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Numerical tests of CFT conjectures for 3D spin systems
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Abstract

One kind of predictions of conformal field theory for two-dimensional systems are universal relations between scaling
amplitudes and scaling dimensions on infinite length cylinders. We discuss different possible generalizations of such laws
to three-dimensional geometries. Using cluster update Monte Carlo simulations we investigate the finite-size scaling of the
correlation lengths of several three-dimensional classical O(n) spin models. We find that, choosing appropriate geometries or
boundary conditions, the two-dimensional situation can be restored. 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Augmenting the scale invariance of a physical
system at a critical point, being the basis of the
renormalization group (RG) theory, by the additional
symmetries of rotational, translational and inversion
invariance has led to a quite complete understanding
of two-dimensional (2D) critical phenomena. This
comprises in particular finite-size scaling (FSS) laws
including the amplitudes. Mathematically, the reason
for the exceptional predictive power of such symmetry
considerations can be traced back to the fact that
this group of conformal symmetry transformations
is infinite-dimensional in 2D [1]. As an example
of the FSS predictions of conformal field theory
(CFT), consider the logarithmic mapw = (L/2π) lnz,
z ∈ C, which wraps the complex plane around a
cylinder of infinite length and circumferenceL, i.e.
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the geometryS1 ×R. Being conformal, this map gives
the full expression of the critical two-point correlation
function of a primary operatorφ on S1 × R [2],
implying in the limit of large distances in the infinite
direction a longitudinal correlation length of

ξ‖ = L

2πx
, (1)

with x being the scaling dimension ofφ. This relation
exhibits three different aspects of universality:

(i) the scaling amplitude of the correlation length
of a given operator should be the same for all
models within a universality class;

(ii) all operator-dependent information should be
condensed in the associated scaling dimensionx

with an overall amplitude of 1/2π ;
(iii) the relation should hold for models of an arbitrary

universality class, as long as they exhibit critical
behaviour (and have short-ranged interactions).
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Specializing on the local densities of magnetization
and energy, which are the only primary operators
in the 2D Ising universality class, their correlation
lengths ratio becomesξσ /ξε = xε/xσ . Changing the
periodic (p) boundary conditions (bc) along the strip
to antiperiodic (a) bc destroys most of the “hyper”-
universality: for the nearest-neighbor Ising model one
ends up withξσ = 4πL/3, ξε = πL/4 [1]. Thus, the
universality aspects (ii) and (iii) above get lost and (i)
gets restricted.

A direct generalization of these results for 2D
systems to higher dimensions is hindered by the fact
that the conformal group becomes finite-dimensional
for dimensionsd � 3. Observing, however, that the
logarithmic map above does not make use of the
full CFT, some generalizations to higher dimensions
become possible. In polar coordinates the logarithmic
map only affects the radial part, but leaves the angular
part of the coordinates invariant. Thus, mappingRd to
the spaceSd−1×R, Cardy [2] conjectured the relation

ξ = R

x
, (2)

where R is the radius ofSd−1. This generalized
mapping is still conformal, but ford � 3 it connects
different geometries instead of being a meromorphism
acting on the Riemann sphere. Therefore, ford � 3
the meaning of aprimary operator in this context is
not clear and the relation (2) should be considered
a conjecture. Numerical studies of this problem are
hampered by the difficulty to regularly discretize the
curved spacesSd−1. A first attempt [3] to establish
this result numerically ford = 3 and the Ising model
in the Hamiltonian limit used Platonic solids as an
approximation ofS2, but was inconclusive due to the
very limited size of these polyhedra.

