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The Griffiths phase in systems with quenched disorder occurs below the ordering transition of the pure system

down to the ordering transition of the actual disordered system. While it does not exhibit long-range order, large
fluctuations in the disorder degrees of freedom result in exponentially rare, long-range ordered states and hence
the occurrence of broad distributions in response functions. Inside the Griffiths phase of the two-dimensional
bond-diluted Ising model the distribution of the magnetic susceptibility is expected to have such a broad,

exponential tail. A large-deviation Monte Carlo algorithm is used to sample this distribution and the exponential
tail is extracted over a wide range of the support down to very small probabilities of the order of 10739, We
study the behavior of the susceptibility distribution across the full phase diagram, from the paramagnetic state
through the Griffiths phase to the ferromagnetically ordered system and down to the zero-temperature point. We
extract the rate function of large-deviation theory as well as its finite-size scaling behavior and we reveal
interesting differences and similarities between the cases. A connection between the fraction of ferromagnetic
bonds in a given disorder sample and the size of the magnetic susceptibility is demonstrated numerically.
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I. INTRODUCTION

The Ising model is one of the most studied systems in sta-
tistical physics and has found applications in many branches
of science (see, e.g., Refs. [1-7]). Its original purpose is
to describe ferromagnetism in homogeneous materials with
strong uniaxial asymmetry. Often, however, materials are not
perfectly homogeneous but exhibit randomly distributed im-
purities. In such cases, a central question is how these random
impurities affect the physical properties of the system in
comparison to the idealized pure model [8—10]. Impurities
can be incorporated into the Ising model, for instance, by
randomly removing a fraction 1 — p of the bonds that repre-
sent the ferromagnetic interactions between the spins, where
0 < p < 1. Due to the overall weakened ferromagnetic cou-
pling, this leads to a shift in the transition temperature from
T; :==T.(p = 1) in the pure system to a lower temperature
T.(p), p < 1 in the diluted system. As shown by Harris [11],
the critical behavior at the transition differs from that found
in the pure system if the specific heat exponent o of the
pure system is positive. This is the case for the Ising model
in dimensions d > 3, while « =0 in d = 2. Due to this
marginality one expects logarithmic corrections to the leading
critical behavior in two dimensions [10,12—15], but accord-
ing to numerical simulations [16-20] as well as experiments
[21,22], the critical exponents remain identical to the pure
case.

The thermal region between T; and T.(p < 1) is known
as the Griffiths phase [23]. In this regime the order parame-
ter of the ferromagnetic phase transition, the magnetization,
remains zero, but arbitrarily large fluctuations of the or-
der parameter become possible. These fluctuations can exist
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due to large compact structures of ferromagnetic bonds in
regions where there are less missing bonds in comparison
to the overall average of the system. Within these structures
the system is effectively in a ferromagnetic state such that
a change of the spin orientation happens coherently, giving
rise to large fluctuations in the magnetization. As a conse-
quence the distribution of the second moment of the magne-
tization, the magnetic susceptibility, is expected to have an
exponential tail that extends to infinity, which is an expression
of the essential, but weak, Griffiths singularity [24,25]: Since
the magnetic susceptibility characterizes the response of the
system to an external magnetic field, the free energy is a non-
analytic function of the field throughout the Griffiths phase
[23]. Besides these effects on static averages, the Griffiths
singularity also plays an important role for the dynamics of the
system, leading to a slowdown of the decay of the spin-spin
correlation function [24,26-28]. The Griffiths singularity not
only occurs in the diluted Ising ferromagnet [29] but it may
also be observed in other disordered systems such as spin
glasses [30]. The analogous quantum mechanical effect is
known as the Griffiths-McCoy singularity, and it has been
studied theoretically, numerically as well as in experiments
[31-37].

In the present work we use numerical simulations [38]
based on the Monte Carlo method [39] to explore the Griffiths
phase by investigating the distribution over the bond disorder
of the magnetic susceptibility in the two-dimensional bond-
diluted Ising ferromagnet. In particular, we are interested in
the tail of the distribution. To obtain this tail we employ a
large-deviation sampling algorithm [40] which has previously
proved useful for a variety of rare-event sampling problems.
A drawback of the variant of the algorithm used to date is that
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for some cases it does not scale well with increasing system
size [41]. For the system at hand, we resolve this problem by
using a different bias for the sampling process (see Sec. III for
details). The authors of a previous study of the bond-diluted
Ising model [42] performed a similar analysis of the magnetic
susceptibility, but they were only able to sample relatively
closely to the peak of the distribution. Here, the distribution
will be presented over a wide range of its support. Further-
more, the distribution of the magnetic susceptibility is also
studied at the critical temperature and inside the ferromagnetic
phase. Interestingly, an exponential tail is also found for the
distribution inside the ferromagnetic phase but the mechanism
leading to it appears to be different from that in the Griffiths
phase.

The rest of this paper is organized as follows. In Sec. II we
introduce the two-dimensional bond-diluted Ising model and
discuss its essential properties insofar as they are relevant in
the context of the present study. In Sec. III the large-deviation
sampling algorithm of Ref. [40] is summarized and we intro-
duce a weight-construction scheme based on ideas of Neuhaus
and Hager [43]. In Sec. IV we present our simulation results
for the disorder distribution of the magnetic susceptibility
inside the Griffiths phase and at the critical temperature, while
Sec. V is devoted to our results for the distribution inside the
ferromagnetic phase and at zero temperature. Finally, Sec. VI
contains a discussion and outlook.

II. THE TWO-DIMENSIONAL BOND-DILUTED
ISING FERROMAGNET

The Hamiltonian of the bond-diluted Ising ferromagnet is
given by

Hy(S) == Jyysesy — M, (1)
(x.y)

where S € {—1, 1} denotes a spin configuration and M =
> . Sx represents the magnetization which couples to the ex-
ternal magnetic field 4. The Ising spins s, = %1 are placed
at the sites x of a two-dimensional square lattice of linear
dimension L, resulting in N = L? spins in total. The notation
(x,y) refers to summation over nearest neighbors only. The
time-independent, quenched interaction between two spins
is represented by the exchange coupling Jyy. To incorporate
random dilution into the model, the bonds are drawn from
a bimodal distribution, such that the probability to obtain a
particular bond sample J = {J,,} is given by

Py =[] psliy — 11+ (1 = p)SLigy). )
(x.y)

where we use §[x], x € R, as an indicator function that yields
one if x = 0 and zero otherwise. Here, p corresponds to the
probability of drawing a ferromagnetic bond with Jy, =1,
while 1 — p is the probability of missing bonds with Jy, = 0.
The model is studied in the canonical ensemble at temperature
T, such that the spin configurations S are Gibbs-Boltzmann
distributed according to

