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1 Introduction

The paradigm for studies of the effect of quenched, random disorder on uni-
versal properties of critical phenomena are uncorrelated, randomly distributed
couplings [1–4]. This includes ferromagnetic random-bond models as well as
the physically very different case of spin glasses, where competing interactions
complement disorder with frustration [2, 5–9]. For a continuous phase transi-
tion in the idealized pure system, the effect of random bonds has been convinc-
ingly shown by renormalization group analyses as well as numerical investiga-
tions to be able to induce a crossover to a new, disorder fixed point [3,10–14].
Using phenomenological scaling theory, Harris [6] argued that such a crossover
should not occur for systems with a specific-heat exponent α < 0. It is now
widely believed that also the converse is true, i.e., a crossover does occur for
systems with α > 0 [10, 11, 15]. In the marginal case α = 0, realized, e.g.,
by the Ising model in two dimensions, the regular critical behavior is merely
modified by logarithmic corrections [3]. Similarly, for systems exhibiting a
first-order phase transition in the regular case, the introduction of quenched
disorder coupling to the local energy density can weaken the transition to
second (or even higher) order [9]. While this scenario has been rigorously es-
tablished for the case of two dimensions and an arbitrarily small amount of
disorder [7,8,16], the situation for higher-dimensional systems is less clear. For
a variety of systems in three dimensions, however, sufficiently strong disorder
has been shown numerically [17–19] to be able to soften the transition to a
continuous one.

Spatial correlations of the disorder degrees of freedom lead to a modifica-
tion of the fluctuations present in “typical” patches of the random system with
respect to the behavior expected from the central limit theorem for indepen-
dent random variables, which is implicitly presupposed by Harris’ arguments.
Such correlations for a random-bond model have been considered occasion-
ally [20–23] and altered relevance criteria have been proposed [20,24]. Luck [24]
has considered a class of irregular systems not covered by the random-bond
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paradigm, namely that of quasi-crystalline or aperiodic structures, and formu-
lated a generalized relevance criterion. Although he did not consider systems
with connectivity disorder such as the random graph models to be considered
here, his reasoning should also apply to these cases, as will be shown below.

In Sect. 2, we define Poissonian Voronöı-Delaunay triangulations [25] and
the planar φ3 Feynman diagrams of the dynamical triangulations model [26],
and in Sect. 3 we elaborate on a formulation of Luck’s relevance criterion
appropriate for the considered random graphs and numerically determine the
wandering exponents. Section 4 is devoted to a report on results of a high-
precision Monte Carlo simulation study of the three-states Potts model on
planar, Poissonian Voronöı lattices. Finally, Sect. 5 contains our conclusions.

2 Correlated Random Graph Models

In the following, we present two examples of classes of random graphs ex-
hibiting spatial correlations of the co-ordination number distributions, which
are the disorder degrees of freedom for these lattices. In this respect, these
graphs are different from “generic” random graph models [27], where bonds
are distributed completely at random between a given number of nodes, such
producing uncorrelated connectivity disorder.

2.1 Poissonian Voronöı-Delaunay Graphs

The planar Voronöı-Delaunay construction [25] prescribes a segmentation of
a patch of the plane into convex polygons compatible with a given set of
point positions (generators). The Voronöı cell of a generator is defined as
the region of the plane, which is closer to it than to any other generator.
The three-valent vertices where these cells meet and the cell edges make up
the Voronöı graph associated with the generators. Accordingly, the structure
geometrically dual to the Voronöı graph is the Delaunay triangulation of the
considered patch of the plane. For regularly placed generators one recovers
the Wigner-Seitz elementary cells of regular lattices. If the generators are
chosen at random, the resulting Voronöı-Delaunay graph is referred to as
Poissonian random lattice since the generators can be considered as realization
of a Poisson point process [25, 28]. To eliminate surface effects, the Voronöı-
Delaunay construction is here applied to generators distributed at random on
a sphere; for an illustration see Fig. 1 resp. Fig. ??.

In what follows we shall focus on the variation of co-ordination numbers
qi of the triangulation resp. loop lengths of the dual graph, i.e., we consider
connectivity disorder as the only effect of randomness, neglecting the fact of
differing edge lengths. From the Euler relations, the average co-ordination
number is a topological invariant for a fixed number N of triangles in two
dimensions, given for spherical topology by [26]
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Fig. 1. Snapshots of random Poissonian Delaunay triangulations (left) and dy-
namical triangulations (right) of spherical topology with N = 5000 triangles. The
Voronöı resp. φ3 graphs considered numerically are the geometric duals of the shown
structures.

q̄ =
1

N

∑

i

qi = 6
N

N + 4

N→∞
−→ 6. (1)

The variance of co-ordination numbers can be shown numerically to ap-
proach [25, 29] µ2 ≡ 〈q2

i 〉 − 〈qi〉
2 ≈ 1.781, as N → ∞. It turns out that

the random variables qi are not independently distributed, but are reflect-
ing a spatial correlation of the disorder degrees of freedom in addition to the
trivial correlation induced by the constraint (1). For nearest-neighbor vertices
these correlations are approximately described by the Aboav-Weaire law [25],

q m(q) = (6 − a)q + b, (2)

where q m(q) is the number of edges of the neighbors of a q-sided cell, and a
and b are some parameters [28].

