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Cluster percolation in the two-dimensional Ising spin glass
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Suitable cluster definitions have allowed researchers to describe many ordering transitions in spin systems as
geometric phenomena related to percolation. For spin glasses and some other systems with quenched disorder,
however, such a connection has not been fully established, and the numerical evidence remains incomplete. Here
we use Monte Carlo simulations to study the percolation properties of several classes of clusters occurring
in the Edwards-Anderson Ising spin-glass model in two dimensions. The Fortuin-Kasteleyn–Coniglio-Klein
clusters originally defined for the ferromagnetic problem do percolate at a temperature that remains nonzero
in the thermodynamic limit. On the Nishimori line, this location is accurately predicted by an argument due to
Yamaguchi. More relevant for the spin-glass transition are clusters defined on the basis of the overlap of several
replicas. We show that various such cluster types have percolation thresholds that shift to lower temperatures
by increasing the system size, in agreement with the zero-temperature spin-glass transition in two dimensions.
The overlap is linked to the difference in density of the two largest clusters, thus supporting a picture where
the spin-glass transition corresponds to an emergent density difference of the two largest clusters inside the
percolating phase.
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I. INTRODUCTION

Cluster representations and droplet models provide a
framework to study critical phenomena from the geometrical
perspective of percolation [1–3]. For the Ising ferromagnet
the most prominent schemes are the Fortuin-Kasteleyn cluster
representation [2,4] as well as a microscopic definition of
Fisher droplets [5] introduced by Coniglio and Klein [6,7].
Both approaches eventually lead to the same cluster con-
struction. These Fortuin-Kasteleyn–Coniglio-Klein (FKCK)
clusters represent thermal fluctuations, the percolation tem-
perature is equivalent to the critical temperature of the
ferromagnetic phase transition and the critical exponents of
this thermal transition are linked to those of the percolation
transition [2,7]. Furthermore, such clusters unveil interesting
properties of the problem that are not accessible from the
free energy of the Ising model [7]. Apart from these physical
aspects, FKCK clusters are also the basis of powerful Monte
Carlo cluster methods such as the Swendsen-Wang algorithm
[8,9] which dramatically reduces the critical slowing down
observed in the vicinity of the transition that affects simula-
tions with purely local update schemes.

In contrast to the case of the Ising ferromagnet, FKCK
clusters in models with frustration such as spin glasses
[10–13] do not have an obvious physical meaning [14], which
is a consequence of the fact that by construction the growth of
such clusters signals the increase of ferro/antiferromagnetic
correlations and not ordering of the spin-glass nature. Other
types of clusters may hence show more interesting behavior
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when studying such frustrated systems. The order parameter
of the spin-glass transition, the overlap, is defined with respect
to two replicas. Therefore, it seems natural to consider cluster
definitions which include multiple replicas. Here we inves-
tigate in detail three different types of two-replica clusters,
each of which can be linked to the overlap. The simplest of
them just groups together spin sites with identical value of the
overlap. These clusters are the basis of the Houdayer cluster
algorithm [15], which is why we denote them as Houdayer
clusters. A more elaborate cluster definition can be extracted
from a graphical representation initially proposed by Chayes,
Machta and Redner for spin systems in external fields [16,17]
that also allows for a cluster representation of the Ising spin-
glass model [18]. Due to an additional connection to another
cluster algorithm for (dilute) spin glasses proposed by Jörg
[19], we refer to these clusters as Chayes-Machta-Redner-Jörg
(CMRJ) clusters. And thirdly, we study a cluster definition
which was introduced by Newman and Stein as a generaliza-
tion of the FKCK clusters to more than one replica [20]. These
structures we denote as two-replica FKCK clusters.

The CMRJ and two-replica FKCK clusters were studied
numerically for the three-dimensional Ising spin glass and an-
alytically for the Sherrington-Kirkpatrick (SK) model which
corresponds to the mean-field limit of spin glasses [18]. In
three dimensions, the CMRJ and two-replica FKCK clusters
are found to percolate at temperatures above the spin-glass
transition, while the spin-glass transition itself can be related
to an emergent density difference of the two largest clusters
[18]. In contrast, in two dimensions the spin-glass transition
occurs at zero temperature, so it will be interesting to see how
the percolation behavior changes in this scenario. A better
understanding of cluster structures in spin glasses might help
to develop more efficient cluster Monte Carlo algorithms for
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these systems, hence bringing equilibrium studies of larger
systems into the reach of numerical simulation methods [21]
which are urgently needed due to the strong finite-size effects
in spin-glass physics [22].

The rest of this paper is organized as follows. In Sec. II
the Ising spin-glass model is introduced and the simulation
methods are described. In Sec. III we report on our study of
the FKCK clusters in a spin glass with an interaction distribu-
tion that is symmetric around zero as well as on the Nishimori
line. In particular, we compare our results to a prediction
regarding the exact location of the transition point [23]. In the
following Sections we present our numerical results for the
two-replica cluster definitions, namely for the CMRJ clusters
in Sec. IV, the two-replica FKCK clusters in Sec. V, as well
as the Houdayer clusters in Sec. VI. Finally, Sec. VII contains
our conclusions.

II. MODEL AND NUMERICAL METHODS

We consider the two-dimensional Ising spin glass with
Gaussian interactions. The Hamiltonian is given by

HJ (S) = −
∑
〈x,y〉

Jxysxsy. (1)

The system contains N spins which sit on the sites of a square
lattice of linear size L, such that N = L2. The sum runs over all
nearest-neighbor spin pairs as indicated by the notation 〈x, y〉
for lattice vectors x and y. In this study only fully periodic
boundary conditions are used. S denotes a configuration of
Ising spins sx = ±1, i.e., S ∈ {±1}N . The quenched interac-
tions between the spins are represented by bonds Jxy that are
drawn from a Gaussian distribution with standard deviation σJ

and mean J0; we write J = {Jxy} for the coupling realization.
As a consequence, bonds can be ferromagnetic (positive) or
antiferromagnetic (negative). A bond is said to be satisfied if
Jxysxsy > 0 and broken if Jxysxsy < 0 . If there does not exist
a spin configuration such that all bonds are satisfied simul-
taneously, then the system is referred to as frustrated. The
two-dimensional model undergoes a zero-temperature spin-
glass transition [24–29]. The order parameter of the spin-glass
transition, the Parisi overlap parameter [10], is defined with
respect to two replicas S(1) and S(2),

q(S(1), S(2) ) = 1

N

∑
x

s(1)
x s(2)

x = 1

N

∑
x

qx , (2)

where qx = s(1)
x s(2)

x . Replicas are spin configurations
S(1), S(2), ... of a system at the same inverse temperature
β which evolve independently in time but share the same
realization of bonds. In the high-temperature phase the
absolute value of the overlap approaches zero and its
distribution in the thermodynamic limit is a delta peak at the
origin. At low temperature spins have the tendency to point in
a direction such that the bonds are satisfied in a similar way
in different replicas. As a consequence, below the spin-glass
temperature the distribution of the absolute value of the
overlap has a mean which is larger than zero.