1 N
Ps(S|T) = Z—Jexp{—HJ(S)/T}, 3)
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FIG. 1. Zero-field phase diagram of the two-dimensional bond-
diluted Ising ferromagnet as a function of the fraction p of
ferromagnetic bonds and the temperature 7. The boundary between
the ferromagnetic and paramagnetic phase is obtained according to
the “s = 1” technique of Ohzeki [44]. The black dots at p = 0.6 mark
the temperatures at which our simulations are performed.

where we have set the Boltzmann constant kg := 1 for con-
venience. Zy is the partition function for a given bond sample
J. The thermodynamic state of the model in the absence of an
external magnetic field, # = 0, depends on two parameters—
the bond occupation probability p and the temperature 7. The
order parameter which can be used to determine the phase of
the thermodynamic state is the first moment of the magnetiza-
tion per site [45]

m = [(h)s];, “)

where /i1 = M /N. Here, (-)s denotes the thermal average with
respect to the Gibbs-Boltzmann distribution, Eq. (3), and [-];
is the average with respect to the disorder distribution, Eq. (2).
As is clear from the phase diagram of the system shown in
Fig. 1, there exists a high-temperature paramagnetic phase
and a low-temperature ferromagnetic phase. The boundary
between these phases extends from the bond-percolation
threshold py, = 0.5 at which the transition temperature is
zero, 1.(0.5) = 0, to that of the pure ferromagnet with p = 1
and T; = To(1) = 2/ In(1 + +/2) = 2.2691 ... . In between
these limits, the phase boundary can be obtained by argu-
ments based on duality [44,46] which yield a good estimate
for the true curve, consistent with what is found in nu-
merical simulations [47]. The thermal region between the
ferromagnetic phase transition of the pure system at Tz =
T.(1) and the ferromagnetic phase transition in the diluted
system T.(p < 1) is known as the Griffiths phase. Inside the
Griffiths phase the order parameter remains zero but large
fluctuations of the magnetization are more likely than in the
(pure) high-temperature paramagnetic phase. These fluctua-
tions are visible in the magnetic susceptibility x; which can
be defined from the variance of the magnetization per lattice
site for a given bond sample J,

x5 = N((i?)s — (i)3), ®)

where (m)s = 0 if T > T;. Bray [24] has predicted that the
probability distribution of the magnetic susceptibility over
the bond samples displays an exponential tail throughout the
Griffiths phase. The functional form of this tail was derived to
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follow the form [24]
Py(x) ~exp(—=Ax —2Inx) (6)

for x — oo. Here, A is a temperature-dependent positive
constant which vanishes at the ferromagnetic phase transition
(implying a particularly broad distribution there) and diverges
when T approaches T; (such that the tail disappears). Since
the derivation which leads to Eq. (6) includes variational ar-
guments and a number of approximations, Bray concluded
that this form may only constitute a lower bound for the
true tail. The magnetic susceptibility describes the linear re-
sponse of the magnetization to an external magnetic field,
since (0/0h){m)s = x;/T. Correspondingly, inside the Grif-
fiths phase the free energy is a nonanalytic function of the
external magnetic field [23].

The origin of the large values of the magnetic suscep-
tibility inside the Griffiths phase are compact structures of
ferromagnetic bonds. In these local structures the fraction
of ferromagnetic bonds is larger than the average expected
fraction p for the infinite system. Below the ferromagnetic
phase transition, i.e., for T < T.(p < 1), there also can be
large fluctuations in the magnetization, but these are caused by
a different mechanism which we will explore below. In both
cases, bond samples which lead to larger than average values
of the magnetic susceptibility occur rather rarely. Therefore,
to numerically investigate the disorder distribution of the mag-
netic susceptibility it is necessary to employ large-deviation
sampling techniques. These are the subject of the next section.

III. LARGE-DEVIATION SAMPLING

To sample the distribution of the magnetic susceptibility
over a wide range of the support we use the large-deviation
Monte Carlo algorithm proposed in Ref. [40]. The basic idea
of this method is to utilize an auxiliary Markov chain Monte
Carlo process in the disorder degrees of freedom that is biased
in such a way that it creates bond configurations that lead
to the desired values in a quantity of interest such as, in our
case, the susceptibility. The bias is then removed a posteriori
by reweighting, such that at the end the actual distribution of
interest is obtained.

To be more specific, assume that the disorder-dependent
quantity of interest is Yy, where in our particular case Y; = y;
and thus Yy > 0 [48]. The probability distribution of such a
quantity can be written as

Pr(Y) =Y Pi(J)sLY; — Y], (7)
J

where P;(J) is the unbiased bond distribution as given in
Eq. (2). If we draw bonds from the unbiased distribution, this
will only give us the typical values of ¥; in the region where
the distribution Py (Y') has most of its weight. To receive bond
samples which lead to Y; in the range of interest, i.e., where
Py (Y) is extremely small, we introduce a Monte Carlo process
that generates samples from a biased bond distribution,

Pr()fe(Yy)
Zg ’

Here, Zg is a normalization constant that will be determined
later, and fg(Yy) is a bias function which depends on the set

PJ;0) = (8)

of parameters ®. The bias function has to be chosen such
that P;(J; ®) defines a distribution which has enough weight
in the regions that one would like to sample. Following the
proposal of Neuhaus and Hager in Ref. [43] to use a sequence
of Gaussians centered at successive values of the reaction
coordinate in order to bias the probability density in a region
of suppressed weight, we propose to use a generalized expo-
nential of the form

92
fo(Yy) = exp {ely, — 72(1/, —93)2} 9)

with ® = (y, 6, 63) € R? to bias the sampling for the pur-
pose of accessing rare events. To understand the effect of this
bias in detail, at first set 6, = 0 such that fg becomes a simple
exponential. Now, if 0; < 0 the weight of the bond samples
with small Y in comparison to typical values of the unbiased
distribution increases, while for 6; > 0 bond samples with
large Y; have more weight. If, on the other hand, we set
0, to zero, fe has the shape of a Gaussian of width 2/6,
centered around 65. This means that the bias function will
increase the weight close to 3. With an adequate combination
of the parameters in © it is possible to create a biased bond
distribution with enough weight in regions that lead to the
desired values of Y;. While this recipe is fairly general, we
do not exclude the possibility that for some problems other
types of bias functions might work better. _

To sample from the biased bond distribution Py, the
Metropolis-Hastings algorithm is used, which in this partic-
ular case works as follows. Suppose that we start with a bond
sample J, with the corresponding value Yj, of the observable
of interest. Now, one generates a candidate bond sample J ;L by
randomly selecting one or more bonds of J,, and assigning to
them new coupling values according to the unbiased distribu-
tion, Eq. (2). In other words, a randomly selected bond is set
to 1 with probability p and to 0 with probability 1 — p. After
computing the observable value for the proposed sample, Y 7
the new bond configuration is accepted with probability

fo(¥r,) ]
Jo (YJH) '

As a result, the new sample in the Monte Carlo chain J, will
be J, = J; if the proposed sample is accepted, or J, =J,
otherwise.

