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We study the question of universality in the two-dimensional spin-1 Baxter-Wu model in the
presence of a crystal �eld ∆. We employ extensive numerical simulations of two types, providing us
with complementary results: Wang-Landau sampling at �xed values of ∆ and a parallelized variant
of the multicanonical approach performed at constant temperature T . A detailed �nite-size scaling
analysis in the regime of second-order phase transitions in the (∆, T ) phase diagram indicates that
the transition belongs to the universality class of the 4-state Potts model. Previous controversies
with respect to the nature of the transition are resolved and attributed to the presence of strong
�nite-size e�ects, especially as one approaches the pentacritical point of the model.

I. INTRODUCTION

The Baxter-Wu (BW) model was �rst introduced by
Wood and Gri�ths [1] as a system which does not ex-
hibit invariance under a global inversion of all spins. It
is de�ned on a triangular lattice by the Hamiltonian

HBW = −J
∑
〈xyz〉

σxσyσz, (1)

where the exchange interaction J is positive, the sum ex-
tends over all elementary triangles of a lattice with N
sites, and σx = ±1 are Ising spin-1/2 variables. The tri-
angular lattice can be divided into three sublattices A,
B, and C as shown in Fig. 1, so that any triangular face
contains one site of type A, one of type B, and one of type
C. The ground state of the model is four-fold degenerate:
there is one ferromagnetic state with all spins up, and
three ferrimagnetic states with down spins in two sublat-
tices and up spins in the third sublattice. Also, the model
of Eq. (1) is self-dual [1, 2], having the same critical tem-
perature as the spin-1/2 Ising model on the square lat-
tice, i.e., kBTc/J = 2/ ln (

√
2 + 1) = 2.269185 . . ., where

kB denotes the Boltzmann constant.
The exact solution of Baxter and Wu dates back to

1973 and provided the critical exponents α = 2/3, ν =
2/3, and γ = 7/6 [3, 4]. In the following, it was shown
that the critical behavior of the model corresponds to a
conformal �eld theory with central charge c = 1 [5, 6]. As
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was �rst pointed out by Domany and Riedel, the q = 4
Potts model should belong to the same universality class
as the Baxter-Wu model, as both have the same sym-
metry and degree of degeneracy in the ground state [7].
However, although the leading critical exponents are the
same, one should note that these two models have di�er-
ent corrections to scaling: while the 4-state Potts model
presents logarithmic corrections with the system size, as
expected for the marginal case before the transition be-
comes �rst-order for q > 4 [8], the Baxter-Wu model has
power-law corrections with a correction-to-scaling expo-
nent ω = 2 [5, 6]. This rather large value of ω allows for
a safe determination of the asymptotic scaling behavior
even when dealing with systems of moderate size, see for
instance Ref. [9]. Recently, further aspects of the spin-
1/2 model have also been considered, including short-
time dynamics [10], Monte Carlo studies of critical am-
plitude ratios [11], longitudinal [12], and transverse [13]
magnetic �elds.
An interesting extension of the Baxter-Wu model (1)

arises when one considers spin values σx = {−1, 0, 1} and
includes an extra crystal �eld (or single-ion anisotropy)
∆, so that the resulting Hamiltonian reads

H = −J
∑
〈xyz〉

σxσyσz + ∆
∑
x

σ2
x = EJ + ∆E∆. (2)

In the following we will use reduced units where J = 1 as
well as kB = 1. Unfortunately, for this model there exists
no exact solution and therefore approximation methods
need to be employed. Note, however, that when ∆ →
−∞ only con�gurations with σx = ±1 are allowed and
the pure Baxter-Wu model is recovered.
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FIG. 1: Representation of the Baxter-Wu triangular lattice
as a superposition of the three sublattices A, B, and C. Each
sublattice corresponds to spins of di�erent color. The spins
are shown in the ferromagnetic ground state.

