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The relevance of quenched, uncorrelated disorder coupling to the local
energy density, its paradigm being the random-bond model, is judged by
the Harris criterion. A generalization of the underlying argument to the
case of spatially correlated disorder, exemplified by quasi-crystals, has been
given by Luck. We address the question, whether a relevance criterion of
this type is applicable to the case of spin models coupled to different kinds of
random graphs . The geometrical fluctuation exponent appearing in Luck’s
criterion is precisely determined for the cases of two-dimensional Poissonian
Voronöı-Delaunay random lattices and planar, “fat” φ3 Feynman diagrams.
While previous work for the latter graphs is in accord with the determined
relevance threshold, a preliminary analysis of the results of a Monte Carlo
simulation of the three-states Potts model on Poissonian Voronöı lattices
presented here does not meet the expectations from the relevance criterion.

PACS numbers: 75.10.Hk, 75.40.Mg, 75.50.Lk

1. Introduction

For the investigation of the effect of quenched disorder on the universal
aspects of critical phenomena, models with an uncorrelated, random distri-
bution of couplings have been considered as the main example for the whole
field of quenched disorder coupling to the local energy density [1–4]. De-
pending on the considered quenched distribution of couplings, this includes
ferromagnetic random-bond models as well as the qualitatively very different
case of spin glasses, where the disorder is augmented by energetic frustration
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resulting from the inclusion of anti-ferromagnetic couplings [2, 5–11]. Con-
cerning the effect of random bonds on a continuous phase transition, it was
initially believed that the system might break up into a set of essentially
uncoupled subsystems which undergo ordering at different temperatures,
thus destroying any sharp phase transition [1,8]. In the meantime, however,
renormalization group analyses as well as numerical investigations have been
able to convincingly show that, instead, the system can cross over to a new,
disorder fixed point signifying a new (model-dependent) universality class
with corresponding critical exponents [3, 12–16]. Using phenomenological
scaling theory, Harris [8] argued that such a crossover should not occur for
systems with a specific-heat exponent α < 0. In agreement with the expe-
rience from examples such as the random-bond Ising and Potts models it is
now widely believed that also the converse should be true, i.e., a crossover
does occur for systems with α > 0 [12, 13, 17]. In the marginal case α = 0,
realized, e.g., by the random-bond Ising model in two dimensions, the reg-
ular critical behavior is merely modified by the appearance of additional
multiplicative logarithmic corrections [3]. On the other hand, for systems
exhibiting a first-order phase transition in the regular case, the introduc-
tion of quenched disorder coupling to the local energy density can weaken
the transition to second (or even higher) order [11]. While this scenario has
been rigorously established for the case of two dimensions and an arbitrarily
small amount of disorder [9,10,18,19], the situation for higher-dimensional
systems is less clear. For a variety of systems in three dimensions, however,
the introduction of a sufficiently strong amount of disorder seems to be able
to soften the transition to a continuous one, see, e.g. Refs. [20–22].

As soon as the assumption of independence of the disorder degrees of
freedom is relaxed, the reasoning of the Harris criterion is no longer applica-
ble as it stands. The existence of spatial correlations leads to a modification
of the fluctuations present in “typical” patches of the random system with
respect to the behavior expected from the central limit theorem for inde-
pendent random variables, which is implicitly presupposed by Harris’ argu-
ments. Such correlations for a random-bond model have been considered oc-
casionally [23–26] and altered relevance criteria have been proposed [23,27].
Luck [27] has considered a class of irregular systems not covered by the
random-bond paradigm, namely that of quasi-crystalline or aperiodic struc-
tures, and formulated a generalized relevance criterion. Although he did
not consider systems with connectivity disorder such as the random graph
models to be considered here, his reasoning should also apply to these cases,
as will be shown below. Following his argument, the “break-even point” for
relevance of correlated disorder is shifted from the uncorrelated case αc = 0
to somewhere in the interval −∞ < αc ≤ 1, depending on a characteristic of
the correlations of the disorder variables termed the geometrical fluctuation
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or wandering exponent [27]. Although critical phenomena on lattices subject
to connectivity disorder have been considered before by Monte Carlo simu-
lations [28–36] and analytical methods [37–42], to our knowledge no contact
has been made with Luck’s predictions, and the wandering exponents of the
considered random graphs have not yet been taken into account.

