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To establish a unified framework for studying both discrete and continuous coupling distributions, we
introduce the binomial spin glass, a class of models where the couplings are sums of m identically
distributed Bernoulli random variables. In the continuum limit m → ∞, the class reduces to one with
Gaussian couplings, while m ¼ 1 corresponds to the �J spin glass. We demonstrate that for short-range
Ising models on d-dimensional hypercubic lattices the ground-state entropy density for N spins is bounded

from above by ð ffiffiffiffiffiffiffiffiffiffiffiffi
d=2m

p þ 1=NÞ ln 2, and further show that the actual entropies follow the scaling behavior
implied by this bound. We thus uncover a fundamental noncommutativity of the thermodynamic and
continuous coupling limits that leads to the presence or absence of degeneracies depending on the precise
way the limits are taken. Exact calculations of defect energies reveal a crossover length scale L�ðmÞ ∼ Lκ

below which the binomial spin glass is indistinguishable from the Gaussian system. Since κ ¼ −1=ð2θÞ,
where θ is the spin-stiffness exponent, discrete couplings become irrelevant at large scales for systems with
a finite-temperature spin-glass phase.
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Spin glasses are extremely rich systems that have con-
tinued to surprise us for many decades [1–13]. They
represent paradigmatic realizations of complexity with
many realizations in nature and numerous combinatorial
optimization problems [14]. Abstractions of spin-glass
physics have led to new optimization algorithms and new
insight into computational complexity [15–18], shed light
on protein folding [19], and provided models of neural
networks [20]. Notwithstanding this success, several fun-
damental questions still linger. These include [21] the
character of the low-lying states and whether there are
many incongruent [22] ground states. It has long been
known that spin-glass systems with discrete couplings may
rigorously exhibit an extensive degeneracy [23,24], but
these results do not extend to continuous coupling distri-
butions [25–29]. The possibility of vanishing spectral gaps
mandates the distinction of localized and extended excita-
tions, and only the latter can give rise to amultitude of states.
In this Letter, we connect the �J and the Gaussian spin

glass models by interpolating them via the binomial spin
glass that has a tunable control parameter m. We establish
bounds of the spectral degeneracy of the Ising system on
bipartite graphs, which includes the usual Edwards-
Anderson (EA) model with �J (m ¼ 1) and Gaussian
(m → ∞) couplings [10,30–44]. We thus show that discrete
(finite m) spin-glass samples exhibit an extensive ground-
state degeneracy, and continuous ones (m → ∞) become
twofold degenerate, while more generally the degeneracy
depends on the precise way the noncommuting limits
N → ∞ and m → ∞ are taken.

We define the binomial Ising spin glass on a graph
of N sites [45] by the Hamiltonian

Hm ¼ −
X
hxyi

J m
xysxsy ≡ −

XL
α¼1

J m
α zα: ð1Þ

Here, the sum is over sites x and y, defining a link
α ¼ hxyi, L denotes the total number of links, and
sx ¼ �1. The binomial coupling for each link α,

J m
α ≡ ð1= ffiffiffiffi

m
p ÞPm

k¼1 J
ðkÞ
α , is a sum of m copies (or

“layers”) of binary couplings JðkÞα ¼ �1, each with prob-
ability p of being þ1. The probability distribution of J m

α ,

P̃ðJ m
α Þ¼

Xm
j¼0

�
m

j

�
pm−jð1−pÞjδ

�
J m

α −
m−2jffiffiffiffi

m
p

�
; ð2Þ

is a binomial. In the large-m limit, the distribution (2)
approaches a Gaussian of mean

ffiffiffiffi
m

p ð2p − 1Þ and variance
σ2 ¼ 4pð1 − pÞ. In particular, for p ¼ 1=2, the distribution
P̃ðJ m

α Þ approaches the standard normal distribution usually
considered for the EA model [10].
To understand the degeneracies in the spectrum, we

study the entropy density of the lth energy level,

Sl ≡
P

fJ m
α gPðfJ m

α gÞ lnDlðfJ m
α gÞ

N
; ð3Þ
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where Dl is the degeneracy of the lth energy level [23].
PðfJ m

α gÞ ¼
QL

α¼1 P̃ðJ m
α Þ is the probability of the cou-

pling configuration.
We first embark on the derivation of an upper bound on

the ground-state entropy density S0. We restrict ourselves
to bipartite graphs, where any closed loop encompasses an
even number of links α. Consider two spin configurations
jsi ≠ js0i and evaluate their energy difference
ΔE ¼ EðsÞ − Eðs0Þ. From Eq. (1),

