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1. Introduction

Field theoretical formulations of Einstein gravity are known to be perturbatively
non-renormalizable. Over the past decades, this has prompted active research into
several constructive approaches to non-perturbative quantization prescriptions [1].
Among them Regge calculus [2] and the dynamical triangulations model in its Eu-
clidean [3] and more recently Lorentzian [4] versions have been extensively studied
over the last 20 years. The basic idea of both approaches is the same as in Feynman’s
formulation of quantum mechanics in terms of path integrals [5]. While in quantum
mechanics one sums over all paths a particle can take from a point x0 at time t0 to
a point x1 at time t1 to compute the corresponding probability amplitude, in the
gravity context one describes the quantum fluctuations of space-time by perform-
ing a functional integral over an ensemble of discrete, simplicial manifolds [6]. In
Regge calculus [2] the connectivities of the discretised piecewise linear manifolds are
fixed and the edge lengths are the dynamical degrees of freedom. In the dynamical
triangulations model, on the other hand, the situation is reversed: here the edge
lengths are kept fixed, but now the connectivities are allowed to vary dynamically
from vertex to vertex [6]. This latter case allows for exact solutions.

From the viewpoint of any additional spin models coupled to the triangulations,
the fluctuating manifolds act as a special kind of annealed disorder. By freezing in
randomly selected manifolds and thus turning off the back-reaction of the matter
fields, this class of systems leads quite naturally to the problem of spin models sub-
ject to quenched geometric disorder. In the Regge case with varying edge lengths,
this corresponds to a specific type of quenched random-bond disorder. For the dy-
namical triangulations model, on the other hand, quenched connectivity disorder can
be studied in this way. Based on the exact solutions for the annealed case, theoretical
conjectures have also been made for the quenched situation. The complementarity
of analytical and numerical methods is one of the main merits of the dynamical
triangulations approach.

After a brief introduction to the two formulations of two-dimensional Euclidean
quantum gravity, this paper will focus on the statistical physics interpretation of
spin and vertex models coupled to fluctuating or quenched quantum gravity graphs.
Both analytical and numerical results will be discussed and compared with each
other.

2. Two-dimensional Euclidean quantum gravity

2.1. Regge calculus

The Regge formulation of quantum gravity [2, 7] stays relatively close to the
continuum formulation, which for instance for two-dimensional (2D) Euclidean R2-
gravity would be defined through the partition function

Z(A) =

∫

Dµ(g)e−SGδ(

∫

d2x
√

g − A) , (1)
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with the gravitational action taken as

SG =

∫

d2x
√

g(λ + κR +
a

4
R2) , (2)

where λ is the cosmological constant, g is the metric tensor and R the scalar cur-
vature. The functional integral measure Dµ(g) controlling the fluctuations of the
manifolds described by the metric tensor g is usually taken as the DeWitt mea-
sure [8]. This formally implements the basic idea for going from the classical to the
quantum world à la Feynman: Instead of finding a classical solution by optimising
the action by the variational principle, one integrates over all possible manifolds
parametrised by the metric tensor g, in close analogy to the sum-over-paths pre-
scription in ordinary particle quantum mechanics.

To render Z(A) in (1) computable in practise, some discretisation is necessary.
Regge’s discretisation program [2] consists of replacing a given continuum manifold
by piecewise linear manifolds, whose internal geometry is flat. This procedure works
for any space-time dimension and for metrics of arbitrary signature. Originally it
was applied as a computational tool to the classical optimisation problem. Here we
restrict ourselves in the quantum context to the simplest case of two dimensions and
Euclidean signature. Typically (but not necessarily) one considers piecewise linear
manifolds with fixed connectivities. The dynamic degrees of freedom are then the
edge lengths of the simplicial discretisation.

In two dimensions this procedure is most easily visualised by choosing a tri-
angulation of the surface under consideration, where each triangle then represents
a building block of the piecewise linear manifold. The net of triangles is itself a
two-geometry, with singular (non-differentiable) points located at the vertices of
the net, where several triangles meet. A vector that is linearly transported around
these vertices experiences in the presence of curvature a rotation by the deficit angle
δi = 2π−

∑

t⊃i θi(t), where θi(t) is the dihedral angle at vertex i. For the area assign-
ment one usually uses a barycentric decomposition, where Ai =

∑

t⊃i At/3 denotes
the barycentric area with At being the area of a triangle t. In order to derive the
transcription from the continuum to the discretised formulation, one identifies the
following continuum quantities with their discrete counterparts [9, 10]:

∫

d2x
√

g(x) −→
∑

i

Ai , (3)

∫

d2x
√

g(x)R(x) −→ 2
∑

i

δi , (4)

∫

d2x
√

g(x)R2(x) −→ 4
∑

i

δ2
i

Ai

. (5)

In two dimensions, the Einstein-Hilbert action
∫

d2x
√

g(x)R(x) is by the Gauss-
Bonnet theorem a topological invariant, which makes such a theory classically trivial
since there are no equations of motion. Regge [2] gave a beautiful proof of this theo-
rem in terms of the deficit angle. The sum over the deficit angles in two dimensions
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is proportional to the Euler characteristic, namely
∑

i δi = 4π(1 − g). The corre-
sponding term in the gravitational action can therefore be dropped. If one keeps the
area A fixed to its initial value, then, classically, dynamics can only arise from the
R2-interaction term. Such a term was used in three- and higher-dimensional studies
to cure the unboundedness problem of the gravitational action [11].

For triangulated surfaces the Euler relation reads

N0 − N1 + N2 = 2(1 − g) , (6)

where N0, N1, and N2 denote the number of sites, links and triangles, respectively.
For triangulations without boundary we also know that a link is shared by two
triangles, resulting in the relation N1/3 = N2/2. From these two relations one can
derive two more, namely N0 − 2(1 − g) = N2/2 and N0 − 2(1 − g) = N1/3, which
will become useful later.

For each triangle there is a one-to-one correspondence between the square of
the link lengths and the components of the metric. Denoting by gµν(i) the com-
ponents of the metric tensor for the ith triangle, and by qi+µ,i+ν , qi,i+µ, and qi,i+ν

the square of its three edge lengths, one can derive the following relation gµν(i) =
1
2
[qi,i+µ + qi,i+ν − qi+µ,i+ν ]. In classical Regge calculus one starts with the action

principle and derives the equations of motion, one for each link. The link lengths
have to be adjusted to satisfy those equations in order to be a classical solution. The
connectivity of the edges, in simplicial topology called the incidence matrix, is usu-
ally fixed from the beginning through the simplicial decomposition of the manifold
under consideration.

