
Author's personal copy

Computer Physics Communications 182 (2011) 1833–1836

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Simulating spin models on GPU

Martin Weigel

Institut für Physik, KOMET 331, Johannes Gutenberg-Universität Mainz, Staudinger Weg 7, 55128 Mainz, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 18 June 2010
Accepted 29 October 2010
Available online 3 November 2010

Keywords:
Monte Carlo simulations
GPU
Spin models

Over the last couple of years it has been realized that the vast computational power of graphics
processing units (GPUs) could be harvested for purposes other than the video game industry. This power,
which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity
of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units
on a single chip. To benefit from this setup for general computing purposes, the problems at hand need
to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory
accesses. In this contribution I discuss the performance potential for simulating spin models, such as the
Ising model, on GPU as compared to conventional simulations on CPU.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Owing to a combination of an improved toolset of simulational
machinery and methods of data analysis and the exponential in-
crease in available computer power observed over the past four
decades, computer simulations such as the Monte Carlo method
have at least drawn level with the more traditional perturba-
tive approaches for studying a plethora of problems in statistical
physics [1], ranging from critical phenomena [2] over the physics
of disordered systems [3] to soft matter and biological problems
[4]. This success notwithstanding, a range of notoriously hard prob-
lems appear to create an insatiable appetite for more powerful
computational devices to finally settle a number of long-standing
questions. Among such problems are, for instance, the quest of un-
derstanding the nature of the spin glass phase [5] or the protein
folding problem. To achieve results beyond the reach of the avail-
able standard computational resources of the time, there has been
a tradition of designing special purpose computers, e.g., for calcu-
lations in lattice field theory [6] or the simulation of spin models
[7,8].

Since the design and programming of such dedicated machines
regularly require a large effort in terms of monetary and human re-
sources, recently scientists have started to adopt the use of graph-
ics processing units for general purpose computational tasks in the
hope of harvesting their nominally vast computational power, on
par with some devices based on FPGAs, without the need of time-
consuming work at and near the hardware level [9–11]. By design,
GPUs are optimized for manipulating a large number of graphics
primitives in parallel, which often amounts to simple, floating-
point matrix calculations. In contrast to current CPUs, they are

E-mail address: weigel@uni-mainz.de.

not designed to cope with “unexpected” branches in the code, or
for executing a single-threaded program as fast as possible. While
this makes GPUs not well suited as drop-in replacements for CPUs
for interactive computing, their highly parallel architecture might
well be taken advantage of in scientific calculations with an often
high degree of vectorizable or parallelizable code. Their original
design for graphics calculations, however, entails certain design
features which are not necessarily optimal for scientific computa-
tional tasks, such as a special hierarchy of memory organization or
a restriction to (efficient) floating-point calculations only in single
precision arithmetics, which only has been alleviated in the very
latest generation of cards.

While the first applications of general purpose computing on
GPUs were performed directly in graphics programming languages
such as OpenGL [9], access to these devices for scientific applica-
tions has been considerably simplified with the advent of language
extensions such as NVIDIA CUDA [12] and OpenCL [13] for per-
forming general purpose computing on GPUs. The application pre-
sented here was coded on the NVIDIA architecture using the CUDA
framework, which is a high-level extension to the C language fam-
ily.

2. Relevant features of GPU architecture

Fig. 1 shows a schematic representation of the NVIDIA GPUs
used in the work presented here. A GPU consists of a number of
multiprocessors, each composed of a number of single processing
units which concurrently work with the same code on different
parts of a common data set. Of utmost importance to the efficient
performance of GPU programs is the organization of GPU memory,
which comes in a number of flavors:

0010-4655/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2010.10.031



Author's personal copy

1834 M. Weigel / Computer Physics Communications 182 (2011) 1833–1836

Fig. 1. Diagrammatic representation of the hardware layout of recent NVIDIA GPUs.