To study the model at a range of temperatures we em-
ploy Monte Carlo simulation techniques. To obtain reliable
numerical results it is important to ensure that the system is
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FIG. 1. Internal energy per bond, e, of the 2D Ising spin glass of
Eq. (1) as a function of inverse temperature β at system size L = 128,
averaged over 500 realizations of the bonds. The data for the shifted
and scaled link overlap β(ql − 1) demonstrates that the equilibration
condition of Eq. (5) is fulfilled within error bars at all temperatures.
The inset shows the convergence to equilibrium at the lowest temper-
ature (β = 5) for an average over 50 disorder realizations. To ensure
that the system is in equilibrium we start sampling after 4 × 105 MC
steps. The dotted line illustrates the value of the ground state energy
e∞ = −0.657 393 8(4) according to Ref. [30].

in equilibrium. As a reliable indicator to signal equilibration
we use a relation that was established in Ref. [31] for short-
range spin glasses. It is based on the fact that mathematically
speaking Eq. (1) defines a Gaussian variable with a covariance
that is proportional to the link overlap, ql , i.e.,

[HJ (S(1) )HJ (S(2) )]J = Nbql (S(1), S(2) ) (3)

for J0 = 0 and σJ = 1 [32]. Nb is the number of bonds and
[. . .]J denotes the disorder average with respect to the bond
distribution. The link overlap is given by

ql (S(1), S(2) ) = 1

Nb

∑
〈x,y〉

s(1)
x s(1)

y s(2)
x s(2)

y . (4)

This connection between covariance of the Hamiltonian and
the link overlap has important implications. One consequence
is that the energy per bond can be expressed in terms of the
link overlap [31,32]

e = β(ql − 1) , (5)

where e = [〈HJ (S)〉S]J/Nb [33]. Keep in mind that here it is
necessary to consider the disorder average with respect to the
bond distribution [. . .]J as well as the configurational average
with respect to the Boltzmann distribution 〈. . .〉S . When the
system is initialized randomly, the energy decreases during
the equilibration process and the value of the link overlap
increases as is shown in the inset of Fig. 1, and in equilibrium
Eq. (5) is satisfied. Note that as demonstrated by Contucci
et al. [32,34–36], it is possible to derive further important
properties from relation (3), which underlines the significance
of the link overlap in short-range spin glasses [37].

To determine the overlap, we simulate in parallel two repli-
cas at each temperature. A Monte Carlo step of our procedure
consists of four components. A single spin-flip Metropolis
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sweep, an FKCK cluster move with a Wolff update [38], and
alternatingly a Houdayer [15] or a Jörg cluster move [19] at
each even or odd Monte Carlo time step, respectively. For
the latter we use a Swendsen-Wang–type update rule [38]
which ensures that also smaller clusters are flipped in the
percolating phase. At the end of each Monte Carlo step we
perform an exchange Monte Carlo move [39] of replicas at
neighboring temperatures. The details of the different cluster
moves will be described in the sections below. While the
replica-exchange component is mandatory to achieve equili-
bration, the specific mix of different cluster and single-spin
flip moves chosen here is empirically found to perform well,
but we do not claim that this is the optimal protocol for the
problem. Figure 1 demonstrates that the energy monotonously
decreases with a declining slope when lowering the tem-
perature. At the lowest considered temperature the energy
e(β = 5) = −0.655 91(13) at system size L = 128 is already
close to that of the ground state of the infinite system, e∞ =
−0.657 393 8(4) [30].

To the extent that self-averaging is present in the model,
it is possible to reduce the number of bond realizations to
compute the disorder averages by increasing the system size.
At the FKCK percolation transition the Wolff cluster updates
are extremely effective and we equilibrate 2000 bond real-
izations for the largest considered system size, L = 512, and
up to 12 500 bond realizations for the smallest system size,
L = 64. In the lower temperature region down to β = 5 the
equilibration process needs much more time. In this case we
use between 500 bond realizations for the largest system size,
L = 128, and 7000 bond realizations for the smallest size
L = 16.

III. THE FKCK PERCOLATION TRANSITION

In this section we introduce essential observables which
characterize percolation using the example of the FKCK per-
colation transition in the two-dimensional Ising spin glass
with Gaussian interactions. Furthermore we numerically test
a prediction of Yamaguchi [23,40] who derived a critical tem-
perature for the percolation transition on the Nishimori line.

In standard random-bond percolation all bonds are occu-
pied independently with the same probability pxy = p. In the
correlated FKCK percolation problem, on the other hand,
bonds are occupied with probability

pxy =
{

1 − e−2β|Jxy| if Jxysxsy > 0
0 else

. (6)

Thus, the occupation probability depends on the spin con-
figuration. Occupied bonds connect spin sites which group
together in clusters. The smallest possible cluster contains a
single spin site. These clusters are denoted in the following
as FKCK clusters. Depending on the literature they are also
called CK droplets [6] or FK clusters [4]. Starting from this it
is possible to define cluster updates. Flipping each cluster with
probability 1

2 corresponds to the Swendsen-Wang update rule
[9]. Constructing only one cluster from a randomly chosen
seed site by adding bonds with the probability given in Eq. (6)
and always flipping it, gives the Wolff update rule [38,41]. By
flipping a cluster we mean that each spin inside the cluster
is reversed in sign. Both, the Swendsen-Wang as well as the

Wolff cluster update define ergodic Monte Carlo algorithms
that satisfy the detailed balance condition with respect to the
Boltzmann distribution [42].

In case of the Ising ferromagnet the probability of two spins
pointing in the same direction at two different lattice sites,
x, y, is equal to the probability that the two lattice sites are
connected by a path of occupied bonds,

〈sxsy〉S = Prob(x and y are connected

by occupied bonds). (7)

In other words, the two-spin correlation function is equal
to the pair-connectness function of the FKCK percolation
problem [2,7]. Thus, the percolation transition must coincide
with the ferromagnetic phase transition. Due to frustration this
relation is absent in spin glasses [43,44] and the percolation
transition has no obvious physical interpretation. (Note that
these clusters are areas of satisfied bonds and not of paral-
lel spins, so they do not represent ferromagnetic order.) It
occurs at finite temperature for dimension d � 2 [45] in the
vicinity of the dynamic damage spreading transition [46].
Furthermore, it takes place at a higher temperature than the
spin-glass transition [14,43] and shows the characteristics of a
random (uncorrelated) percolation transition [14]. Just above
the temperature 1/βFK, a single giant cluster begins to form,
the so-called incipient infinite cluster. Here, βFK denotes the
inverse temperature at which percolation emerges in an in-
finitely large system. In the numerically studied finite systems
with fully periodic boundaries the condition of percolation is
satisfied if there exits a path of connected occupied bonds that
wraps around the boundary in the horizontal direction, in the
vertical direction, or in both directions. The probability R for
such wrapping to occur thus provides information about the
location of the percolation transition. Finite-size scaling (FSS)
implies that it behaves as [1]