In quantum Regge calculus the technical aspects are similar, although the phi-
losophy is quite different. Here we want to evaluate the functional integral in Eq. (1)
by, e.g., Monte Carlo (MC) methods. In principle, the integral has to be extended
over all metrics of all possible topologies, but commonly one restricts oneself to a
specific topology, typically the sphere or the torus (the latter corresponding to pe-
riodic boundary conditions). The integral over the metric is replaced by an integral
over the square of the link lengths. An important ingredient in the functional-integral
method is the appropriate measure which is not even known in the continuum (this is
a dramatic difference to path-integral quantization of particle mechanics). The most
popular measure is DeWitt’s supermetric [8], a distance functional on the space of
metrics. It was used by Polyakov in his famous string solution [12]. Because in two
dimensions the measure is the primary source of the non-trivial dynamical content
of the theory, its correct transcription might be the key point for a proper formu-
lation. Nevertheless if the discretised DeWitt measure is still a local one, then one
might argue on the basis of universality that other local measures, in between some
reasonable bounds close to the DeWitt measure, will do as well. In fact, most simu-
lation studies reported in the literature employ a simplified scale-invariant, so-called
“computer” measure

Dµ(q) =





∏

〈ij〉

dqij

qij



Fǫ({qij}) , (7)
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where qij = l2ij . The function Fǫ({qij}) takes on the value one if the update proposals
for the link lengths do not violate the triangle inequalities, and it is zero otherwise.
The parameter ǫ serves to suppress very thin triangles by generalising the triangle
inequalities to a (still scale invariant) form (l1+l2) ≥ (1−ǫ)l3 and (l1−l2) ≤ (1+ǫ)l3,
which makes the algorithms somewhat faster.

Collecting the transcriptions from the continuum to the simplicial Regge ap-
proach, the lattice analogue to Eq. (1) is therefore given by

Z(A, N1) =





∏

〈ij〉

∫ ∞

0

dlij
lij



Fǫ({lij})e−
P

i(λAi+aR2
i )δ(

∑

i

Ai − A) , (8)

where the abbreviation R2
i = δ2

i /Ai was used.
If “matter fields” are represented in a bold simplification by Ising spins σi = ±1,

their energy and coupling to the geometry is usually modelled by

E(l, s) =
1

2

∑

edges lij

Aij(
σi − σj

lij
)2 , (9)

where the spins σi are located at the vertices i of the lattice. Here the volume Aij

associated with a link lij is defined as

Aij =
∑

triangles t ⊃ lij

1

3
At . (10)

Unfortunately the results of numerical investigations using Regge calculus have
been quite disappointing so far. Using the commonly employed dl/l measure on
a Regge lattice, no change in the phase transition of an Ising model coupled to
gravity was observed [9,10], the critical exponents remained in the flat space Onsager
universality class. Still, there is the hope that with a different measure or a different
spin coupling to gravity one can reproduce the modified critical exponents predicted
by the KPZ/DDK approach discussed in the next subsection [13,14]. Measurements
of the scaling properties of pure gravity, such as the string susceptibility exponent
γstr, have themselves given rise to some disagreement in numerical investigations of
the Regge calculus approach [15].

2.2. Dynamical triangulations and quadrangulations

An apparently more promising candidate for the construction of a consistent
theory is the dynamical tessellations approach where all edge lengths of the simpli-
cial building blocks are kept fixed and equal, but the connectivities are allowed to
vary locally. For the Euclidean case in two dimensions (2D), such an ensemble is
commonly taken as the set of all gluings of equilateral triangles to a regular, usually
closed surface of fixed topology, while counting each of the possible gluings with
equal weight. Alternatively one may also consider quadrangulations as sketched in
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Figure 1. A section of planar random quadrangulation (in bold) and the dual φ4

graph (dashed).

Fig. 1, where instead of triangles the simplicial building blocks are taken as quad-
rangles.

The resulting random-surface model and its simplicial generalisation to higher
dimensions are numerically tractable, for instance by Monte Carlo (MC) simulations.
For two dimensions, the use of matrix models and generating-function techniques
led to exact solutions for the cases of pure Euclidean gravity [16] and the coupling of
certain kinds of matter, such as the Ising model [17,18], to the surfaces. Furthermore,
the critical exponents governing phase transitions the matter fields may exhibit are
conjectured exactly from conformal field theory as functions of the exponents on
regular lattices and the central charge via the so-called KPZ/DDK formula [19]

∆̃ =

√
1 − C + 24∆ −

√
1 − C√

25 − C −
√

1 − C
, (11)

where ∆ is the original scaling weight, ∆̃ the “dressed” scaling weight upon coupling
to gravity and C the central charge of the matter variables. The field-theory ansatz
leading to Eq. (11) breaks down for central charges C > 1, an effect which has been
termed the C = 1 “barrier”, whereas discrete models of C > 1 matter coupled to
dynamical triangulations or quadrangulations still appear to be well-defined. This
mismatch of descriptions and its driving mechanism is still one of the less well
understood aspects of the dynamical tessellations method.

For Monte Carlo simulations of 2D combinatorial dynamical triangulations or
their dual φ3 graphs, an ergodic set of updates is given by the so-called Pachner
moves [20]. An adaption of these link-flip moves to simulations of quadrangulations
proposed in Ref. [21] is shown in Fig. 2. Explicit counter-examples show, however,
that these moves do not in general constitute an ergodic dynamics for simulations of
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grand−canonical, (1,3), (3,1)canonical, (2,2)
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Figure 2. Analog of Pachner moves (left) and “two-link flip” (right) for φ4 graph
simulations.

dynamical quadrangulations. Introducing a second type of link-flip moves, a “two-
link flip” (see Fig. 2), we recently constructed an algorithm for dynamical quadran-
gulations, which does not show any signs of ergodicity breaking [22–24]. Analyses
of autocorrelation times reveal, however, that the performance – as expected for a
local algorithm – is severely limited by slowing down near criticality. To alleviate
this problem, we adapted the non-local “baby-universe surgery” method proposed
in Ref. [25] for triangulations to quadrangulations [23, 24].

For pure triangulations (no coupling to matter fields), independent realisations
of this graph ensemble can also be generated more easily by a recursive insertion
method proposed in Ref. [26]. The dual graphs are planar, “fat” (i.e., orientable)
φ3 Feynman diagrams without tadpoles and self-energy insertions, which can be
counted analytically by matrix model methods [3, 16].

