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We study domain-wall excitations for O(m) vector spin glasses in the limit m — oo, where the energy
landscape is simplified considerably compared to XY or Heisenberg models due to the complete
disappearance of metastability. Using numerical ground-state calculations and appropriate pairs of
complementary boundary conditions, domain-wall defects are inserted into the systems and their

excitation energies are measured. This allows us to determine the stiffness exponents for lattices of a
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calculations.

range of spatial dimensions d = 2,...,7. Compiling these results, we can finally determine the lower
critical dimension of the model. The outcome is compared to estimates resulting from field-theoretic

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In view of the notorious difficulties in understanding the be-
havior of spin glass models of low spin dimension such as the
Ising (m=1), XY (m =2) or Heisenberg (m = 3) models, it appears
appealing to investigate the limiting case of vector spins with an
infinite number of spin components (m — o), which turns out to
be simpler for analytical as well as numerical analyses. The model
is described by the well-known Edwards-Anderson Hamiltonian

1
HZ—EZJUS#S;', (1)
ij

where the S; e R™, i =1,..., N, are vector spins with m com-
ponents, here taken to be normalized as |S;| = 1. The exchange
couplings J;; are drawn independently of each other from a Gaus-
sian probability distribution with zero mean and unit standard
deviation. The relative numerical ease of handling this limiting
case is due to a significant simplification of the energy landscape
with increasing spin dimension, namely a reduction in the num-
ber of metastable states. This effect also leads to an increase in
the numerically accessible lattice sizes in MC simulations, e.g., of
Heisenberg spin glasses [1] as compared to the Ising case [2].
Ising [2,3], and, to a lesser degree, XY [4] and Heisenberg [1,
5,6] models, have received most attention and it seems relatively
clear now, that for all of them the lower critical dimension is 2 <
d; < 3 [7], i.e, finite-temperature spin glass transitions are found in
d = 3, but only zero-temperature transitions in d = 2. The situation
is much less clear for general numbers m of spin components and,
in particular, it is not ultimately known whether the lower critical
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dimension depends on the number of spin components for general
m and in the limit of m — oo.

Considering a finite system of N spins in the limit of large
spin dimensions, metastability vanishes completely and the ground
state becomes unique, occupying only a finite-dimensional sub-
manifold in spin space [8,9]. As a consequence, for each system
size there exists a finite, critical number of spin components above
which the ground-state energy does not change upon further
adding spin dimensions, such that the system effectively describes
a spherical spin glass, i.e. the limit m — oco. Compared to the field
theoretic calculations [10,11], this corresponds to an interchange of
the limits N — oo and m — oo, such that the thermodynamic limit
N — oo is taken first in the perturbative calculations, whereas the
infinite-component limit m — oo is taken first in the numerical
approach. This leads to some subtleties, such that the numerical
approach might be considered the zeroth-order term in a 1/m ex-
pansion around the field-theoretic calculation [12].

There is a rigorous upper bound on the number of spin com-
ponents beyond which no further change in the ground state is
observed [9],

Mmax(N) = (VBN +1—1)/2] ~ NI, p=1/2, 2)

where |x] stands for the largest integer smaller than or equal
to x. For the fully connected or Sherrington-Kirkpatrick limit of
the model, the average number of occupied spin dimensions in the
ground state scales with an exponent p = 2/5 [8]. For the short-
range, nearest-neighbor models on hyper-cubic lattices considered
here, on the other hand, the spins require only a somewhat smaller
number of spin components, with u = u(d) < 2/5 depending on
the lattice dimension d [13]. This situation allows for the limit of
an infinite number of spin components to be studied numerically
for finite systems using only a finite number of spin components,
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Table 1

Parameters for the defect energy scaling with the P/AP setup for fits with different functional forms. Fits were performed for lattice sizes L > L.

d Ns/103 al? al?(1+b/L) al’(1+b/L?)