Finally, we establish a connection to the unbiased bond
distribution by noticing that

A(J,— T)) =min{1, (10)

Py(Y;0) = P;(J;0)8[¥; — Y]
J

_ folY)
- &2

Py(Y)

and hence
Zo
fo(¥)
If one would like to sample Py over a wide range of the
support, it is possible to use multiple parameter sets ©,

k=12,...,K. After completing the simulations, the biases
are corrected by utilizing Eq. (11). In order to achieve this, it

Pr(Y) = Py(Y;0). (11)
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is necessary to determine the constants Zg, which can be de-
duced from the continuity of the overall distribution. In other
words, in regions where two distributions with parameters ©;
and ©; overlap, their weight should be identical:

Zo,

= fo,(Y)

Zo,

fo.(Y)

P (Y:©)) Py(Y;0)). (12)

In the case of the unbiased distribution k = u with ©, =
(0,0,0)and Py (Y; ®,) = Py(Y) we know that Zg, = 1. As a
result Zg,, k = 1, ...,K can be generated according to Eq. (12)
in a successive manner from overlapping distributions starting
with Zg, = 1 and using a weighted average of histograms in
the overlap region. A useful implementation of this process
is described in Ref. [49]. Once the constants Zg, have been
fixed, the reweighting according to Eq. (11) is performed and
one obtains the final distribution.

To estimate the value of the magnetic susceptibility for a
given bond configuration it is necessary to compute an average
over multiple thermal samples (since the susceptibility is no
“configurational” quantity [50], i.e., it cannot be estimated
from a single spin configuration). To this end, we carry out a
thermal Monte Carlo simulation utilizing the Swendsen-Wang
cluster algorithm [51]. This method is known to perform
well for diluted ferromagnets [52], and it is possible to use
improved cluster estimators for the susceptibility [53]. Fur-
thermore, the clusters underlying the algorithm provide an
interesting geometrical interpretation of the magnetic suscep-
tibility. To elucidate this context, in the following we hence
provide a short exposition of the Swendsen-Wang algorithm
as well as the corresponding cluster framework. Starting with
a given spin configuration, in the Swendsen-Wang algorithm
one occupies each ferromagnetic bond J,, = 1 with proba-
bility prk (Jxy) = 1 — exp(—2/T) if the two connected spins
are parallel, i.e., if sys, = 1, and ppg (Jyy) = 0 if 55, = —1.
On the contrary, diluted bonds with Jy, = 0 are never oc-
cupied. Two spin sites which are connected by a path of
occupied bonds belong to the same cluster. Clusters which are
defined in this way are denoted as FKCK (Fortuin-Kasteleyn—
Coniglio-Klein) clusters [54]. The smallest possible FKCK
cluster contains only a single spin site. After constructing the
clusters, each of them is randomly assigned an up or down
orientation and the spins in each cluster are flipped accord-
ingly. As a result all spins within each cluster have identical
sign but the sign of two spins in different clusters may dif-
fer. This generates the next spin configuration of the Monte
Carlo process. The Swendsen-Wang algorithm is ergodic and
satisfies the detailed balance condition with respect to the
Gibbs-Boltzmann distribution [39]. The cluster estimator of
the magnetic susceptibility is based on the densities p; of the
clusters which are defined as their number of sites divided by
N. We assume that the indices i are sorted by cluster size
such that p; corresponds to the largest cluster. For T > T,
the estimator is given by the average cluster size of all FKCK
clusters [53]. For T < T it is necessary to subtract the square
of the density of the infinite cluster [39,55-57],

N(X 2 P e
N((Zi:l /A)i2>FK - </A)1)%K)

ifT > T

13
ifT < T.. (13)

X1 =
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FIG. 2. Sampling procedure of the large-deviation algorithm to
sample the magnetic susceptibility of the two-dimensional bond-
diluted Ising ferromagnet at 7 =2 with L =10 and p = 0.6.
(a) Estimates of Y; = yx; in the bond Monte Carlo chain generated by
the biased bond distribution [see Eq. (8)] for various sets of param-
eters. (b) Histograms of sampled observable values in the different
biased ensembles after a binning of the data from the different Monte
Carlo chains. The corresponding parameters are listed in Table I.
The unbiased distribution corresponds to ®, = ®, = (0, 0, 0). The
set ®3 = (0.9, 0, 0) is special because in this case the observable
oscillates between small and large values. The corresponding data in
(a) and (b) is colored black. (c) Equilibration phase of a Monte Carlo
process for ®; = (3, 0, 0). The Monte Carlo chains are initialized
with no bonds or all bonds present, respectively. After approximately
20 Monte Carlo steps both chains start to oscillate around the same
value indicating that equilibrium has been reached.

The sum is performed over the densities p; of all clusters. In
the thermodynamic limit and inside the ferromagnetic phase
there exists a single infinite cluster whose density (p)pk is
equal to the absolute value of the magnetization per site [2].
In the numerically studied finite-size systems we have taken
the cluster of largest size as a proxy for the infinite cluster.
To numerically estimate xj;, we perform a thermal aver-
age over Ng cluster configurations. Due to the computational
complexity of the problem successive configurations from the
Monte Carlo chain are used, such that these individual esti-
mates are correlated. The computational complexity emerges
since one has to compute a thermal average each time a new
bond sample is proposed. While we need to compute y; for
each bond update, measurements are only recorded for analy-
sis after each sweep consisting of 2N bond updates according
to the bond Monte Carlo algorithm [see Eq. (10)]. Figure 2
shows the sampling of x; for systems of size L = 10 with
p = 0.6 and Ns = 2000 samples at temperature 7 = 2. The
parameters used to generate the data are listed in Table I. As
discussed above, 6; < 0 leads to a decrease of x and 8; > 0
leads to an increase of x; compared to the unbiased case
®, =(0,0,0). For ®; = (0.9, 0, 0) the Monte Carlo chain
oscillates between two equilibrium states. The gap between
these states increases with system size such that sampling in
the intermediate region becomes difficult, and the algorithm is
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TABLE I. Simulation parameters used to generate the histogram
data shown in Fig. 2(b). There are 11 parameter sets in total, ®;, k =
1,...,11. The parameter set k = 2 corresponds to unbiased sam-
pling. For k = 3 the Monte Carlo process oscillates between small
and large values.

