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The presence of random fields is well known to destroy ferromagnetic order in Ising systems in two
dimensions. When the system is placed in a sufficiently strong external field, however, the size of clusters
of like spins diverges. There is evidence that this percolation transition is in the universality class of
standard site percolation. It has been claimed that, for small disorder, a similar percolation phenomenon
also occurs in zero external field. Using exact algorithms, we study ground states of large samples and
find little evidence for a transition at zero external field. Nevertheless, for sufficiently small random-field
strengths, there is an extended region of the phase diagram, where finite samples are indistinguishable
from a critical percolating system. In this regime we examine ground-state domain walls, finding
strong evidence that they are conformally invariant and satisfy Schramm–Loewner evolution (SLEκ ) with
parameter κ = 6. These results add support to the hope that at least some aspects of systems with
quenched disorder might be ultimately studied with the techniques of SLE and conformal field theory.

© 2010 Elsevier B.V. All rights reserved.

The random-field Ising model (RFIM) is one of the earliest
studied and simplest disordered systems showing non-trivial and
glassy behavior [1,2]. It has a number of important realizations
in nature, including diluted antiferromagnets in a field and binary
liquids in porous media [2]. Through its long history, researchers
have managed to gain a reasonable understanding of the criti-
cal behavior, although this progress has been neither straight nor
smooth, and many questions remain unanswered [2]. It is known,
for example, that the RFIM in two dimensions (2D) lacks ferro-
magnetic order [3,4]. Even at zero temperature it remains in the
paramagnetic state for non-zero disorder. Numerical ground-state
calculations have shown, however, that even in the absence of a
thermodynamic transition there exists a geometric transition at
which the size of the spin clusters diverges in a manner bearing
many similarities to classical site percolation [5,6]. While this tran-
sition is rather clearly established in the presence of an external
field, it has been argued that a similar percolation phenomenon
can also be observed in the absence of an external field for suffi-
ciently small disorder [6,7]. Here, we re-investigate the zero-field
behavior with large scale ground-state calculations, focusing on the
possible percolation phenomenon.

The observed relations to classical site percolation at this (non-
zero or zero field) geometrical transition motivate further ques-
tions of how far the similarities go. Interfaces in two-dimensional
percolation satisfy Schramm–Loewner evolution (SLE) [8,9], but
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this property relies on conformal invariance which is not con-
served in the presence of disorder. Recently, however, there have
been suggestions that the domain walls of certain other disordered
systems satisfy SLE. This intriguing possibility implies that confor-
mal invariance, broken by disorder, is restored, at least at criticality
where relevant length scales diverge.

Schramm–Loewner evolution is a method for constructing a
statistical ensemble of curves in the plane from one-dimensional
Brownian motion, thus classifying curves with only one param-
eter, the diffusion constant κ [10]. Characteristic interfaces in
many physical systems have been shown (in some cases rigor-
ously) to satisfy SLEκ . These include percolation (κ = 6), self avoid-
ing walks (κ = 4/3), as well as spin cluster boundaries (κ = 3)
and Fortuin–Kasteleyn cluster boundaries (κ = 16/3) in the Ising
model. A number of numerical studies have found interfaces in
certain disordered systems consistent with SLE, in particular the
2D Ising spin glass [11,12], the Potts model on dynamical triangu-
lations [13], the random bond Potts model [14], and the disordered
solid-on-solid model [15]. Here we extend this list to include the
2D random-field Ising model.

In Section 1 we introduce the RFIM and Schramm–Loewner
evolution in more detail, and discuss the approach used here for
determining ground states of large samples. Section 2 is devoted to
an investigation of the critical behavior of the RFIM near the ge-
ometric transition, focusing on the behavior in zero external field
for small disorder. In Section 3, we report the results of our tests of
the correspondence between interfaces in the RFIM and Brownian
motion implied by SLE.