• Registers: each multiprocessor is equipped with several thou-
sand registers, access to which is local to each processing unit
and extremely fast.

• Shared memory: the processors combined in a multiprocessor
have access to a small amount (16 KB for Tesla cards and
48 KB for the Fermi architecture) of shared memory, which
serves as a means of synchronization and communication be-
tween the threads in a block. This memory resides on-chip
and can be accessed essentially without significant memory
latency.

• Global memory: this large amount of memory (currently up to
4 GB) is on separate DRAM chips and can be accessed by each
thread on each multiprocessor. Access suffers from a latency
of several hundred clock cycles.

• Constant and texture memory: these memory areas are of the
same speed as global memory, but they are cached such that
read access can be very fast. From device perspective they are
essentially read-only.

• Host memory: the memory of the host CPU unit cannot be
accessed from inside GPU calculations. Memory transfers be-
tween global and device memory are important for communi-
cation with the “outside world”.

Additionally, the recent Fermi architecture provides certain cache
memories, but since the previous Tesla architecture is used in the
present work, I do not discuss them here. In the CUDA framework,
calculations are organized to match the layout of the hardware:
each multiprocessor executes (part of) a block of threads concur-
rently, while the different blocks of a grid are assigned to separate
multiprocessors. To alleviate the large latency (in terms of clock cy-
cles) of global memory accesses, in an ideal setup there are many
more threads in total than available processors, such that a differ-
ent (part of a) thread block can be scheduled for execution while
the threads of a given block wait for memory fetches or writes.

For maximum performance, implementations of scientific cal-
culations have to take these characteristics into account and, in
particular, should ideally meet the following design goals:

1. A large degree of locality of the calculations, reducing the need
for communication between threads.

2. A large coherence of calculations with a minimum occurrence
of divergence of the execution paths of different threads.

3. A total number of threads significantly exceeding the number
of available processing units.

4. A large overhead of arithmetic operations and shared memory
accesses over global memory accesses.

3. Double checkerboard Metropolis simulations

As a typical application in statistical physics, I studied the
single-spin flip Metropolis [14] simulation of a nearest-neighbor,
ferromagnetic Ising model with Hamiltonian

H= − J
∑

〈i, j〉
si s j, si = ±1 (1)

on square and simple cubic lattices of edge length L, using periodic
boundary conditions. A proposed flip of spin si is accepted with
the Metropolis probability

pacc(si �→ −si) = min
[
1, e−β�E]

, (2)

such that the updating decision can be drawn solely upon exam-
ining the states of spin si and its four (in 2D) resp. six (in 3D)
neighbors. Hence, the necessary calculations can be made local and
highly parallel by using lattice decompositions of the checkerboard
type. The authors of Ref. [11] used a single checkerboard decompo-
sition, working on strips or columns of the lattice. Since this setup
does not take the hierarchical memory organization into account,
the spin field needs to reside in global memory at all times, such
that memory accesses are very costly. Here, instead, I suggest to
use a double checkerboard decomposition, whose organization is
in line with the hierarchic layout of GPU memory: for the square-
lattice system, on a first, “coarse” level, the lattice is divided into
B × B blocks. On a second, “fine” level, each block is decomposed,
again in a checkerboard fashion, into T × T sub-blocks. This is il-
lustrated in Fig. 2. As a consequence of this decomposition, each
large tile of one of the two sub-lattices (“even” and “odd”) of the
coarse decomposition can be updated independently, and for each
tile under consideration all sites of one sub-lattice are again inde-
pendent of each other. It is thus possible to load the configuration
of spins of one of the coarse tiles into shared memory, including
an extra surface layer of neighboring spins needed for calculating
the local energy of spins in the considered tile, cf. the shaded area



Author's personal copy

M. Weigel / Computer Physics Communications 182 (2011) 1833–1836 1835

Fig. 2. Double checkerboard decomposition of a 322 square lattice for parallel
Metropolis simulations on GPU. Each of the B × B = 4 × 4 big tiles is assigned as a
thread block to a multiprocessor, whose individual processors work on one of the
two sub-lattices of all T × T = 8 × 8 sites of the tile in parallel.

in Fig. 2. This loading operation is distributed over the threads of
a block, arranging memory accesses to achieve coalescence [12].