O k=1,...,11

k 1 2 3 4 5 6 7 8 9 10 11
6, -3 0 09 1 1 1 1 1 1 15 3
6, 0 O O 15 15 15 15 15 15 0 O
05 0 0 O 10 20 30 40 50 60 O O

not well suited to study larger systems with 6, = 63 = 0 [41].
This problem can be circumvented by using an appropriate
combination of nonzero values for 6, and 65; this is illustrated
in Fig. 2. The figure shows the data of 11 parameter sets for a
system of size L = 10. For larger systems one has to increase
the number of parameter sets to sample the distribution over
a wide range of the support such that computations become
more and more time-consuming. To generate the histogram
for the largest studied system size L = 128 (see Fig. 13), we
used around 300 parameter sets. The algorithm for choosing
these parameters is to a certain degree heuristic in that the
Gaussians are chosen in number and position in such a way
as to fill the relevant range of x while maintaining sufficient
overlap in the histograms of individual simulations that is
required for the stitching together of simulations according to
Eq. (12).

To ensure that the Monte Carlo chain is in equilibrium we
initialize the lattice with no bonds or all bonds present and
wait until both processes oscillate around approximately the
same value, within the fluctuations. Only then is the sampling
started. After such sampling is completed, the data are com-
bined into a single histogram by using Eq. (11).

Figure 3 depicts histograms of the distribution of the mag-
netic susceptibility at system size L = 16 with p = 0.6 and
temperature 7 = 2. As is clearly visible, the distributions
depend on the number Ns of spin configurations that are used
to estimate ;. The histograms are expected to converge to the
asymptotic ones for Ns — oco. In some cases the convergence
can be described by a power law as demonstrated in the inset
of Fig. 3. Because this does not consistently work well for
all parts of the distributions for all investigated temperatures,
we finally settled on using Ng = 2000 as a trade-off between
computational effort and accuracy throughout the rest of this
paper. The error bars of the distributions are computed by
bootstrapping as described in Ref. [58].

IV. RESULTS FOR THE DISORDERED PHASE
AND THE CRITICAL POINT

We focus our simulations of the two-dimensional bond-
diluted Ising ferromagnet on the case of a fraction of
ferromagnetic bonds of p = 0.6, which is sufficiently far
away both from the pure model as well as from the perco-
lation point. We employ periodic boundary conditions along
both axes. For reference, in Fig. 4 we display the temper-
ature dependence of the disorder average of the magnetic

10° g
4 -39] %
H =2 10 L X =86.58
2% B ¢
10—20 _g; 2 L =16 10740 E
10~4 oy
~ 10740 4 10%
[a¥
& Ng =200
10760 4 % NS =400
~§- Ng =2000
& Ng =10000
10—80 i P)((oo)
0 50 100 150 200

X

FIG. 3. Distribution of the magnetic susceptibility at 7 = 2 in-
side the Griffiths phase for L = 16. The plot illustrates how the
measured distribution depends on the number Ny of samples used
to compute the estimate of the observable x;. The extrapolated curve
is obtained by a power-law fit P, (x; Ns) = ¢1(x)Ng > + P (x)
at each bin, where ¢; and ¢, are fit parameters. The inset shows the
power-law fit for the bin at x = 86.58. The green line corresponds
to the fit, and its solid part indicates the fit range. The orange shaded
area has a width of two times the standard error with the value of
P)((o") at its center. The red vertical line in the inset marks Ng = 2000,
the number of samples that is used throughout the rest of this work.

susceptibility,
X =l (14)

estimated according to Eq. (13). The critical temperature of
the system is obtained by a finite-size scaling analysis of
the wrapping probabilities of the FKCK clusters, resulting in
the estimate 7.(0.6) = 0.9541(10) which is consistent with

—4—L =16
- L=3
1001 £ , g
5 —— L =64 £
2 2
= | Griffiths g
0148 p=06 g
0- T T T
07 T, 13 19 T

FIG. 4. The mean magnetic susceptibility } as a function of
temperature 7 for a fraction p = 0.6 of ferromagnetic bonds. The
values for the different configurations J are computed according to
the estimator of Eq. (13). The gray lines are continuations of the low-
temperature cluster estimator into the high-temperature phase. These
curves exhibit a peak which shifts towards the critical temperature
on increasing the system size, similar to other finite-size definitions
of . The Griffiths phase extends from the critical temperature of the
pure ferromagnet 7y = 2.2691 ... to the corresponding temperature
of the diluted system 7.(0.6) = 0.9541(10).
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FIG. 5. Histogram of the magnetic susceptibility at temperature
T = 10, deep inside the paramagnetic phase. (a) Histogram of  ona
logarithmic scale for different system sizes. The full black line on top
of the orange curve for L = 26 corresponds to a Gaussian fit of type
fx) =crexpl—ca(x — c3)?] where ¢, ¢, and c; are fit parameters,
and the dotted black line is an extrapolation of this fit. Close to
the mean the fit approximates the data quite well. Panels (b) and
(c) depict the empirical rate function as defined in Eq. (16) by using a
rescaling of the argument according to Eq. (17). In both cases the data
collapse onto a single curve. The mean value ¥ = 1.291359(22) is
independent of system size within error bars, as is x; = 1.5670(23)
according to Eq. (18).

previous works [44,47] (for details see Appendix A). The
Griffiths phase extends from the critical temperature of
the pure ferromagnet 7y =2.2691... down to 7:(0.6) =
0.9541(10).

For T > T; the distribution of the magnetic susceptibility
is expected to be fully concentrated around its mean with a
width that decreases on increasing the system size and that
ultimately becomes zero in the thermodynamic limit. In order
to test these predictions we extracted the distribution of the
magnetic susceptibility at 7 = 10, deep inside the paramag-
netic phase. Figure 5(a) shows this distribution for a range of
various system sizes. The width of the distribution decreases
with increasing system size. The shape of the distribution in
the vicinity of the mean can be approximated by a Gaussian.

Further away from the mean the theory of large deviations
provides an appropriate toolbox to describe a distribution [59].
A central element of large-deviation theory is the rate function
@ that characterizes the probabilities of exponentially rare
events. Following this approach, the exponential tail of the
distribution of an intensive quantity x which satisfies the so-
called large-deviation principle can be written as

P.(x;N) = exp {—DP(x)N + o(N)} (15)

in the limit N — oo, where o(N) corresponds to the “small
o notation.” Hence, the fact that the large-deviation principle
holds means that the size dependence of P,(x; N) on N can be
separated from the dependence on x. For finite systems and
in the case of sufficiently fast convergence the empirical rate

function
1
Pe(x;N) = _ﬁ]n{Px(X;N)} (16)

will provide a good approximation of . The magnetic sus-
ceptibility is an extensive quantity. Therefore it is necessary
to perform a rescaling to obtain a well-defined rate function.
While a simple rescaling with N or the mean  already yields
an intensive quantity, we propose the following, somewhat
more subtle, rescaling that takes into account the asymmetry
of the distribution of x and uses a different scaling factor to
the left and to the right of the mean:

x=Kx-x)/(x—-1 ifx <%
X = . _ (17)
xp = —=X)/(xr—%) ifx =%

which we apply for T > T.. If x < x we divide by ¥ — 1
because x = 1 is the minimum value which the magnetic
susceptibility can assume for 7 > T, as one can see from
Eq. (13). When x > x we divide by xy — X where x; corre-
sponds to the magnetic susceptibility of the pure ferromagnet
in the high-temperature phase,

xi = N@?)s forp=1. (18)
By doing so we assume that x¢ scales in the same way as the
largest relevant values of x at the same temperature.