ΔE ¼ −
XL
α¼1

J m
α ðzαðsÞ − zαðs0ÞÞ ¼ −2

XL
α¼1

J m
α nα; ð4Þ

with integers nα ¼ 0, �1 defined by nα ≡ ½zαðsÞ−
zαðs0Þ�=2, where zαðsÞ ¼ sxsy. If jsi and js0i are degen-
erate then ΔE ¼ 0. A degeneracy only occurs for some
realizations fJ m

α g of the couplings, and Eq. (4) can be
understood as a set of conditions for the couplings to
ensure this.
Consider an arbitrary reference configuration jsi of energy

EðsÞ and examine its viable degeneracy with the contending
2N − 1 other configurations js0i. Each of these leads to a
particular set of integers Cj ¼ fnαgj, which form the set

fCjgjsij¼1;2N−1. A subset of those,Satjsi¼fCj1 ;Cj2 ;…;CjN g,
will satisfy the degeneracy condition ΔE ¼ 0 in Eq. (4) for
some coupling realizations. There are two types of solutions
to the equationΔE ¼ 0: (i) nα ¼ 0, ∀ α, or (ii) nα ≠ 0, for at
least one linkα. It is straightforward to demonstrate that there
is a single configuration js0ið≠ jsi) forwhich (i)nα ¼ 0, ∀ α
[46]. This is the degenerate configuration js0i obtained by
inverting all of the spins in jsi. To determine whether the
degeneracy may be larger than 2, we need to compute the
probability P that constraints of type (ii) may be satisfied.
While we cannot exactly calculate this probability for
general N and m, bounds that we will derive suggest that
limN→∞limm→∞Sl ¼ 0. As we will emphasize, different
large m and N limits may yield incompatible results.
Constraints Cj ∈ Satjsi are in a one-to-one correspon-

dence with zero-energy interfaces [47], whose size is equal
to the number gj of nonzero integers in the set fnαgj. That
is, given a fixed reference configuration jsi and a degen-
erate one js0i, all type (ii) solutions to Eq. (4) are associated
with configurations where the product sxs0x is equal to −1 in
a nonempty set of sites x ∈ R. To avoid the trivial
redundancy due to global spin inversion, consider the
states jsi and js0i for which the spin at an arbitrarily
chosen “origin” of the lattice assumes the value þ1. These
states are related via js0i ¼ Us0sjsi, where the domain-wall
operator Us0s is the product of Pauli matrices that flip the
sign of the spins s0x at the sites x where jsi and js0i differ.
Regions R are bounded by zero-energy domain walls that
are interfaces dual to the links with nα ¼ �1, i.e., sur-
rounding the regions R where the spins in jsi an js0i have
opposite orientation. Each satisfied constraint Cj ∈ Satjsi

is associated with a state js0i ¼ Us0sjsi that is degenerate
with jsi for some coupling realization(s).
We next formalize the counting of independent domain

walls or clusters of free spins to arrive at an asymptotic
bound on their number [Eq. (9)]. This will, in turn, provide
a bound on the degeneracy. We define a complete set of
independent constraints Satjsi ⊂ Satjsi, of cardinality M,
to be composed of all constraints C|̄ ∈ Satjsi that lead to
linearly independent equations of the form of Eq. (4),
ΔE ¼ EðsÞ − Eðs|̄Þ ¼ 0, on the coupling constants fJmα g
[47]. All constraints in Satjsi are a consequence of the

linearly independent subset of constraints Satjsi. Each
constraint C|̄ ∈ Satjsi is associated with a domain wall
operator Us|̄s that generates a degenerate state js|̄i ¼
Us|̄sjsi. If for a given coupling realization fJ m

α g there
are MðfJ m

α gÞ ≤ M such independently satisfied con-
straints, then the states

jn̄1n̄2 � � � n̄Mi≡Un̄1
s1̄sU

n̄2
s2̄s � � �Un̄M

sM̄sjsi ð5Þ

(n̄i ¼ 0, 1) will include all of the spin configurations
degenerate with jsi. Taking global spin inversion into
account, the degeneracy of jsi is