In Section 2, we elaborate on a formulation of Luck’s relevance criterion
appropriate for the considered random graphs and numerically determine
the wandering exponents occurring for the classes of two-dimensional Pois-
sonian Voronöı-Delaunay triangulations [43] and the planar φ3 Feynman
diagrams of the dynamical triangulations model [44]. Section 3 is devoted
to a report on the preliminary results of a high-precision Monte Carlo sim-
ulation study of the three-states Potts model on planar, Poissonian Voronöı
lattices. Finally, Section 4 contains our conclusions.

2. The Harris-Luck Criterion

In the following, we present two examples of classes of random graphs
exhibiting spatial correlations of the co-ordination number distributions,
which are the disorder degrees of freedom for these lattices. In this respect,
these graphs are different from “generic” random graph models [45], where
bonds are distributed completely at random between a given number of
nodes, such producing uncorrelated connectivity disorder.

2.1. Correlated Random Graphs of Voronöı-Delaunay Type

The planar Voronöı-Delaunay construction [43] prescribes a segmenta-
tion of a patch of the plane into convex polygons compatible with a given
set of point positions (generators). The Voronöı cell of a generator is defined
as the region of the plane, which is closer to it than to any other generator.
The three-valent vertices where these cells meet and the cell edges make up
the Voronöı graph associated with the generators. Accordingly, the struc-
ture geometrically dual to the Voronöı graph is the Delaunay triangulation
of the considered patch of the plane. The Voronöı-Delaunay construction
for an arbitrary distribution of generators can be considered as a general-
ization of (and includes as a special case) the Wigner-Seitz elementary cells
of regular lattices.

Now, consider the regular cell structure generated by the Voronöı-De-
launay construction from a regular arrangement of points such as, e.g., the
vertices of a triangular lattice. The randomness in a physical system to
be modelled by this lattice could be accounted for by randomly displacing
the generators and re-applying the Voronöı-Delaunay construction to adapt
the lattice accordingly. In the limit of large, isotropic displacements this
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Fig. 1. Snapshot of a Poissonian Voronöı-Delaunay random graph of spherical

topology and with N = 5000 triangles. The shown triangles constitute the De-

launay tessellation with vertices of varying co-ordination number. The Voronöı

graphs considered numerically are the geometric duals of the shown structure.

leads to a maximally disordered system with an equal distribution of gen-
erators in the region under consideration. The resulting Voronöı-Delaunay
graph is referred to as Poissonian random lattice since the generators can
be considered as realization of a Poisson point process [43,46]. To eliminate
surface effects, the Voronöı-Delaunay construction is applied to generators
distributed at random on a sphere. The Delaunay triangulation resulting
from such a process is depicted in Fig. 1.

In the resulting Voronöı-Delaunay graph, the disorder appears in the
distributions of edge lengths, cell volumes etc. and in the random distri-
bution of co-ordination numbers for the Delaunay triangulations resp. the
loop length distribution of the dual Voronöı graphs. For the analyses to
be presented below, we restrict ourselves to the topological structure of the
lattices, i.e., we ignore any length differences and consider only the connec-
tivity structure of the abstract graphs. Hence, variation of co-ordination
numbers qi of the triangulation resp. loop lengths of the dual graph, i.e.
connectivity disorder , is the only remaining effect of randomness. From the
Euler relations, the average co-ordination number is a topological invariant
for a fixed number of triangles in two dimensions, given by [44]

q̄ =
1

N

∑

i

qi = 6
N

N + 4
, (1)

for any closed triangulation, where N denotes the number of triangles. Ob-
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Fig. 2. Snapshot of a dynamical triangulation of volume N = 5000 triangles. The

considered planar, “fat” φ3 diagrams correspond to the geometric duals of these

triangulations.

viously, one has 〈q̄〉 = 〈qi〉 = 6 for N → ∞. The expected variance of
co-ordination numbers can be shown to approach [43,47]

µ2 ≡ 〈q2
i 〉 − 〈qi〉

2 ≈ 1.781, (2)

as N → ∞. It turns out that the random variables qi are not independently
distributed, but are reflecting a spatial correlation of the disorder degrees
of freedom in addition to the trivial correlation induced by the constraint
(1). The form of these correlations for nearest-neighbor vertices is commonly
described by the Aboav-Weaire law [43], which states that the total expected
number of edges of the neighbors of a q-sided cell, q m(q), should vary
linearly with q,

q m(q) = (6 − a)q + b, (3)

where a and b are some parameters. Equation (3) is a good description
for the nearest-neighbor correlations in a large variety of random structures
encountered in nature; it can be shown, however, that it applies only ap-
proximately in most cases, including that of Poissonian random lattices [46].