Another possible generalization leads to the geom-
etry S1 × · · · × S1 × R, which is more easily ac-
cessible for numerical studies, but is not related to a
flat space via a conformal transformation. In a trans-
fer matrix study of the Ising model in the Hamil-
tonian limit on the three-dimensional (3D) manifold
S1 × S1 × R ≡ T 2 × R, Henkel [4] found for the cor-
relation lengths ratio of spin and energy densities the
valuesξσ /ξε = 3.62(7) for p-bc andξσ /ξε = 2.76(4)
for a-bc, which compared to the ratio of scaling di-
mensions ofxε/xσ = 2.7326(16) seemed to indicate
that changing the boundary conditions along the torus

directions from p-bc to a-bc could restore the 2D re-
sult, in qualitative agreement with a Metropolis Monte
Carlo (MC) study [5]. These 3D observations form
a possible starting point for a generalization of CFT
methods to higher dimensional systems. Here, we dis-
cuss numerical analyses focusing on the influence of
boundary conditions and special geometries on the
validity of scaling laws of the form (1) and (2), re-
spectively, and the question of what degree of univer-
sality according to the above-described classification
scheme can be retained for 3D systems.

2. Models and computational tools

We consider O(n) symmetric classical spin models
with nearest-neighbor, ferromagnetic interactions in
zero field with Hamiltonian

H = −J
∑
〈ij〉
σi · σj , σi ∈ Sn−1. (3)

The spinsσi live on the sites of lattices representing
the geometries (a)T 2 × R and (b) S2 × R to be
described in more detail below. The MC simulations
are performed with the Wolff single cluster update
algorithm [6]. In the case of a-bc along the torus
directions we make use of the equivalence of an
antiperiodic boundary to the insertion of a seam of
anti-ferromagnetic bonds along the boundary which
is straightforward to implement for nearest-neighbor
interactions.

The main observables of our simulations are the
connected correlation functions of the magnetization
and energy densities:

Gcσ (x1,x2)=
〈
σ(x1) · σ(x2)

〉 − 〈σ 〉 · 〈σ 〉,
Gcε(x1,x2)=

〈
ε(x1), ε(x2)

〉 − 〈ε〉〈ε〉. (4)

Here we defined the local energy density as a sum over
the neighborhood of a spin:

ε(x)= −J
2

∑
x′ nnx

σ(x) · σ(x′), (5)

the factor 1/2 ensuring thatE = ∑
x ε(x). It is

straightforward to construct a bias-reduced estimator
for the case of(x2 − x1) ‖ êz, corresponding to the
correlation lengthξ = ξ‖ in the long direction: first,
taking advantage of the translation invariance of the
systems along thez-axis (established by periodic
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boundary conditions alongz), one can average over
the “layers” i ≡ |z2 − z1| = const. To improve on
that consider a “zero-mode projection” [7], i.e. define
layered variables

Ot (z)= 1

LxLy

∑
x′,z′=z

Ot (x′), (6)

whereOt = σt or εt denotes the times series of MC
measurements, and consider the estimator

Ĝ
c,‖
O (i)=

1

T

T∑
t=1

1

Lz

∑
|z2−z1|=i

Ot (z1)Ot (z2)

−
(

1

TLz

T∑
t=1

∑
z

Ot (z)
)2

, (7)

whereT denotes the length of the MC time series.
This estimator obviously does not directly measure
Gc,‖, but inspecting the continuum expression reveals
that the deviation stemming from transversal cross-
correlations entering the estimator declines exponen-
tially with increasing longitudinal distancei and thus
becomes irrelevant in the long-distance limit.

While periodic boundary conditions in thez-di-
rection eliminate surface effects associated with this
direction, there are still effects of finiteLz which
result in deviations from theLz → ∞ limit assumed
in Eq. (1). In the limit of distancesi� ξ‖ one expects
longitudinal correlations according to

Gc,‖(i)∝ e−i/ξ‖ + e−(Lz−i)/ξ‖ . (8)

Thus, using too small values ofLz results in an
effective underestimation of correlation lengths. In
order to keep this effect small enough (assumingξ‖ ∝
Lx ), one has to keep the ratioLz/ξ‖ ∝ Lz/Lx fixed,
i.e. one has to scaleLz proportionally toLx . Guided
by a comparative study of the 2D Ising model we
worked for the 3D systems withLz ≈ 15ξ‖, where
always the greater correlation lengthξσ was used in
this a priori estimate.

