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Monte Carlo simulations are used to study simple systems where the underlying Markov chain satisfies
the necessary condition of global balance but does not obey the more restrictive condition of detailed
balance. Here, we show that non-reversible Markov chains can be set up that generate correct stationary
distributions, but reduce or eliminate the diffusive motion in phase space typical of the usual Monte
Carlo dynamics. Our approach is based on splitting the dynamics into a set of replicas with each replica
representing a biased movement in reaction-coordinate space. This introduction of an additional bias in
a given replica is compensated for by choosing an appropriate dynamics on the other replicas such as to
ensure the validity of global balance. First, we apply this method to a mean-field Ising model, splitting
the system into two replicas: one trying to increase magnetization and the other trying to decrease it.
For this simple test system, our results show that the altered dynamics is able to reduce the dynamical
critical exponent. Generalizations of this scheme to simulations of the Ising model in two dimensions are
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1. Introduction

In the realm of Monte Carlo simulations, techniques based
on Markov chains are by far the most common methods [1].
Based on the principle of detailed balance, the Metropolis-Hastings
algorithm [2] is the workhorse of the Monte Carlo technique,
unsurpassed in its most general applicability and technical sim-
plicity. By construction, under its guidance the system performs
a (biased) random walk in configuration space. While it sam-
ples states directly according to the equilibrium distribution,
as desired, the diffusive motion in phase space makes conver-
gence relatively slow. This is not much of a problem for the
strongly localized distributions typical of, say, the canonical en-
semble off criticality. The broadened distributions close to con-
tinuous phase transitions and, even more so, the asymptotically
flat distributions typically encountered in generalized-ensemble
simulations such as the multicanonical method [3], are much
more problematic, however, when sampling with a random-walk
like exploration of configuration space. At this point, the dif-
fusive behavior of the standard Metropolis based approaches
regularly turns into the dominant bottleneck of the simulation
since equally sampling an extensive phase space volume be-
comes prohibitively slow. Here, we investigate, in how far the
diffusive dynamics of conventional local Monte Carlo simulations
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can be altered by relaxing the condition of detailed balance,
while still ensuring convergence to the exact equilibrium distri-
bution.

For a Monte Carlo Markov chain, the conservation of probability
requires the transition probabilities T (x; — x;) to satisfy the global
balance equation

D T — xpmi= Y T(xj— x)7; (1)
j j

where 7 is the stationary probability distribution, and x; and x;
denote representatives of the configuration space under consid-
eration. The typically chosen detailed balance condition, T (x; —
xj)m; = T(xj — X;)7j, is obviously sufficient, but not necessary for
(1) to hold. While Monte Carlo algorithms satisfying global, but vi-
olating detailed balance have been regularly used before, e.g., in
updating spins on a lattice in sequential instead of random or-
der [1] or for the checkerboard decomposition used in parallel
implementations [4], the systematic engineering of non-reversible
dynamics for the purpose of speeding up convergence has not been
regularly attempted in statistical physics [5] (an exception is the
hybrid Monte Carlo method [6]). In a mathematical context, the
authors of Ref. [7] (see Refs. [8,5] for related ideas) suggest to con-
struct a general non-reversible Monte Carlo dynamics for a Markov
chain on a one-dimensional configuration space {k =1,2,...} by
replicating the whole chain of states into 4+ and — copies and per-
forming two-step transitions as indicated in Fig. 1:
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Fig. 1. Non-reversible dynamics on a one-dimensional chain of states with stationary distribution 7 and a fixed probability 1 — 6 of replica change.

(a) a traditional, reversible Metropolis update between states
(k,£) and (k £ 1, F) according to the desired stationary dis-
tribution 7 (k, +) = 7w (k, —) = 7 (k), i.e., with acceptance rate

n(k:l:l)]

200 (2)

Pacc = min |:1 s
and
(b) a transition (k, &) — (k, =) with a fixed probability 1 — 6

Both transitions obviously leave s invariant, such that 7 is sta-
tionary, but the combination of the two steps is not reversible.
Moreover, it is clear that if 6 is small, the chain will continue
moving in the same direction as long as the Metropolis steps are
accepted.