2.2. Correlated Random Graphs of Dynamical Triangulation Type

A different ensemble of random graphs results from the gluing of a fixed
number N of equilateral triangles to a closed surface of spherical topol-
ogy, where all possible gluings are counted with equal probability. This
defines the dynamical triangulations model used as a constructive approach
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Fig. 3. Comparison of the co-ordination number distributions P (q) of Poissonian

Delaunay triangulations and dynamical triangulations in the limit of an infinite

number of triangles.

to quantum gravity [44]. The graphs dual to these triangulations are pla-
nar, “fat” (i.e., orientable) φ3 Feynman diagrams without tadpoles and
self-energy insertions, which can be counted analytically by matrix model
methods [44, 48]. An example of a dynamical triangulation, embedded in
three-dimensional space for illustration purposes, is depicted in Fig. 2. As
can be seen, fluctuations are much more pronounced in these structures
than in the Poissonian random lattices. In fact, it can be shown that the
asymptotic variance of co-ordination numbers is exactly µ2 = 10.5 [49],
whereas Eq. (1) still holds. Comparing the full distributions of co-ordina-
tion numbers [47, 48, 50] shown in Fig. 3, it is seen that for the dynamical
triangulations model large co-ordination numbers are much more probable
than for the case of Poissonian random lattices. Vertices with large co-or-
dination number appear at points of the lattice, where “baby universes”
branch off from the main surface, i.e., macroscopical subgraphs attached to
the main body by only a few links. In fact, the considered graph ensemble
can be described as that of (statistically) self-similar, fractal trees of “baby
universes” [51]. The “baby universe” structure is reflected in an exception-
ally large internal Hausdorff dimension of dh = 4 [52, 53] as compared to
the dimension dh = 2 of the Poissonian random lattice model. As will be
shown below, dynamical triangulations graphs also exhibit spatial correla-
tions between the co-ordination numbers, which are in fact much stronger



proc printed on October 7, 2006 7

than those found for Poissonian random lattices.

2.3. Relevance for Critical Phenomena

According to the argument put forward by Harris [8] and its mathemat-
ical backing-up given in Refs. [54,55], the relevance of randomness coupling
to the local energy density crucially depends on how fast fluctuations of the
local transition temperature induced by fluctuations of the random vari-
ables in a correlation volume die out as the critical point is approached. For
independent random variables, this decay occurs with an exponent of d/2
in d dimensions. The comparison of this power with the inverse correlation
length exponent 1/ν leads to Harris’ celebrated relevance criterion.

Following Luck [27], this reasoning can be extended to the correlated
random variables present in the random graph models under consideration
as follows. Consider a spherical patch P of radius R on a triangulation con-
taining B(R) vertices1. Then, the fluctuations of the average co-ordination
number in P ,

J(R) ≡
1

B(R)

∑

i∈P

qi, (4)

around its expected value J0 = q̄ [cf. Eq. (1)] in general decays in the limit
R → ∞ of large patches as

σR(J) ≡ 〈|J(R) − J0|〉/J0 ∼ 〈B(R)〉−(1−ω) ∼ R−dh(1−ω), (5)

defining the wandering exponent ω of the considered graph type. Here,
the averages 〈·〉 are to be understood as the ensemble averages of the con-
sidered class of graphs of a given total size. While for ω = 1/2 the usual

1/
√

〈B(R)〉 behavior of uncorrelated random variables is recovered, for ran-
dom lattices with long-range correlations of the co-ordination numbers one
expects ω > 1/2, leading to a slowed-down decay of fluctuations. Near
criticality, the fluctuation σξ(J) of the average co-ordination number in a
correlation volume induces a local shift of the transition temperature pro-

portional to |t|dhν(1−ω)µ
1/2
2 . For the regular critical behavior to persist,

these fluctuations should die out as the critical point t = 0 is approached.
This is the case when ω does not exceed the threshold value

ωc(ν) = 1 −
1

dhν
=

1 − α

2 − α
, (6)

1 All distances on the graphs considered in this paper are to be understood as the
number of links in the unique shortest path of links connecting two vertices.
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Fig. 4. Numerical estimate of the scaling of the average fluctuation of co-ordination

numbers of Voronöı-Delaunay triangulations of volume N = 500 000 and a fit to

the expected functional form (5).

provided that hyper-scaling is applicable. On the other hand, for ω > ωc(ν)
a new type of critical behavior could occur. Re-writing Eq. (6) as

αc =
1 − 2ω

1 − ω
, (7)

it is obvious that for ω = 1/2 the Harris criterion is recovered.
Since for graphs with sufficiently long-range correlations of the co-or-

dination numbers ω > 1/2, this type of disorder is more relevant than
uncorrelated randomness in the sense that a change of universality class
can already be expected for some range of negative values of α, cf. Eq. (7).
On the other hand, if correlations decay exponentially, the Harris criterion
should stay in effect.