R(β, L) = fR[(β − βFK)L1/νp ] (8)

close to criticality, where fR is a scaling function. The order
parameter of the percolation transition can be defined as the
density of the largest cluster ρ1 (often denoted as P∞) which
is given by the fraction of sites in the cluster that contains the
most spin sites. Inside the percolating phase the largest cluster
corresponds to the infinite cluster for L → ∞. The density of
the largest cluster satisfies the scaling form [1]

ρ1(β, L) = L−βp/νp fρ1 [(β − βFK)L1/νp ]. (9)

In the Ising ferromagnet this observable corresponds to the ab-
solute value of the magnetization per site [7]. Another quantity
of interest is the mean cluster size [7],

χp =
∑

s

s2n(s) . (10)

In the paramagnetic phase of the Ising ferromagnet this quan-
tity is equal to the magnetic susceptibility [7]. The sum runs
over all sizes (masses) of clusters, s, except the infinite cluster;
n(s) is the cluster number per site which equals the average
number of clusters of size s divided by N . At the critical point
the mean cluster size diverges as χp(βFK) ∼ Lγp/νp , described
by the exponent γp/νp [47].

054103-3



L. MÜNSTER AND M. WEIGEL PHYSICAL REVIEW E 107, 054103 (2023)

−2 −1 0 1 2
(β − βFK)L1/νp

0.0

0.2

0.4

0.6

0.8

1.0
R

L = 64
L = 128
L = 180
L = 256
L = 512

0.8 0.9
β

0.0

0.5

1.0

FIG. 2. Scaling of the wrapping probability in case of the FKCK
percolation transition of the standard 2D Ising spin glass with J0 = 0
and σJ = 1. The data collapse is achieved according to Eq. (8)
with βFK = 0.84079(17) and 1/νp = 0.749(4). The inset shows the
unscaled data for the different system sizes.

In case of the standard Ising spin glass with Gaussian
interactions, J0 = 0 and σJ = 1, we perform Monte Carlo
simulations and measure the observables R, ρ1 and χp of
the FKCK clusters. The data collapses of R and ρ1 are il-
lustrated in Figs. 2 and 3, respectively. The results for the
critical exponents are 1/νp = 0.749(4) and βp/νp = 0.101(6),
respectively. The estimated critical temperature of the per-
colation transition, extracted from the data of R, is βFK =
0.84079(17). To extract γp/νp, we fit a power law to the
data of the mean cluster size for different system sizes at
inverse temperature β = 0.84085 which corresponds to an
inverse temperature of the Monte Carlo simulation in between
the estimates of βFK from R and ρ1 [49]. This leads to the
exponent estimate γp/νp = 1.7920(8). Note that to compute
χp we do not exclude the percolating cluster as this was found
to reduce finite-size effects, a phenomenon which was also
observed in previous work [50,51]. The critical parameters
extracted from the data via FSS are collected in Table I. The
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FIG. 3. The density of the largest cluster as a function of inverse
temperature for the FKCK percolation transition of the standard 2D
Ising spin glass with J0 = 0 and σJ = 1. The main plot shows a
data collapse according to Eq. (9) with βFK = 0.8411(5), 1/νp =
0.754(18), and βp/νp = 0.101(6). The inset shows the unscaled data
for the different system sizes.

TABLE I. Overview of the critical exponents and inverse perco-
lation temperatures in case of the FKCK percolation transition. The
table shows the results for the standard Ising spin glass with J0 = 0,
σJ = 1 as well as for J0 = erf−1(1/2)

√
2, σJ = 1. In the bottom

line we show the exact values for random bond percolation in two
dimensions. pth denotes the percolation threshold. The data collapse
of the FSS analysis is performed with the tool given in Ref. [48].

J0 σJ 1/νp βp/νp γp/νp βFK

0 1 0.749(4) 0.101(6) 1.7920(8) 0.84079(17)
erf−1(1/2)

√
2 1 0.750(7) 0.102(5) 1.7904(7) 0.67447(8)

Bond percolation 3/4 5/48 43/24 pth = 1/2
(numerical) 0.75 0.10416 1.7916 pth = 0.5

data collapses of the FSS analysis are performed with the tool
provided in Ref. [48]. The statistical error is computed by
generating 150 bootstrap samples of the data and individually
performing a data collapse for each sample. The systematic
error is estimated by varying the range of the considered data
which is used to perform the collapse from (β − βFK)L1/νp ∈
[−0.35, 0.35] to (β − βFK)L1/νp ∈ [−1, 1]. Both, the statisti-
cal and the systematic contribution are summed to yield the
provided final estimate of the error.

As is apparent from Table I, the critical exponents are
consistent with the universality class of random percolation.
The correlations which arise due to the fact that only satisfied
bonds can be occupied and the influence of the varying bond
strength do not affect the universality class of the percola-
tion transition. This result is expected to be stable also when
J0 	= 0 [46,52,53].

For the special case of the Nishimori line, the FKCK perco-
lation transition has been studied in some detail [23,40,55,56].
The Nishimori line is a certain set in parameter space of β

and J0/σJ at which it is possible to analytically compute the
internal energy and other quantities via a gauge transforma-
tion [57]. Yamaguchi was able to derive a condition for the
critical bond occupation probability of the FKCK clusters
[23,40] which results in a prediction for the critical inverse
temperature of the percolation transition,

βFK = J0/σJ = erf−1(1/2)
√

2 = 0.67448975 . . . . (11)

This critical inverse temperature is exact under the condition
that the FKCK percolation transition on the Nishimori line is
of the pure random-bond percolation type [58]. We numer-
ically test the prediction (11) by performing simulations on
the Nishimori line with J0 = erf−1(1/2)

√
2 and σJ = 1. We

carry out the same FSS scaling analysis for the data of R,
ρ1 and χp at the critical temperature, β = erf−1(1/2)

√
2, as

previously discussed for the standard Ising spin glass. All the
results are compiled in the third line of Table I. Our estimate of
the critical temperature βFK = 0.67447(8) is consistent with
the value in Eq. (11).

At the critical point the cluster number n(s) as well as
the cluster radius r(s) are expected to follow power laws
n ∼ s−τ and r ∼ s1/d f , respectively. The radius of a cluster is
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FIG. 4. The cluster number n as a function of cluster size s at the
percolation threshold on the Nishimori line, βFK = erf−1(1/2)

√
2 =

0.67448975 . . .. The system size is L = 4096. On the Nishimori line
the energy is e(βFK) = −J0 [54]. The simulation gives e(βFK) =
−0.674490(11), a sign that the system is in equilibrium. The disorder
average is computed with respect to 125 bond samples.

defined as [1]

r(s) =
√√√√ s∑

k=1

|rk − rc|2
s

. (12)

The sum corresponds to the average Euclidean distance of
all sites rk of the cluster from its center of mass rc. For
nonpercolating clusters the center of mass can simply be
derived from the average distance to the origin of the coor-
dinate system. As the origin we chose the root of the cluster.
For percolating clusters we used the algorithm proposed in
Ref. [59]. Figures 4 and 5 show the cluster number and the
cluster radius at βFK = erf−1(1/2)

√
2, respectively. The val-

ues for τ = 2.0552(4) and for the fractal surface dimension
d f = 1.8966(9) are consistent with random percolation for
which the exact values are τ = 187/91 = 2.054945 and d f =
91/48 = 1.89583, respectively. The data numerically verifies
the prediction by Yamaguchi of a random-bond percolation
transition at βFK = erf−1(1/2)

√
2. Altogether the results are

in agreement with the idea that the FKCK transition in Ising
spin glasses belongs to the random-percolation universality
class.