As is apparent, the model of Eq. (2) resembles the well-
known Blume-Capel model [14], which exhibits a phase
diagram with ordered ferromagnetic and disordered para-
magnetic phases separated by a transition line with �rst-
and second-order segments (the latter in the Ising univer-
sality class) connected by a tricritical point. More details
about the phase diagram and universality aspects of the
general Blume-Capel model can be found in Refs. [15�
22]. In analogy to these �ndings, one might expect for
the model de�ned in Eq. (2) a similar phase diagram but
a di�erent universality class. Nienhuis et al. [23] �rst dis-
cussed the analogy between the Baxter-Wu and diluted
Potts models and pointed out that the general phase di-
agram will exhibit a line of continuous transitions that
connects to a regime of �rst-order transitions through a
multicritical point. Kinzel et al. [24], instead, using a
�nite-size scaling method, conjectured that a continuous
transition only occurs for ∆→ −∞ (the pure Baxter-Wu
model). More recent work has favored the existence of a
multicritical point at �nite values of ∆ [25]. In Ref. [26]
the location of the pentacritical point was estimated as
(∆pp, Tpp) ≈ (0.8902, 1.4), see Fig. 2. This point refers to
the coexistence of three ferrimagnetic con�gurations and
a ferromagnetic con�guration, along with that of zero
spins. The results of Ref. [26] for the critical exponents
ν ≈ 0.63 and η ≈ 0.23 point to the universality class of
the pure spin-1/2 Baxter-Wu model where ν = 2/3 and
η = 1/4.
Surprisingly though, there are still open questions with

respect to the universality principle of the spin-1 Baxter-
Wu model. The results of Ref. [25] via renormalization
group, conventional �nite-size scaling, and conformal in-
variance techniques indicated that the critical exponents
vary continuously with ∆ along the second-order transi-
tion line, di�erently from the expected behavior of the
4-state Potts model. A similar conclusion was drawn in
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FIG. 2: Phase diagram of the two-dimensional spin-1 Baxter-
Wu model. The black dotted and continuous lines correspond
to �rst- and second-order transitions. The black rhombus
marks the pentacritical point (∆pp, Tpp) ≈ (0.8902, 1.4) [26].
Several transition points are given including those obtained
in the current work. Blue and red dotted arrows indicate the
two numerical approaches used, namely Wang-Landau and
multicanonical methods at �xed values of ∆ = {−10, −1}
and T = {2.2578, 1.8503}, respectively.

Ref. [27], where using importance sampling Monte Carlo
simulations for the special case with ∆ = 0 the val-
ues ν = 0.617(3), α = 0.692(6), and γ = 1.13(1) were
obtained. The complementary Monte Carlo results of
Ref. [28] for ∆ = −1 and 1 further corroborated this
hypothesis [29]. Conversely, the renormalization-group
work of Dias et al. [26] suggested that along the critical
line, the conformal anomaly c and the exponents ν and
η are the same as that of the pure spin-1/2 Baxter-Wu
model (or the 4-state Potts model). Finally, the most
recent work by Jorge et al. [30] used Wang-Landau sam-
pling to probe the system's behavior at ∆ = 0. According
to these authors it exhibits an indeterminacy regarding
the order of phase transition, i.e., the analysis of numeri-
cal data was conclusive for both types of transitions, con-
tinuous or of �rst-order type. For the former case they
estimated the values ν = 0.6438(10) and γ = 1.1521(13).
In the present work we provide a resolution of these

controversies. Using extensive numerical simulations, as
outlined in Sec. II below, we scrutinize the critical prop-
erties of the model, covering the whole extent of the con-
tinuous transition line. In particular, in an attempt to
identify the presence and role of �nite-size e�ects, we per-
form Wang-Landau simulations at two �xed values of the
crystal �eld, ∆ = −10, deep in the second-order regime,
and ∆ = −1 in the vicinity of the pentacritical point.
We complement these by multicanonical simulations at
the temperature T = 1.8503 crossing the phase bound-
ary at ∆ ≈ −1 as indicated in Fig. 2. The remainder of
the paper is organized as follows: In Sec. II we outline
the Wang-Landau and parallel multicanonical simulation
methods that we use to study the problem, and we in-
troduce the observables studied. Our numerical results
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FIG. 3: Speci�c-heat curves of the spin-1 Baxter-Wu model
at ∆ = −10 for a system with linear size L = 24 obtained via
Wang-Landau and Metropolis simulations.

and the relevant �nite-size scaling analysis are presented
in Sec. III. Finally, in Sec. IV we summarize our �ndings
and provide an outlook.