2.4. Determination of Wandering Exponents

To arrive at predictions for the relevance of the connectivity disorder
of the considered classes of graphs to alter the critical behavior of coupled
spin systems, we determine the wandering exponent ω numerically by sam-
pling the fluctuations defined in Eq. (5) for a series of graph realizations of
the considered ensembles. For the case of the Voronöı-Delaunay graphs the
method of generation has been described in Section 2.1; independent real-
izations of the dynamical triangulations model are generated by a recursive
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Fig. 5. Scaling of the average fluctuation of co-ordination numbers for combinatorial

dynamical triangulations of volume N = 250 000 and a fit to the functional form

(5).

insertion method proposed in Ref. [56]. For both ensembles, an average is
taken over 100 different graph realizations. To determine the volume B(R)
and the average co-ordination number J(R), a vertex of the triangulation is
picked at random and the graph is subsequently decomposed into spherical
shells of vertices with link distance R from the chosen origin. The resulting
expressions for B(R) and J(R) according to Eq. (4) are then averaged over
different choices of origin for each graph and the 100 graph realizations.

The resulting final averaged fluctuations are shown for Voronöı-Delau-
nay graphs composed of N = 500 000 triangles in Fig. 4 and for dynamical
triangulations of N = 250 000 triangles in Fig. 5. Note that the range of ac-
cessible distances R for a given number of triangles N is much smaller for the
case of dynamical triangulations due to the large fractal dimension dh = 4.
According to Eq. (5) these plots should show an approximately linear be-
havior in a logarithmic presentation for large distances R, the slope of the
line being given by 1− ω. For an intermediate range of volumes B(R) and,
consequently, distances R, these expectations are met for both graph types.
For 1/B(R)− 1/N small, however, this behavior is superimposed by an ex-
ponential decline of fluctuations. This stems from the topological constraint
(1) expressing the absence of fluctuations of the average co-ordination num-
ber of the whole graph and is thus a finite-size effect. The appearance of this
exponential drop corresponds to the canonical ensemble of a fixed number



10 proc printed on October 7, 2006

of altered or deleted bonds that is sometimes used in the random-bond type
model as opposed to the more conventional grand-canonical description with
fluctuating numbers of bond species [57–59]. Hence, taking discretization
effects for small R into account, only a rather small window of distances can
be used for a reliable determination of the wandering exponent via a fit to
the functional form (5). This is done by successively dropping events from
either side of the range of R’s while monitoring the quality-of-fit parame-
ters2 χ2 and Q. Taking these considerations into account, our estimate for
the wandering exponent for Voronöı-Delaunay triangulations becomes,

ω = 0.50096(55), (8)

whereas for dynamical triangulations we arrive at

ω = 0.7155(28). (9)

The given error estimates are calculated by jackknifing [60, 61] over the
whole fitting procedure, such as to avoid any bias induced from the cross-
correlations of the J(R) for different R. Due to the large fractal dimension
of the dynamical triangulations graphs, we expect systematical finite-size
corrections to be much more pronounced there, such that the quoted statis-
tical error probably does not capture the size of the possible total deviation
from the asymptotic behavior.

The result for Voronöı-Delaunay graphs is well consistent with ω = 1/2
which would result from correlations decaying with a power larger than
d = 2 (see also Ref. [23]). A direct inspection of the correlation function of
co-ordination numbers indicates an even exponential decay [62]. Thus, the
relevance criterion (7) reduces to the Harris criterion; Voronöı-Delaunay
connectivity disorder should be a relevant perturbation for models with
specific-heat exponent α > 0. For the dynamical triangulations, on the
other hand, the co-ordination number correlations are found to be algebraic
(which is consistent with the results obtained from a direct analysis of the
correlation function [62]) and, according to Eq. (7), these graphs should alter
the critical behavior of any model with α & −1.5, i.e., of all conventional
models.