3. Exact solution for the Ising model on dynamical graphs

One remarkable result that emerged from studies of various statistical mechanical
models coupled to two-dimensional quantum gravity is the exact solution of the
Ising model in an external magnetic field [17]. Even though this model appears
quite complicated at first sight, the exact solution is more general than that for the
Ising model on regular lattices, for which the famous Onsager solution covers only
the zero-field case. In discrete form the coupling of spin models to gravity may be
interpreted from a statistical mechanics point of view as a special kind of annealed
disorder in the form of random triangulations or quadrangulations, or their dual
planar graphs. The partition function for the Ising model on a single graph Gn with
n vertices reads

Zsingle(G
n, β, h) =

∑

{σ}

exp



β
∑

〈i,j〉

σiσj + h
∑

i

σi



 , (12)

where σi = ±1, and β = 1/T may be interpreted as inverse temperature and h as
external magnetic field. Coupling to gravity means that this partition function is
generalised by incorporating a sum over some class of graphs {Gn},

Zn(β, h) =
∑

{Gn}

Zsingle(G
n, β, h) . (13)
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Notice that the summations over the spin degrees of freedom (
∑

{σ}) and all graphs

(
∑

{Gn}) appear on the same footing. Viewed from the perspective of the Ising model,
this thus represents annealed disorder for the spins. Generalisations to other “matter
fields” are straightforward by replacing the Ising spins by, e.g., O(n) or Potts model
spins or continuous field variables (with appropriate interaction terms).

The solution for the Ising model in [17] proceeded by first forming the grand-
canonical partition function

Z =

∞
∑

n=1

( −4gc

(1 − c2)2

)n

Zn(β, h) (14)

and then noting that this could be expressed as the free energy

Z = − log

∫

Dφ1 Dφ2 exp

(

−Tr

[

1

2
(φ2

1 + φ2
2)

− cφ1φ2 +
g

4
(exp(h)φ4

1 + exp(−h)φ4
2)

])

(15)

of a matrix model for N × N Hermitian matrices φ1 and φ2. The coupling between
the two types of fields is defined as c = exp(−2β).

The graphs of interest are generated as the Feynman diagrams of the “action” in
Eq. (15), which is constructed in such a way that each edge or link of the graph carries
the correct Boltzmann weight for Ising spins with nearest-neighbour interactions.
Usually the N → ∞ limit is performed in order to pick out planar graphs (i.e,
a well-defined spherical topology), but in a systematic 1/N expansion also other
topologies can be realised [18]. In the other extreme N = 1, the model would generate
all possible Feynman diagrams in a mean-field like manner. Since the edges carry for
general (large) N matrix indices, the graphs in question are sometimes called “fat”
or ribbon graphs, while for N = 1 one speaks of “thin” or generic graphs. Due to the
φ4 terms in (15), the above matrix model generates four-valent so-called φ4 graphs.
Alternatively, one could also consider (formal) φ3 interactions and the resulting φ3

graphs.
In the limit of large N the functional integral in (15) can be evaluated by saddle-

point methods using the results of [27] to give

Z=
1

2
log

(

z

g

)

− 1

g

∫ z

0

dt

t
g(t) +

1

2g2

∫ z

0

dt

t
g(t)2 , (16)

where g(z) is defined by

g(z) = 3c2z3 + z

[

1

(1 − 3z)2
− c2 +

6z(cosh h − 1)

(1 − 9z2)2

]

. (17)

3.1. Critical exponents

Eqs. (16) and (17) give an implicit solution for the grand-canonical partition
function (14), from which the canoncial Zn for any number of vertices n can be
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extracted by a series expansion. Note that, albeit only implicitly, this yields the
exact answer also in an external magnetic field which is not available for the Ising
model on regular lattices. There, Onsager’s solution describes only the case h = 0,
and with some extra effort the spontaneous magnetisation again in zero field could
be derived.

By analysing the solution (16), (17) in the thermodynamic limit n → ∞, Kaza-
kov derived the exact critical exponents of the Ising model coupled to dynamical
triangulations in perfect agreement with the KPZ/DDK formula (11). To apply the
latter, we need the relations

α =
1 − 2∆ǫ

1 − ∆ǫ
, β =

∆σ

1 − ∆ǫ
(18)

between the standard critical exponents of the specific heat and magnetisation,
C ∝ t−α and m ∝ tβ with t = |1 − T/Tc|, and the conformal weights ∆ǫ and ∆σ.
For the two-dimensional Ising model the central charge is C = 1/2 and ∆ǫ = 1/2,
∆σ = 1/16, giving immediately the more familiar values α = 0 and β = 1/8.
Inserting this into the KPZ/DDK formula (11), one first finds ∆̃ǫ = 2/3, ∆̃σ = 1/6,
which finally yields

α = −1 , β = 1/2 , γ = 2 , δ = 5 , (19)

and the correlation length exponent νdh = 3, where dh ≥ 2 is the fractal dimension
of the random gravity graphs. Note that (i) α is negative, giving a third -order
transition, and (ii) all exponents agree with the critical exponents of the three-
dimensional spherical model. It is unclear whether the latter is purely coincidental
or not.

3.2. Partition function zeros

Given the exact solution (16), (17), one can also try to understand the critical
properties of the model by analysing the zeros of the canonical partition function.
The idea that the zeros of the partition function could determine the phase structure
of a spin model first appeared in Lee and Yang’s work [28] who specifically considered
zeros in the complex field plane – now commonly called Lee-Yang zeros. Somewhat
later, Fisher [29] extended this idea also to zeros in the complex temperature plane
– the so-called Fisher zeros. In both cases one studies how the non-analyticity char-
acteristic of a phase transition appears from the partition function on finite lattices
or graphs, which may be written as a polynomial

Z =
∑

Dmnc
myn (20)

for a lattice with m edges and n vertices, again with c = exp(−2β), y = exp(−2h).
Lee-Yang and Fisher showed that the behaviour of the zeros of this polynomial in
the complex y or c plane, in particular the limiting locus as m, n → ∞, determined
the phase structure. Since then many applications and refinements of this approach
have been reported in the literature [30–32].

10
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For temperature-driven transitions, for simplicity in zero external field, the ther-
modynamic limit of the free energy on some class of lattices or graphs {Gn} becomes

F (G∞, β) ∼ −
∫

L

dcρ(c) ln(c − c(L)) , (21)

where L is some set of curves, or possibly regions, in the complex c plane on which
the zeros have support and ρ(c) is the density of the zeros there.