2. Mean field Ising model

In the spirit of the above construction, we considered a ferro-
magnetic, mean-field Ising model with N spins and Hamiltonian

:——ZSiS]': —MZ, (3)

which has the peculiarity that, due to the indistinguishability of
aligned spins, its state is completely described by the total mag-
netization M. Therefore, all microstates belonging to fixed magne-
tization M (or fixed energy E = — JM?/2N) are completely equiv-
alent. Under the usual single-spin flip dynamics with M +— M + 2
the system is, therefore, exactly described by the one-dimensional
chain depicted in Fig. 1 with k = (M + N)/2. The system under-
goes a paramagnetic to ferromagnetic ordering transition at the
critical coupling T, = 1, and with a regular, reversible single-spin
flip Metropolis dynamics, critical slowing down is observed. To up-
date the configuration directly in terms of the magnetization M
(and not in terms of the individual spins s;), the degeneracy of mi-
crostates needs to be taken into account. The canonical distribution
of magnetizations therefore is given by

N! BJM?
NLIN_! exP( 2N ) )

where N; and N_ denote the number of up and down spins, re-
spectively. Since M = Ny — N_, this is equivalent to

P(M)

N! BJM?
P(M) — exp( ) (5)
(T 7P\ 2w
Hence, the acceptance probabilities (2) for the moves M +— M =+ 2
become
) N¥M BJ
pacc=mm|:17mex {—(iM‘Fl)}] (6)

The form of these probabilities as a function of M for T=T, =1
is illustrated in Fig. 2. Fig. 3 shows time series of non-reversible
simulations of this type for the mean-field model for different val-
ues of the replica-change probability 6. For large values of 6, the
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Fig. 2. Acceptance probabilities according to Eq. (6) for non-reversible simulations
of the mean-field Ising model (3) at the asymptotic critical temperature T, =1 for
a system of N =32 spins.
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Fig. 3. Time series of the magnetization M in a non-reversible simulation of the
mean-field Ising model at T = T, for different choices of the replica-change proba-
bility 6.

algorithm behaves very similarly to the case of regular, reversible
Metropolis simulations, and the temporal evolution of the magne-
tization M resembles a random walk. As 6 is gradually reduced,
however, the system evolves for an increasing number of consec-
utive steps in the same direction before a change of replica and,
therefore, a reversal of the direction of evolution of M occurs. In-
spection of the acceptance probabilities in Fig. 2 reveals that, in
fact, moves decreasing the magnetization M +— M — 2 are always
accepted for M > 0 and, vice versa, moves increasing M +— M + 2
are always accepted if M < 0. Hence, the system must cross the
symmetric point M = 0 before a reversal of the evolution direction
can occur. This condition leads to the characteristic zig-zag pattern
of the magnetization time series displayed in Fig. 3.
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The effect of this changeover from diffusive to quasi-ballistic
evolution of the magnetization is corroborated by an analysis of
the integrated autocorrelation times tj,;. From a binning analysis
[9], we determine tj,(M) from the original time series data from
the limit of large block lengths, where some care has to be taken
due to the fact that the autocorrelation function does not simply
decay exponentially, but features a superimposed oscillatory be-
havior resulting from the zig-zag pattern of the time series shown
in Fig. 3. Estimating the autocorrelation times for a range of differ-
ent system sizes results in the dynamical scaling data presented in
Fig. 4. Fits of the expected functional form

Tine = AN” (7)

to the data for a range of successively smaller values of the replica-
change parameter 6 show a gradual reduction of the effective
dynamical critical exponent z from its value z = 1.4390(33) for
the reversible dynamics down to z = 0.833(13) for the irreversible
dynamics in the limit & — 0. This is consistent with the finding
z~0.85 for a related approach discussed in Ref. [5].

A certain reduction of autocorrelation times is also observed in
the high-temperature paramagnetic and low-temperature ordered
phases with this approach. The irreversible dynamics does not lead
to a significant increase in tunneling events between the sym-
metric peaks in the ordered phase, however. These results will be
discussed elsewhere [10].

3. Two-dimensional Ising model

For general short-range models and appropriate reaction coor-
dinates such as, e.g., energy and magnetization for spin systems,
the equivalence of microstates at fixed E or M seen in the mean-
field model is lost. Consequently, representing phase space in anal-
ogy to Fig. 1 corresponds to a projection, not an identity. Here, we
consider non-reversible simulations of the ferromagnetic, nearest-
neighbor Ising model with Hamiltonian

H=—]) sisj, (8)
(i.J)
where spins are located on the sites of an L x L square lattice. We
studied two types of non-reversible simulations, using either the
magnetization M or the energy E as the projection coordinate.
For the case of the magnetization, again two chains, one in-
creasing M — M +2 and one decreasing M — M — 2, are sufficient.
Depending on which of the chains the system currently is in, we
either pick one of the up or one of the down spins at random and
propose a spin flip. Due to the different a priori probabilities for
choosing a spin before and after the flip, we again get additional
symmetry factors in the acceptance probabilities for the transition
M M=+2,

, LefﬁAE], 9)
Niy+1

which is analogous to the expression (6). Employing this type of
dynamics at the asymptotic critical point of the short-range model,
Te = 2/In(1 + +/2) ~ 2.269, we do not see any improvement of
convergence over the reversible dynamics and, in fact, for large
value of the replica-change probability ¢, autocorrelation times are
even larger for the non-reversible than for the regular, reversible
approach [10].