Figures 5(b) and 5(c) show the empirical rate function of
x at T = 10 as a function of the rescaled variables x_ and
x4 of Eq. (17). The data collapse quite well onto a single
curve, although some corrections are visible that we expect to
diminish further as the system size is increased. Nevertheless,
we presume that the empirical rate function gives a good
impression of the shape of the rate function for N — oo, indi-
cating that the assumed large-deviation principle is satisfied.

Next we consider the distribution of the magnetic sus-
ceptibility inside the Griffiths phase. Figure 6 illustrates the
distribution at temperature 7 = 2 for various system sizes. As
in the previous case with 7' = 10, on increasing the system
size the distribution contracts around the mean, thus demon-
strating the presence of self-averaging in the model [8]. Also,
the mean ¥ is essentially independent of system size, but
compared to the distribution at 7 = 10 the distribution has
acquired a long tail that extends over a wide range of the
support.

As discussed above, the analysis of Bray [24] predicts
that as a consequence of the Griffiths singularity the tail
of the distribution of the magnetic susceptibility extends to
infinity. To check this prediction, the rate function is inves-
tigated deep inside the Griffiths phase. Figure 7 shows the
empirical rate function at 7 = 1.5. Again, the mean is es-
sentially independent of system size. The rescaling according
to Eq. (17) leads to a good data collapse on the left side of
the mean. On the other hand, to the right of the mean the
data collapse becomes better with increasing x such that at
x4+ ~ 0.75 all curves start to fall on top of each other. Note
that since T < T, x¢ scales as xf ~ N. As a consequence,
the empirical rate function demonstrates that the exponential
tail does not become smaller with system size but will reach
into infinity for N — oo. The data are therefore fully consis-
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FIG. 6. Histogram of the magnetic susceptibility inside the Grif-
fiths phase at 7 = 2 for multiple system sizes. Within error bars
and for L > 16, the mean is independent of system size and attains
the values x = 5.8304(11). The exponential tail is clearly visible.
The inset shows histograms which are obtained by sampling from the
unbiased bond distribution [see Eq. (2)]. For system size L = 8 (blue
circles), N; = 10° bond samples are used; for system size L = 16
(red right-pointing triangles), N; = 6 x 10°; and for L = 32 (green
upward-pointing triangles), Ny = 1.1 x 10°. The data demonstrate
that using the standard sampling approach it is only possible to
sample a tiny region close to the mean of the distribution.

tent with the expected behavior resulting from the Griffiths
singularity.

Bray [24] also derived a lower bound for the exponential
tail, resulting in the functional form of Eq. (6). Hence, the
corresponding rate function is given by ®(x) = Ax, x > 0 (see
also Appendix B). Qualitatively, the data are consistent with
an exponential tail, but the exponent does not seem to be a
purely linear function. The rate function is linear if its second
derivative is zero. In the case of L = 40, for instance, the
second derivative of the empirical rate function changes sign

ot

_064 -10 =05 0.0 i

000 025 050 075  1.00
T+

FIG. 7. The empirical rate function at 7 = 1.5 deep inside the
Griffiths phase for various system sizes. For x < 0 the data collapse
well onto a single curve and for x > 0 the collapse becomes good for
the studied system sizes when x is larger than approximately 0.75.
The mean is almost independent of system size with x = 16.057(15)
for L =16 and ¥ = 16.173(8) for L =32 while x, diverges as
xt ~ Nsince T < T;.
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T=15 L=32
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FIG. 8. Connection between the value x of the magnetic suscep-
tibility and the fraction p; of ferromagnetic bonds at temperature
T = 1.5 and system size L = 32. The heat map illustrates the prob-
ability to measure the fraction of ferromagnetic bonds p; given
the magnetic susceptibility x, denoted as P(py|x). The dotted red
line corresponds to the conditional mean value of the fraction of
ferromagnetic bonds.

in the range of 0.25 < x4 < 0.5 but it is not zero in the whole
interval (cf. Fig. 7). If there was an interval where the second
derivative was zero and this interval was to increase in size
as N — oo, this would imply a partially linear rate function
in agreement with the prediction of Bray. Unfortunately, the
data for the relatively small system sizes studied here do not
provide a clear indication for such a behavior.

Large values in y are expected to be linked to compact
structures of ferromagnetic bonds with a higher fraction of
present bonds [24]. The fraction p; of ferromagnetic bonds
for a given bond sample J can be formally expressed as

1
pr = ﬁ Zny (19)
(x.y)

In Fig. 8 we show the correlation between the fraction of
ferromagnetic bonds py and the magnetic susceptibility x by
using the conditional probability P(py|x ). As one can see, the
fraction of ferromagnetic bonds and the value of x are indeed
correlated. Large values of x are connected to large values of
py and small values of x to small values of py, respectively.
This confirms the predictions.

Another relevant aspect concerns the temperature depen-
dence of the probability distribution of susceptibilities for
T > T.. Figure 9 illustrates the distribution for multiple tem-
peratures above 7;.. By lowering the temperature the mean of
the distribution shifts to larger values. More weight relocates
into the tail of the distribution and it becomes flatter. This is
in qualitative agreement with the predictions of Bray [24].

Finally, Fig. 10 shows the distribution of x at the critical
temperature. The distribution has a concave shape; it is very
flat and covers the whole range of the support from y =1
to x¢f ~ N. The mean of the distribution diverges according
to X o< LY/ [1 + O(1/InL)], where y; = 7/4 and vy = 1 are
the critical exponents of the pure ferromagnet and O(1/1InL)
refers to the “big O notation” [16]. To the left of the mean
there is no convergence to a rate function. Instead a good data
collapse is obtained by only rescaling the x axis according
to (x — x)/x. The origin of this behavior is the lack of self-
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FIG. 9. Histogram of the magnetic susceptibility for different
temperatures 7 in the Griffiths phase. The temperatures reach from
the higher temperature Griffiths phase just below 7y at 7 = 1/0.55 =
1.81 down to T = 1/0.9 = 1.1, just above the ferromagnetic transi-
tion point at 7.(0.6) = 0.9541(10). The inset shows the histograms
close to the mean. The black vertical lines mark the values of the
means.

averaging at criticality in the case of the diluted ferromagnet
[60-62]. To the right of the mean the large-deviation principle
seems to be satisfied and one obtains a good collapse of the
data by using a scaling rule according to Eq. (17).

