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It is shown that a recently proposed cluster-update Monte Carlo update for the general Z(q)
symmetric class of models [A. Benyoussef et al., Phys. Rev. B 67, 094415 (2003)] is in general not
a valid Monte Carlo algorithm. As soon as coupling terms differing from that of the planar clock
model are introduced, the proposed algorithm violates detailed balance. Independent of the choice
of couplings the update is seen to be non-ergodic for models with an even number of states q. The
latter deficiency can be easily amended and it is shown that the resulting algorithm for the case
of the planar clock model with arbitrary number of states q is just a special case of the embedded
cluster algorithm for the XY model introduced by Wolff.

PACS numbers: 05.10.Ln, 75.10.Hk, 75.40.Mg

In Ref. 1, Benyoussef, Loulidi and Rachadi (henceforth
denoted as BLR) present a cluster-update Monte Carlo
algorithm for general, nearest-neighbor Z(q) symmetric
models with Hamiltonian

H = −
∑

〈i,j〉

⌊q/2⌋
∑

m=1

Jm cos

[

2π

q
m(ki − kj)

]

, (1)

where the state variables ki ∈ {0, . . . , q − 1}. The m = 1
term in Eq. (1) corresponds to the Hamiltonian of the
planar clock model, to which the Z(q) class reduces for
Jm = 0, m ≥ 2. In constructing their algorithm, they
build upon the idea of embedding Ising spins into state
variables of higher symmetry originally introduced by
Wolff to formulate a cluster update algorithm for the
O(n) spin models2. These effective Ising variables can
then be updated according to the cluster algorithm of
Swendsen and Wang3 (or its single-cluster variant due to
Wolff2). An application of the same idea has been used
to formulate a cluster update for the antiferromagnetic
standard Potts model4.

BLR’s ansatz for constructing a cluster algorithm pro-
ceeds by splitting the Hamiltonian (1) with respect to
one state n ∈ {0, . . . , q − 1} according to the iden-
tity cos(a − b) = cos a cos b + sin a sin b in two parts,
H = H1(n) + H2(n), where

H1(n) = −
∑

〈i,j〉

⌊q/2⌋
∑

m=1

Jm cos[δ(mki − n)] cos[δ(mkj − n)],

(2)
and

H2(n) = −
∑

〈i,j〉

⌊q/2⌋
∑

m=1

Jm sin[δ(mki − n)] sin[δ(mkj − n)],

(3)
with δ = 2π/q. Defining effective Ising variables (i.e.,
signs) as

ǫi(n) = sign{sin[δ(ki − n)]}, (4)

they recast H2(n) in an Ising language as

H2(n) = −
∑

〈i,j〉

J̃ij(n)ǫi(n)ǫj(n), (5)

with effective couplings J̃ij(n) = Aij(n) + Bij(n), where

Aij(n) = J1| sin[δ(ki − n)] sin[δ(kj − n)]|,

Bij(n) =

⌊q/2⌋
∑

m=2

Jm
sin[δ(mki − n)] sin[δ(mkj − n)]

ǫi(n)ǫj(n)
.

(6)
Obviously, a similar transformation could be performed
with the part H1(n) instead. The cluster update should
now proceed in the usual way, setting bonds between
spins whose “Ising part” of the energy is negative, i.e.,
for which

− J̃ij(n)ǫi(n)ǫj(n) < 0, (7)

according to the probability

pij(n) = 1 − exp(−2β|J̃ij(n)|), (8)

where β denotes inverse temperature. The spins in the re-
sulting clusters are probabilistically flipped with respect
to their signs ǫi(n), which amounts to the operation

ki → (−ki + 2n + q)mod q. (9)