IV. CMRJ CLUSTERS

The order parameter of the spin-glass transition, the over-
lap, is defined with respect to two replicas. It is hence natural

102 104 106

s

101

103

β = βFK

r ∼ s1/df

1/df = 0.52727(24)

FIG. 5. The cluster radius as a function of cluster size on the
Nishimori line with βFK = erf−1(1/2)

√
2. For the data analysis we

used a logarithmic binning of the cluster sizes. The average size
of the clusters within a bin is denoted as s and the corresponding
average radius is given by r. The system size is L = 4096. The
disorder average is computed with respect to 125 bond samples.

to construct clusters related to the spin-glass transition by
considering the overlap of several replicas. Such clusters
might additionally turn out to be useful for designing effec-
tive Monte Carlo cluster algorithms. Proposals along these
lines were already put forward rather early on by Swendsen
and Wang in Ref. [39]. In the following, we investigate the
properties of a particular type of multiple-replica clusters. The
occupation probability of the clusters for I replicas is given by

pxy =
{

1 − exp(−2βJxys̃xs̃y) if Jxys̃xs̃y > 0,

0 else,

with s̃xs̃y =
I∑

i=1

s(i)
x s(i)

y , (13)

where i is the replica index and s̃x = (s(1)
x , ..., s(I )

x ) denotes an
I-component spin. This is a generalization of the cluster def-
inition proposed by Chayes, Machta, and Redner [16–18] as
well as by Jörg [19] to more than two replicas. The condition
Jxys̃xs̃y > 0 enforces the constraint that only those bonds are
occupied which are satisfied simultaneously in the majority
of the replicas [60]. Clusters are defined as spin sites which
are connected by a path of occupied bonds. A cluster move
can then be realized by flipping all I-component spins s̃x

within the same cluster, i.e., s̃x → −s̃x for all x inside the
cluster. Like for the FKCK clusters, this can be done in a
single-cluster or multi-cluster fashion as in the Wolff [38]
and Swendsen-Wang [8] algorithms, respectively. Such a pro-
cedure aims to generate equilibrium states according to the
I-replica Boltzmann distribution

P (S(1), ..., S(I )|J) = Z−I
J exp

(−βH (I )
J

)
,

with H (I )
J (S(1), ..., S(I ) ) = −

∑
〈x,y〉

Jxys̃xs̃y, (14)

where ZJ is the partition function of a single replica for a given
realization of the bonds J.

To check for the convergence of the corresponding Markov
chain, we need to investigate (detailed) balance and ergodicity
[42]. That detailed balance holds with respect to the distri-
bution (14) can be derived from the cluster surface energy
with respect to the I-replica Hamiltonian, H (I )

J , that is the
sum of the energies of the individual replicas. We provide this
derivation in the Appendix. Since during cluster moves the
overlap of any two replicas, qx = sx

(i) s( j)
x , i, j = 1, 2, ..., I ,

i 	= j, is conserved, such cluster flips are not ergodic, however.
In case of I = 2 the described cluster algorithm corresponds to
the method proposed by Jörg [19] which has been successfully
applied to simulate diluted spin glasses [61]. Since an equiv-
alent cluster definition does also emerge from the graphical
representation of Chayes, Machta and Redner (CMR) [16–18]
connected occupied components of this kind are denoted
here as CMRJ clusters. In the CMR representation the above
clusters constructed from “blue” bonds that are satisfied in
both replicas are augmented by clusters constructed of singly-
satisfied “red” bonds to form an overall ergodic cluster update;
cf. Ref. [18]. In the following we focus on the case of I = 2
which is, of course, of special significance for spin glasses.
This is due to the fact that in this case all spins within the same
CMRJ cluster have identical sign of the overlap. It is hence
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FIG. 6. Typical example of CMRJ clusters at β = 3 in thermal
equilibrium, extracted from a simulation of a 152 × 152 sample of
the Gaussian 2D Ising spin glass using two replicas (I = 2). The
red bonds belong to the largest cluster and and the green bonds to
the second largest cluster. Both clusters have an opposite sign of
the overlap. The blue bonds are part of smaller clusters. Unoccupied
bonds are white.

plausible to ask how these clusters are linked to the overlap,
especially in connection with the spin-glass transition.

Figure 6 illustrates an instance of CMRJ clusters of a
sample of the 2D Gaussian spin glass at β = 3 in thermal
equilibrium. There are mainly two large clusters. As becomes
clear in Fig. 7, this is a typical constellation at low tempera-
tures. This plot shows the overlap density of the five largest
clusters as well as the mean of the absolute value of the
overlap, |q| = [〈|q(S(1), S(2) )|〉S]J . The overlap density of a
cluster is defined as the density of a cluster multiplied by
the sign of its overlap. The relative orientation of the spins of
the replicas is chosen such that the largest cluster has positive
overlap. The overlap density of the second largest cluster, q2 ,
is anticorrelated in sign with respect to the largest cluster.
The sum of the overlap densities q1 + q2 is almost parallel
to |q| for β > 2. This observation supports the idea that the
difference in density of the two largest clusters is directly
linked to |q| at low temperatures [18]. In finite systems and
for continuous distributions of the interaction, such as the
Gaussian distribution considered in this work, there exists a
single pair of ground states which are connected by a global
spin flip [62]. As a consequence, |q| would further increase by
lowering the temperature [27] and for β → ∞ it would ap-
proach one as then the system reaches the ground state and all
spins are contained in a single CMRJ cluster. In an infinitely
large system this does not have to be the case since it cannot
be ruled out that there exist infinitely many ground states [63].
For discrete interaction distributions the situation for β → ∞
is more involved since the ground state is degenerate even in
finite systems, and a temperature-dependent crossover length
between a discrete and an effectively continuous behavior

0 1 2 3 4 5
β

−0.2

0.0

0.2

0.4

0.6

0.8 |q|
q1

q2

q3

q4

q5

q1 + q2

q1 + ... + q10

FIG. 7. Overlap of the CMRJ clusters at system size L = 128
averaged over 500 bond realizations. |q| denotes the average value
of the overlap per site which is the order parameter of the spin-
glass transition. qk is the overlap density of the kth largest cluster,
corresponding to the density of the cluster multiplied by the sign of
its overlap. The relative spin orientation of the replicas is chosen
such that the sign of the overlap of the largest cluster is always
positive. We see that the largest and the second largest cluster are
anticorrelated with respect to the sign of the overlap. The sum of
the overlap densities of the largest clusters approaches |q| . Already
q1 + q2 is almost parallel to |q| for β > 2 .

emerges when a careful analysis of the problem is performed
[64–66].

