Computersimulationen in der statistischen Physik

Inhalt

- 1. Einführung zur klassischen Monte Carlo-Simulationen (~ 6 Doppelstunden)
 - Grundlagen der statistischen Mechanik
 - Theorie der Markov-Ketten
 - Einführung in die MC-Simulation: simple sampling, importance sampling
 - Autokorrelationen und Fehlerrechnung, Binning, Jackknife
 - Zufallszahlengeneratoren
 - Datenanalyse mit awk mit Übungen
- 2. Einführung zur klassischen Molekulardynamiksimulation (~ 4 Doppelstunden)
 - Integrationsmethoden für Differentialgleichungen
 - Verlet-Methode und varianten ("velocity verlet", "leap frog")
 - Methoden der Kraftberechnung, Implementationsdetails
 - symplektische Integratoren
- 3. Fortgeschrittene Methoden der MC-Simulation (~ 7 Doppelstunden)
 - Clusteralgorithmen und nicht-lokale Updates
 - MC-Simulationen von Polymeren
 - Simulationen in verschiedenen thermodynamischen Ensembles
 - multikanonische Simulationen und verallgemeinerte Ensembles
 - Replica Monte Carlo ("parallel tempering")
 - Ungeordnete Systeme
- 4. Fortgeschrittene Methoden der MD-Simulation (~ 4 Doppelstunden)
 - langreichweitige Wechselwirkungen
 - Brownsche Dynamik
 - Studium von Beispielsystemen
 - Anwendung von Simulationspaketen (VMD, NAMD, Gromacs, ...)
- 5. Weiterführende Themen (~ 4 –6 Doppelstunden)
 - Car-Parrinello-Simulationen (Thomas Kühne)
 - Optimierungsmethoden
 - Aktuelle Forschungsthemen
 - ... (your favorite topic) ...