3. The Potts Model on Voronöı Diagrams

With the aim of finding altered critical behavior from coupling to the
described random lattices, we consider the q-states Potts model [63]. From

2 Note that due to the correlations between values of J(R) for different distances R,
the absolute values of χ2 resp. Q are not immediately meaningful; relative changes,
however, are.
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the determination of wandering exponents presented in the last Section we
conclude that for the Ising model (q = 2, α = 0) dynamical triangulations
should be a relevant perturbation, whereas Voronöı-Delaunay graphs should
at most induce logarithmic corrections with respect to the regular behavior,
which might not be easy to resolve. On the other hand, for the q = 3, 4
Potts models with α = 1/3, 2/3, respectively, the relevance criterion (7)
with the found values of ω predicts a change of critical behavior for both
lattices, dynamical triangulations and Voronöı-Delaunay graphs.

Indeed, simulations of the q = 2, 3, 4 Potts models coupled to dynami-
cal triangulations provide good evidence for a cross-over to new universal-
ity classes [33, 34, 64]. Furthermore, the exact solution of the percolation
model, which has α = −2/3 and corresponds to the limit q → 1 of the Potts
model, on dynamical triangulations, shows a shift to a different universal-
ity class [65, 66]. Also, the first-order case q = 10 appears to get softened
to a continuous transition [67, 68]. On the other hand, simulations of the
Ising model on two-dimensional Delaunay triangulations yield Onsager ex-
ponents; the presence of possible logarithmic corrections could not be de-
tected [28,29,69]. Moreover, the three-dimensional Ising model, which has a
positive specific-heat exponent α ≈ 0.1, does not show any crossover to new
universal behavior when coupled to Delaunay tessellations in Monte Carlo
simulations [35] (however, the wandering exponent for Poissonian random
lattices in three dimensions has not yet been determined). For the q = 3
Potts model in two dimensions only an exploratory study with rather small
graphs is available, which does not show a change of critical behavior as
compared to that on regular lattices [31]. Here, we present the preliminary
results of a set of high-precision Monte Carlo simulations of the q = 3 Potts
model on Voronöı diagrams of up to N = 80000 ≈ 2802 vertices.

3.1. Model and Simulation

We consider the ferromagnetic, zero-field three-states Potts model with
Hamiltonian

H = −J
∑

〈i,j〉

δsisj
, (10)

where si ∈ {1, 2, 3} and the sum runs over all nearest-neighbor pairs of ver-
tices of a Voronöı diagram. As has been mentioned above in Section 2.1,
we consider the Voronöı graph as a topological object, with equal distances
set to unity between any two nearest-neighbor vertices. All simulations are
performed using the Swendsen-Wang (SW) cluster algorithm for the Potts
model [70] for a fixed realization of the Voronöı graph. The disorder aver-
ages are performed on the level of the free energy and its derivatives using
100 different realizations of Voronöı graphs. The sufficiency of this number
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of replica is checked by performing the same analyses with only half the
number of graphs: apart from the expected increase in statistical fluctu-
ations, we find consistent results from this reduced set of replicas for all
quantities considered. By exemplary determination of integrated autocor-
relation times using a jackknifing technique [60,61], we checked that it only
takes a few SW updates for all considered graph sizes and temperatures to
create an effectively uncorrelated new configuration. For the finite-size scal-
ing analysis to be presented below, simulations were performed for graphs
of sizes N = 1000, 5000, 10 000, 20 000, 40 000, 60 000, and 80 000. For
each replica, after thermalization 50 000 measurements were taken, yielding
a total statistics of 5× 106 events per lattice size. To arrive at estimates of
the various considered quantities as continuously varying functions of the
coupling K = βJ , we make use of the reweighting technique [71,72].

3.2. Scaling Analysis

To determine the full set of critical exponents of the model and the
critical coupling Kc = βcJ , we apply a well tried sequence of finite-size
scaling analyses, see, e.g., Refs. [33,73]. First, to determine the correlation
length exponent ν, we make use of the fact that the logarithmic derivatives
of the order parameter3 m as well as the derivative of the Binder cumulant
U = 1 − 〈m4〉/3〈m2〉2 at their respective maxima should scale as

Amax(N) ∼ aN1/2ν(1 + bN−θ/2), (11)

where we restrict ourselves to A = dU/dK, A = d lnm/dK and A =
d ln m2/dK. For the preliminary analysis presented here, we do not take
the correction term into account, i.e., we set b = 0 throughout. Figure 6
shows the results of the scaling analysis together with fits to the functional
form (11). To account for the visible effects of scaling corrections, we include
only results for N ≥ 20 000. These fits yield,