In Fig. 8 we show the density of the three largest CMRJ
clusters at different system sizes. Again it is observed that
the two largest clusters contain most of the spin sites at low
temperatures. On increasing the system size, the curves shift

0 1 2 3 4
β

0.0

0.2

0.4

0.6

0.8

largest, ρ1

2nd largest, ρ2

3rd largest, ρ3

L = 32
L = 46
L = 90

L = 128

FIG. 8. Density ρ = s/N of the three largest CMRJ clusters for
different system sizes L. The curves shift to lower temperatures when
the system size is increased. The height of the peak of the second
largest cluster increases whereas the peak of the third largest cluster
decreases.
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FIG. 9. Scaling of the peaks of the second largest and smaller
CMRJ clusters. The upper panel shows the location of the peak,
β∗, of the kth largest clusters as a function of system size. The
lines are fits of the functional form β∗(L) = c1 ln(L)c2 + c3, where
c1, c2, and c3 are fit parameters. The lower panel shows the density
of the corresponding clusters at their peak location. The density of
the second largest cluster increases in contrast to that of the smaller
clusters. The dotted lines are guides to the eye.

to lower temperature. The height of the peak of the sec-
ond largest cluster increases whereas that of the of smaller
clusters decrease. This is of some significance since if the
contributions of the third largest and smaller clusters become
negligible for L → ∞, the overlap approaches the difference
in the density of the two largest clusters. A scenario of this
type was proposed in Ref. [18] which also provides a rigorous
proof for the SK model.

To better understand this aspect, the behavior of the peaks
of the densities of the largest clusters are investigated in more
detail. The location and height of the peak are extracted from
the data by fitting parabolas in the vicinity of the peaks. Error
bars are obtained via parabolic fits of 250 bootstrap samples
as described in Ref. [67]. The results are depicted in Fig. 9.
The locations β∗ of the peaks shift to smaller temperatures as
the system size is increased. The density of the second largest
cluster increases with system size, whereas that of smaller
clusters decreases. Therefore, the influence of the smaller
clusters diminishes on increasing L, which is consistent with
the idea that the overlap becomes equal to the difference
in density of the two largest clusters in the thermodynamic
limit [18].

0 1 2 3 4
β

0.0

0.3

0.6

0.9

1.2
L = 32
L = 46
L = 90
L = 128

24 25 26 27

(Ln + Ln+1)/2

1.50

1.75

2.00

β
×

FIG. 10. Number of wrapping CMRJ clusters wR as a function
of inverse temperature for different system sizes. The inset shows
the crossing points β× of two neighboring system sizes with L ∈
{16, 22, 32, 46, 64, 90, 128}. The lines are guides to the eyes only.

The percolation transition of the CMRJ clusters does not
fit the standard template of a random percolation transition.
The latter features a single incipient infinite cluster which
forms at the transition point, while the former shows two giant
clusters that develop a density difference at the spin-glass
transition. Therefore, it is interesting to investigate whether
both clusters can wrap simultaneously around the boundaries,
similar to what is observed in three dimensions [18]. The data
in Fig. 10 demonstrate that this is the case for finite systems,
since on average there is more than one wrapping cluster in
the temperature region where the system starts to percolate.
For β → ∞, wR, the number of wrapping CMRJ clusters, is
expected to approach one since in the unique ground state of a
finite system there is only one single giant CMRJ cluster left
which contains all spin sites. The inset of Fig. 10 shows the
crossing points β× of wR of two adjacent system sizes from
the list L ∈ {16, 22, 32, 46, 64, 90, 128} which are expected
to behave like pseudocritical temperatures of the problem.
The crossing points shift to larger β in agreement with the
behavior of the peak locations shown in Fig. 9.

An alternative definition of pseudocritical temperatures
results from a consideration of the wrapping probability R.
The inset of Fig. 11 depicts R for different system sizes. It
is observed that for increasing L the curves shift to larger β

along the x axis. We define pseudocritical points as the inverse
temperatures at which the wrapping probability is one half,
i.e., R(β (0.5)

L ) = 0.5. These values are determined by spline
interpolation of the data and their error bars are generated
with bootstrapping. The main plot of Fig. 11 shows a data
collapse of R which is obtained by shifting the data along
the x axis by the values of β

(0.5)
L . The estimated values of

β
(0.5)
L are shown individually in Fig. 12. They can be well de-

scribed by the functional form β (0.5)(L) = a ln(L)c + b with
a = 0.260(13), b = 0.289(20) and c = 0.894(20) where the
minimal considered system size is Lmin = 16 and the qual-
ity of the fit is Q = 0.87. A simpler logarithmic law with
c = 1, namely β (0.5) = a ln(L) + b, only yields good results
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FIG. 11. Wrapping probability of the CMRJ clusters for different
system sizes. The inset shows the unscaled data. The solid black
points correspond to the inverse temperatures at which the wrapping
probability is one half, R(β (0.5)

L ) = 0.5. The main plot shows a col-
lapse of the data onto a single curve obtained by a shift of the data
along the x axis by the corresponding value of β

(0.5)
L .

for larger system sizes using Lmin = 64 with a = 0.1978(10),
b = 0.396(5) and Q = 0.60. These fits do suggest a zero tem-
perature percolation transition in the thermodynamic limit,
since 1/β

(0.5)
L → 0 when L → ∞. Note that a power law

of the form β (0.5)(L) = b − aL−c can also be fitted to the
data, resulting in a = 8.5(1.5), b = 8.8(1.5), c = 0.026(6)
with Lmin = 16 and Q = 0.81. This would imply a finite-
temperature transition [68] with a critical inverse temperature
of 8.8(1.5). However, in view of the small value c = 0.026(6)
of the exponent, a fit of the form a ln(L)c + b appears to
be much more natural. Additionally, the pure power-law fit
strongly depends on Lmin, such that already for Lmin = 46 the
error bars exceed the values of the fit parameters. Finally, the
positive curvature in the peak locations of the second largest
cluster and in the crossing points of the number of wrapping

50 100 150 200 250
L

0.7

0.8

0.9

1.0

1.1

1/
β

(0
.5

)
L

β(0.5)(L) = b − aL−c

β(0.5)(L) = a ln(L)c + b

β(0.5)(L) = a ln(L) + b

FIG. 12. The plot demonstrates how the percolation transition
shifts to lower temperature T = 1/β as the system size is increased.
The temperature at which the wrapping probability is one half,
1/β

(0.5)
L , is plotted as a function of L. The lines are fits of differ-

ent type. The simple logarithmic law β (0.5)(L) = a ln(L) + b is only
consistent with the data for large system sizes (see main text).

clusters, see Figs. 9 and 10, rather support the idea of a
zero-temperature transition. To sum up, our results are in good
agreement with the scenario of a zero-temperature percolation
transition.