In total, the simulation thus proceeds as follows:

1. A kernel is launched assigning all B2/2 even tiles of the coarse
checkerboard to a separate thread block, all of which are (de-
pending on the number of multiprocessors available in hard-
ware) executed in parallel.

2. The T 2/2 threads of each thread block cooperatively load the
spin configuration of their tile plus a boundary layer into
shared memory.

3. The threads of each block perform a Metropolis update of each
even lattice site in their tile in parallel.

4. The threads of each block are synchronized, ensuring that all
of them have completed the previous step.

5. The threads of each block perform a Metropolis update of each
odd lattice site in their tile in parallel.

6. The threads of each block are again synchronized.
7. A second kernel is launched working on the B2/2 odd tiles of

the coarse checkerboard in the same fashion as for the even
tiles.

In practice, the kernels for even and odd sub-lattices can be
implemented as calls to the same kernel, using an extra offset pa-
rameter to distinguish sub-lattices. To leverage the effect of loading
a tile’s spin configuration into shared memory, a generalized multi-
hit technique [15] is employed for performing the simulations,
where steps 3–6 above are repeated k times. In this way, one sub-
lattice of the coarse checkerboard is updated several times before
updating the other sub-lattice. Close to criticality, the generalized
multi-hit approach leads to somewhat increased autocorrelation
times [16], which reduces the overall efficiency of the implemen-
tation presented here in the vicinity of a critical point. In view of
the existence of efficient cluster algorithms for this case [17], how-
ever, single-spin flip Metropolis simulations are not the algorithm
of choice for this situation, anyway. The code for the Metropolis
kernel formulated here is extremely simple, taking up only around
60 lines (vs. around 300 lines in the implementation presented in
Ref. [11]). It can be downloaded from the author’s website [18].

Fig. 3. Computer times for a single spin flip of a Metropolis update simulation of the
2D Ising model on a square lattice of edge length L using the double checkerboard
decomposition and k-fold generalized multi-hit updates. GPU times are for a Tesla
C1060 device and CPU times for 3.0 GHz Intel Core 2 Quad processors with 4 MB
and 6 MB of cache, respectively.

4. Results for the Ising model

To actually perform the Metropolis updates, a stream of pseudo-
random numbers is required. It is clear that, for reasonable ef-
ficiency, each thread needs to have access to an independent
(sub-)stream of random numbers. For simplicity and the sake of
comparison, I here use an array of simple 32-bit linear congru-
ential generators (LCG) with identical multipliers, but randomly
chosen initial seeds for each thread [11]. It is clear that in view
of the short period p = 232 ≈ 109 of the generators, most of the
different sequences will have significant overlap and, e.g., in a sim-
ulation with 107 Monte Carlo sweeps of a 1024 × 1024 system
about 1013 random numbers are used, significantly exceeding the
period of the generator, and even more dramatically exceeding the
value

√
p considered to be safe when using LCGs [19]. Somewhat

surprisingly, for the 2D model all simulation data are consistent
with the exact results for the internal energy and specific heat [20]
with this setup. On the contrary, when using an actually cleaner
setup with disjoint sub-sequences of the 32-bit LCG, and even
when using disjoint sequences of an analogous 64-bit LCG with pe-
riod p = 264 ≈ 1019, highly significant deviations are encountered.
For high-precision real-world applications, therefore, I suggest to
use different pseudo-random number generators, for instance of
the Lagged Fibonacci type [21]. The corresponding implementa-
tions will be discussed elsewhere [16].