II. NUMERICAL METHODS AND

OBSERVABLES

We use a combination of Wang-Landau and multi-
canonical simulations in a complementary strategy. This
combined scheme allows us to cross the phase boundary
of the model in two directions (see the dotted arrows in
Fig. 2) and probe e�ciently the critical properties of the
model.

A. Wang-Landau simulations

In a Wang-Landau simulation [31] random walks are
performed in energy space and trial spin con�gurations
are accepted with a probability proportional to the re-
ciprocal estimate of the density of states, 1/g(E). The
estimate g(E) for the current energy is modi�ed as
g(E) → f · g(E), where f is known as the modi�ca-
tion factor. During the simulation, an energy histogram
is also accumulated. If this is �at, the modi�cation fac-
tor is adjusted according to the rule fj+1 =

√
fj , where

f1 = e. In the present work we used a �atness criterion
of 90%, as well as jfinal = 24. Furthermore, to increase
statistical accuracy we averaged over several independent
samples, typically ∼ 32.
Our strategy follows the more stringent one-range im-

plementation of the Wang-Landau algorithm, compared
to the more e�cient multi-range approach where one
splits the energy range in many sub-intervals and joins
the densities of states from the separate pieces at the
end. This multi-range approach is almost a necessity for
very large lattices and in many cases has produced re-
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FIG. 4: Speci�c-heat (main panel) and magnetic suscepti-
bility (inset) curves corresponding to Eqs. (4) and (5) at
∆ = −10 from Wang-Landau simulations.

sults of high accuracy [31]. However, there are many
subtleties with respect to boundary e�ects [32] and espe-
cially in cases where �rst-order transition characteristics
appear [33], hence justifying our choice. The simulations
were facilitated by the use of restricted energy spaces, a
practice proven to be quite successful in many pure and
disordered spin models [33�37]. Estimating such ranges
from a chosen pseudo-critical temperature one should be
careful to account for the shift behavior of other impor-
tant pseudo-critical temperatures and extend the sub-
space appropriately from both low- and high-energy sides
in order to achieve an accurate estimation of all �nite-size
anomalies. At an initial stage of this work, preliminary
comparative tests were also executed using the Metropo-
lis algorithm [38, 39] to provide a benchmark, cf. Fig. 3.
For the purposes of the present study we do not use

the �nal estimate of g(E) to compute thermodynamic
averages but rather employ it as a weight function in a
�nal production run. The sampled observables include
estimates of the mean energy 〈E〉, the order parameter
〈m〉 which is estimated from the root mean square aver-
age of the magnetization per site of the three sublattices
A, B, and C [27, 28, 30]

m =

√
m2

A +m2
B +m2

C

3
, (3)

the speci�c heat

C =
[
〈E2〉 − 〈E〉2

]
/(NT 2), (4)

and the magnetic susceptibility

χ = N
[
〈m2〉 − 〈m〉2

]
/T, (5)

where N = L2 is the number of lattice sites. Character-
istic speci�c-heat and magnetic susceptibility curves for
the case ∆ = −10 obtained via Wang-Landau simula-
tions are shown in Fig. 4.
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FIG. 5: Speci�c-heat-like (main panel) and �rst-order loga-
rithmic derivative of the order parameter (inset) curves ob-
tained via multicanonical simulations at T = 1.8503.