ν =







0.8342(46), A = dU/dK,
0.8328(26), A = d lnm/dK,
0.8340(26), A = d lnm2/dK,

(12)

a weighted average of which gives the final estimate ν = 0.8335(46). With
this estimate of ν, the critical coupling can be found from the peak positions
of various observables,

K(Amax, N) ∼ Kc + aN−1/2ν , (13)

3 To break symmetry explicitly, we use the maximum definition of m, see, e.g. Ref. [74].
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the logarithms of magnetization moments lnm and lnm2 of the three-states Potts

model on Voronöı graphs as a function of the graph size N . The solid lines show

fits to the leading term of the functional form (11).

with A one of cV , dm/dK, d lnm/dK, d ln m2/dK, dU/dK, or χ, where
cV = K2N [〈e2〉 − 〈e〉2] and χ = N [〈m2〉 − 〈m〉2], and e denotes the internal
energy per site. An error weighted average of these independent estimates
gives Kc = 1.524 876(21), where the error does not take into account the
uncertainty in ν. This value should be compared with the critical coupling
of the three-states Potts model on the honeycomb lattice, which is given by
Kc ≈ 1.484 21 [63].

Further critical exponents are determined independently from the fol-
lowing relations,

cV,max(N) ∼ Nα/2ν , minf(N) ∼ N−β/2ν , χmax(N) ∼ Nγ/2ν , (14)

where minf denotes the magnetization at its point of inflection. This yields
the values α/2ν = 0.2201(27), β/2ν = 0.0617(14), and γ/2ν = 0.8718(12).
To check whether the expected scaling relations are fulfilled and to compare
with the exponents of the regular model, we re-write these results in terms
of the scaling dimensions xǫ and xσ [75],

xǫ = 2 − 2
1

2ν
= 1 −

α

2ν
, xσ = 2

β

2ν
= 1 −

γ

2ν
. (15)

The results for the scaling dimensions together with those of the regular-
lattice model are compiled in Table 1. The values of xǫ from 1/ν seem
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Table 1. Results for the scaling dimensions xǫ and xσ of the three-states Potts

model on Voronöı graphs as compared to the regular lattice model.

Lattice xǫ(1/2ν) xǫ(α/2ν) xσ(β/2ν) xσ(γ/2ν)

Voronöı 0.8003(67) 0.7799(27) 0.1234(27) 0.1282(12)
Regular 0.8000 0.8000 0.1333̄ 0.1333̄

to match perfectly among the regular and random lattice models, whereas
xǫ from α/2ν is significantly differing between the two lattice types. This,
however, cannot be taken very seriously, since it is known [73] that direct
inspection of the specific heat is usually not well suited for a reliable deter-
mination of α. The results for xσ both differ from the regular lattice value
by about four standard deviations. This could be interpreted as the result
of neglected corrections to scaling or possibly as the onset of a different
scaling behavior for even larger lattice sizes.

4. Conclusions

We have analyzed the applicability of a relevance condition in the spirit
of the Harris criterion to the case of spin models coupled to random lattices
with connectivity disorder. Adapting Luck’s formulation [27] for quasi-
periodic lattices to the case of random graphs, we numerically determine
the geometric wandering exponents of two-dimensional Poissonian Voronöı-
Delaunay random graphs and dynamical triangulations. For the dynamical
triangulations or quantum gravity graphs, the large wandering exponent in-
dicates that they should form a relevant perturbation for all known models,
which is in accord with previous explicit results for the q-states Potts model.
On the other hand, correlations between the co-ordination numbers seem to
decay exponentially for Poissonian random lattices, such that the adapted
relevance criterion reduces to Harris’ threshold of αc = 0.

For the three-states Potts model with α = 1/3, according to this ar-
gument, connectivity disorder from Poissonian random lattices should be
relevant. The Monte Carlo scaling analysis presented above yields a ther-
mal scaling exponent in very good agreement with that for the regular lattice
model. This is remarkable, since connectivity disorder couples to the local
energy density, such that a relevant perturbation is expected to predomi-
nantly show up in the energy-related exponents. Whether the small, but
significant deviation of the measured magnetic scaling dimension from the
regular lattice value indicates the onset of a crossover to a new universal-
ity class or is merely an effect of neglected corrections to scaling, has to
be checked by a more careful scaling analysis including corrections, possi-
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bly augmented by simulations for even larger lattices. Furthermore, models
with larger values of the specific-heat exponent α, such as the q = 4 Potts
model or the Baxter-Wu model [76], which both have α = 2/3, might be
good candidates to check whether a change of critical behavior can be in-
duced at all by Poissonian random lattices.
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