The spin-glass transition occurs at a temperature below the
percolation transition, and it is connected to the difference
in density of the two largest clusters [18]. Therefore, both
above discussed scenarios, a finite-temperature or a zero-
temperature percolation-transition, are consistent with the
zero-temperature spin-glass transition in two dimensions. The
pseudocritical temperatures that describe the spin-glass transi-
tion shift toward zero temperature with a power-law behavior
according to TSG(L) ∼ L−1/ν [27,28], where 1/ν = 0.2793(3)
[30]. This is much faster than the asymptotically logarithmic
scaling of the pseudocritical temperatures of the percolation
transition as shown in Fig. 12.

V. TWO-REPLICA FKCK CLUSTERS

Another approach toward a multiple-replica cluster defi-
nition is to connect FKCK clusters of different replicas. A
straightforward definition of such clusters is given by the
occupation probability

pxy =
{

(1 − e−2β|Jxy|)I if Jxys̃xs̃y > 0 and |s̃xs̃y| = I,
0 else,

where s̃xs̃y =
I∑

i=1

s(i)
x s(i)

y . (15)

This means only those bonds can be occupied which are
satisfied in all I replicas simultaneously. The occupation prob-
ability is equal to the event that in all I replicas the bond
is occupied individually with the probability of the FKCK
clusters; see Eq. (6). In the present paper, we focus on the
scenario of I = 2 and connected components are denoted
as two-replica FKCK clusters [69]. Spins within the same
two-replica FKCK cluster have the same overlap. These two-
replica FKCK clusters were initially proposed by Newman
and Stein with the aim of providing tools to mathematically
show broken spin-flip symmetry in short-range spin glasses at
nonzero temperature [20].

Although there is rather strong numerical evidence for a
finite-temperature spin glass phase for d � 3 [25,26,29,70,71]
we do not have a rigorous proof. In the case of a ferromag-
net it can be shown that the appearance of a unique largest
percolating FKCK cluster corresponds to the onset of long-
range order and broken symmetry [7]. In spin glasses, FKCK
percolation is a necessary condition for broken symmetry and
the occurrence of a unique largest two-replica FKCK cluster
is a sufficient condition [72]. Furthermore, in the SK model
the difference in density of the two largest two-replica FKCK
clusters is equal to the overlap and thus directly connected to
the spin-glass transition. Note that in case of the SK model
this is also true for the previously discussed CMRJ clusters.
In the three-dimensional Ising spin glass a similar behavior is
expected. Although there is some numerical evidence in favor
of this scenario [72], it is not entirely clear if the difference
in density of the two largest clusters is precisely equal to
the overlap or the contributions of smaller clusters are also
relevant. In two dimensions there is no finite-temperature spin
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FIG. 13. Density of the three largest two-replica FKCK clusters
at different system sizes. The curves shift to lower temperature when
the system size is increased.

glass transition, and it is hence of particular interest to see
what happens in this case.

Figure 13 shows the density of the three largest two-
replica FKCK clusters. In general, the percolation transition
has rather similar properties to the CMRJ one. In the vicin-
ity of the transition there are two dominating clusters which
can wrap simultaneously around the boundaries (not shown).
These two largest clusters are anticorrelated with respect to
the sign of the overlap and their difference in density ap-
proaches the average overlap at low temperatures. In Fig. 14
we present the scaling of the peaks in the density of the second
largest and smaller clusters. As is shown in the upper panel,
the peak positions shift to lower temperatures as the system
size is increased. The lower panel visualizes the peak densities
of the largest clusters. It is visible that the height of the peak
for the second largest cluster increases. The heights of the
third largest and smaller clusters do not show a clear trend.
Therefore, the evidence for an equality between the difference
in density of the two largest clusters and the overlap is less
convincing for the two-replica FKCK clusters than in case of
the CMRJ clusters; cf. Fig. 9.

To further investigate the properties of two-replica FKCK
clusters, we also considered the wrapping probabilities which
are shown in Fig. 15. The data show a clear shift along
the x axis to lower temperatures as the system size is in-
creased. The shift is well described by a logarithmic law, i.e.,
β (0.5)(L) = a ln(L)c + b with a = 0.206(14), b = 0.859(22),
c = 0.972(28) and Lmin = 16. If the exponent is fixed to c = 1
and Lmin = 64 chosen, then the result is a = 0.1908(15) and
b = 0.888(7). This is similar to the situation of the CMRJ
clusters where the slope is a = 0.1978(10). A power-law fit
of the form β (0.5)(L) = b − aL−c does not yield a satisfactory
result.

The shift of the percolation transition toward zero tem-
perature demonstrates that there is no sufficient condition
for a broken spin-flip symmetry in two dimensions at
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FIG. 14. Properties of the peaks of the second largest and smaller
two-replica FKCK clusters. The upper panel shows the location of
the peak β∗ of the largest clusters as a function of system size. The
lines are fits of the form β∗(L) = c1 ln(L)c2 + c3 to the data. The
lower panel shows the density of the clusters at the peak locations.
The density of the second largest cluster increases whereas the den-
sity of the smaller clusters show no clear trend for large system sizes.

finite temperatures. This observation is in agreement with
previous numerical studies which show that there is no finite-
temperature spin-glass phase in this case [24–26,29,70,71].
Furthermore, it is consistent with the argument that is not pos-
sible to simultaneously have two infinitely large percolating
clusters with opposing order parameter in two dimensions in
the thermodynamic limit, simply because there is not enough
space [72,73]. Note that the appearance of a single largest
percolating CMRJ cluster would also imply broken symmetry
[72].

VI. HOUDAYER CLUSTERS

Finally, we also considered clusters of spin sites with the
same overlap. These geometrical overlap clusters are used in
Houdayer’s cluster algorithm which allows one to speed up
the Monte Carlo simulation of spin glasses, at least in two di-
mensions [15,74,75]. These clusters are closely analogous to
geometrical clusters in case of the Ising ferromagnet [50,76].
The occupation probability is given by

pxy =
{

1 if |s̃xs̃y| = 2,

0 else, (16)
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FIG. 15. Wrapping probability of the two-replica FKCK clus-
ters for different system size. The upper panel shows the wrapping
probability as a function of inverse temperature β for a number of
the considered system sizes L. The inset contains the curves of the
unscaled data. In the main plot there is a collapse of the data onto a
single curve, which was obtained by a shift of the curves along the x
axis by the values of β

(0.5)
L . In the lower panel, these shifts are shown

as a function of L; they can be described by a logarithmic law of the
type a ln(L)c + b where c is close to one.