2.2 Dynamical Triangulation Graphs

A different ensemble of random graphs is known from the dynamically tri-

angulated random surface (DTRS) model used as a constructive approach to
quantum gravity [26], where all possible gluings of N equilateral triangles to
the surface of a sphere are counted with equal probability. Independent re-
alizations of this graph ensemble can be generated by a recursive insertion
method proposed in Ref. [30], for an example see Fig. 1 resp. Fig. ??. The
dual graphs are planar, “fat” (i.e., orientable) φ3 Feynman diagrams without
tadpoles and self-energy insertions, which can be counted analytically by ma-
trix model methods [26,31]. Fluctuations are much more pronounced in these
structures than in the Poissonian random graphs. In fact, it can be shown that
the asymptotic variance of co-ordination numbers is exactly µ2 = 10.5 [32],
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Fig. 2. Comparison of the co-ordination number distributions P (q) of Poissonian
Delaunay triangulations and dynamical triangulations in the limit N → ∞.

whereas Eq. (1) still holds. Comparing the distributions of co-ordination num-
bers [29, 31, 33] shown in Fig. 2, it is seen that for the DTRS model large
co-ordination numbers are much more probable than for Poissonian random
graphs. In fact, the DTRS ensemble can be described as that of (statistically)
self-similar, fractal trees of “baby universes” [34] which branch off from the
main surface at vertices with large co-ordination number. The “baby universe”
structure is reflected in an exceptionally large internal Hausdorff dimension
of dh = 4 [35, 36] as compared to the dimension dh = 2 of Poissonian ran-
dom graphs. As will be shown below, dynamical triangulations graphs also
exhibit spatial correlations between the co-ordination numbers, which are in
fact much stronger than those found for Poissonian random lattices.

3 The Harris-Luck Criterion and Wandering Exponents

The relevance of randomness coupling to the local energy density crucially
depends on how fast fluctuations of the local transition temperature induced
by fluctuations of the random variables in a correlation volume die out as
the critical point is approached. For independent random variables, this decay
occurs with an exponent of d/2 in d dimensions. The comparison of this power
with the inverse correlation length exponent 1/ν leads to Harris’ celebrated
relevance criterion [6, 37].

Following Luck [24], this reasoning can be extended to the correlated ran-
dom variables present in the random graph models under consideration as
follows. Consider a spherical patch P of radius R on a triangulation, contain-
ing B(R) vertices. All distances on graphs are to be understood as the number
of links in the unique shortest path of links connecting two vertices. Then,
the fluctuations of the average co-ordination number in P ,
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J(R) ≡
1

B(R)

∑

i∈P

qi, (3)

around its expected value J0 = q̄ [cf. Eq. (1)] in general decay in the limit
R → ∞ of large patches as

σR(J) ≡ 〈|J(R) − J0|〉/J0 ∼ 〈B(R)〉−(1−ω) ∼ R−dh(1−ω), (4)

defining the wandering exponent ω of the considered graph type. Here, the av-
erages 〈·〉 are to be understood as the ensemble averages of the considered class
of graphs of a given total size. While for ω = 1/2 the usual 1/

√

〈B(R)〉 be-
havior of uncorrelated random variables is recovered, for random lattices with
long-range correlations of the co-ordination numbers one expects ω > 1/2,
leading to a slowed-down decay of fluctuations. Near criticality, the fluctua-
tion σξ(J) of the average co-ordination number in a correlation volume induces

a local shift of the transition temperature proportional to |t|dhν(1−ω)µ
1/2
2 . For

the regular critical behavior to persist, these fluctuations should die out as
the critical point t = 0 is approached. This is the case when ω does not exceed
the threshold value

ωc(ν) = 1 −
1

dhν
=

1 − α

2 − α
, (5)

provided that hyper-scaling is applicable. On the other hand, for ω > ωc(ν) a
new type of critical behavior could occur. Re-writing Eq. (5) as

αc =
1 − 2ω

1 − ω
, (6)

it is obvious that for ω = 1/2 the Harris criterion is recovered.
Since for graphs with sufficiently long-range correlations of the co-ordina-

tion numbers ω > 1/2, this type of disorder is more relevant than uncorrelated
randomness in the sense that a change of universality class can already be ex-
pected for some range of negative values of α, cf. Eq. (6). On the other hand,
if correlations decay exponentially, the Harris criterion should stay in effect.