The general question of how to extract the locus of zeros analytically has been
considered by various authors, notably Shrock and collaborators [31] for Ising and
Potts models. It was first observed in [30] that such loci could be thought of as
Stokes lines separating different regions of asymptotic behaviour of the partition
function in the complex temperature or field planes. More recently, the case of
models with first-order transitions has been investigated by Biskup et al. [33] who
showed that the partition function of a statistical mechanical model defined in a
periodic volume V and depending on some complex parameter such as c or y, can
be written in terms of complex functions Fl describing k different phases, where the
various Fl are the metastable free energies per unit volume of the phases, the real
part ℜFl = F characterises the free energy when phase l is stable. The zeros of the
partition function are then determined from the solutions of the equations

ℜFl = ℜFm < ℜFk, ∀k 6= l, m ,

βV (ℑFl − ℑFm) = π mod 2π . (22)

These equations are thus in perfect agreement with the idea that the loci of zeros
should be Stokes lines, since the zeros of Z lie on the complex phase coexistence
curves ℜFl = ℜFm in the complex parameter plane.

The specific Biskup et al. results apply to models with first-order transitions, but
we are interested here in an Ising model with a third-order transition, so it might
initially seem that these results were inapplicable. We are saved by the fact that
when considered in the complex temperature plane the transition is continuous only
at the physical (i.e., real) point itself (and possibly some other finite set of points).

The determination of the locus of Fisher zeros for the Ising model on random
graphs in the thermodynamic limit using the ideas of the previous section turns out
to be rather straightforward, as we now describe. Since we wish to match ℜF between
the various solution branches to obtain the loci of Fisher zeros and F ∼ log(g(c)) for
the Ising model on planar graphs, the equation which determines the loci of zeros
in the thermodynamic limit is

log |gL(c)| = log |gHi
(c)| , (23)

where the low-temperature solution gL(c) and the various high-temperature solutions
gHi

(c) are given by solving g′(z) = 0 in Eq. (17) for z. The resulting curve is shown
in the c plane in Fig. 3 where it can be seen that in addition to the physical phase
transition at c = exp(−2β) = 1/4, an unphysical transition with the same KPZ [19]
exponents appears at c = −1/4. The interior of the curve is the ferromagnetic FM
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Figure 3. The Fisher zeros on fat φ4 graphs in the complex c = exp(−2β) plane.

region and the exterior the paramagnetic PM and unphysical “O” phases, separated
by cuts on the imaginary axis which we have not shown.

The diamonds plotted in Fig. 3 are generated from a series expansion of Z in
Eq. (16), which is arrived at by reverting the expression for g(z) and substituting
the resulting z(g) into Eq. (16). Earlier work reported in [34] obtained similar results
at lower orders. The form of the expression for Z means that the contributions from
each of the terms in Eq. (16) are proportional to each other [35], so the full series
for Z can be generated from 1

2
log (z/g).

The loci of Fisher zeros are highly non-universal, and we also show the zeros on
“thin”, generic random φ3 graphs for comparison in Fig. 4. Recall that these models
can be thought of as the N → 1 limit of the matrix models, rather than the N → ∞
planar limit. Similar methods to those discussed above also serve in this case where
one has mean-field behaviour [36]. For the Ising model on thin graphs F ∼ log S̃,
where S̃ is the saddle point action for either the low- or high-temperature phase.
The equivalent of Eq. (23) is then

|2(1 − c)3| = |(1 + c)2(1 − 2c)| , (24)

giving the locus plotted in Fig. 4. The locus of partition function zeros for Potts
models and the locus of chromatic zeros are also accessible on thin graphs.

In summary, we have seen that an analytic determination of Fisher zeros for
the Ising model on both fat and thin random graphs is possible, and that series
expansions are easily obtainable. The general form of the solution also holds on
(planar) random triangulations and φ3 graphs and in non-zero field, so all of these
can also be investigated.
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Figure 4. The Fisher zeros on thin φ3 graphs in the complex c plane.

4. Vertex models on quadrangulations

One of the most general classes of statistical mechanics models with discrete
symmetry are 6- and 8-vertex models [37,38]. For the 6-vertex model, the six possi-
ble arrow configurations and their Boltzmann weights ωi are sketched in Fig. 5. The
partition function follows by summing the weights of all allowed arrow configura-
tions. Special cases can be mapped onto more well-known Ising and Potts models or
graph colouring problems [38]. For two-dimensional regular lattices, several of these
vertex models have been solved exactly, yielding a very rich phase diagram with var-
ious transition lines as well as critical and multi-critical points [38]. Hence, coupling
this class of models to a fluctuating geometry of the dynamical triangulations type
is of obvious interest, both as a prototypic model of statistical mechanics subject
to annealed connectivity disorder and as a paradigmatic type of matter coupled to
two-dimensional Euclidean quantum gravity.

Recently, the use of matrix model methods similar to that sketched above for
the Ising model led to a solution of the thermodynamic limit of a special 6-vertex
model, the F model, coupled to planar φ4 graphs [39]. This model corresponds to a
C = 1 conformal field theory, i.e., it lies on the boundary to the region C > 1, where
the KPZ/DDK formula (11) breaks down. The locus of the F model is depicted in
the phase diagram of Fig. 5 for a (static) square lattice where the model exhibits
a Kosterlitz-Thouless (KT) phase transition at βc = ln 2 [37, 38]. The same type of
transition is predicted on dynamical lattices, and in particular the critical coupling
βc = ln 2 should agree with that on the square lattice [39]. In addition, a special slice
of the 8-vertex model could also be analysed via transformation to a matrix model
[40]. Due to intrinsic limitations, however, the analytical approach cannot reveal the
behaviour of the matter-related observables and the details of the occurring phase
transition or the fractal properties of the graphs such as, e.g., their fractal dimension
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Figure 5. Left: Allowed arrow configurations of the 6-vertex model with weights
ωi = exp (−ǫi/kbT ). Right: Phase diagram of the symmetric 6-vertex model with
a = ω1 = ω2, b = ω3 = ω4, and c = ω5 = ω6. The locus of the F model with its
Kosterlitz-Thouless (KT) phase transition runs along the diagonal.

dh.