The validity of this procedure rests on a couple of
assumptions. First, the disregarded part H1(n) of the
Hamiltonian has to be invariant under the transforma-
tion (9) applied. It is apparent from inspection that this
is only the case for the term with m = 1, whereas for
m ≥ 2 the cosines are not even under the transforma-
tion (9). Hence, the embedding of the Ising variables
is incomplete and the algorithm will not work for the
general case of terms with m ≥ 2 included in (1). Dis-
regarding this shortcoming for a moment, as a second
condition the Hamiltonian (5) has to be that of an effec-
tive Ising model with variables ǫi(n). This, however, is in
the general case m ≥ 2 also not fulfilled, since the effec-
tive couplings J̃ij(n) depend on the configuration of the
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(a) q = 5, J1 = −1, J2 = 1
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(b) q = 5, J1 = −1, J2 = 0
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(c) q = 4, J1 = −1, J2 = 0
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FIG. 1: Measured specific heat for the anti-ferromagnetic
Z(q) model with different parameters and algorithms for a
162 system with periodic boundary conditions. (a) The q = 5
model with coupling term J2 6= 0. The BLR cluster algo-
rithm violates detailed balance. (b) For the q = 5 model with
J2 = 0, i.e., a clock model, detailed balance is satisfied. (c)
For even q such as q = 4 the BLR cluster algorithm (“cl.”) is
non-ergodic for integer choices n = 0, 1, 2, . . . in Eq. (9). The
inclusion of half-integer n = 0, 1/2, 3/2, . . . restores ergodicity.
All error bars are evaluated by jackknifing5.

Ising-type variables ǫi(n) via the denominators of Bij(n)
in Eq. (6). Thus, a flip of one of the Ising spins connected

by the coupling J̃ij(n) changes this effective coupling,
such that the resulting effective model cannot be consid-
ered as an Ising model in the usual sense. Especially, the

bond energy −J̃ij(n)ǫi(n)ǫj(n) is in general not antisym-
metric with respect to a flip of one of the spins ǫi(n) or
ǫj(n), which is assumed in constructing the bond-setting
probability of Eqs. (7) and (8). As a consequence, the
proposed algorithm does not satisfy detailed balance in
the enlarged space of spin and graph (i.e., bond) vari-
ables (cf. the general treatment of cluster algorithms in
Refs. 6). To be specific, consider the energy cost of break-
ing a single bond. According to the construction of the
Swendsen-Wang cluster algorithm for the Ising model3,
this should appear in the exponential of the bond setting
probability (8), i.e., it should equal

∆Eij(n) = 2|J̃ij(n)|. (10)

However, according to the Hamiltonian (5) with the cou-
plings from (6) it is given by

∆Eij(n) = −J̃ ′
ij(n)ǫ′i(n)ǫj(n) + J̃ij(n)ǫi(n)ǫj(n)

= 2[J̃ij(n) − Bij(n)]ǫiǫj , (11)

where the primed variables correspond to the flipped spin
ǫ′i(n) = −ǫi(n). Obviously, Eq. (10) is in contradiction
with Eq. (11) unless Bij(n) ≡ 0. Hence, the algorithm
presented by BLR is not valid unless one restricts the
Hamiltonian (1) to that of the planar clock model with
m = 1. This is demonstrated in Fig. 1. Figure 1(a)
shows a temperature scan of the specific heat for the
q = 5 model with J1 = −1 and J2 = 1, i.e., with non-
vanishing couplings Bij(n) in Eq. (6), for a 162 square
lattice with periodic boundary conditions7. The devi-
ation of the BLR cluster result from the outcome of a
local Metropolis update is apparent8. In Fig. 1(b) the
outcome of a similar simulation for couplings J1 = −1
and J2 = 0, i.e., for an antiferromagnetic clock model, is
depicted, showing that for this case the problem of de-
tailed balance violation does not occur since Bij(n) ≡ 0.