V. RESULTS FOR THE FERROMAGNETIC PHASE
AND AT ZERO TEMPERATURE

In this section we investigate the distribution of the mag-
netic susceptibility below the transition temperature 7.(p) to
the ferromagnetic phase [63]. Figure 11 shows the distribution
of the susceptibility for multiple temperatures inside the fer-
romagnetic phase. Apart from a strong peak close to the mean

T=T, 3
o - (a) %
10710048 —F-L =16 4L =26 | :
L=22-F-L=32 i
10~150 L= . . . .
0 250 500 750 1000
X
100 4 ¢ 0.0 1
10750 &
Ay |
10—100 4 (b) —0.2 1 (c)
107150 T T T T T L|
-1.0 -0.5 0.0 0.0 0.5 1.0
(X —X)/X T4

FIG. 10. Histogram of the magnetic susceptibility at the critical
temperature. (a) Distribution of x for multiple system sizes on a
logarithmic scale. (b) Collapse of the data to the left of the mean
by arescaling of the x axis, demonstrating the lack of self-averaging.
(c) Empirical rate function to the right of the mean.
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FIG. 11. Histogram of the magnetic susceptibility for different
temperatures below the ferromagnetic phase transition at system size
L = 26. The temperatures reach from 7 = (.75, which is relatively
close to the phase transition, down to the ground state at 7 = 0.
The inset shows the distribution of the magnetic susceptibility at
T =1/1.5 = 0.6 for three different system sizes L = 16, L = 26,
and L = 32. It demonstrates how the tail of the distribution widens
rapidly with increasing system size.

value there exits an intermediate range where the distribution
only decays relatively slowly before it again starts to rapidly
fall off. This intermediate range in the tail of the distribution
becomes wider and flatter on lowering the temperature such
that there exists a pronounced plateau region for 7 = 0. The
distribution for 7 = 0.2 is already very similar to that of the
ground state behavior found at zero temperature.

In order to unveil the mechanism leading to the large val-
ues of the susceptibility in the tail of the distribution inside
the ferromagnetic phase, we investigated the correlations of
such large susceptibilities to various other observables. Fig-
ure 12 shows the histogram of the susceptibility at 7 = 0.6
[panel (a)] and the connection to multiple other quantities
for system size L = 32 [panels (b)—(e)]. It is visible from
panel (b) that the local fraction p; of ferromagnetic bonds
is relatively constant over a wider range of the distribution
with a value that is slightly smaller than p = 0.6. Only for
the case where x is extremely small or large can one ob-
serve an increase in py [panel (b)]. In the intermediate tail
range, the value of the susceptibility is composed of mainly
two contributions: the variance of the largest FKCK cluster,
var(p1)rk = (7)rk — (P1)7k [panel (c)], and the second mo-
ment of the second largest FKCK cluster, ,oéz) = (,?)%)FK [panel
(d)], i.e., x =~ N[var(p)rx + ,o;z)] [panel (e)]; cf. the general
form shown in Eq. (13). The contribution of smaller clusters
does not seem to be significant.

The contribution of var(p;)px is only relevant relatively
close to the mean of the distribution. The slight decrease of
py in this region is consistent with large values of var(p;)rx
since the fraction of ferromagnetic bonds which leads to a
critical temperature of T,(p*) = 0.6 is roughly p* &~ 0.54 and
thus smaller than p = 0.6. For the very large values of x only
p;z) is important. In the region where there is a jump in ,oéz),
a second large cluster of ferromagnetic bonds forms, which
is not connected to the rest of the system (see the details in
Appendix C). As will be shown in the following, this phe-

054112-8



IN AND BEYOND THE GRIFFITHS PHASE: A LARGE- ...

PHYSICAL REVIEW E 110, 054112 (2024)

100 { P~
. + \i
A i T=08L=232 ) %
10-70 1 1
| — | P
J07T1 00 0.2 (b)
ISH
0.6 . ,
. 0057 —
B = 0 1
& ",
1 (c)
~ 0001~ . —
0.2{ —o— o -
- 0.0 05 1.0
<011
(d)
T 02{ —— e
9 0.0 05 1.0
= -
E 0.1 (e)
00 0.1 0.2
x/N

FIG. 12. Histogram of the magnetic susceptibility at 7 =
1/1.5 = 0.6 inside the ferromagnetic phase and heat maps of vari-
ous conditional observables. All plots share the same x axis which
corresponds to the magnetic susceptibility divided by N. (a) His-
togram of the magnetic susceptibility. (b) Connection between the
fraction of ferromagnetic bonds and the value of the susceptibility
expressed through the conditional probability P(py|x). The dotted
red line is the conditional mean and shall serve as a guide to the
eye. (c) Connection of x to the variance of the largest FKCK cluster,
P[var(p;)ek|x]. (d) Influence of the second moment of the second
largest FKCK cluster, pf), on x, i.e., P(pf)l x)- (e) Distribution
Plvar(py)ex + p5”|x], demonstrating that x ~ N[var(py)rx + 31

nomenon can also be directly studied in the zero-temperature
distribution of .

This zero-temperature distribution is of special interest
since it is not affected by thermal fluctuations but, instead,
it only depends on the bond disorder. Since there are no
thermal fluctuations, the magnetic susceptibility for a fixed
realization can be computed exactly. Only in this limit are
the FKCK clusters identical to the clusters of ferromagnetic
bonds since the FKCK occupation probability is one if there
exists a ferromagnetic bond and zero otherwise. The cluster
sizes are static and the magnetic susceptibility is equal to the
average cluster size without the largest cluster. Because it is
not necessary to compute thermal averages the computation
time decreases significantly and hence larger system sizes can
be studied.