Since vertex models are generically defined on four-valent lattices, instead of
considering the more common dynamical triangulations or the dual planar, “fat”
(i.e., orientable) φ3 graphs, one has to work in numerical studies with the more
intricate ensemble of dynamical quadrangulations or the dual φ4 Feynman diagrams.
To update the arrow configurations, in Ref. [41] the loop-cluster algorithm [42] was
employed, slightly modified for the case of simulations on random lattices. Among
the most easily measurable quantities are the internal energy U and the specific heat
Cv. The observed non-scaling of Cv with system size (see Fig. 6) is a first evidence for
the expected KT-like transition. By comparing the estimates of U = 0.333 355(11)
and Cv = 0.2137(12) at βc = ln 2 obtained on large φ4 random graphs (N2 = 65 536)
with the analytical critical values for the infinite square lattice [37, 38] of U = 1/3
and Cv = 28(ln 2)2/45 ≈ 0.2989, one is led to the conjecture that the critical internal
energy of the F model is not affected by the coupling to random graphs. As can be
seen in Fig. 6, this is specific to the critical point, where the curves for the two lattice
types cross, and probably indicates an additional common symmetry at criticality.

When the vertex model is coupled to quantum gravity, we expect a renormali-
sation or dressing of the critical exponents as prescribed by the KPZ/DDK formula
(11), which should also marginally apply to the present limiting case C = 1. Assum-
ing standard scaling relations the weights ∆ǫ of the energy operator and ∆P associ-
ated with the spontaneous staggered polarisation P0 are related to the usual critical
exponents by α = 1−2∆ǫ

1−∆ǫ
, β = ∆P

1−∆ǫ
, γ = 1−2∆P

1−∆ǫ
, dhν = 1

1−∆ǫ
, 2 − η = (1 − 2∆P )dh,

where trivially dh = 2 for a regular lattice. For the expected infinite-order KT-like
phase transition individual exponents are not properly defined but the exponent
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Figure 6. Internal energy U and specific heat Cv of the F model coupled to
dynamical quadrangulations.

ratios entering finite-size scaling,

β/dhν = ∆P = 1/4 , γ/dhν = 1 − 2∆P = 1/2 (static regular lattices) , (25)

still have a well-defined meaning. With C = 1, the KPZ/DDK formula (11) then
predicts for the dressed exponents on dynamical random graphs (where dh ≈ 4)

β̃/dhν = ∆̃P = 1/2 , γ̃/dhν = 1 − 2∆̃P = 0 (dynamical random graphs) . (26)

To check the prediction for γ/dhν one can consider the FSS of the staggered polar-
isability χ (analogous to a susceptibility) at its maxima for finite graphs or at the
transition point βc = ln 2. By analogy to the square-lattice case [43], one expects a
FSS form including a leading effective correction term,

χ(N2) = AχN
γ/dhν
2 (ln N2)

ωχ . (27)

For the square-lattice model one has ωχ = 2, whereas for the random-graph model
the correction exponent is not known. Asymptotically both FSS sequences are ex-
pected to lead to the same exponents. Unfortunately, this is not at all obvious in
the presence of large correction effects for the accessible graph sizes (recall the large
fractal dimension dh ≈ 4 for dynamical lattices), and in particular analyses of the
maxima data turned out to be very intricate [41]. However, assuming a vanishing
leading exponent and fitting χ(N2) at βc to a purely logarithmic increase yields
high-quality fits as demonstrated in Fig. 7 and thus verifies the prediction (26).

For the spontaneous polarisation P0 (analogous to a magnetisation), the FSS
ansatz can be taken similarly as

P0(N2) = AP0N
−β/dhν
2 (lnN2)

ωP0 , (28)

leading at βc to the estimate β/dhν = 0.469(15), which is again consistent within
error bars with the prediction (26).

The fractal graph properties can be characterised by several quantities. A partic-
ular useful one is the fraction of loops of length two which as a function of β exhibits
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at N2,min = 2048 has a perfect goodness-of-fit parameter Q = 0.39. Right: Frac-
tion of length-two loops exhibiting a peak at β0 = 0.6894(54) ≈ βc = ln 2 ≈ 0.693.

a peak at β0 = 0.6894(54) (cf. Fig. 7), in good agreement with βc = ln 2 ≈ 0.693.
This observable, which clearly reflects the matter back-reaction on the graphs,
turned out to be much more suitable for locating βc than the more traditional
quantities such as the peak location of the polarisability [41]. The string suscep-
tibility exponent γs is defined through Z(N2) ∼ eµ0N2Nγs−3

2 . By decomposing the
graphs into a self-similar tree of “baby universes”, the distribution of so-called min-
BUs (“minimal neck baby universes”) of size B can be used to determine γs from
〈nN2(B)〉 ∼ N2−γs

2 [B(N2−B)]γs−2. This method, originally introduced for triangula-
tions or φ3 graphs [25,44], has been generalised to φ4 graphs [23,41]. Pure φ4 graphs
yield γs = −1/2 in agreement with universality. For the F model with central charge
C = 1, where the scaling form has again to be augmented with logarithmic correc-
tions, the estimates [41] are compatible with γs = 0 for β ≤ ln 2 (critical phase)
and γs = −1/2 for β > ln 2 (ordered phase), in agreement with the KPZ/DDK
conjecture. For the fractal dimension dh, analytical work yields conflicting predic-
tions (4.83 or ∞ as C → 1 [45]). By a FSS analysis of the (geometrical) two-point
correlation function of the graphs and of their mean extent we obtained dh = 4,
independent of β [41].

5. Potts models on quenched φ3 gravity graphs

In the rest of the paper we now turn attention to the quenched situation, where
the quantum gravity framework is merely used for the generation of random graphs
with a specific connectivity or co-ordination number distribution. The paradigm
for studies of the effect of quenched, random disorder on universal properties of
critical phenomena are uncorrelated, randomly distributed couplings [46–49]. This
includes ferromagnetic random-bond models as well as the physically very different
case of spin glasses, where competing interactions complement disorder with frus-
tration [47, 50–54]. For a continuous phase transition in the idealised pure system,
the effect of random bonds has been convincingly shown by renormalization group
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Figure 8. Comparison of the co-ordination number distributions P (q) of Poisso-
nian Delaunay triangulations and dynamical triangulations in the limit N2 → ∞.

analyses as well as numerical investigations to be able to induce a crossover to a
new, disorder fixed point [48, 55–59]. The question thus arises whether quenched
connectivity disorder can also lead to a new disorder fixed point. Numerical simu-
lation studies of spin models on quenched lattices of Voronöı-Delaunay type in two
and three dimensions, however, suggested, this not to be the case [60].