Lmin 0 Q Lmin 0 b Q Lmin 0 b Q
2 3-5 5 —1.558(4) 0.76 4 —1.56(1) —0.09(14) 0.76 4 —1.562(7) —0.26(36) 0.77
3 3 7 —1.03(2) 0.99 3 —1.02(3) 0.21(22) 0.30 3 —1.03(2) 0.31(30) 0.30
4 3 6 —0.57(2) 0.23 3 —0.52(6) 0.51(44) 0.36 3 —0.57(3) 0.49(43) 0.31
5 10-18 7 —0.14(1) 0.97 4 —0.07(5) 0.64(39) 0.99 3 —0.11(1) 1.17(22) 0.99
6 5-13 5 0.27(2) 0.49 3 0.7(19) 5.0(380) 0.60 3 0.33(5) 1.60(55) 0.56
7 0.5 3 0.56(7) 0.98 - - - - - - - -

for instance determining the lower critical dimension from defect-
energy calculations. Previously reported results [13,14], however,
did not reach up to the lattice dimensions above the apparent
lower critical dimension, where an ordering effect would be ex-
pected at finite temperatures.

2. Ground state computations

Using the concept of the defect energy [15], we determined
stiffness exponents for hypercubic lattices of spatial dimensions
d=2,...,7 and nearest-neighbor interactions. This widely-used
approach in the study of spin-glass systems is based on the as-
sumption that the cost AE of the insertion of a system-size defect
into a state of the ordered phase scales as [16]

AE LY, (3)

where 6 is known as the spin-stiffness exponent. The signifi-
cance of 6 is based on the observation that for 6 < 0 arbitrar-
ily small thermal fluctuations suffice to destroy the ordered state
in the thermodynamic limit, preventing a phase transition to oc-
cur at T > 0. On the contrary, 8 > 0 indicates the presence of a
finite-temperature phase transition, since the cost of insertion of a
system-size defect diverges in the thermodynamic limit, thus guar-
anteeing a stable ordered phase at sufficiently small (but non-zero)
temperatures. If, to leading order, the defect energy remains con-
stant, i.e. 6 =0, the system is at its lower critical dimension d;.
Calculation of defect energies with a numerical approach re-
quires the determination of ground states for a set of different
boundary conditions. Ground states were calculated here employ-
ing a local spin-quench procedure, for which the spins are itera-
tively aligned with their respective local molecular fields H;, as

SiIHi= Y JijS), (4)
JeN (i)

where the sum runs over the set A/(i) of nearest neighbors of the

spin at site i. It is easily seen that alignment of each spin with its

molecular field is a necessary condition for the system to be in its

ground state. For the present case of a system without metastable

states [8], it is also sufficient.

These updates are interspersed with sweeps of over-relaxation
moves to speed up convergence, which have also been found to
improve the decorrelation of systems with finite m in Monte Carlo
simulations [5]. These moves, again being local, preserve the en-
ergy of the whole spin configuration since the updated spin is
merely rotated around its local field and therefore moves at con-
stant energy. The simplest way of implementing such a procedure,
in particular for the case of arbitrary spin dimensions m, is to re-
flect the spin along H;, such that

———H;. (5)

This maximal movement can also be argued to lead to a maximal
decorrelation effect within the constant-energy manifold of single-
spin movements. The whole procedure of spin-quench and over-
relaxation moves can be implemented very efficiently, since only

a few elementary operations are required for each step, and no
random numbers are involved.

Inducing a defect of linear size L, i.e., a domain wall, in the
system can be accomplished by manipulating the boundaries in
one lattice dimension. To reduce additional surface effects, bound-
ary conditions in all other lattice directions were chosen periodic.
Here, we decided to use three different setups aimed at reducing
problems with domain walls trapped due to the periodicity and
possibly discriminating between spin (rotational symmetry) and
chiral [17] (discrete symmetry) defects [18]. Firstly, we investigated
the case of periodic and anti-periodic (P/AP) boundary conditions
as the standard setup to probe continuous or “spin” excitations.
Since for this case domain walls might be trapped in both configu-
rations due to the imposed periodicity, the difference between the
two ground-state energies does not directly correspond to the ex-
citation energy of a single defect [19,20]. To alleviate this problem,
we also investigated open/domain-wall (O/DW) boundary condi-
tions. In this case the defect energy is determined by comparing
the energies of a system with open boundaries in one direction
and a second one with fixed spins on two opposing boundaries,
chosen to stay in the configuration found for open boundaries on
one side and rotated around a common axis perpendicular to the
hyperplane in spin space occupied by the boundary spins on the
other side. Due to the open boundaries in the first case, the in-
sertion of exactly one domain wall is guaranteed. A third type
of boundary conditions (open/spin-pair) gave similar results com-
pared to O/DW. These will be discussed elsewhere [21].