B. Multicanonical simulations

We now turn to the description of the multicanonical
(MUCA) method [40]. In this approach, instead of using
the canonical Boltzmann weight e−βE , with β = 1/T ,
a correction function is introduced, designed to produce
a �at histogram. For the purposes of the current work,
the multicanonical method was applied with respect to
the crystal-�eld energy E∆ �xing the temperature and
allowing us to continuously reweight to arbitrary values
of ∆ [20]. To this end, the partition function

Z =
∑

{EJ ,E∆}

g(EJ , E∆)e−β(EJ+∆E∆) (6)

is generalized to

ZMUCA =
∑

{EJ ,E∆}

g(EJ , E∆)e−βEJ W (E∆) , (7)

where g(EJ , E∆) is the two-parametric density of states.
It follows that the equilibrium probability distribution in
the multicanonical ensemble is

PMUCA(EJ , E∆) =
g(EJ , E∆)e−βEJW (E∆)

ZMUCA
. (8)

In order to produce a �at E∆-histogram, by carrying out
a summation with respect to EJ , the modi�ed weight
should be given by

W (E∆) ∝ ZMUCA

[∑
EJ

g(EJ , E∆)e−βEJ

]−1

. (9)

These weights can be calculated in an iterative fashion
starting with an initial guess. At the nth step spins are
�ipped using the weights e−βEJW (n) (E∆) and the his-
togram H(n)(E∆) of the energies E∆ is sampled. After
a speci�ed number of spin-�ip attempts the histogram
is used to recalibrate the weights via W (n+1) (E∆) =
W (n) (E∆) /H(n)(E∆). The process is completed when a
su�ciently �at histogram has been achieved, after which
a series of production runs is carried out. At each step
the histogram H(n)(E∆) satis�es the equation

〈H(n)(E∆)〉 ∝ P (n)(E∆) =
1

ZMUCA

∑
EJ

g(EJ , E∆)e−βEJW (n)(E∆) ∝ W (n)(E∆)

W (E∆)
, (10)

justifying the scheme for updating the weights using sam-
pled histograms.
We employ a parallel implementation of the multi-

canonical method [41, 42], guided by its already success-
ful application in the study of the Blume-Capel model
in two and three dimensions [20, 22, 43]. In this setup
weights are distributed to parallel workers, each produc-
ing a histogram. At the end of each iteration all his-
tograms are added into a single one which is then used
to recalibrate the weights. Our simulations were imple-
mented on an Nvidia K80 GPU, e�ectively running tens
of thousands of simulation threads in parallel. Finally,
the histogram �atness was tested using the Kullback-
Leibler divergence [42, 44].
As the multicanonical method allows for continuously

reweighting to any value of ∆, canonical expectation val-

ues for an observable O = O({σ}) at a �xed temperature
can be obtained by estimating the expectation values

〈O〉∆ =
〈O({σ})e−β∆E∆({σ})W−1(E∆)〉MUCA

〈e−β∆E∆({σ})W−1(E∆)〉MUCA
. (11)

In this framework, it is natural to compute ∆-derivatives
of observables rather than the usual T -ones. For instance,
in place of the usual speci�c heat (4) one may de�ne a
speci�c-heat-like quantity [20]

C∆ =
1

N

∂EJ
∂∆

= − [〈EJE∆〉 − 〈EJ〉 〈E∆〉] /(NT ), (12)

which shows the shift behavior expected from the usual
speci�c heat as can be seen from the main panel of Fig. 5.
Additionally, in order to obtain direct estimates of the
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FIG. 6: P (E∆) for L = 96 obtained via multicanonical simu-
lations at T = 2.2578. Results for three adjacent crystal-�eld
values are shown.

critical exponent ν from �nite-size scaling, one may com-
pute the logarithmic derivatives of the order parame-
ter [45, 46]

∂ ln 〈mn〉
∂∆

= −
[
〈mnE∆〉
〈mn〉

− 〈E∆〉
]
/T, (13)

see the inset of Fig. 5 for the case n = 1.
Other useful observables accumulated during the mul-

ticanonical simulations are the magnetic susceptibility χ
and the fourth-order Binder cumulant of the magnetiza-
tion

Um = 1−
〈
m4
〉

3 〈m2〉2
. (14)