and the number of replicas is two. Thus, clusters are simply
defined as connected components of spin sites with identical
overlap. These clusters have a vanishing surface contribution
within the energy of the I = 2 Boltzmann distribution, see
Eq. (14), since s̃xs̃y = 0 at the cluster surface. Therefore,
flipping the spins in these clusters in both replicas simulta-
neously, s̃x → −s̃x, does not change the energy and is hence
in agreement with the detailed balance condition. Because the
two-replica energy and the overlap are conserved quantities,
such cluster moves are not ergodic. Note that any two adjacent
clusters necessarily have an opposite sign of the overlap, and
the sum over all bonds along the surface of the clusters is
proportional to the link overlap (up to an additive constant)
[37]. The previously discussed CMRJ and two-replica FKCK
clusters are geometric subregions of the Houdayer clusters
because each Houdayer cluster includes all connected spin
sites with identical overlap, irrespective of whether the un-
derlying bonds are satisfied or not. Therefore, it might be
expected that Houdayer clusters show properties similar to
those of CMRJ and two-replica FKCK clusters. In fact, Fig. 16
demonstrates that, again, there are mainly two large clusters.
In the vicinity of the percolation transition we again find that
there is more than one wrapping cluster (not shown). Since the
occupation probability does not depend on temperature, the
wrapping probability in the high-temperature regime is larger

0 1 2 3 4
β

0.0

0.2

0.4

0.6

0.8 largest, ρ1

2nd largest, ρ2

3rd largest, ρ3

L = 32
L = 46
L = 90
L = 128

FIG. 16. Density of the three largest Houdayer clusters for dif-
ferent system sizes.

than for the other cluster definitions. The percolation transi-
tion shifts to lower temperature as is shown in Fig. 17. The
shift is consistent with a fit of the form β (0.5)(L) = a ln(L)c +
b with a = 0.73(12), b = −0.93(15) and c = 0.59(6) with
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FIG. 17. Wrapping probability of Houdayer clusters as a func-
tion of system size. The upper panel shows the wrapping probability
for various system sizes. The inset contains the original data. In the
main plot there is a collapse of the data onto a single curve, which
was obtained by a shift of the curves along the x axis by the values of
β

(0.5)
L . The lower panel contains the data for the shifts β

(0.5)
L , together

with a fit of the functional form a ln(L)c + b with Lmin = 46 to the
data.
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FIG. 18. Overview of the shift in the wrapping probabilities
for the three cluster types, namely two-replica FKCK (2R-FKCK),
CMRJ, and Houdayer. The plot shows the value of the inverse tem-
perature at which the wrapping probability is one half R(β (0.5)

L ) =
0.5. The lines are fits of the type β (0.5)(L) = a ln(L)c + b.

Q = 0.68 and Lmin = 46. The data can also be fitted to a power
law, β (0.5)(L) = b − aL−c with a = 3.85(29), b = 3.4(4), c =
0.090(12), Lmin = 46, and Q = 0.56. Again the exponent c =
0.090(12) is so small that the fit does not contradict a loga-
rithmic law.

VII. DISCUSSION

We have studied percolation properties of the two-
dimensional Ising spin glass with Gaussian interactions by
performing Monte Carlo simulations. In the Ising ferromagnet
Fortuin-Kasteleyn–Coniglio-Klein (FKCK) percolation is di-
rectly linked to the thermal phase transition. In spin glasses the
FKCK percolation transition occurs at a higher temperature
than the spin glass transition, close to the heat-bath damage-
spreading transition [46]. We find that the critical inverse
temperature of the percolation transition is βFK = 0.84085(8)
in case of the standard spin glass where the mean of the Gaus-
sian interaction distribution is zero, J0 = 0, and the standard
deviation is one, σJ = 1. The transition belongs to the uni-
versality class of random percolation. On the Nishimori line
[57], which is a certain line in the parameter space of J0 and
σJ , Yamaguchi derived a critical inverse temperature for the
FKCK percolation transition [23,40]. His prediction agrees
within error bars with the numerical data of our analysis. See
also Refs. [46,55,56] for the case of a bimodal ±J interaction
distribution.

The order parameter of the spin-glass transition, the over-
lap, is defined with respect to two replicas which suggests to
study clusters which are defined with respect to two replicas.
Thus, three different cluster types are considered, namely
Chayes-Machta-Redner-Jörg (CMRJ), 2-replica-FKCK and
Houdayer clusters where spins that belong to the same cluster
have identical overlap. In all considered cases the pseudocrit-
ical temperature of the percolation transition shifts to lower
temperatures as the system size is increased. This is demon-
strated in Fig. 18. The shift is well described by a functional
form of β (0.5)(L) = a ln(L)c + b as the fits demonstrate. This
behavior implies a zero temperature percolation transition

in the thermodynamic limit. Furthermore, it is visible that
the Houdayer clusters percolate at the highest temperature
followed by the CMRJ clusters and the two-replica FKCK
clusters at a given system size L. This relative order of clusters
is a consequence of the fact that the CMRJ clusters as well as
the two-replica FKCK clusters are geometric subregions of
the Houdayer clusters since there only bonds can be occupied
which are satisfied in both replicas. The occupation proba-
bility of the CMRJ clusters is higher than that of two-replica
FKCK which explains why the CMRJ clusters percolate at a
higher temperature than the two-replica FKCK clusters.

In all considered cluster definitions percolation is char-
acterized by two large clusters which can simultaneously
wrap around the boundaries close to the transition. These two
largest clusters are anticorrelated with respect to the sign of
the overlap. Furthermore, at low temperatures the mean of
the absolute value of the overlap is directly related to the
difference in density of the two largest clusters. In case of
the CMRJ clusters it is visible that the density of the second
largest cluster increases with system size, whereas that of the
smaller clusters decreases. In this scenario, the mean of the
absolute value of the overlap equals the difference in density
of the two largest clusters in the thermodynamic limit as
proposed and shown for the SK model in Ref. [72]. Thus,
if smaller clusters are irrelevant, then the dominance of the
largest cluster over the second largest cluster is directly linked
to the spin-glass transition. It is well known that pseudocritical
temperatures of the spin-glass transition shift to zero tem-
perature in a power-law fashion with βSG(L) ∼ L1/ν [27,28],
where 1/ν = 0.2793(3) [30]. Since this power law decays
much faster than the above discussed logarithmic law, the
percolation transitions will always appear at a higher tem-
perature as compared to the effective spin-glass transition for
sufficiently large system sizes.

In case of the Ising ferromagnet FKCK clusters correspond
to Fisher droplets and the pair-connectness function of the
percolation problem is equal to the two-spin correlation func-
tion [7]. Thus, the percolation transition coincides with the
thermal phase transition, which makes Monte Carlo cluster
dynamics such as the Swendsen-Wang or Wolff algorithm
very efficient close to criticality. This relation is absent in case
of the considered two-replica cluster definitions and percola-
tion takes place at a higher temperature than the spin-glass
transition. At low temperatures there are mainly two large
clusters which contain almost all spins. To identify clusters
where the pair-connectedness function is directly related to
the overlap-correlation function seems to be an important
goal for further studies. In other words, 〈qxqy〉S has to be
equal to the probability that the lattice sites x and y are con-
nected by a path of occupied bonds for a given realization of
interactions J. If such clusters could be constructed in a com-
putationally efficient way, then this would probably lead to an
effective cluster algorithm to study the spin-glass transition.
Note that it is possible to set up a connection between the
overlap-correlation function and the pair-connection function
within the scope of the CMR representation, but unfortunately
this connection does not have the form of an equality [18].
Interesting candidate definitions of this type may include clus-
ters constructed from more than two replicas. Above we have
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generalized the CMRJ and two-replica FKCK clusters to the
case of I independent replicas, and a numerical investiga-
tion of the properties of such clusters is a promising future
enterprise. Furthermore, it might be useful to develop more
elaborated multi-replica cluster updates which do not only
satisfy detailed balance but are also ergodic. An example for
such an ergodic two-replica cluster update is given in [18]. In
terms of cluster updates which reduce equilibration time and
autocorrelation time it might also be useful to consider more
sophisticated computational methods. An interesting ansatz
would be to define multiple-replica clusters within the frame-
work of the generalized cluster algorithm [77,78]. Another
direction might be the application of machine learning tech-
niques to identify clusters or to look at other nonlocal updating
schemes [79–82]. Overall, it remains an attractive but so far
elusive goal to arrive at a full description of the spin-glass
transition in terms of the percolation of clusters that directly
propagate the correlations.
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APPENDIX: I-REPLICA CLUSTER ALGORITHM