Figure 13 shows the distribution of the magnetic sus-
ceptibility at zero temperature for multiple system sizes.
Again, it is visible that the tail of the distribution becomes
wider on increasing the system size. Note that in this case
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FIG. 13. Histogram of the magnetic susceptibility and connected
quantities at 7 = 0. The main plot at the top shows the histogram
of the magnetic susceptibility for multiple system sizes. The inset is
a heat map which visualizes the conditional probability to obtain a
certain square density p3 of the second largest cluster given the mag-
netic susceptibility x, P(p3]x). The linear relation between x and p?
is clearly visible. The heat map at the bottom of the figure shares the
x axis with the main plot and illustrates the conditional probability
to obtain the fraction of ferromagnetic bonds p; given the magnetic
susceptibility x, P(py|x), for system size L = 128.

the large-deviation approach even allows us to sample over
the full support of the distribution. The support extends from
the minimal possible value y = 0, when there is only one
cluster which contains all spins, to the maximum value y =
N/4, when there are two clusters of equal size which together
contain all spins. This is a direct consequence of Eq. (13) if
one approaches the infinite cluster by considering the largest
cluster of the finite-size systems under consideration. Fig-
ure 13 contains a heat map which illustrates the relation
between the magnetic susceptibility and the local fraction of
ferromagnetic bonds. It shows that the fraction of ferromag-
netic bonds remains almost constant over a wide range of the
magnetic susceptibility. Only for large values of y is there a
notable increase in py. In comparison to Fig. 8, which shows
a similar heat map at 7 = 1.5 inside the Griffiths phase, the
interval in which pj varies is much smaller. Instead the density
of the second largest cluster p;, is the driving force for the
values of the magnetic susceptibility. The inset of Fig. 13
shows a heat map of the conditional probability P(p§| x) It
demonstrates that there exists a linear relation between the
square of the density of the second largest cluster and the
magnetic susceptibility. This central importance of the second
largest cluster can also be directly visualized by looking at
bond samples with distinct different values of x as shown
in Fig. 14. The figure illustrates that for bond samples with
a magnetic susceptibility which is close to the mean value
the size of the second largest cluster is not important. For
bond samples which originate from the plateau region of the
distribution, the second largest cluster becomes significant,
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FIG. 14. Three bond samples of size L = 128 with different values of x; at 7 = 0. Red bonds belong to the largest cluster, green bonds
to the second largest cluster, and blue bonds to smaller clusters. Missing bonds are white. Bond sample (a) has susceptibility x; = 0.142 33,
which is close to the mean value of the distribution, ¥ = 0.160 16(5). Bond sample (b) originates from the intermediate region of the tail of the
distribution with x; = 1519.4 and bond sample (c) comes from the right end of the tail with x; = 4084.0. The figures illustrate the significance

of the second largest cluster for the value of the magnetic susceptibility.

and for the extreme tail events there are only two clusters left
with nearly identical size.

Finally, the behavior of the zero-temperature distribution
with system size is studied. The main plot in Fig. 15 shows
the logarithm of this distribution divided by L. Note that this
is a different type of scaling in comparison to the definition
of the empirical rate function given in Eq. (16), where one
divides by a factor of N = L?. The scaling with L is a sign of
a slower decay behavior of the distribution. The corresponding
data collapse is good in the plateau region of the distribution.
Because the x axis is rescaled by a factor of N/4, it is pos-
sible to conclude that the tail of the distribution will extend
to infinity in the thermodynamic limit. The inset of Fig. 15
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FIG. 15. Scaling of the distribution of the magnetic susceptibility
at T = 0 for several system sizes. The main plot shows a data col-
lapse of the distribution to the right of the mean. Note that the y axis is
not scaled according to the definition of the empirical rate function in
Eq. (16). The chosen scaling gives a good collapse within the plateau
region of the distribution. The inset shows the empirical rate function
to the left of the mean, ¥ = 0.160 16(5). For large system sizes a
good collapse of the data is obtained.

shows the empirical rate function to the left of the mean.
Note that the zero-temperature distribution of the magnetic
susceptibility is a special feature of the bond-diluted ferro-
magnet, i.e., where Jy, € {0, 1}. In the random-bond model
with two types of ferromagnetic bonds of different strengths
[64], i.e., where Jy, € {c, 1} with 0 < ¢ < 1, the distribution
of the magnetic susceptibility in the thermodynamic limit will
be a delta function at the origin as there is only a single cluster
of ferromagnetic bonds which contains all spin sites [65].

Another interesting fact is that the mean of the zero-
temperature distribution is nonzero, ¥ = 0.160 16(5). We
interpret this as a field-driven continuous phase transition
that emerges at very low temperatures because the finite-size
clusters will align parallel to the magnetic field, i.e., dm/dh =
%/T such that 3m/dh ~ T~' for T — 0. The external mag-
netic field destroys the ground state degeneracy.

VI. DISCUSSION

We have studied in depth the distribution of the mag-
netic susceptibility of the two-dimensional bond-diluted Ising
model for a wide range of different temperatures covering
the paramagnetic, the Griffiths, as well as the ferromagnetic
phases down to zero temperature, focusing on a single fraction
of ferromagnetic bonds, p = 0.6. Due to the adaptation and
use of a suitable rare-event sampling algorithm, we are able
to follow the distribution for essentially the full range of
the support and down to probabilities as small as 1073%, The
algorithm is based on the idea proposed in Ref. [40] by one
of the present authors to utilize an auxiliary, biased Markov
chain in the space of the disorder degrees of freedom, here the
space of coupling configurations. We combine this approach
with the idea of the multiple Gaussian ensemble of Ref. [43],
resulting in an efficient algorithm that performs well even for
relatively large systems.

While we cover all phases of the system, our main focus
is on the behavior inside the Griffiths phase, which is the
thermal region between the ordering transition in the pure
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ferromagnet and the ferromagnetic transition in its diluted
counterpart. It is predicted [24] that inside the Griffiths phase
the distribution of the magnetic susceptibility has an expo-
nential tail which extends to infinity, which is a sign of the
essential but weak Griffiths singularity. This singularity is
caused by arbitrarily large structures of ferromagnetic bonds
in which the local fraction of ferromagnetic bonds is higher
than the average value. Within these structures the system is
effectively in a ferromagnetic state such that a change of the
orientation of the spins can lead to large values of the magnetic
susceptibility. By sampling the distribution of the magnetic
susceptibility over a wide range of the support it is possible
to uncover the exponential tail which emerges inside the Grif-
fiths phase. The connection between the sample fraction of
bonds and the size of the magnetic susceptibility is verified
numerically.

The distribution of the magnetic susceptibility is also
studied directly at the critical temperature and inside the
ferromagnetic phase. At the critical temperature a lack of
self-averaging is observed to the left of the distribution mean,
i.e., for small values of x [60-62]. Inside the ferromagnetic
phase the distribution of the magnetic susceptibility exhibits
an exponential tail similar to that of the Griffiths phase. The
tail becomes wider with increasing system size and it is ex-
pected to extend to infinity in the thermodynamic limit. It
is found that the driving force behind large values of the
magnetic susceptibility in the ordered phase is a combination
of the variance of the largest FKCK cluster and the second
moment of the second largest cluster. At zero temperature the
size of the second largest cluster of ferromagnetic bonds is the
only contribution to the large susceptibility observed.