C. Simulation parameters

The numerical protocol described above was applied on
triangular lattices with periodic boundary conditions. To
accommodate not only the ferromagnetic ground state,
but also the three ferrimagnetic ones, the allowed val-
ues of the linear size of the lattice L must be a multiple
of three [28]. In the course of our simulations we con-
sidered linear sizes within the range 12 ≤ L ≤ 120 re-
specting this constraint. Wang-Landau simulations were
carried out at two values of the crystal �eld, namely at
∆ = −10 and −1. We also performed a high-precision
analysis using multicanonical simulations at the temper-
ature T = 1.8503 which roughly corresponds to the value
∆ = −1 of the phase diagram. Some additional simula-
tions were conducted at T = 2.2578 (red dotted arrows
in Fig. 2). Finally, we would like to point out that for the
�tting procedure discussed below in Sec. III we restricted
ourselves to data with L ≥ Lmin, adopting the standard
χ2 test for goodness of the �t. Speci�cally, we considered
a �t as being acceptable only if 10% < Q < 90%, where
Q is the quality-of-�t parameter [47].

III. RESULTS

A. Order of the transition

As discussed above, there have been recent reports of
�rst-order transition features even along the putatively
continuous part of the transition line [30]. In order to
provide clarity regarding the transition order, we studied
the reweighted probability density function P (E∆) nor-
malized to unity as obtained from the multicanonical sim-
ulations. It is well known that a double-peak structure in
the density function in �nite systems is an expected pre-
cursor of the two δ-peak behavior in the thermodynamic
limit occurring for a �rst-order phase transition [48, 49].
We start with Fig. 6 which illustrates the probabil-

ity density function P (E∆) for a system with linear size
L = 96 at the temperature T = 2.2578 corresponding to
∆ = −10 (see Fig. 2). Clearly, no sign of a double-peak
structure is observed which would indicate the presence
of a �rst-order transition. On the other hand, as we lower
the temperature gradually to T = 1.8503 (corresponding
to ∆ = −1), �rst-order-like characteristics appear � see
the upper panel of Fig. 7 � in agreement with the results
of Ref. [30] for the case ∆ = 0.
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FIG. 7: Upper panel: Reweighted probability density func-
tions P (E∆) for various system sizes. Lower panel: Limit-
ing behavior of the corresponding surface tension Σ(L) (main
panel) and latent heat ∆e∆(L) (inset). Results obtained via
multicanonical simulations at T = 1.8503.

This observation calls for a systematic analysis of the
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relevant surface tension and latent heat of the transition
as suggested by Lee and Kosterlitz [50]. In fact, the mul-
ticanonical method is instrumental for this purpose as it
allows the direct estimation of the barrier associated with
the suppression of states during a �rst-order phase tran-
sition. Considering distributions with two peaks of equal
height (eqh) [51], such as the ones shown in the upper
panel of Fig. 7, allows one to extract the free-energy like
barrier in the E∆-space,

∆F (L) =
1

2β∆
ln

(
Pmax

Pmin

)
eqh

, (15)

where Pmax and Pmin are the maximum and local min-
imum of the distribution P (E∆), respectively. The re-
sulting barrier connects a spin-0 dominated regime (E∆

small) and a spin-±1 rich phase (E∆ large). The corre-
sponding surface tension Σ(L) = ∆F (L)/L is expected to
scale as Σ(L) = Σ∞+c1L

−1+O
(
L−2

)
in two dimensions,

possibly with higher-order corrections [52�54]. Similarly
we may de�ne the latent heat of the transition ∆e∆(L),
where e∆ = E∆/L

2, as the di�erence in energies of the
two peaks. The scaling behavior of these observables is
presented in the lower panel of Fig. 7. Note the existence
of a crossover length L∗ ≈ 30 where the slope in the trend
of Σ(L) changes sign, indicating strong �nite-size e�ects
and accounting for misleading previous conclusions that
the transition might be of �rst order. The dashed line in
the main panel shows a �t including third-order correc-
tions terms for L ≥ L∗ giving a practically zero value of
Σ∞ = −5 × 10−5 ± 11 × 10−5. A similar, but somehow
slower downward trend is also observed in the latent heat
presented in the inset of Fig. 7.