For the 2D model, in Fig. 3 the times for performing a sin-
gle spin flip are presented as a function of the linear system
size L. The time required for the measurement of elementary
quantities such as the energy and magnetization is not included
in these figures, since pure spin-flip times over the years have
developed into a standard unit for comparing different architec-
tures and implementations and thus allow to compare to a host of
previous calculations. GPU calculations have been performed here
on a Tesla C1060 device with 4 GB of RAM. By experimentation,
for the considered system sizes 16 � L � 1024, the optimal tile
sizes are found to be T = 4 for L � 64, T = 8 for L = 128 and
T = 16 for 128 < L � 1024. Using shared memory and the multi-
hit technique, single spin flip times down to about 0.1 ns can
be achieved, significantly exceeding the performance reported in
Ref. [11]. When comparing these results to CPU calculations, the



Author's personal copy

1836 M. Weigel / Computer Physics Communications 182 (2011) 1833–1836

Fig. 4. Speed-up factors of the double checkerboard GPU implementation for the 2D
Ising model vs. the CPU code as a function of linear system size L.

question arises whether multiple CPU cores should be taken into
account [22]. I refrain her from doing so, and use serial CPU code
as the de facto standard of code used in most simulations on sin-
gle CPUs. The CPU code used in Ref. [11] was a one-to-one copy
of the GPU code. Just replacing it by code more suitable for serial
execution already results in a speed-up by a factor of two. This ob-
servation, as well as the cache effect clearly visible in Fig. 3 as the
size of the spin field of 4L2 bytes reaches the size of the cache,
indicate that speed-up factors are a rather fragile measure of GPU
vs. CPU performance. Trying a relatively fair comparison, using the
somewhat optimized code on a CPU with sufficiently large cache,
results in the speed-up factors presented in Fig. 4. Whereas com-
pared to the CPU code used in Ref. [11] speed-ups of up to 400
are observed, for the more realistic comparison used here, a max-
imal speed-up of around 100 is reached (vs. a speed-up of around
20 for the GPU code of Ref. [11]). The double checkerboard de-
composition proceeds in a completely analogous way for the case
of the 3D Ising model, and in this case we achieve a maximum
performance of around 0.24 ns per single spin flip with maximal
speed-ups of almost 300 compared to the corresponding CPU code
for a 2563 system (for this lattice size, the spin configuration is
significantly larger than the cache memory if using regular integer
variables for the spins).

It is obvious that the chosen problem and implementation come
rather close to meeting the design goals set out in Section 2 and
thus constitute a quite ideal application. Indeed, we achieve a total
throughput in excess of 100 GFLOP/s from the chosen implemen-
tation which is at least of the same order of magnitude as the
theoretical peak performance of 933 GFLOP/s for the Tesla C1060
card. The outlined approach easily generalizes to simulations of
more general spin models, in particular models with continuous
spins such as the Heisenberg model, where the large efficiency
of GPU devices with (single-precision) floating-point calculations

comes into play. For the case of disordered models, parallelism
is also possible by working on many disorder realizations concur-
rently. Combining such approaches with (asynchronous) multi-spin
coding, we achieve a performance of around 0.15 ps per single spin
flip for the Edwards–Anderson Ising spin glass. These and further
extensions will be discussed in a separate publication [16].

Acknowledgements

The author acknowledges support by the “Center for Com-
putational Sciences in Mainz” (SRFN) as well as funding by
the DFG through the Emmy Noether Programme under contract
No. WE4425/1-1.

References

[1] K. Binder, D.P. Landau, A Guide to Monte Carlo Simulations in Statistical in
Physics, 2nd edition, Cambridge University Press, Cambridge, 2005.

[2] A. Pelissetto, E. Vicari, Critical phenomena and renormalization-group theory,
Phys. Rep. 368 (2002) 549.

[3] A.P. Young (Ed.), Spin Glasses and Random Fields, World Scientific, Singapore,
1997.