In all simulations we controlled the efficiency of the
cluster update algorithm by measuring integrated auto-
correlation timesτint using a binning technique. Since
measurements of̂Gc,‖ are computationally expensive
compared to update steps, measurements were done
with frequencies of about 1/τint.

Having sampled correlation functions according to
Eq. (7) and assuming the functional formGc,‖(i) =

a exp(−i/ξ‖)+ b, we refrain from using intrinsically
unstable non-linear three-parameter fits and resort to
the following estimator instead,

ξ̂O(i)= 
[
ln
Ĝ
c,‖
O (i)− Ĝc,‖O (i − )

Ĝ
c,‖
O (i + )− Ĝc,‖O (i)

]−1

, (9)

which eliminates both the additive and multiplicative
constantsa andb above. Apart from stability consid-
erations this approach simplifies the distinction of the
short- and long-distance regimes. The parameter in
Eq. (9) can be used to optimize the signal-noise ra-
tio for the correlation length estimate. Here, we used
 ≈ 2ξε for both estimatorŝξσ (i) andξ̂ε (i).

The estimation of statistical errors (variances) of
complex, non-linear combinations of observable mea-
surements like in Eq. (9) requires some care. Tem-
poral correlations can be eliminated by forming sub-
averages of lengthµ (“binning”), i.e. by using reduced
time series of lengthT ′ = T/µ. In our runs the bin
size was always several thousand measurements. To
cope with the non-linearities in Eq. (9) we use re-
sampling techniques such as the “jackknife” [8] which
mimic the brute force error estimation method of com-
paring k completely independent MC time series of
lengthsT ′ and applying the naive estimates: remov-
ing single elements (i.e. bins) of a single time series
of lengthT ′ one by one results inT ′ time series of
lengthT ′ − 1, e.g., for the correlation function esti-
mates:

Ĝ(s)(i)= 1

T ′ − 1

∑
t �=s
Ĝt (i), (10)

resulting in jackknife-block estimates for the correla-
tion length of:

ξ̂(s)(i)= 
[
ln
Ĝ(s)(i)− Ĝ(s)(i − )
Ĝ(s)(i + )− Ĝs(i)

]−1

,

ξ̂(·)(i)= 1

T ′
∑
s

ξ̂(s)(i).

(11)

Then the jackknife estimate of variance is given
by:

V̂AR
(̂
ξ(i)

) = T ′ − 1

T ′
T ′∑
s=1

(
ξ̂(s)(i)− ξ̂(·)(i)

)2
. (12)

Note the missing factor of 1/(T ′ − 1)2 as compared
to the usual variance estimate which accounts for the
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trivial correlation between theT ′ jackknife-block esti-
mates.

An improved final estimate can be achieved by an
average over thêξ(i), i = imin, . . . , imax. When corre-
lations between the individual estimates are negligible,
the usual recipe is averaging over the estimatesξ̂ (i)

with weightsαi ∝ 1/σ 2(̂ξ (i)) that minimize the theo-
retical variance of the average. Here, however, cross-
correlations between adjacent estimatesξ̂ (i) cannot be
neglected (they increase with increasing ) and one
has to choose the weights according to

αk =
∑
i (Γ

−1)ik∑
i,j (Γ

−1)ij
, (13)

in order to minimize the variance of the average, as can
be proven by a simple variational calculation. Here,Γ

denotes the covariance matrix of theξ̂ (i) which can be
estimated within the jackknife resampling scheme as:

ĈORRij ≡ ĈORR
(
ξ̂ (i), ξ̂ (j)

)
= T ′ − 1

T ′
T ′∑
s=1

(
ξ̂(s)(i)− ξ̂(·)(i)

)
× (
ξ̂(s)(j)−ξ̂(·)(j)

)
. (14)

The fact that, considering Eq. (13), variance and
covariance estimates directly influence the final results
for the correlation lengths, gave the motivation for the
quite careful statistical treatment presented above.

