[1=T; Ŵ���0(t)℄; (A.62)where T denotes the length of the time series. For the reweighting to work reliably,the overlap should exeed a ertain threshold, say 2=3. Thus, reweighting is mostlyuseful in the viinity of ritial points, where the orresponding energy distributionsare rather broad, ensuring a non-trivial size j���0j of the region where reweighting



262 APPENDIX A. METHODS OF SIMULATION AND DATA ANALYSISworks reliably. Note that suitably evaluated statistial errors of the reweightedestimates do not (or only partially) reet the error stemming from a lak of overlapof the relevant histograms, sine the (unde�ned) relative variane of energy bins withno entries is usually assumed to be zero. For the reweighting of observables related tothe magnetization, it is sometimes onvenient to also onsider the overlapOM(���0)of the magnetization histograms, whih an be easily de�ned in terms of the two-dimensional histogram Ĥ(E;M). Note that in general an absolute threshold for theoverlap an not guarantee reliability of the reweighting proess, sine observablesan be de�ned to use more and more data from the far wings of the energy (ormagnetization) distributions by inluding terms with large-order moments hEki orhMki, k � 1. In addition to the utuations, the reweighting proess entails a biasof the reweighted estimates, whih also results from missing histogram entries andvanishes as 1=T with the length of the time series.



Appendix B
Graph Embedding andVisualization
In ontrast to embedded string and lattie random surfae models, the dynamialtriangulations (or, more generally, dynamial polygoni�ations) model as de�ned inChapter 2 desribes abstrat graphs without any referene to an embedding spae.Obviously, this is what one would expet from a disretised theory of quantumgravity, whih should be formulated entirely in terms of intrinsi variables suh asthe intrinsi metri tensor. However, for pratial purposes and, espeially, for thevisualization of the resulting abstrat surfaes, the possibility of an embedding of thetwo-dimensional graphs into three-dimensional Eulidean spae is highly desirable.In onnetion with suitable software for three-dimensional visualization suh as theOpenGL API [277℄, an embedding allows for quite deorative and, more importantly,physially very instrutive representations of graphs of the onsidered ensembles. Forthe pure gravity model, the orresponding representation provides a visualizationof the fratal struture of the graphs, being desribed as that of a self-similar treeof baby universes [29℄. Furthermore, enoding disrete matter variables oupledto the verties or faes of the graphs by a suitable olouring of these entities, theinterations between spae-time and matter an be diretly \observed". Espeially,the inuene of the tendeny of (partially) ordered spin models to minimize theboundaries between pure-phase regions on the branhing properties of the babyuniverse tree is diretly visible, see also Setion 2.4.For visualization purposes, one should onentrate on the polygoni�ations, sinethe faes are planar there (the types of polygons being restrited to triangles or263



264 APPENDIX B. GRAPH EMBEDDING AND VISUALIZATIONsquares). Thus, when onsidering �3 or �4 graphs, they should be transformed tothe dual triangulations resp. quadrangulations. Additionally, the square faes ofthe quadrangulations are divided into two triangles for the visualization with theOpenGL pakage. Sine the faes of the polygoni�ations are assumed to be equi-lateral, the embedding problem is in priniple a ombinatorial one: the number ofequilateral polygons meeting at a given vertex (i.e., its o-ordination number) de-termines the on�guration of suh a \dome" or \trough" of polygons uniquely upto a �nite number of disrete transformations. Thus, for any �nite, planar polygo-ni�ation there are only a �nite number of representations satisfying the onstraintof equilaterality, whih ould be suessively tested to �nd an embedding withoutedge intersetions. Pratially, however, we �nd this not very onvenient sine thenumber of possible on�gurations still grows exponentially with the number of graphverties. Thus, instead, we revert to an adaptive embedding algorithm.Although the onsidered graphs are planar and an thus be drawn in the plane,this is obviously impossible if the equilaterality onstraint should be observed atthe same time. Also, the fratal struture is muh better visible for a spherialrepresentation. Hene, the embedding proedure is split into three sub-steps:1. Find a planar embedding of the triangulation or quadrangulation, i.e., drawit in the plane ensuring that no two edges interset.2. Projet this embedding stereographially onto the unit sphere.3. Approximately satisfy the equilaterality onstraint by the simulation of a gen-eralized spring embedder.The problem of planarity testing and the onstrution of plane embeddings of planargraphs has reeived muh attention in algorithmi theory and several eÆient, butmostly quite omplex, solutions have been put forward. For the �rst time, it hasbeen shown by Tarjan et al. [278℄ (see also Refs. [164,279℄) that planarity of a graphan be tested in O(V + E) time, where V denotes the number of verties and Ethe number of edges of the graph. We use this algorithm, whih produes a validplanar embedding in the ourse of the test (for a planar graph). However, it doesnot pay any attention to the length of the edges, whih are thus arbitrarily adaptedto eliminate edge rossings. In the seond step, the resulting plane embedding isstereographially projeted onto a sphere, i.e., from the o-ordinates (x; y) in the
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Figure B.1: Fore trying to unify the lengths of the edges adjaent to a single vertexof a dynamial triangulation.plane, o-ordinates (x0; y0; z0) on the unit sphere are found as(x0; y0; z0) = (x=r2; y=r2; 1=2� 1=r2);r2 = 1 + x2 + y2: (B.1)This transformation has the advantage of not produing any edge intersetions sinethe mapping preserves angles. Finally, to bring the postulate of equal edge lengthsinto play, a generalized spring embedder is iteratively solved, i.e., we assume two-body fores (\springs") between the verties of the polygoni�ation embedded onthe sphere trying to unify the edge lengths,Fij = F0 jrijj � r0r0 rijjrijj ; (B.2)where rij denotes the di�erene vetor between verties i and j, r0 is the desiredommon edge length and F0 denotes the fore strength, i.e., a free parameter to beadjusted. These fores are iteratively evaluated until the system has relaxated into asteady state, adjusting the time steps suh as to prevent edge and fae intersetionsfrom ourring. Additionally, a seond type of interations is assumed, whih movesa single vertex with respet to all its neighbours, trying to unify the lengths of theinvolved edges, f. Fig. B.1. Both types of fores are applied alternatingly, until thesystem has onverged into a steady state.



266 APPENDIX B. GRAPH EMBEDDING AND VISUALIZATIONNote that this ombined algorithm annot guarantee the absene of edge or faeintersetions for the �nal embedding. However, a suitable adaption of the inherentparameters ensures this with only a few loal exeptions. Furthermore, full equalityof edge lengths is not ahieved, but the overall struture of the resulting graphs islearly resolved, as an be seen from the orresponding �gures presented in the maintext.
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