Dlðjsi;fJ m
α gÞ ≤ 2MðfJ m

α gÞþ1; ð6Þ

where, for a system defined by the coupling constants
fJ m

α g, the index lðjsi; fJ m
α gÞ denotes the level l the state

jsi belongs to. The set fjn̄1n̄2 � � � n̄Mig may contain addi-
tional states not degenerate with jsi [48].
After averaging over disorder, the expected number of

linearly independent satisfied constraints Satjsi is

hMim ≡ X
fJ m

α g

X
C|̄∈Satjsi

PðfJ m
α gÞδfJ m

α gðC|̄Þ≡
X

C|̄∈Satjsi

PðC|̄Þ:

ð7Þ

Here, PðC|̄Þ is the probability that a linearly independent
constraint C|̄ is satisfied. The Kronecker δfJ

m
α gðC|̄Þ equals

1 if C|̄ is satisfied for the couplings fJ m
α g and is zero

otherwise. Let us bound the probability PðC|̄Þ by taking
the form (2) of the coupling distribution into account. From
the definition of the couplings fJ m

α g, the sum in Eq. (4) can
effectively be read as including a sum over layers
k ¼ 1;…; m, which hence includes g|̄m nonzero terms.
For general m ≥ 1, and even g|̄m, the probability that half

of the nonzero integers nαJ
ðkÞ
α in Eq. (4) are þ1 and the

remainder are −1 is

PðC|̄Þ ¼
� g|̄m

g|̄m
2

�
1

2g|̄m
<

1ffiffiffiffiffiffiffiffig|̄m
p : ð8Þ
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[Equation (4) cannot be satisfied for odd g|̄m.] From
asymptotic analysis [49] and Eq. (8), the probability
PðC|̄Þ scales (for large m) as (and, for any m, is bounded
by) 1= ffiffiffiffiffiffiffiffig|̄m

p . Denoting by gmin the smallest possible value
of g|̄ for the graph or lattice at hand,

hMim ≤
Mffiffiffiffiffiffiffiffiffiffiffiffi
gminm

p : ð9Þ

On a general graph, the numberM of linearly independent
constraints C|̄ on the coupling constants fJ m

α g cannot be
larger than their total number, M ≤ L, i.e., the number of
links L on this graph. Putting all of the pieces together,
Eqs. (6) and (9) imply

X
fJ m

α g
PðfJ m

α gÞ lnDlðjsi;fJ m
α gÞ ≤

�
1þ Lffiffiffiffiffiffiffiffiffiffiffiffi

gminm
p

�
ln 2: ð10Þ

Trying to evaluate the left-hand side of Eq. (10), we must
take into account that whatever jsi we pick might be a
ground state for some coupling configurations but will be
an excited state for others. Hence we cannot directly infer a
bound to the average entropy Sl from (10). Since the
inverse temperature 1=ðkBTÞ ¼ ∂ lnD=∂E, however, the
system’s ground-state degeneracy for couplings fJ m

α g is
typically lower than (or equal to) that of any other level l
[50], i.e., D0 ≤ Dl. This monotonicity of DðEÞ implies
that, typically, S0N ¼ P

fJ m
α g PðfJ m

α gÞ lnD0ðfJ m
α gÞ ≤P

fJ m
α g PðfJ m

α gÞ lnDlðjsi;fJ m
α gÞ. Then, Eq. (10) yields

S0 ≤
�

L
N

ffiffiffiffiffiffiffiffiffiffiffiffi
gminm

p þ 1

N

�
ln 2: ð11Þ

This is the promised rigorous bound. For p ≠ 1=2 one has a
lower entropy density than that of p ¼ 1=2. Thus, Eq. (11)
constitutes a generous upper bound on S0 for general p. To
study higher energy levels, consider the average of Eq. (10)
over all possible 2N reference spin configurations jsi.
Performing this average and invoking the monotonicity
of DðEÞ suggests that the entropy density Sl of Eq. (3)
of low-lying excited levels l > 0 is, typically, also
bounded by the right-hand side of Eq. (11). For
d-dimensional hypercubic lattices with periodic boundary
conditions, the ratio L=N ¼ d while gmin ¼ 2d. Thus,
S0 ≤ ð ffiffiffiffiffiffiffiffiffiffiffiffi

d=2m
p þ 1=NÞ ln 2. Equation (11) further suggests

that, in the thermodynamic (N → ∞) limit [51],

S0ðm0Þ ∼
ffiffiffiffiffi
m
m0

r
S0ðmÞ for finite m;m0 ≫ 1: ð12Þ

We now study the exact m dependence of the
ground-state entropies of the binomial model on the square
lattice with periodic boundaries and N ¼ L2. To this
end, we employed an implementation of the Pfaffian
technique of counting dimer coverings of the lattice
proposed in Ref. [52], which is a generalization of earlier

methods [53,54] to fully periodic lattices. In Fig. 1, we
present the results for the ground-state entropy, averaged
over 1000 coupling realizations for each lattice size. The
data are well described by