Previously, it was argued that corrections to scaling in de-
fect energy studies are systematically reduced as systems of non-
unit aspect ratio R are considered, i.e., lattices with geometry
19-1 x RL,R=1,2, ..., which are elongated in one direction [22].
This appears to work quite well for Ising and XY systems that fol-
low a well-defined power-law scaling in one dimension [20,22].
Due to an asymptotically exponential decay of defect energies with
system size in the one-dimensional infinite-component limit [14],
however, this approach appears to be of only limited applicabil-
ity here [21]. Thus, instead of finding minimal corrections in the
limit R — oo, best results are observed here for aspect ratios only
moderately different from unity, and we chose R =2 for the data
discussed below as a compromise.

3. Results

Ground states were computed for a range of system sizes and
the described sets of boundary conditions using between 3000
and 18000 disorder realizations per lattice size, with more real-
izations used for the crucial cases with |6| small. Due to the large
computational effort, for d = 7 our data include only 500 disor-
der configurations. The number of disorder configurations N for
each lattice dimension is indicated in Table 1. The resulting de-
fect energies from P/AP boundary conditions for lattice dimensions
d=2,d=5 and d =6 are shown in Fig. 1. As is most clearly seen
for the cases d =5 and d = 6 with small |6]|, corrections to the
pure power-law behavior expected according to Eq. (3) are sizable
and can be rather clearly resolved here due to the relatively large
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Fig. 1. Scaling of defect energies AE for P/AP boundary conditions with linear sys-
tem size L in dimensions d =2 (top), d =5 (middle) and d = 6 (bottom). Between
d =5 and d = 6, the scaling exponent 6 changes sign. Corrections to scaling around
these dimensions are most pronounced. The lines are fits of the functional form (8)
to the data.

Table 2

Parameters of fits of the functional form (8) to the data for P/AP boundaries.
d Limin al? +b/L?

6 b Q

2 4 —1.57(2) —0.21(36) 0.75
3 5 —0.99(6) 0.57(64) 0.29
4 4 —0.48(6) 1.31(61) 0.51
5 4 —0.12(2) 0.73(36) 0.99
6 3 0.32(4) 1.46(40) 0.54

number of disorder realizations. To describe these deviations, one
might argue in favor of a correction resulting from a shift in the
effective length scale,

AE ~a(lL —Lo)? =aL?(1 — Lo/L)?
=al’(1+b/L+c/L* +---). (6)

Our data do not allow to resolve more than one correction term re-
liably, such that we have to restrict ourselves to including only the
1/L or only the 1/L? term. Such fits, as monitored by the quality-
of-fit parameter Q [23], work reasonably well, and the resulting
estimates of 6 are statistically compatible with those resulting
from fits without correction terms, but omitting data points with
L < Lyjn for the smaller lattices, cf. the data collected in Table 1.
Note the exception of the fit with 1/L correction term in d =6
which leads to an estimate of & way off the other estimates, in-
dicating the statistical instability of the fit. For d = 7, the limited
range of system sizes precludes the use of fits including correction
terms. From the quality of the fits alone, we found it impossible to
arrive at a general preference for either the 1/L or the 1/L% form.
Instead, we considered the effective form

AE ~al?(1+bL™®), (7

which resulted in parameters @ consistent with 6 — w =~ 2. We
interpret these results in favor of a purely additive correction of
the form

AE ~al? +b/12, (8)

and, indeed, we find this form of fits to work well, cf. the fit re-
sults collected in Table 2. The corresponding fits are denoted by
the solid lines in Fig. 1. The most relevant results are those for
d =5, where 6 appears to be still slightly negative, and for d =6,
where our estimate of 6 is positive. We might conclude, therefore,
that the scaling character of defect energies changes in between
and, consequently, 5 <d; <6.