Starting from a distribution of points in the plane, a Voronöı cell in two dimen-
sions is defined as the region of the plane which is closer to a given vertex than
to any other. The three-valent vertices where these cells meet and the cell edges
make up the Voronöı diagram. Accordingly, the structure geometrically dual to the
Voronöı diagram is the Delaunay triangulation. For regularly placed vertices one
recovers the Wigner-Seitz elementary cells of solid state physics. If the vertices are
chosen at random, the resulting Voronöı-Delaunay graph is referred to as Poissonian

random lattice since the vertices can be considered as realisation of a Poisson point
process [61, 62].

In what follows we shall focus on the resulting variation of co-ordination numbers
qi of the triangulation resp. loop lengths of the dual graph, neglecting the fact
of differing edge lengths. The distribution of co-ordination numbers for dynamical
triangulations is shown in Fig. 8, where for comparison also the Voronöı-Delaunay
case is included. Two snapshots of the resulting graph structures are depicted in
Fig. 9. From the Euler relation (6), the average co-ordination number is a topological
invariant for a fixed number N2 of triangles in two dimensions, given for spherical
topology by [3]

q̄ =
1

N0

∑

i

qi = 6
N2

N2 + 4

N2→∞−→ 6 . (29)

The variance of co-ordination numbers is defined as µ2 ≡ 〈q2
i 〉 − 〈qi〉2. It turns out

that the random variables qi in general are not independently distributed, but are
reflecting a spatial correlation of the disorder degrees-of-freedom in addition to the
trivial correlation induced by the constraint (29). For nearest-neighbour vertices
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Figure 9. Snapshots of random Poissonian Delaunay triangulations (left) and
dynamical triangulations (right) of spherical topology with N2 = 5000 triangles.
The Voronöı resp. φ3 graphs considered numerically are the geometric duals of
the shown structures.

these correlations are approximately described by the Aboav-Weaire law [61],

q m(q) = (6 − a)q + b , (30)

where q m(q) is the number of edges of the neighbours of a q-sided cell, and a and
b are some parameters [62, 63].

5.1. Harris and Harris-Luck criterion

In a seminal paper, Harris [51] employed phenomenological scaling theory to
argue that for uncorrelated disorder a crossover to a new universality class should not
occur for systems with a specific-heat exponent α < 0. It is now widely believed that
also the converse is true, i.e., a crossover does occur for systems with α > 0 [55,56,64].
In the marginal case α = 0, realised, e.g., by the Ising model in two dimensions,
the regular critical behaviour is merely modified by logarithmic corrections [48].
Similarly, for systems exhibiting a first-order phase transition in the regular case, the
introduction of quenched disorder coupling to the local energy density can weaken
the transition to second (or even higher) order [54]. While this scenario has been
rigorously established for the case of two dimensions and an arbitrarily small amount
of disorder [52,53,65], the situation for higher-dimensional systems is less clear. For
a variety of systems in three dimensions, however, sufficiently strong disorder has
been shown numerically [66–68] to be able to soften the transition to a continuous
one.

The relevance of randomness coupling to the local energy density crucially de-
pends on how fast fluctuations of the local transition temperature induced by fluctu-
ations of the random variables in a correlation volume die out as the critical point is
approached. For independent random variables, this decay occurs with an exponent
of d/2 in d dimensions. The comparison of this power with the inverse correlation
length exponent 1/ν leads to Harris’ celebrated relevance criterion d/2 < 1/ν or,
assuming hyper-scaling to be valid, α = 2 − νd > 0 = αc [51, 69].

18



2D Quantum Gravity – A Laboratory for Fluctuating Graphs and Quenched Connectivity Disorder

Spatial correlations of the disorder degrees of freedom lead to a modification
of the fluctuations present in “typical” patches of the random system with respect
to the behaviour expected from the central limit theorem for independent random
variables, which is implicitly presupposed by Harris’ arguments. Such correlations
for a random-bond model have been considered occasionally [70–73] and altered
relevance criteria have been proposed [70, 74]. Luck [74] has considered a class of
irregular systems not covered by the random-bond paradigm, namely that of quasi-
crystalline or aperiodic structures, and formulated a generalised relevance criterion.
Although he did not consider systems with connectivity disorder such as the random
graph models to be considered here, his reasoning should also apply to these cases.
Measuring distances between two graph vertices by the number of links traversed
in the unique shortest path connecting them, we consider a spherical patch P of
radius R on a triangulation, containing B(R) vertices. Then, the fluctuations of the
average co-ordination number in P ,

J(R) ≡ 1

B(R)

∑

i∈P

qi , (31)

around its expected value J0 = q̄ = 1
N0

∑

i qi = 6(1 − 4
N2+4

) in general decay in the
limit R → ∞ of large patches as

σR(J) ≡ 〈|J(R) − J0|〉/J0 ∼ 〈B(R)〉−(1−ω) ∼ R−dh(1−ω) , (32)

defining the wandering exponent ω of the considered graph type. Near criticality,
the fluctuation σξ(J) of the average co-ordination number in a correlation volume

induces a local shift of the transition temperature proportional to |t|dhν(1−ω)µ
1/2
2

where µ2 ≡ 〈q2
i 〉 − 〈qi〉2. For the regular critical behaviour to persist, these fluctua-

tions should die out as the critical point t = 0 is approached. This is the case when
ω does not exceed the threshold value

ωc(ν) = 1 − 1

dhν
=

1 − α

2 − α
, (33)

where in the second equality hyper-scaling was assumed to be applicable. This means
that quenched correlated disorder with ω > ωc(ν) may be a relevant perturbation
and a new type of critical behaviour could occur. By recasting Eq. (33), this happens
for a given random graph type for

α > αc =
1 − 2ω

1 − ω
. (34)

For uncorrelated disorder with ω = 1/2, αc = 0 and the Harris criterion is recovered.
In Ref. [75] the wandering exponent ω was numerically determined by sampling

the fluctuations defined in Eq. (32) for random graphs of increasing size N2 (cf.
Fig. 10) and fitting the resulting exponents ω(N2) to the finite-size scaling (FSS)
ansatz

ω(N2) = ω∞ + AN−θ
2 , (35)
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where θ is an a priori unknown correction exponent. This yields [75]

ω∞ = 0.7473(98) (dynamical triangulations) , (36)

with A = −0.73(37) and θ = 0.264(70), suggesting that ω = 3/4 in this case.
The criterion (34) then implies a relevance threshold of αc = −2, i.e., that the
connectivity disorder of quantum gravity graphs should alter the critical behaviour
of all known standard models.