0010-4655/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.11.028



Author's personal copy

1880 J.D. Stevenson, M. Weigel / Computer Physics Communications 182 (2011) 1879–1882

1. The model and method

We consider the random-field Ising model in two dimensions
with Hamiltonian

H= − J
∑
〈i, j〉

si s j −
∑

i

hi si . (1)

Here, the spins si = ±1 are located on the sites of a square lattice
and interact ferromagnetically with nearest neighbors. The local
fields hi are quenched random variables drawn from a normal dis-
tribution with mean H and standard deviation �. Since, at zero
temperature, only the ratio J/� is relevant, we take J = 1 for
simplicity. The spin–spin interaction J induces a correlation be-
tween the spins resulting in spin clusters which are compact up
to a length ξb . Above this scale the clusters are fractal objects, the
magnetization is zero and the system is paramagnetic. As the ran-
domness � is decreased, the breakup length ξb increases. At and
above three dimensions ξb diverges at the thermodynamic phase
transition, below which the system is ferromagnetic. In two dimen-
sions no thermodynamic phase transition exists, and ξb diverges
only at � = 0. It has been argued that, for H = 0, the breakup
length scale ξb increases with decreasing � as [3]

ξb ∼ e A/�2
. (2)

Though there is no thermodynamic transition in 2D, the linear ex-
tent of the largest clusters diverges for sufficiently large H . In most
aspects, this divergence appears to be consistent with standard site
percolation [5–7]. It has been suggested that the divergence occurs
even at H = 0 if � is below a critical value [5,7]. It is the char-
acteristics of clusters of aligned spins and their boundaries at this
geometric transition which we focus on in this study.

We restrict our investigation to ground-state spin configura-
tions, which can be efficiently constructed through a mapping
to the well-known minimum cut (or maximum flow) problem in
graph theory [16,17]. Consider a directed graph with N + 2 ver-
tices, and edges (i, j) furnished with weights ci j . The minimum
(s, t) cut is given by a subset of the edges of the graph, whose
removal disconnects vertices s and t , such that the sum of the
weights of the cut edges is minimal. Using the variables xi , which
are 1 if vertex i is connected to s and 0 otherwise, the total weight
of a cut can be represented as

C
({x}) =

N∑
i, j=1

xi(1 − x j)ci j. (3)

With the identification of xi with spin variables (excepting the ver-
tices s and t), and an appropriate choice of the weights ci j , this
function can be made to precisely match the RFIM Hamiltonian (1).
The minimum cut separating the graph into vertices connected to
s and vertices connected to t gives the minimum-energy way of
cutting the RFIM lattice into clusters of up and down spins, and
thus corresponds to the ground state of Eq. (1). The choice for the
edge weights is, for i /∈ (s, t)

ci j =
{

0, i � j,
4 J , else.

(4)

For the edges connecting the “spin” vertices to s and t , the result
is given in terms of the quantity ui = −hi − 1

2

∑
j(ci j − c ji) as

csi =
{

0, ui > 0,

−ui, else,
cit =

{
ui, ui > 0,

0, else.
(5)

cis and cti are taken to be zero for all i. Here, we use a fast algo-
rithm for solving the minimum cut problem based on the idea of

“augmenting paths” [18,19]. The worst case scenario for the run-
ning time of this algorithm is an unimpressive O (N3) (or more
generally V 2 E where V is the number of vertices and E is the
number of edges), however, the algorithm was designed to opti-
mize the typical case. The optimization was carried out for vision
and image analysis problems, but even for the graph structure cor-
responding to the RFIM ground-state calculation the running time
is proportional to N for the samples considered here. In practice,
the maximum system size is limited more by computer memory
constraints than by time.