In Ref. [38] we determined the wandering exponent ω numerically by sam-
pling the fluctuations defined in Eq. (4) for a series of graph realizations of
the considered ensembles. For both ensembles, an average is taken over 100
different graph realizations. To determine the volume B(R) and the average
co-ordination number J(R), a vertex of the triangulation is picked at random
and the graph is subsequently decomposed into spherical shells of radius R.

The resulting final averaged fluctuations for Poissonian Delaunay triangu-
lations and dynamical triangulations with N = 500 000 triangles are shown
in Fig. 3. Note that the range of accessible distances R for a given number of
triangles N is much smaller for the case of dynamical triangulations due to
the large fractal dimension dh = 4. According to Eq. (4) these plots should
show an approximately linear behavior in a logarithmic presentation for large
distances R, the slope of the line being given by 1 − ω. For an intermediate
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Fig. 3. Numerical estimate of the scaling of the average fluctuation of co-ordination
numbers of triangulations of volume N = 500 000 for the two considered ensembles
and a fit to the expected functional form (4).

range of volumes B(R) and, consequently, distances R, these expectations
are met for both graph types. For 1/B(R) − 2/(N + 4) small, however, this
behavior is superimposed by an exponential decline of fluctuations, reflecting
the topological constraint (1). Hence, taking discretization effects for small
R into account, only a rather small window of distances can be used for a
reliable determination of the wandering exponent via a fit to the functional
form (4). This is done by successively dropping events from either side of the
range of R’s while monitoring the quality-of-fit parameter1 Q. Taking these
considerations into account, our estimates for the wandering exponent from
the largest graphs with N = 500 000 triangles are

ω = 0.50096(55), R = 21, . . . , 41, Delaunay triangulations, (7)

ω = 0.72492(86), R = 5, . . . , 14, dynamical triangulations. (8)

The error estimates are calculated by jackknifing over the whole fitting pro-
cedure, such as to avoid any bias caused by cross-correlations of the J(R)
for different R. Due to the large fractal dimension of the dynamical triangu-
lations graphs, we expect systematic finite-size corrections to be much more
pronounced there. We have therefore repeated above analysis for different
graph sizes ranging from N = 1000 to 500 000 and fitted the resulting expo-
nents ω(N) to the finite-size scaling (FSS) ansatz

ω(N) = ω∞ + AN−θ, (9)

where θ is an a priori unknown correction exponent. A fit of this form to the
data yields [38]

1Due to the correlations between values of J(R) for different distances R, the
absolute values of Q are not immediately meaningful; relative changes, however, are.
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ω∞ = 0.7473(98), dynamical triangulations, (10)

with A = −0.73(37) and θ = 0.264(70).
The result for Voronöı-Delaunay graphs is well consistent with ω = 1/2

which would result from correlations decaying with a power larger than d = 2
(see also Ref. [20]). A direct inspection of the correlation function of co-ordi-
nation numbers indicates an even exponential decay [38]. Thus, the relevance
criterion (6) reduces to the Harris criterion; Voronöı-Delaunay connectivity
disorder should be a relevant perturbation for models with specific-heat expo-
nent α > 0. For the dynamical triangulations, on the other hand, the co-ordi-
nation number correlations are found to be algebraic (which is consistent with
a direct analysis of the correlation function [38]). Our FSS extrapolated esti-
mate for the wandering exponent in (10) suggests that ω = 3/4 in this case.
The criterion (6) then implies a relevance threshold of αc = −2, i.e., that
these graphs should alter the critical behavior of all known ordered models.

4 The Potts Model on Voronöı Graphs

For q = 3, 4 Potts models with α = 1/3, 2/3, the relevance criterion (6)
with the found values of ω predicts a change of critical behavior for both
random graph types. For the Ising model with α = 0, on the other hand, only
dynamical triangulations should be a relevant perturbation, whereas Voronöı-
Delaunay graphs should at most induce logarithmic corrections.

Indeed, simulations of the q = 2, 3, 4 Potts models coupled to dynami-
cal triangulations provide good evidence for a cross-over to new universality
classes [39]. Furthermore, the exact solution of the percolation model, which
has α = −2/3 and corresponds to the limit q → 1 of the Potts model,
on dynamical triangulations, also shows a shift to a different universality
class [40, 41]. And the first-order case q = 10 appears to get softened to a
continuous transition [42]. For two-dimensional Delaunay triangulations, on
the other hand, simulations of the Ising model yield Onsager exponents; the
presence of possible logarithmic corrections could not be detected [43]. For the
q = 3 Potts model in two dimensions only an exploratory study with rather
small graphs is available, which does not show a change of critical behavior
as compared to regular lattices [44].