We now turn to the case of the O/DW setup of boundary con-
ditions. Our corresponding results, averaged over the data for be-
tween 3000 and 5000 disorder realizations, are collected in Fig. 2.
We find scaling corrections to be somewhat more pronounced here
as compared to the P/AP setup, and they cannot fully be accounted
for in all three lattice dimensions considered by either a 1/L cor-
rection or a 1/L% correction term alone. We therefore used the
effective description (7), which results in reasonable fits displayed
in Fig. 2. The corresponding fit parameters are collected in Ta-
ble 3. The rather low values of the quality-of-fit parameter Q in
dimensions d =3 and d =4 are not a sign of general poor fit of
the chosen functional form but, as closer inspection reveals, re-
sult from one or two outliers with relatively large deviations from
the fit as compared to the (very small) statistical errors. Surpris-
ingly, for the O/DW setup the spin-stiffness exponent 6 changes
sign already around d = 3, and it is clearly positive for the lattice
dimensions 5 < d < 6 where the crossover occurred for the P/AP
boundaries.

One might wonder whether the apparently rather different es-
timates of stiffness exponents from the two boundary setups could



1886 F. Beyer, M. Weigel / Computer Physics Communications 182 (2011) 1883-1887

-
0.50 — (d=2)
-
O/DW
-
0.20 —
m
< 0.10 1
0.05 —
9=-0.96+0.01
000 4Q=027
1T T T7TT T 10T T1TT T T T T T TT
3 4 6 9 12 18 26 38 56
L
=
O/DW
1.4 -
1.3
m
<
1.2
1.1
0 =-0.031+0.006
Q =3e-05
[ [ T TT T TT T T 11
3 45 7 10 14 20 28 38
L
14 <
12
10 —
8 -
m
<
6_
0=0.91+0.02
4 Q =2e-05

T T 1T T 17T T T TT1T 1
3 4 5 67 10 14 20

L

Fig. 2. Scaling of defect energies AE for O/DW boundary conditions with linear
system size L in dimensions d =2 (top), d =3 (middle) and d = 4 (bottom) with
fits of the functional form (7) to the data.
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Fig. 3. Evolution of the spin stiffness exponent 6 with lattice dimension d for P/AP
boundary conditions (top) and for O/DW boundary conditions (bottom). The solid
lines are guides to the eye.

be due to them exciting different types of defects, for instance of
the spin and chiral character, respectively. While the O/DW con-
struction certainly forms the cleaner setup in that one directly
probes the energy of a single domain-wall defect, distinctions be-
tween spin and chiral excitations are subtle for this model: in gen-
eral, we would associate the sign of the determinant of the consid-
ered O(m) rotation matrix with the chiral degrees of freedom [24].
For the chosen setup of boundaries, however, the determinant of
the rotation matrix depends on whether the number of spin di-
mensions occupied by the boundary spins is even or odd. Since
the required number of spin components fluctuates between disor-
der realizations, however, the chirality is formally maldefined after
taking the disorder average. Also, we find no difference in scaling
behavior between disorder realizations with even and those with
odd spin dimensions. It appears more plausible, therefore, that the
setup with O/DW boundaries implicitly probes the physically more
realistic case of taking the N — oo limit before the m — oo limit
where, from the experience with finite m, we expect a lower criti-
cal dimension d ~ 3. This possibility is the subject of extensions of
the present work.

In view of our results for the two different setups of bound-
ary conditions, summarized in Fig. 3, it would be desirable to also
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Table 3
Parameters of fits of the functional form (7) to the data for O/DW boundaries.
d al’ (1 +bL=®)
Linin 0 w b Q
2 6 —0.96(1) 1.4(10) 4.7(16) 0.27
3 4 —0.031(6) 1.44(24) 1.94(27) 2.6x107°
4 3 0.91(2) 0.94(13) 1.803(35) 1.5%107°

study this model at finite temperatures, either by means of Monte
Carlo simulations, or iterating equations derived from a saddle-
point calculation as in Refs. [12,25]. The results of such calculations
will be reported elsewhere [21]. As for now, the lower critical di-
mension of the model with m — oo first appears to be 5 <d; <6,
consistent with the results of Ref. [10], but in contrast to the con-
jecture d; = 8 of [11], based on a perturbation expansion. The
upper critical dimension, on the other hand, is predicted to be 8
[10]. The alternative set of O/DW boundary conditions studied here
might provide a means of studying the m — oo limit of the finite-
m models in the thermodynamic limit, for which one expects a
lower critical dimension d = 3.
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