Schramm–Loewner evolutions are defined in terms of a family
gt of conformal maps which take, formally, the upper half plane
minus the curve γt (parametrized by “time” t) to the upper half
plane, gt : H \ γt → H. This map can be defined (using complex
notation and suitable normalization) in terms of the differential
equation

∂ gt(z)

∂t
= 2

gt(z) − ξt
, (6)

where ξt is the driving function for the curve γt . If the curve (or
the process generating the curve) satisfies SLEκ , then ξt will be a
Brownian motion with zero mean and variance κt . Numerically,
rather than solving the differential equation, the map gt is in-
stead pictured as a series of maps gi , which iteratively remove a
small section (�ti) from the beginning of the curve. To calculate
the driving function from a given curve, the incremental map gi is
approximated using a vertical slit map [20]

gi(z) = i
√

−(z − ξi)
2 − 4�ti + ξi . (7)

The parameters ξi and �ti are determined from the coordinates
of the curve segment to be removed through the relations ξi =
xi,i−1 and �ti = y2

i,i−1/4. More specifically, xi,i−1 and yi,i−1 are
the coordinates of the i’th segment of the curve after undergoing
the i − 1 successive maps gi−1 ◦ · · · ◦ g1. The parameter ξi is the
value of the driving function ξt sampled at time ti = ∑

j�i �t j .
The complex square root in Eq. (7) is calculated, as usual, with the
branch cut along the negative real axis.

This is an iterative process in which the coordinates of the
interface are successively updated for each step, and thus the
computational complexity is O (L2

I ) where LI is the length of the
interface. If LI grows like ∼ Nd f /2 (with d f = 7/4 expected for
percolation) in the number of spins N , the resulting computa-
tional complexity is O (N7/4), which is significantly slower than
the ground-state calculation which is O (N) on average. We use
a fast implementation of this “zipper” algorithm [21], in which
blocks of multiple slit maps are approximated using a Laurent se-
ries. Treating blocked maps in one step dramatically speeds up the
calculation such that it scales on average as L1.3

I . The loss in accu-
racy from the approximation is minimal.

If the driving function ξt can be shown to be Brownian motion
then the curves satisfy SLEκ . In practice, the finite size of the lat-
tice and the zipper algorithm introduce correlations between the
increments of ξi and in their associated time values ti . In partic-
ular the distribution of time steps ti − ti−1 is non-trivial and has
significant correlations. However, it should be emphasized that cor-
relations in the times ti at which ξt is sampled does not imply
correlations in the underlying continuous driving function ξt .

2. Phase diagram and behavior at zero field

For very large disorder, � 	 J z, where z is the lattice coor-
dination number, the interactions between the spins play no role
and the system reduces, trivially, to the classical site percolation
model. Each spin is determined solely by the independent ran-
dom variable hi . Identifying spin up with “site occupation”, the site
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Fig. 1. Schematic representation of the dependence of the location Hc of the perco-
lation transition on the random-field strength �. For H < Hc the spin clusters have
finite extent. For H � Hc there exists at least one infinite cluster.

occupation probability p is simply the probability for hi to be pos-
itive: p = 1

2 erfc{−H/(
√

2�)}. For smaller disorder the spin–spin
interaction of the RFIM complicates the analogy with percolation.
However, it has been demonstrated that there exists a line of crit-
ical external fields Hc(�), as pictured schematically in Fig. 1, for
which observables like the crossing probability and the fractal di-
mension of the spin clusters maintain the percolation values [6].

For very large disorder the line of critical external fields is
found from the critical site percolation probability pc (pc ≈ 0.5927
for the square lattice)

Hc(� 	 z) ≈ −�
√

2 erfc−1{2pc}. (8)

For small disorder the behavior is less well understood. Hc(�) de-
creases as � decreases, approaching the limiting value Hc(� =
0) = 0. It has been claimed [6,7] that at a finite disorder strength,
�c ≈ 1.65(5), the curve becomes identically zero Hc(� < �c) = 0,
cf. Fig. 1. We tested this claim by looking at the behavior of the
system varying � at H = 0. We calculated the probability that a
connected cluster of up spins crosses a rectangle of aspect ratio
e−2/5 in the vertical (shorter) direction (this aspect ratio is cho-
sen to be different from 1/2, but the specific value is somewhat
arbitrary). In the upper panel of Fig. 2, we present the results of
these calculations. The crossing probability π for large � is zero
(as expected for a square lattice with pc > 0.5). As the disorder
is decreased, π approaches the exact percolation value, which is
indicated by the horizontal line in the plot. At very small disor-
der, when the breakup length scale ξb becomes comparable to the
system size L, the system appears ferromagnetic and the crossing
probability falls away from the plateau value.