A third assumption for the formulation of the cluster
algorithm of BLR to be valid is that the transformations
of the spins defined by Eq. (9) are ergodic in the sense
that any state 0, . . . , q − 1 can be generated out of any
other state by a series of such “flips”. An inspection of
the prescription (9) shows that it amounts to a reflection
of the spins σi = (cos[δki], sin[δki])

T at the line defined
by the vector n = (cos[δn], sin[δn])T, cf. Fig. 2. From
this picture it is also obvious that BLR’s prescription
to disregard spins of value n completely in the process
of building clusters is not strictly necessary since these
spins are anyway an invariant of the transformation (9)
and a bond involving such a spin is never set due to the
condition (7). From Fig. 2 it is easy to convince oneself
that for an odd number of states q any two states are con-
nected to each other by a series of flips with respect to
different axes n ∈ {0, 1, . . . , q − 1}. For q even, however,
such flips never transform a spin with an odd label k to a
spin with an even label and vice versa, such that the pro-
posed dynamics is not ergodic. An ergodic set of moves
can be constructed noting that for the transformation (9)
to yield a valid new state ki it is only necessary for 2n to
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FIG. 2: Possible transitions between clock model states by
reflections along an axis n. For an odd number of states q
(left) the set of directions n parallel to the states generate
an ergodic update. For q even (right), the transitions with n
parallel to one of the states do not mix states with odd and
even labels. Including the intermediate axes n′ as reflection
lines restores ergodicity.

be an integer, while n can be half-integer without prob-
lem. This amounts to using a reflection axis intermediate
between two states as depicted by n′ in the right panel
of Fig. 2. As is easily seen, this enlargement of possible
moves restores ergodicity for even choices of q. This is
demonstrated in Fig. 1(c), where the BLR cluster algo-
rithm for the q = 4 model with J1 = −1, J2 = 0 and
n ∈ {0, . . . , q − 1} is compared to a Metropolis update
and a corrected version of the algorithm using directions
n ∈ {0, 1/2, 1, . . . , q − 1/2}. Note that due to the non-
mixing of even and odd labels of the original BLR algo-
rithm and a start in the “all spins up” configuration, the
corresponding simulation data depicted in Fig. 1(c) ac-
tually coincides with data of an anti-ferromagnetic Ising
model on the square lattice9.

Finally, I would like to point out that the BLR cluster
algorithm, for the case Jm = 0, m ≥ 2, i.e., the clock
model, where it is applicable and with corrected choices
n ∈ {0, 1/2, 1, . . . , q − 1} for even values of q, is identi-
cal to the natural restriction of Wolff’s embedded cluster
algorithm for the XY model2 to discrete values of the
spins. Writing Eq. (1) for Jm = 0, m ≥ 2 as an XY
model with restricted values of the spins,

H = −
∑

〈i,j〉

J1σi · σj , (12)

Wolff’s algorithm introduces a (random) projection vec-
tor r, with respect to which (12) can be written as effec-
tive Ising model with variables ǫi,

H = −
∑

〈i,j〉

Ĵijǫiǫj + const, (13)

where the effective couplings are given by

Ĵij = J1|σi · r||σj · r|, (14)

and the “const” part in Eq. (13) refers to the terms con-
taining the spin components perpendicular to r, which
are invariant under flips of the Ising spins ǫi. Now,
to accommodate for the discreteness of the spins σi =
(cos[δki], sin[δki])

T for the clock model as compared to
the XY model, the projection vectors r have to be re-
stricted to values compatible with the discrete spins,

r = (cos[δn + π/2], sin[δn + π/2])T, 2n ∈ N, (15)

where the additional shifts of π/2 result from the fact
that the lines of reflection are perpendicular to the vec-
tors r. Then, Eq. (14) becomes

Ĵij = J1| sin[δ(ki − n)] sin[δ(kj − n)]|, (16)

which is identical to the expression (6) for the part Aij(n)
of the couplings for BLR’s formulation.

In summary, BLR’s cluster algorithm is not applicable
to the general Z(q) symmetric model due to a violation
of detailed balance. To ensure ergodicity for even values
of q, the choice of reflection vectors has to be enlarged.
In the case where this corrected algorithm is applicable,
namely the planar clock model, it is a simple restriction
of Wolff’s algorithm for the XY model to the case of
discrete spins.
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