3. Systems with toroidal cross section

Let us first consider the toroidal geometryT 2 × R

which in contrast toS2 × R is not conformally flat.
Simulations were done onLx ×Ly ×Lz lattices with
Lx = Ly and p-bc or a-bc in thex- andy-directions.
To be able to check for the most general universality
(iii) above we chose different parametersn of the
O(n) symmetry group of the Hamiltonian (3), thus
analyzing the Ising (n = 1), XY (n = 2), Heisenberg
(n = 3), and n = 10 models [9,10]. When fitting
the scaling behaviour (1) to the measured correlation
lengths we accounted for corrections to scaling by
using the ansatz

ξσ/ε(Lx)=Aσ/εLx +Bσ/εLκx , (15)

whereκ < 1 is an effective correction exponent. This
yields the scaling amplitudes listed in Table 1. In

Table 1
Correlation length amplitudes of the Ising, XY, Heisenberg, and
n= 10 models onT 2 × R

n Aσ Aε Aσ /Aε xε/xσ

1 p 0.8183(32) 0.2232(16) 3.666(30)
2.7264(13)

a 0.23694(80) 0.08661(31) 2.736(13)

2 p 0.75409(59) 0.1899(15) 3.971(32)
2.9136(38)

a 0.24113(57) 0.0823(13) 2.930(47)

3 p 0.72068(34) 0.16966(36) 4.2478(92)
3.0891(79)

a 0.24462(51) 0.0793(20) 3.085(78)

10 p 0.671107(59) 0.1350(23) 4.971(83)
3.615(70)

a 0.25865(46) 0.0710(11) 3.645(55)

all cases we obtain excellent agreement ofAσ/Aε
with xε/xσ in the case of a-bc systems and a clear
overshooting for p-bc which, however, is remarkably
well described by an empirical factor of 4/3 [10]. For
the a-bc systems this underscores type (ii) universality
of the scaling relation.

It is of further interest to study the behaviour of the
operator-independent “meta”-amplitudeA= xσAσ =
xεAε , which is inaccessible for the transfer matrix ap-
proach since the corresponding quantum Hamiltonian
is only defined up to an overall normalization. Using
our estimates forAσ andxσ = 0.5182(4), 0.5188(9),
0.5160(17), and 0.512(12) for the Ising, XY, Heisen-
berg, andn = 10 model, respectively, we arrive at
the data plotted in Fig. 1(a). We see that the univer-
sality of the type (iii) is clearly lost for theT 2 × R

systems. Notice that the amplitudeA ≈ 0.13624 [11]
for the spherical model fits well into the variation en-
countered for finiten. Plotting the amplitude ratios
Aσ/Aε , on the other hand, shows the expected be-
haviour for finiten, but a jump between the eye-ball
extrapolation forn→ ∞ and the spherical model re-
sultAσ/Aε = 2, cf. Fig. 1(b). In view of Fig. 1(a) the
jump must be entirely due to the variation of the en-
ergy amplitudeAε . In fact, while a direct calculation
within the spherical model givesxε = 1 and hence a
ratio of xε/xσ = 2 (usingxσ = 1/2) [11], the scaling
relationxε = (1 − α)/ν with ν = 1 andα = −1 sug-
gestsxε/xσ = 4 [10,12], coinciding with then→ ∞
extrapolation.
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Fig. 1. (a) AmplitudesA of the relationξ = Ax−1L versus the
inverse dimension of the order parameter 1/n. (b) Ratio of the
scaling amplitudesAσ andAε .