S0N ¼
�
AðNÞffiffiffiffi

m
p þ 1

�
ln 2: ð13Þ

Linear fits in 1=
ffiffiffiffi
m

p
for fixed N work well for sufficiently

largem, as is illustrated by the straight lines in Fig. 1. Thus,
for any finite N, as m → ∞ the ground-state entropy is
equal to ln 2, implying a single degenerate ground-state
pair. The slope AðNÞ shown in the inset follows a linear
behavior, AðNÞ ¼ aN þ b, and we find a ¼ 0.0858ð4Þ and
b ¼ 1.09ð12Þ. For not too small m, our data are hence fully
consistent with

S0 ¼
�

affiffiffiffi
m

p þ 1

N
þ b
N

ffiffiffiffi
m

p
�
ln 2: ð14Þ

When N ≫
ffiffiffiffi
m

p
≫ 1, Eq. (14) is consistent with the

physically inspired [51] scaling of Eq. (12). For large N,
the bound of Eq. (11) would have been asymptotically
saturated if a ≃ 1, far larger than the actual value of a. The
behavior in the double limit m;N → ∞ is subtle: (1) for
m → ∞,N finite, we have a single ground-state pair; (2) for
N → ∞, m finite, there is a finite ground-state entropy
∼ ln 2=

ffiffiffiffi
m

p
; (3) for N → ∞, m → ∞, η ¼ N=

ffiffiffiffi
m

p
fixed,

there is a finite number 2aη of ground-state pairs. Thus
clearly the continuum and thermodynamic limits are not
commutative in general. Note further that according to the
bound S0 ≤ ð ffiffiffiffiffiffiffiffiffiffiffiffi

d=2m
p þ 1=NÞ ln 2 for hypercubic lattices,

additional rich behavior is expected if the limit of high
dimensions (linked to that of weak-field) is correlated with
that of large m.

FIG. 1. Ground-state entropy S0N of the binomial Ising spin
glass withm layers, cf. Eq. (1), on square lattices ofN ¼ L2 spins
from exact ground-state calculations (from the bottom: L ¼ 8,
16, 20, 24, and 32). Lines are fits of the form of (13) to the data
for sufficiently large m. The inset shows the linear scaling of the
amplitude AðNÞ. The top line indicates the constraint imposed by
the upper bound (11).
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Let us turn to the study of excitations. By construction,
cf. Eq. (4), for finite m the energy is “quantized” in
multiples of 1=

ffiffiffiffi
m

p
. It is therefore natural to expect a

closing of the spectral gap as m → ∞. That this is indeed
the case can be shown rigorously for the one-dimensional
binomial spin glass in its thermodynamic limit, with
different behaviors for odd and even m; see the discussion
in the Supplemental Material [55]. The closing of the gap is
a consequence of the existence of (rare) local excitations,
i.e., finite-size clusters of almost free spins [56]. Whether
gapless nonlocal excitations exist and which form they take
in the thermodynamic limit is a longstanding question [57].
One possible approach of investigating such excitations
consists of subjecting individual samples to a system
spanning perturbation by a change of boundary conditions
and studying how this affects the energy and configuration
of the ground state. Such defect energy calculations [58]
enable us to extract a scaling hjΔEji ∼ Lθ of the defect
energies with the spin stiffness exponent θ. Generalizing
Peierls argument [59–62] for the stability of the ordered
phase, one should find θ > 0 for cases where there is a
finite-temperature spin-glass phase, and θ ≤ 0 otherwise.
The latter case is expected for dimensions d ¼ 1 and d ¼ 2,
whereas θ is positive for d ≥ 3 [63,64]. We employed
techniques based on minimum-weight perfect matching
[65,66] to perform such calculations for the binomial model
on the square lattice. The resulting disorder-averaged defect
energies from exact ground-state calculations for samples
with periodic and antiperiodic boundaries are shown in the
inset of Fig. 2. Asm increases, the decay of defect energies
as a function of L becomes steeper and the data approach
the behavior of the Gaussian EA model. The effective
spin stiffness exponents θ extracted from fits of the type
hjΔEji ¼ BLθ are shown in the main panel of Fig. 2. These
exponents appear to interpolate smoothly between the