B. Finite-size scaling and universality

Having established the continuous nature of the transi-
tion we proceed to a detailed �nite-size scaling analysis of
the numerical data designed to probe the universality of
the secon-order transition and determine its universality
class. In what follows we show a selection of results ob-
tained via Wang-Landau and multicanonical simulations
for a range of observables that support the original ex-
pectation that the spin-1 Baxter-Wu model in a crystal
�eld belongs to the universality class of the 4-state Potts
model.
In order to extract critical temperatures Tc(∆) and

crystal �elds ∆c(T ) of the system as well as a �rst es-
timate of the correlation-length exponent ν we present
in Fig. 8 the shift behavior of suitable pseudocritical
temperatures, T ∗L, de�ned as the peak locations of the
speci�c-heat C and susceptibility χ curves of Fig. 4. Two
data sets are shown, corresponding to ∆ = −10 (main
panel) and ∆ = −1 (inset). For each value of ∆ the solid
lines are joint �ts of the expected power-law behavior

T ∗L = Tc + bL−1/ν(1 + b′L−ω) (16)

to the data, where the correction-to-scaling exponent ω is
�xed hereafter to the accepted value 2 [5, 6, 26, 28]. Using
Lmin = 12 we obtain the values Tc(∆ = −10) = 2.2578(5)
and Tc(∆ = −1) = 1.8503(9) in excellent agreement
with the values 2.2578(116) and 1.8503(94), respectively,
reported in Ref. [26] using conventional �nite-size scal-
ing. More importantly, our estimates ν = 0.655(17) for
∆ = −10 and ν = 0.652(18) for ∆ = −1 agree nicely
with the value ν = 2/3 of the q = 4 Potts universality
class.
Similarly, in the upper panel of Fig. 9 we present the

shift behavior of several pseudocritical �elds, ∆∗L, de�ned
as the peak locations of the ∆-dependent curves de�ned
in Sec. II. A simultaneous �t of the form

∆∗L = ∆c + bL−1/ν(1 + b′L−ω), (17)

using Lmin = 15 provides the estimates ∆c(T =
1.8503) = −1.002(2) and ν = 0.68(2) in very good agree-
ment with the results of Fig. 8. Moreover, in the main
plot of the lower panel of Fig. 9 typical curves of the
fourth-order Binder cumulant Um (13) are shown, where
the location of the crossing point also agrees nicely with
the value ∆ = −1 (see also Figs. 2 and 8).
Additional estimates for the critical exponent ν can be

obtained via the scaling of the maxima of the logarithmic
derivatives of the order parameter (13). Since these are
dimensionless quantities, we expect them to scale as(

∂ ln 〈mn〉
∂∆

)∗
∼ L1/ν(1 + b′L−ω). (18)

The numerical data for n = 1 and n = 2 obtained from
multicanonical simulations at T = 1.8503 are shown in
Fig. 10, and the solid lines are power-law �ts of the
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FIG. 9: Upper panel: Shift behavior of several pseudo-
critical �elds as a function of the inverse linear system size.
Lower panel: Fourth-order Binder cumulant curves of the
order parameter. The black vertical dashed line marks the
value ∆ = −1. The inset shows the limiting behavior of the
crossings U∗m on pairs of lattice sizes (L, 2L). Data produced
at T = 1.8503 via multicanonical simulations.

form (18) with Lmin = 18 giving ν = 0.669(5) and
0.673(6), respectively. Again these results point to the
expected 2/3 value of the q = 4 Potts universality class.
We now turn to the �nite-size scaling behavior of the

maxima of the speci�c heat (C∗ and C∗∆, respectively)
and magnetic susceptibility (χ∗) in order to probe the
critical exponent-ratios α/ν and γ/ν, respectively. Fig-
ure 11 presents numerical data obtained via the Wang-
Landau algorithm (upper panel, ∆ = −10 and −1) and
the multicanonical approach (lower panel, T = 1.8503).
In all cases the solid lines are �ts of the form