To separate the approach to the plateau from the finite size ef-
fects we also considered another quantity, the probability πtot that
there exists a connected cluster of either up or down spins cross-
ing either horizontally or vertically. The small disorder limit of this
quantity is πtot(� → 0) = 1 for both the onset of percolation and
the ultimate ferromagnetic (and finite size) ordering. If there is a
percolation transition at finite disorder (�c > 0), in the thermo-
dynamic limit L = ∞ the curve πtot(�) will be a step function.
Hence, the curves for finite systems approaching this step function
will intersect at �c . As is apparent from our data for πtot shown
in the lower panel of Fig. 2, such a crossing is not observed at least
down to � ≈ 1.45, significantly below the previously conjectured
value of �c ≈ 1.65. The study of even smaller disorder strengths,
while insuring L 	 ξb , is preempted by the exponential growth of
the breakup length ξb . Although it seems very unlikely that the
system undergoes a true percolation phase transition for H = 0,
there exists a large plateau region in which the system appears to
be at critical percolation at H = 0, even up to very large system

Fig. 2. Crossing probabilities for spin clusters of the 2D RFIM on rectangular do-
mains of aspect ratio e−2/5 for a number of system sizes N = e−2/5 L2 at H = 0. Top
panel: probability of crossing of clusters of up spins in the vertical direction. For
� decreasing from infinity, the crossing probability approaches the exact percola-
tion crossing value [22], indicated by the horizontal line. At very small disorder, the
breakup length ξb is larger than the system size and the systems are effectively fer-
romagnetic. Inset: enlarged view of the plateau region for the largest system size.
The bottom panel shows 1 − πtot , the total crossing probability. If there was a tran-
sition at H = 0, the lines would have to cross around the transition point.

sizes. Presumably, this holds true even for system sizes occurring
in experimental realizations of the RFIM.

3. Schramm–Loewner evolution

Finally, we tested directly the conformal mapping upon which
SLE is based. We studied the statistics of 10 000 interfaces gener-
ated in a half disc. This geometry is used to optimally mimic the
full half plane. The interface is initiated at the origin (the center
of the flat edge) by two fixed spins and is considered ended when
it touches the curved boundary. We find that the variance of the
driving function calculated from the interfaces using the method
described in Section 1 is κ̂ = 〈(ξt −〈ξt〉)2〉/t = 6.09 ± 0.09, and the
normalized mean is ξ̂ = 〈ξt〉/

√
κ̂t = 0.01 ± 0.01. The agreement

with SLE is good, but is only expected to be perfect at criticality.
The difference from the expected percolation value κ = 6 which is
perhaps just visible here is due to the calculations being carried
out at � = 1.65. The position distribution of the resulting stochas-
tic process at several fixed times is shown in Fig. 3 along with
curves representing the expectations for a perfect random walk.

We have focused here on the case of zero external field, where
we have shown, using significantly larger system sizes than had
been accessible before, that there is no percolation phase transi-
tion for H = 0, at least down to � = 1.45. Due to the fact, however,
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Fig. 3. Distribution of the random walk at several different “times” t as extracted
from the RFIM interfaces at � = 1.65. The lines are normal distributions with zero
mean and variance κt with κ = 6.

that the percolation transition line comes exponentially close to
H = 0 for small random-field strengths � (cf. Fig. 1), there exists a
plateau region where even at H = 0 the behavior appears nearly
indistinguishable from criticality. In this regime we have tested
the applicability of Schramm–Loewner evolution to the RFIM and
found good agreement. Further studies at non-zero external field
and using an array of further tests for consistency with SLE con-
firm this result [23].
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