4. Systems with spherical cross section

Let us now turn to the 3D geometryS2 × R.
Because the Platonic solids as triangulations of the
sphere contain only up to 20 points, one has to switch
to slightly irregular discretizations of the sphere. The
model lattice that suggests itself in the first place
is a square mesh on a cube [13], which we call
lattice (C). Its main anomaly consists in the defective
coordination numbers of the corner points and the
concentration of the curvature of the lattice around
the cube edges. The former could be amended by the
insertion of triangles in place of the cube corners,
while a smearing out of the spherical curvature can
be accomplished by projecting the cube on the sphere,
resulting in geometry (S). As found in [13] for
bulk quantities, however, differences in the scaling
behaviour between lattices (C) and (S) are quite

Fig. 2. (a) FSS plot for the spin correlation lengthξσ (R). (b) Sca-
ling of the amplitudesξσ /R. The horizontal line indicates the
conjectured amplitude.

small. Furthermore, there is evidence to believe that
ratios of correlation lengths of primary operators
are universal [4,10,14], so that we can expect good
agreement regardless of the specific lattice used if
Cardy’s conjecture Eq. (2) holds. Here we concentrate
on the cube discretization (C) of the sphere, which
consists of sixLx × Lx square lattices [15]. For
the approximate sphere discretizations there is some
ambiguity in the definition of the radiusR of the
sphere a given cube lattice with edge lengthsLx
should correspond to. Defining the sphere radius
throughR = √

S/4π , the lattice surfaceS could be
defined by counting the number of sites, bond pairs or
elementary squares, leading to areas

S =
{

6Lx(Lx − 2)+ 8 “sites”,

6Lx(Lx − 2)+ 6 “bonds”, “squares”,
(16)
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and thus generating two different sorts of pseudo-radii,
which only differ by the constant shift in Eq. (16), thus
leading to slightly different FSS approaches.

Traversing the above-described steps in the deter-
mination of correlation lengths one arrives at a FSS
sequence of estimatesξσ/ε for the Ising model as de-
picted in Fig. 2(a). Since Fig. 2(b) reveals that cor-
rections to scaling are resolvable, one again has to
use non-linear fits of the form (15) (withLx re-
placed byR). We thus arrive at final estimates for
the leading FSS amplitudes ofAσ = 1.996(20) and
Aε = 0.710(38), which agree quite well with the con-
jectured amplitudes ofAconj

σ = 1/xσ = 1.9301(19)
andAconj

ε = 1/xε = 0.70776(25). Consequently, com-
paring the measured amplituderatio of Aσ/Aε =
2.81(15) with the conjectured one ofxε/xσ =
2.7269(16) we find nice agreement as well. So, our
results imply that for theS2 × R-geometry the same
degree of universality as in 2D is obeyed. The fact that
the quite crude approximation (C) to the sphere gives
correct results even for the amplitudes, is quite strong
evidence for their universality. It would be interesting
to test this universality with even more distorted dis-
cretizations like the “pillow” geometry of Ref. [13]
and to check whether it also holds for other univer-
sality classes.

5. Conclusions

Using large-scale cluster MC simulations com-
bined with high-precision analyses tools, we exam-
ined two possible extensions to 3D geometries of a
prominent scaling law involving the amplitudes that
can be proven analytically in 2D. For the 3D geom-
etry S2 × R we find Cardy’s conjecture (2) to hold
for the Ising model, specializing on the operators pri-
mary in 2D. There is no reason to believe for this 3D
case in a deviation from the full degree of “hyper”-
universality found in 2D. Dropping the condition of
conformal flatness and thus losing any direct connec-

tion to CFT methods, the scaling law (1) neverthe-
less can be retained on the geometryT 2 × R when
changing the boundary conditions from the usual p-bc
case to a-bc, as explicitly checked for the Ising, XY,
Heisenberg, andn = 10 models. In contrast to the
2D case, however, the overall “meta”-amplitudeA is
model-dependent.
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