C∗(∆) ∼ L
α/ν(1 + b′L−ω) (19)

and

χ∗ ∼ Lγ/ν(1 + b′L−ω), (20)

choosing Lmin = 18. The obtained estimates of α/ν and
γ/ν are listed in the panels (see also Tab. I below) and
are clearly compatible to the exact values α/ν = 1 and
γ/ν = 7/4 of the 4-state Potts universality class [3]. As
a side note, error propagation and ν values from Fig. 8
suggest that α = 0.662(22) and 0.678(38) for ∆ = −10
and ∆ = −1, respectively [64].
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At this point we would like to make a remark on the
additional correction term b′L−ω appearing in the �ts
of Figs. 8�11. Although in the work of Jorge et al. for
the spin-1/2 model critical exponents were obtained with
very good accuracy and without the need for corrections
to scaling [9], the situation here is rather di�erent. In



8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 2  2.1  2.2  2.3  2.4  2.5

q = 4 Potts: (ξ/L)∞ = 1.02(3)

ξ/
L

T

L = 12 
L = 15 
L = 18 
L = 24 
L = 30 
L = 36 
L = 48 
L = 60 
L = 72 
L = 96 
L = 120

 0.94

 0.96

 0.98

 1

 1.02

 0  0.0005  0.001

(ξ
/L
)*

L-ω

 0.94

 0.96

 0.98

 1

 1.02

 0  0.0005  0.001

1.00(4)

FIG. 12: Main panel: Typical ξ/L curves as a function
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2.2578 of Fig. 8. Inset: Finite-size scaling of the correlation-
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(36, 72), (48, 96), and (60, 120). The solid line shows a linear
in L−ω extrapolation to L→∞. The black dashed line marks
the value of (ξ/L)∞ of the 4-state Potts model, as taken from
Ref. [61].

particular the values of scaling amplitudes b and b′ in
Eqs. (16)�(20) are comparable and in particular the val-
ues of b′ �uctuate within the range 1− 20 for the various
observables and cannot be neglected. Additionally, from
our overall comparative tests we may safely conclude that
the �tting quality measured in terms of the probability Q
is indeed improved when the correction term is included.
Universality classes are characterized by a whole range

of universal quantities, which include critical exponents
but also certain amplitude ratios g [11, 43, 55, 56]. In
contrast to exponents, amplitude ratios depend on ad-
ditional system properties, such as the lattice geome-
try and boundary conditions. In the present work we
study two of these universal amplitudes, namely the well-
known Binder cumulant g = Um, see Eq. (14), and the
ratio of the correlation length over the linear system
size, g = ξ/L; typical curves of ξ/L at ∆ = −10 are
shown in the main panel of Fig. 12. For the estima-
tion of ξ we used the well-known second-moment de�ni-
tion [43, 57, 58]: From the Fourier transform of the spin
�eld, σ̂(k) =

∑
x σx exp(ikx), we determined

F =
〈
|σ̂(2π/L, 0)|2 + |σ̂(0, 2π/L)|2

+ |σ̂(2π/L, 2π/L)|2
〉
/3

(21)

and attained the correlation length via [58]

ξ ≡ 1

2 sin(π/L)

√
〈m2〉
F
− 1 (22)

To monitor the size evolution and limiting behavior of
these amplitudes we employ the quotients method [55,

59, 60]: The crystal �eld (resp. temperature) where
g2L/gL = 2, i.e., where the curves of Um (resp. ξ/L)
of the sizes L and 2L cross, de�nes the �nite-size pseu-
docritical points (see the lower panel of Fig. 9 and also
Fig. 12). Let us denote the value of g at these cross-
ing points as g∗. Within the framework of the quotients
method a scaling of the form g∗ = g∞ + O(L−ω) is ex-
pected, where g∞ is a universal value.
In the inset of Fig. 9 we provide an estimate of the

universal Binder cumulant Um,∞ extracted from this se-
quence U∗m. The solid line is a second-order polynomial
�t in L−ω, yielding Um,∞ = 0.596(6) in very good agree-
ment with the graphical estimate 0.595 obtained by Cap-
poni et al. [13]. Similarly, in the inset of Fig. 12 we
show the in�nite-size extrapolation of (ξ/L)∗ for the four
largest pairs of system sizes as listed in the caption of
this �gure. The solid line is a linear �t in L−ω, leading
to (