In the present work, we have focused on the distribution of
the susceptibility for a fixed expectation value of the fraction
of ferromagnetic bonds, namely, p = 0.6. This value of p was
chosen because it allows for a large Griffiths phase but is
still far away from the percolation threshold py, = 0.5 such
that there exists a low-temperature ferromagnetic phase. In
general we expect our results to be independent of the value
of p in such a sense that an exponential tail should exist for
all values of T and p inside the Griffiths phase as well as
in the ferromagnetic phase, but its shape may look different
(see Appendix D for more details). Furthermore we note that
for T = 0 the magnetic susceptibility is equal to the average
cluster size of the ferromagnetic bond clusters. The problem
thereby simplifies to random-bond percolation, suggesting
that analytical progress could potentially be made in order to
derive the rate function.

The Griffiths phase is not particular to the diluted fer-
romagnet, but it can also be observed in other disordered
systems, and we hope that the present work will motivate
similar studies of related phenomena in other models. Of par-
ticular interest could be the case of the two-dimensional Ising
spin glass [30]. This model exhibits frustrated interactions and
does not have a ferromagnetic phase transition. Thus it would
be interesting to see how the distribution of the magnetic sus-
ceptibility is impacted by these differences. Furthermore, we
expect that similar effects of broad distributions will also be
visible in observables other than the magnetic susceptibility.
For the diluted ferromagnet studied here, for instance, the
distribution of the specific heat would be of special signifi-
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FIG. 16. Finite-size scaling of the wrapping probability of FKCK
clusters for p = 0.6. The inset shows the original data and the main
plot is a data collapse with 7. = 0.9541(10) and 1/v = 0.90(14). To
find the optimal parameters for the collapse we used the tool provided
in Ref. [66].

cance since the specific heat describes the fluctuations of the
internal energy that becomes singular at the ferromagnetic
phase transition just as the magnetic fluctuations represented
in the susceptibility [67]. Finally, it would me most intriguing
to apply the rare-event sampling techniques showcased here
also for the case of the Griffiths singularities observed in
quantum systems [31-37].
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APPENDIX A: ESTIMATION
OF THE CRITICAL TEMPERATURE

To determine the critical temperature for p = 0.6, we
performed a finite-size scaling analysis of the wrapping prob-
abilities R(T') of the FKCK clusters. For our purposes, we
define the wrapping probability as the probability that there
exists a connected path of occupied bonds which wraps
around the boundaries along the x axis, the y axis, or in
both directions. Close to the percolation threshold finite-size
scaling implies that R(7") should behave as [68]

R(T.L) = fl{(T — T.)/T.L'"}, (A1)
where fz is a scaling function. Figure 16 shows the wrapping
probability as a function of temperature for several system
sizes. The number of bond samples used to perform the av-
erage over disorder ranges from N; = 11000 for the smallest
system size L = 46 to N; = 1100 for the largest system size
L = 256. A collapse of the data according to Eq. (A1) leads to
a critical temperature of 7, = 0.9541(10) and the critical ex-
ponent 1/v = 0.90(14). The reason for the deviation from the
value of the pure ferromagnet, where vy = 1, are most likely
finite-size scaling corrections that are not accounted for in the
collapse approach. The estimate of the critical temperature is
consistent with previous results [44,47].
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FIG. 17. Difference in density of the two largest clusters of fer-
romagnetic bonds for a given value of x at temperature 7 = 0.6 and
system size L = 32.

APPENDIX B: EXPONENTIAL TAIL
ACCORDING TO BRAY

In Ref. [24] Bray derived a functional form for the ex-
ponential tail of the distribution of the inverse magnetic
susceptibility x ! over the bond disorder inside the Griffiths
phase. In the limit x =' — 0 he arrives at the following form
for the distribution:

» A
Pt ~exn (== ).

where A is a temperature-dependent positive constant. By
performing a change of variables one obtains the tail as a
function of yx,

Py () ~ x 77 exp(—Ax).
Below 7; and outside of the critical region, we have x; ~ N
such that one can define the intensive quantity x = x /N which
gives P.(x;N) o exp[—AxN — 21In(x) — In(N)]. The corre-
sponding rate function then is given by

M 1 . J—
Jim - In {P(: N} = Ax. (B1)

APPENDIX C: FERROMAGNETIC BOND CLUSTERS

Ferromagnetic bond clusters are defined by lattice sites
which are connected by a path of ferromagnetic bonds, i.e.,
they correspond to the FKCK clusters at 7 = 0. The density
of a ferromagnetic bond cluster is given by the number of
lattice sites which it contains divided by N. Figure 17 shows
the difference in density of the two largest clusters of fer-
romagnetic bonds, ,offb) - péﬂ’). For /N > 0.2 the second
largest cluster has almost the same size as the largest clus-
ter, since pfﬂ’) - ,o;fb) ~ 0. This demonstrates that the second
largest cluster of ferromagnetic bonds leads to the very large
values of x inside the ferromagnetic phase at zero and positive
temperatures.

APPENDIX D: INFLUENCE
OF THE OCCUPATION PROBABILITY p

Here we discuss the potential effects of varying the bond
occupation probability p. The arguments of Bray [24] which
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FIG. 18. Distribution of the magnetic susceptibility for p = 0.8
and 7 = 2 (inside the Griffiths phase) for different system sizes.

explain the existence of an exponential tail in the distribution
of magnetic susceptibility inside the Griffiths phase do not de-
pend on a specific value of p, but they are generally applicable
for 0 < p < 1. The shape of the distribution, however, can be
different for different values of p. Figure 9 demonstrates the
temperature dependence of the shape of the distribution. In a
similar way we expect the distribution to look different when
the value of p is changed, but the presence of an exponen-
tial tail inside the Griffiths phase, in general, should not be
affected by the specific value of p. As an example, Fig. 18
illustrates the distribution for p = 0.8 and T = 2, inside the
Griffiths phase. As expected, the mean value of x is larger
than that of p = 0.6 at the identical temperature (cf. Fig. 6),
but the exponential tail is again clearly visible. Furthermore,
Fig. 19 depicts the rate function of the distribution and demon-
strates that the range of the tail increases with system size.
This rate function exhibits the same characteristic shape as the
rate function for p = 0.6 at T = 2, as shown in inset (b) for
comparison, but it looks more similar to that at temperature
T = 1.5 for p = 0.6 (see Fig. 7). We have also performed test
simulations for p = 0.3 and again observed an exponential tail
in agreement with the theoretical predictions [24]. Moreover
we have performed a simulation for 7 =0 when p = 0.8
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FIG. 19. The main plot shows the rate function of the magnetic
susceptibility for p = 0.8 and T = 2 right of the mean and inset
(a) illustrates the rate function left of the mean. Inset (b) depicts the
rate function right of the mean for p = 0.6 and T = 2. The x axis is
rescaled according to Eq. (17).
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and found a similar behavior as described in Sec. V. We
hence find broad numerical confirmation of the expectation

that the existence and general features of the Griffiths phase
are independent of the bond occupation probability p.
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