When taking the energy as the projection coordinate, on a
square lattice a single spin flip can lead to changes AE =0, +4]
or +8]. It is rather clear, therefore, that a two-chain description is
not very appropriate. If we insist on only distinguishing between
AE >0 and AE < 0 with two chains, possibly throwing in some
micro-canonical AE =0 moves to ensure ergodicity, we indeed do

Pacc = min |:1
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Fig. 4. Integrated autocorrelation times tj,; of the magnetization from reversible and
non-reversible simulations of the mean-field Ising model of Eq. (3) at the asymp-
totic critical temperature T, =1 as a function of system size. The lines are fits of
the functional form (7) to the data.

not find any reduction of random-walk behavior and consequently
of autocorrelation times [10]. Generalizations for more than two
chains can be worked out along the lines of the so-called “fiber
algorithm” [7], see also Ref. [8]. Here, we use a setup with three
chains, labeling the current move type by |AE| and y, such that
there are altogether three chains with magnitudes |AE| =0, 4]
and 8/, and y = +1 indicates the direction of chain traversal, i.e.,
AE = y|AE|. Transitions are then performed in three steps:

(a) reversibly update (E, y) — (E+ y|AE|, —y) with the Metropo-
lis acceptance probability,

. NAE=y|AE| _
Pace = mm[l, e PAE (10)
AE=—y|AE|
(b) unconditionally negate y > —y,
(c) with probability 6, randomly choose a new step size |AE]|.

Some extra bookkeeping is involved in keeping track of the num-
bers Nap—yjag| of possible moves with AE = y|AE| before and
after performing the considered transition. Since the moves with
AE =0 do not interfere with the global direction of energy change,
one might as well restrict attention to the two chains with |AE| =
4] and 8], and simply perform one or more AE =0 moves in be-
tween the updates changing the energy. Studying the short-range
model (8) at criticality, the three-chain non-reversible algorithm
walking in energy space indeed achieves some reduction of the
random-walk behavior as is apparent from the data for the in-
tegrated autocorrelation times T (E) and tin(M) of the internal
energy and magnetization for different system sizes collected in
Fig. 5. In contrast to the case of the mean-field model, how-
ever, no clear-cut reduction of the dynamical critical exponent z
is achieved but, in any case, at least a constant speedup-up factor
around 7, ®' /%Y ~ 5 is observed. Some reduction of autocorrela-
tion times is also seen off criticality [10].

A general drawback of the considered approaches is that move-
ment in one chosen direction of the reaction coordinates E or M
only continues until a rejection of one of the reversible Metropolis
steps occurs. It is due to the extra factors depending on Nag—y|aE|
in Eq. (10), which depend on the microstate under consideration
and are not the same for all states with the same energy, that such
rejections occur even in regions where the corresponding general-
ized Boltzmann factor would indicate that an attempt to change
the energy by AE via a standard Metropolis update should always
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Fig. 5. Finite-size scaling of the integrated autocorrelation times tj,(E) and Ty (M)
of the internal energy and magnetization of non-reversible simulations of the two-
dimensional Ising model at criticality using a state-space partition according to the
energy E. Fits of the functional form tj, = AL? to the data yield the estimates
Tint(E) = 1.670(52) and ti¢(M) = 1.980(29) for the non-reversible dynamics, to be
compared to the estimates tj,(E) = 1.766(24) and Tjp¢(M) = 2.121(27) for the reg-
ular, reversible simulation.

be accepted. In mathematical terms, complete random-walk sup-
pression with the outlined techniques is preempted by the lack
of lumpability [11] of the underlying Markov chain on the micro-
scopic states with respect to the chosen state-space partition, e.g.,
according to the energy E [10].

Generalizations of the outlined approach for the case of multi-
canonical simulations are possible with minor adaptations [10]. Al-
though for the ideal case of a perfectly flat distribution one might
expect rejections of the Metropolis steps to be rare, the microstate

factors counter-balancing the change in the number of possible
moves of a given type appear to be rather wildly varying between
different pairs of microstates connected by the move, such that
random-walk suppression is not perfect from this approach. In this
respect, the mean-field model considered in Section 2 is a rather
special case, since all microstates are completely equivalent.
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