ξ

L

)
∞, spin−1 BW

= 1.00(4). (23)

We recall the value of (ξ/L)∞ for the two-dimensional
q = 4 Potts model with periodic boundary conditions
from the seminal work of Salas and Sokal [61](

ξ

L

)
∞, q=4 Potts

= 1.02(3). (24)

A comparison of the results of Eqs. (23) and (24) con-
sists our �nal universality check which succeeds within
∼ 2% accuracy. We note here that an alternative ap-
proach that allows to �t the whole set of data points to a
two-parameter �nite-size scaling ansatz that includes the
temperature can be found in Ref. [62].

IV. SUMMARY AND OUTLOOK

We presented here an extensive numerical study of
scaling and universality in the phase diagram of the di-
luted Baxter-Wu model. Using a highly optimized combi-
nation of Wang-Landau simulations that cross the transi-
tion at constant crystal �eld ∆ and multicanonical simu-
lations operating at constant temperature T , we covered
a range of the transition line de�ned by ∆ ≤ −1. We
provided clear-cut evidence for a continuous nature of
the transition in this regime. The previously reported
�rst-order signature of the transition on approaching the
pentacritical point is also seen here for our simulations at
∆ = −1, but a careful �nite-size scaling analysis shows
that they are a �nite-size e�ect with a crossover-length
L∗ ≈ 30 beyond which the �rst-order character disap-
pears. In view of these results it seems clear that the
�rst-order nature at ∆ = 0 reported in Ref. [30] similarly
is a �nite-size e�ect. Everywhere in the second-order
regime our analysis clearly shows consistency with the
universality class of the 4-state Potts model. From the
accuracy in the determination of the critical exponents
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TABLE I: An overview of exact and numerical results for the 4-state Potts model and the spin-1/2 Baxter-Wu model, together
with a summary of numerical results for the spin-1 Baxter-Wu model in a crystal �eld obtained in the current work via: (i)
Wang-Landau simulations at �xed values of the crystal �eld ∆ (columns 4 and 5) and (ii) multicanonical simulations at a �xed
temperature T (column 6).

4-state Potts spin-1/2 Baxter-Wu spin-1 Baxter-Wu

Ref. [7] Ref. [3] ∆ = −10 ∆ = −1 T = 1.8503

ν 2/3 2/3 0.655(17) 0.652(18) 0.671(6)a

α/ν 1 1 1.01(2) 1.04(5) 1.01(1)

γ/ν 7/4 7/4 1.76(3) 1.75(1) 1.76(1)

(ξ/L)∞ 1.02(3) [61] 1.00(4)

Um,∞ ∼ 0.595 [13] 0.596(6)

Tc(∆) or ∆c(T ) 2.2578(5) 1.8503(9) −1.002(2)

aThis estimate corresponds to the average value of ν obtained
from the �ts of Fig. 10. Cross-correlations were not taken into
account, but see Ref. [63].

one may conclude that logarithmic corrections to scaling
are indeed absent in this model. A comparative overview
of our results is provided in Tab. I. While it is clear from
our results that strong scaling corrections appear as the
pentacritical point where the transition changes to �rst-
order is approached, the exact location of this pentacrit-
ical point and its universality class were not considered
here. This question is left for future work. To conclude,
we hope that this work settles some of the previously
reported controversies over the critical behavior of the
spin-1 Baxter-Wu model and lays the foundation for in-
triguing extensions. One such interesting line of research
would be to unveil the e�ect of quenched disorder in both
parts of the phase diagram of the model.
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