The result for Voronöı-Delaunay lattices turned out to be well consistent with
ω = 1/2 which would result from correlations decaying with a power larger than
d = 2 (see also Ref. [70]). A direct inspection of the correlation function of co-
ordination numbers indicated an even exponential decay [75]. Thus, the relevance
criterion (34) reduces to the Harris criterion, i.e., Voronöı-Delaunay connectivity
disorder should be a relevant perturbation for models with specific-heat exponent
α > 0.

5.2. Analytical considerations

Given the fact that several spin models interacting with annealed connectivity
disorder of gravity type can be solved exactly (or at least the critical exponents
can be predicted from the KPZ/DDK formula), it is tempting to look for analytic
solutions also in the quenched case [76]. In this case the disorder average has to be
performed at the level of the free energy,

[F ]av = −[ln Z]av = −
∑

graphs

ln
∑

{s}

e
P

〈ij〉 Cijsisj , (37)

where Cij is the connectivity matrix of the graphs. Clearly, the non-linear operation
“ln” in between the two summations makes a direct exact evaluation very difficult.
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This is the typical situation for quenched disordered systems and one may resort to
the well-known replica trick which represents the logarithm in the following form:

[F ]av = −[ln Z]av = [lim
n→0

(Zn − 1)/n]av = lim
n→0

([Zn]av − 1)/n , (38)

where in the last identity the order of taking the quenched disorder average and the
limit n → 0 was formally interchanged. The merit of this procedure is that [Zn]av
takes the form of an annealed average, albeit now for a system with n replicas,

[Zn]av =









∑

{s}

e
P

〈ij〉 Cijsisj





n



av

=
∑

graphs

∑

{s(1)}

· · ·
∑

{s(n)}

e
Pn

k=1

P

〈ij〉 Cijs
(k)
i s

(k)
j . (39)

Notice that the spins of all n replica are interacting among each other via the same
connectivity matrix (which for each of the graphs is different). Similar to a gauge
field this mediates interactions between the replica. For random-bond systems the
resulting expression looks formally similar with Cij replaced by the random couplings
Jij. If one assumes that the Jij are independent Gaussian variables, the summation
over disorder can be explicitly performed and generates explicit interactions between
the replica which are usually treated in perturbation theory combined with renor-
malization group analyses. In the present case, one may more simply argue that (39)
represents an annealed system with n matter fields and hence a total central charge
of Ctot = nC. If one uses this formally in the KPZ/DDK formula (of course, possible
problems with the C = 1 barrier are ignored) and then formally performs the n → 0
limit (in which the C = 1 barrier problem is apparently cured . . . ), one arrives at
the following dressing formula for the conformal weights in the quenched case [76]:

∆̃ =

√
1 + 24∆ − 1

4
. (40)

Recalling that we have for Ising model C = 1/2 and ∆ǫ = 1/2, ∆σ = 1/16, one
obtains from (40) ∆̃ǫ = 0.651 387 . . . , ∆̃σ = 0.145 284 . . . and hence α = (1 −
2∆̃ǫ)/(1− ∆̃ǫ) = −0.868 517 . . . , β = ∆̃σ/(1− ∆̃ǫ) = 0.416 751 . . . , and similarly all
other exponents compiled in Table 1 for the Ising and 4-state Potts model.

5.3. Computer simulations

To test the analytic formula (40) we have performed Monte Carlo simulations
of q-state Potts models with q = 2 and 4 defined on random φ3 (pure) gravity
graphs (without tadpoles or self-energy bubbles) of size N = 500, 1 000, 2 000,
3 000, 4 000, 5 000, and 10 000, averaging in both cases over 64 graph realisations
[77, 78]. In addition we checked whether the model with q = 10, which on regular
lattices exhibits a fairly strong first-order phase transition, gets indeed softened
to a continuous transition by the quenched connectivity disorder. Here we chose
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Table 1. Fit results for the critical exponents of the q-state Potts model on φ3

random graphs.

q method 1/νdh γ/νdh β/νdh (1 − β)/νdh α/νdh

2 Monte Carlo 0.34(1) 0.78(1) 0.10(1) 0.26(1) −0.32(1)
quenched 0.3486. . . 0.7094. . . 0.1452. . . 0.2033. . . −0.3027 . . .
annealed 0.3333. . . 0.6666. . . 0.1666. . . 0.1666. . . −0.3333 . . .
regular 0.5 0.875 0.0625 0.4375 0

4 Monte Carlo 0.42(1) 0.75(1) 0.11(1) 0.34(1) −0.16(1)
quenched 0.5885. . . 0.7094. . . 0.1452. . . 0.4433. . . 0.1771 . . .
annealed 0.5 0.5 0.25 0.25 0
regular 0.75 0.875 0.0625 0.6875 0.5

10 Monte Carlo 0.58(1) 0.71(1) 0.12(1) 0.43(2) 0.16(1)

N = 250, 500, 1 000, 2 000, 3 000, 5 000, and 10 000 and again averaged over 64
graph realisations [77, 79].

All simulations were done close to the transition point with the Wolff single-
cluster update algorithm. Primary observables are the energy and magnetisation
which were stored in time-series files. Using reweighting techniques it is straight-
forward to compute all relevant quantities in the finite-size scaling regime, e.g., the
specific heat C = β2 N [〈e2〉 − 〈e〉2]av and susceptibility χ = β N [〈m2〉 − 〈|m|〉2]av,
but also mixed quantities such as the derivative d ln[〈|m|〉]av/dβ [80]. As a function
of N the finite-size scaling behaviour of these quantities is expected to be

C = Creg + Nα/νdhfC(x)[1 + . . . ] , (41)

χ = Nγ/νdhfχ(x)[1 + . . . ] , (42)

d ln[〈|m|p〉]av
dβ

= N1/νdhfp(x)[1 + . . . ] , (43)

where Creg is a regular background term, α, ν, and γ are the usual critical exponents,
dh = 4 is the fractal dimension of the (pure) φ3 graphs, and the fi(x) are various
FSS functions with x = (β − βc)N

1/νdh being the scaling variable. The correction
terms indicated by [1 + . . . ] become unimportant for sufficiently large system sizes
N . From least-squares fits one then obtains the critical exponents listed in Table 1.