[4] C. Holm, K. Kremer (Eds.), Advanced Computer Simulation Approaches for Soft
Matter Sciences, vols. 1 and 2, Springer, Berlin, 2005.

[5] N. Kawashima, H. Rieger, Recent progress in spin glasses, in: H.T. Diep (Ed.),
Frustrated Spin Systems, World Scientific, Singapore, 2005, p. 491.

[6] G. Goldrian, T. Huth, B. Krill, J. Lauritsen, H. Schick, I. Ouda, S. Heybrock, D. Hi-
erl, T. Maurer, N. Meyer, A. Schäfer, S. Solbrig, T. Streuer, T. Wettig, D. Pleiter,
K.H. Sulanke, F. Winter, H. Simma, S.F. Schifano, R. Tripiccione, A. Nobile, M.
Drochner, T. Lippert, Z. Fodor, QPACE: Quantum chromodynamics parallel com-
puting on the cell broadband engine, Comput. Sci. Eng. 10 (2008) 46–54.

[7] H.W.J. Blöte, L.N. Shchur, A.L. Talapov, The cluster processor: New results, In-
ternat. J. Modern Phys. C 10 (1999) 1137.

[8] F. Belletti, M. Cotallo, A. Cruz, L.A. Fernández, A.G. Guerrero, M. Guidetti,
A. Maiorano, F. Mantovani, E. Marinari, V. Martín-Mayor, A. Muñoz Sudupe,
D. Navarro, G. Parisi, S.P. Gaviro, M. Rossi, J.J. Ruiz-Lorenzo, S.F. Schifano, D.
Sciretti, A. Tarancón, R.L. Tripiccione, Janus: An FPGA-based system for high-
performance scientific computing, Comput. Sci. Eng. 11 (2009) 48–58.

[9] S. Tomov, M. McGuigan, R. Bennett, G. Smith, J. Spiletic, Benchmarking and
implementation of probability-based simulations on programmable graphics
cards, Comput. Graph. 29 (2005) 71.

[10] J.A. van Meel, A. Arnold, D. Frenkel, S.F. Portegies Zwart, R.G. Belleman, Har-
vesting graphics power for MD simulations, Mol. Simul. 34 (2008) 259–266.

[11] T. Preis, P. Virnau, W. Paul, J.J. Schneider, GPU accelerated Monte Carlo simula-
tion of the 2D and 3D Ising model, J. Comput. Phys. 228 (2009) 4468.

[12] CUDA zone — Resource for C developers of applications that solve computing
problems, http://www.nvidia.com/object/cuda_home_new.html.

[13] OpenCL — The open standard for parallel programming of heterogeneous sys-
tems, http://www.khronos.org/opencl.

[14] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equa-
tion of state calculations by fast computing machines, J. Chem. Phys. 21 (1953)
1087.

[15] B.A. Berg, Markov Chain Monte Carlo Simulations and Their Statistical Analysis,
World Scientific, Singapore, 2004.

[16] M. Weigel, in preparation.
[17] D. Kandel, E. Domany, General cluster Monte Carlo dynamics, Phys. Rev. B 43

(1991) 8539.
[18] http://www.cond-mat.physik.uni-mainz.de/~weigel/GPU.
[19] D.E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algo-

rithms, 3rd edition, Addison–Wesley, Upper Saddle River, NJ, 1997.
[20] A.E. Ferdinand, M.E. Fisher, Bounded and inhomogeneous Ising models. I. Spe-

cific heat anomaly of a finite lattice, Phys. Rev. 185 (1969) 832.
[21] R.P. Brent, Uniform random number generators for supercomputers, in: Proc.

Fifth Australian Supercomputer Conference, Melbourne, 1992, pp. 95–104.
[22] N.G. Dickson, K. Karimi, F. Hamze, Importance of explicit vectorization for CPU

and GPU software performance, arXiv:1004.0024.