limiting cases of the Gaussian model with θ ¼
−0.2793ð3Þ and the �J system with θ ¼ 0 [63,66].
Asymptotically, however, we expect that θðmÞ ¼ 0 for
any finite value of m when L≳ L�ðmÞ. The scaling of the
crossover length L�ðmÞ ∼mκ follows by considering
the model with the unscaled couplings

ffiffiffiffi
m

p
J m

α , for which
the energy gap Δ is independent of m. The discreteness
of the spectrum becomes apparent once the corresponding
defect energies

ffiffiffiffi
m

p hjΔEji ∼ Lθ have decayed below the
size of the gap, i.e., for

L ≥ L�ðmÞ ∼m−1=ð2θÞ;

such that κ ¼ −1=ð2θÞ. For the d ¼ 2 system we have θ ¼
−0.2793ð3Þ [66], such that κ ¼ 1.790ð2Þ, which is in
excellent agreement with the actual scaling of the defect
energies for our system as shown in Fig. 3.
It is clear that if θ < 0, as is the case for the Gaussian

spin glass in two dimensions, excitations of a divergent
length scale may entail a vanishing energy penalty. At zero
temperature, the discreteness of the spectrum is then always
seen at large scales L≳ L�ðmÞ. On the other hand, for θ ≥
0 (i.e., d ≥ 3), the above arguments imply that the dis-
creteness does not matter at large scales. Also, in this case
one should inspect the full probability distribution of
domain wall energies and the weight it carries in the limit
ΔE → 0 [56]. Relating these excitations to incongruent
states may, however, only be possible by an inspection of
the resulting configurations.
In summary, we introduced and discussed the binomial

spin glass. This class of models affords controlled access to
the enigmatic continuous (m → ∞) finite dimensional EA
model. Its m ¼ 1 realization is the quintessential discrete
spin glass, the �J model. We derived bounds on the
spectral degeneracy of the binomial Ising spin glass on
general graphs and suggested an asymptotic scaling that
is fully supported by exact two-dimensional calculations.

FIG. 2. Effective spin stiffness exponents θ ¼ θðmÞ resulting
from fits of the power law hjΔEji ¼ BLθ to the defect energies
for the binomial model ofm layers (inset, from the top: m ¼ 1, 5,
11, 51, 201, and 1001), averaged over 10000 disorder samples.
The solid line of the inset corresponds to the Gaussian model.

FIG. 3. Scaling collapse of the defect energies of the binomial
model for system sizes rescaled with the crossover length scale
L�ðmÞ ∼mκ with κ ¼ 1.79.
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The behavior of defect energies suggests the existence of a
crossover length L�ðmÞ ∼ L−1=2θ below which the binomial
model behaves like the Gaussian system. Our results show
that the existence of degeneracies depends on the particular
way of taking the thermodynamic (N → ∞) and continu-
ous coupling ðm → ∞) limits, and limiting states with and
without degeneracies can be reached by corresponding
correlated limiting processes, thus accommodating theories
that postulate degeneracies as well as pictures stipulating a
unique ground-state pair. An intriguing prediction regards
an effectively negative crossover scaling exponent in three
dimensions, where hence discreteness of the spectrum is
expected not to matter at large scales.
The physics of spin-glass models and, in particular, the

role of degeneracies, has also recently attracted attention
from another side. In the context of quantum annealing [67]
as implemented in the devices by D-wave and similar
machines that are being developed by competing consortia,
degeneracies are not a desired feature as the quantum
annealing process does not sample such states uniformly
[68]. On the other hand, continuous coupling distributions
may also be undesired because of increased susceptibility
to external noise implied by chaos in spin glasses [69–72].
Our binomial glasses may allow for realizations that suffer
the least from these combined problems. While the present
system is already a generalization of the usually considered
spin-glass models, we believe that the approach of decom-
posing continuous couplings into discrete layers and the
intriguing consequences it allowed us to uncover in terms
of the general noncommutativity of the thermodynamic and
continuous coupling limits is promising and we expect
exciting applications to models in other fields.
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