Looking at the results in Table 1 it is clear that the exponent estimates are
different from the exact values for regular 2D lattices, giving a clear indication that
the connectivity disorder of planar random graphs is a relevant perturbation in the
renormalization group sense, similar to the situation for random-bond disorder. Even
more, for the 2D Ising model (q = 2) the values are unambiguously different, while
for random-bond disorder only rather subtle logarithmic modifications are expected
which are difficult to observe in numerical studies [81,82]. Our estimates for q = 2 are
not incompatible with both the quenched and annealed KPZ values at the level of
accuracy we have achieved, but those for q = 4 definitely match none of the possible
theoretical predictions. The 10-state model has clearly non-trivial exponents, thus
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unambiguously indicating the expected softening effect. Remarkably, the estimated
q = 10 values are a good fit to the theoretical quenched q = 4 prediction; they are
certainly incompatible with the q = 4 annealed values. It is also noteworthy that
the q = 10 measurements (and also the q = 4 quenched theory predictions) violate
a supposedly general bound [83] for quenched systems, 1/νdh < 1/2. Hyper-scaling
implies that α/νdh should be negative if the bound holds, which also is in clear
conflict with our directly measured value for q = 10. The numerical estimates of
1/νdh for q = 2 and q = 4, on the other hand, are consistent with the bound.
Whether the failure of the q = 10 model to observe the bound is a consequence of
the technical details of the averaging procedure as suggested in [84] or a result of
the long-range correlations in the disorder is still unclear.

In this context it is worth mentioning a closely related study [85] of the Ising
model on quenched random graphs which formally can be characterised by a central
charge d = −5. In this notation [76], our case corresponds to d = 0. Even though the
simulated d = −5 graphs were much smaller and the statistics poorer, in [85] very
good agreement was obtained with the appropriate generalisation of the quenched
prediction (40).

Let us conclude this section with a brief remark on the second type of random
lattices. According to the Harris criterion, connectivity disorder from Poissonian
random lattices should be relevant for the q = 3 Potts model with α = 1/3 > 0.
The FSS analysis presented in Ref. [86] yields, however, a thermal scaling exponent
in very good agreement with that for the regular lattice model. This is remarkable,
since connectivity disorder couples to the local energy density, such that a relevant
perturbation is expected to predominantly show up in the energy-related exponents.
Whether the observed small, but significant difference of the magnetic exponents
indicates the onset of a crossover to a new universality class or is merely an effect of
neglected corrections to scaling, has to be checked by a more careful scaling analysis
including corrections, possibly augmented by simulations for even larger lattices.
Furthermore, models with larger values of the specific-heat exponent α, such as the
q = 4 Potts model or the Baxter-Wu model [38], which both have an exponent
α = 2/3, might be good candidates to check whether a change of critical behaviour
can be induced at all by the connectivity disorder of Poissonian random lattices.

6. Summary

Annealed and quenched quantum gravity graphs provide a rich laboratory for
analytical and numerical investigations of statistical physics systems. In the annealed
case, the KPZ/DDK formula translates the critical behaviour on regular lattices to
that when the same spin model is coupled to fluctuating graphs. In some situations
it is even useful to turn this argument around; due to the possibility of matrix model
solutions it is sometimes easier to find exact solution for the random graph case and
then translate this back to regular lattices. In the quenched case, the random graph
ensembles are welcome prototypes for connectivity disorder with well-defined and in
part exactly known properties.
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and J. J. Ruiz-Lorenzo, Phys. Rev. B 61 (2000) 3215.
67. C. Chatelain, B. Berche, W. Janke, and P.-E. Berche, Phys. Rev. E 64 (2001) 036120;

26



2D Quantum Gravity – A Laboratory for Fluctuating Graphs and Quenched Connectivity Disorder

Nucl. Phys. B 719 (2005) 275; B. Berche, P.-E. Berche, C. Chatelain, and W. Janke,
Condens. Matter Phys. 8 (2005) 47; W. Janke, B. Berche, C. Chatelain, P.-E. Berche,
and M. Hellmund, PoS (LAT2005) 018.

68. M. Hellmund and W. Janke, Phys. Rev. E 67 (2003) 026118.
69. J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys. Rev. Lett. 57 (1986)

2999; Comm. Math. Phys. 120 (1989) 501.
70. A. Weinrib and B. I. Halperin, Phys. Rev. B 27 (1983) 413.
71. V. V. Prudnikov and A. A. Fedorenko, J. Phys. A 32 (1999) L399.
72. P. T. Muzy, A. P. Vieira, and S. R. Salinas, Phys. Rev. E 65 (2002) 046120.
73. V. Blavatska, C. von Ferber, and Y. Holovatch, Phys. Rev. B 67 (2003) 094404.
74. J. M. Luck, Europhys. Lett. 24 (1993) 359.
75. W. Janke and M. Weigel, Phys. Rev. B 69 (2004) 144208.
76. W. Janke and D. A. Johnston, Phys. Lett. B 460, 271 (1999).
77. W. Janke and D. A. Johnston, Nucl. Phys. B 578 (2000) 681; J. Phys. A 33 (2000)

2653.
78. C. F. Baillie, K. A. Hawick, and D. A. Johnston, Phys. Lett. B 328 (1994) 284.
79. C. F. Baillie, W. Janke, and D. A. Johnston, Phys. Lett. B 388 (1996) 14; Nucl. Phys.

B (Proc. Suppl.) 53 (1997) 732.
80. W. Janke, Mathematics and Computers in Simulations 47 (1998) 329; Introduction

to Monte Carlo Simulations, Leipzig preprint (February 2006), Lecture Notes of the
Summer School Ageing and the Glass Transition, University of Luxembourg, Septem-
ber 2005, to appear in Lecture Notes in Physics (in print).

81. V. B. Andreichenko, Vl. S. Dotsenko, W. Selke, and J.-S. Wang, Nucl. Phys. B 344

(1990) 531; J.-S. Wang, W. Selke, Vl. S. Dotsenko, and V. B. Andreichenko, Europhys.
Lett. 11 (1990) 301; Physica A 164 (1990) 221; A. L. Talapov and L. N. Shchur, J.
Phys. Condens. Matter 6 (1994) 8295; F. D. A. Aarão Reis, S. L. A. de Queiroz, and
R. R. dos Santos, Phys. Rev. B 56 (1997) 6013; D. Stauffer, F. D. A. Aarão Reis,
S. L. A. de Queiroz, and R. R. dos Santos, Int. J. Mod. Phys. C 8 (1997) 1209.

82. A. Roder, J. Adler, and W. Janke, Phys. Rev. Lett. 80 (1998) 4697; Physica A 265

(1999) 28.
83. J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer, Phys. Rev. Lett. 57 (1986)

2999; Comm. Math. Phys. 120 (1989) 501.
84. F. Pázmándi, R. T. Scalettar, and G. T. Zimányi, Phys. Rev. Lett. 79 (1997) 5130.
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