We have therefore performed high-precision Monte Carlo simulations of
the q = 3 Potts model with Hamiltonian

H = −J
∑

〈i,j〉

δsisj
, (11)

where si ∈ {1, 2, 3} and the sum runs over all nearest-neighbor pairs of ver-
tices of a Voronöı graph, which we consider as a topological object, with equal
distances set to unity between any two nearest-neighbor vertices. All simula-
tions are performed using the Swendsen-Wang (SW) cluster algorithm [45].
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Fig. 4. FSS of the maxima of d ln m/dK, d ln m2/dK, and dU/dK of the q = 3
Potts model on Voronöı graphs. The solid lines show fits to the FSS ansatz (12).

The disorder averages are performed on the level of the free energy and its
derivatives using 100 different realizations of Voronöı graphs. As these real-
izations are completely independent, the simulations can be done in parallel.
The sufficiency of this number of copies was checked by performing the same
analyses with only half the number of graphs. For the FSS analysis, we consid-
ered graphs of sizes N/1000 = 1, 5, 10, 20, 40, 60, and 80. For each copy, after
thermalization 50 000 measurements were taken, yielding a total statistics of
5×106 events per lattice size. By estimating integrated autocorrelation times,
we checked that it only takes a few SW updates for all considered graph sizes
to create an effectively uncorrelated new configuration. To compute the vari-
ous considered quantities as continuous functions of the coupling K = βJ , we
make use of the reweighting technique [46].

To determine the transition point and the critical exponents of the model,
we applied a well tried sequence of FSS analyses, see, e.g., Refs. [39, 47].
First, to determine the correlation length exponent ν, we make use of the
fact that the logarithmic derivatives of the order parameter2 m as well as the
derivative of the Binder cumulant U = 1 − 〈m4〉/3〈m2〉2 at their respective
maxima should scale asymptotically as

Amax(N) ∼ aN1/2ν , (12)

where we restrict ourselves to A = d lnm/dK, d lnm2/dK, and dU/dK. Fig-
ure 4 shows the results of the scaling analysis together with fits to the func-
tional form (12). To account for the visible effects of scaling corrections, we in-
clude only results for N ≥ 20 000. These fits yield ν = 0.8328(26), 0.8340(26),

2To break symmetry explicitly, we use the maximum definition of m, see, e.g.
Ref. [49].
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and 0.8342(46) for A = d lnm/dK, d lnm2/dK, and dU/dK, respectively,
resulting in a weighted average of

ν = 0.8335(26), (13)

in excellent agreement with the regular lattice value of ν = 5/6 = 0.8333̄.
With this estimate of ν, the transition point can be found from the peak
positions of various observables,

K(Amax, N) ∼ Kc + aN−1/2ν , (14)

with A one of cV , dm/dK, d lnm/dK, d lnm2/dK, dU/dK, or χ, where
cV = K2N [〈e2〉 − 〈e〉2] and χ = N [〈m2〉 − 〈m〉2], and e denotes the internal
energy per site. An error weighted average of these independent estimates
gives Kc = 1.524 876(21), where the error does not take into account the
uncertainty in ν. This value should be compared with Kc ≈ 1.484 21 for the
(regular) honeycomb lattice [48].

Further critical exponents are determined independently from the FSS
relations,

cV,max(N) ∼ Nα/2ν , minf(N) ∼ N−β/2ν , and χmax(N) ∼ Nγ/2ν , (15)

where minf denotes the magnetization at its point of inflection. From the fits
we obtained the values

α/2ν = 0.2201(27), β/2ν = 0.0617(14), and γ/2ν = 0.8718(12), (16)

which are again close to the regular lattice values of α/2ν = 1/5 = 0.2,
β/2ν = 1/15 = 0.0666̄, and γ/2ν = 13/15 = 0.8666̄.

5 Conclusions

Adapting Luck’s formulation [24] for quasi-periodic lattices to the case of
random graphs, we have analyzed the applicability of this relevance condition
to connectivity disorder. For dynamical triangulations we obtained a large
wandering exponent compatible with ω = 3/4, indicating that they should
form a relevant perturbation for all models with α > αc = −2, which is in
accord with previous explicit results for the q-states Potts model. For Poisso-
nian Voronöı-Delaunay graphs, on the other hand, correlations between the
co-ordination numbers seem to decay exponentially, such that the adapted
relevance criterion reduces to Harris’ threshold of αc = 0.

For the q = 3 Potts model with α = 1/3, connectivity disorder from
Poissonian random lattices should be relevant. The FSS analysis presented
above yields, however, a thermal scaling exponent in very good agreement
with that for the regular lattice model. Whether the small, but significant
difference of the magnetic exponents indicates the onset of a crossover to a
new universality class or is merely an effect of neglected corrections to scaling,
has to be checked by a more careful scaling analysis including corrections,
possibly augmented by simulations for even larger lattices.
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