In this Appendix, we show that the I-replica cluster moves
satisfy the detailed balance condition with respect to the I-
replica Boltzmann distribution. Note that a similar derivation
in case of the Ising ferromagnet can be found in Ref. [83].
The I-replica Hamiltonian for a given realization of bonds J
is given by

H(S ) = H (I )
J (S(1), . . . , S(I ) ) = −

∑
〈x,y〉

Jxys̃xs̃y,

where s̃xs̃y =
I∑

i=1

s(i)
x s(i)

y

and s̃x = (s(1)
x , ..., s(I )

x ). We denote a certain spin state Sμ =
(S(1)

μ , . . . , S(I )
μ ) with the index μ and its energy by Hμ =

H(Sμ). The cluster algorithm works as follows. First, each
bond is occupied with probability p(μ)

xy , where p(μ)
xy = 0 if

Jxys̃(μ)
x s̃(μ)

x � 0. Occupied bonds connect spin sites that group
together in clusters. The smallest clusters are isolated spins
and each site belongs to a exactly one cluster. Of all clusters
we randomly choose a fraction f ∈ [0, 1] and we put all spin
sites within these clusters into a single set called A. Often
the fraction is set to f = 0.5. The rest of the spins belong to
the complement of A, Ac = N \ A, where N is the set that
contains all sites x, such that |N | = N . By this procedure we
have created a partition which separates all sites into two sets.
The cluster move is performed by flipping all I-component
spins inside A, i.e. s̃(μ)

x → −s̃(μ)
x , ∀ x ∈ A. Afterwards, the

system is in spin state Sν .
We now we derive the occupation probabilities pxy that

lead to transition probabilities between the states that satisfy

the property of detailed balance. The condition of detailed
balance is given by [42]

T (μ → ν)

T (ν → μ)
= P (Sν |J)

P (Sμ|J)
= exp{−β(Hν − Hμ)}. (A1)

Here, T (μ → ν) denotes the transition probability from spin
state Sμ to spin state Sν and T (ν → μ) is the probability
of the reverse transition. The weight of the states within the
I-replica Boltzmann distribution is given by P (Sν |J) and
P (Sμ|J), respectively. The right hand side of Eq. (A1) de-
pends on the energies Hμ and Hν . States μ and ν only
differ from one another by the flipped spins inside of A,
i.e., s̃(ν)

x = s̃(μ)
x ∀ x ∈ Ac and s̃(ν)

x = −s̃(μ)
x ∀ x ∈ A. Due to

the global spin-flip symmetry of the Hamiltonian, H(S ) =
H(−S ), neighboring spins within the identical set A or Ac

contribute the same energy in both states. Thus, the energies
of the states are

Hμ = H(A)
μ + ∂Hμ + H(Ac )

μ ,

Hν = H(A)
ν + ∂Hν + H(Ac )

ν

= H(A)
μ + ∂Hν + H(Ac )

μ .

Here, H(A) is the contribution to the energy of spins inside A,
H(Ac ) is the contribution from spins which belong to Ac and
∂H is the energy contribution of the surface of the partition.
This surface is defined in terms of bonds which connect spins
from A with those of Ac, i.e., ∂A = {(x, y) ∈ 〈x, y〉 : x ∈ A ∧
y ∈ Ac}. The energy difference of both states is proportional
to the surface energy,

(Hν − Hμ) = −2∂Hμ,

where we made use of the relation ∂Hν = −∂Hμ, which
results from the fact that bonds in the surface which are broken
in state μ are satisfied in state ν and vice versa. By broken
and satisfied bonds we mean that Jxys̃xs̃y � 0 and Jxys̃xs̃y > 0,
respectively. The energy of the surface can be written in terms
of broken and satisfied bonds

∂Hμ = −
∑
∂A+

μ

∣∣Jxys̃(μ)
x s̃(μ)

y

∣∣ +
∑
∂A−

μ

∣∣Jxys̃(μ)
x s̃(μ)

y

∣∣

= −
∑
∂A+

μ

Jxys̃(μ)
x s̃(μ)

y +
∑
∂A+

ν

Jxys̃(ν)
x s̃(ν)

y .

Here, ∂A+
μ denotes the section in the surface where bonds are

satisfied in state μ and ∂A−
μ the section with broken bonds.

As already mentioned, ∂A+
μ = ∂A−

ν and ∂A−
μ = ∂A+

ν .
Now the left-hand side of Eq. (A1) is considered. The

transition probability from state μ to ν can be written as

T (μ → ν) = K (A ∧ Ac|μ)
∏
∂A+

μ

(
1 − p(μ)

xy

)
.

The first factor K (A ∧ Ac|μ) denotes the probability that the
sets A and Ac are constructed given the state μ. The second
factor is the probability that satisfied bonds in the surface
between A and Ac are not occupied. Bonds in the surface
which are broken in state μ are not included because they
are not occupied with probability one. The probability of the
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inverted transition from ν to μ is given by

T (ν → μ) = K (A ∧ Ac|ν)
∏
∂A+

ν

(
1 − p(ν)

xy

)
.

Except for the bonds in the surface the identical bonds are
broken or satisfied in both states μ and ν. As a consequence,
the probability to construct the sets A and Ac starting from
the state ν is equal to the probability to construct the same
sets starting with μ, i.e K (A ∧ Ac|ν) = K (A ∧ Ac|μ). By
inserting our results for the transition probabilities as well as
the surface energy into Eq. (A1) one obtains

K (A ∧ Ac|μ)
∏

∂A+
μ

(
1 − p(μ)

xy
)

K (A ∧ Ac|μ)
∏

∂A+
ν

(
1 − p(ν)

xy
)

= exp

⎧⎨
⎩−2β

⎛
⎝∑

∂A+
μ

Jxys̃(μ)
x s̃(μ)

y −
∑
∂A+

ν

Jxys̃(ν)
x s̃(ν)

y

⎞
⎠

⎫⎬
⎭,

which can be rewritten as

∏
∂A+

μ

(
1 − p(μ)

xy
)

exp
{
−2β

∑
∂A+

μ
Jxys̃(μ)

x s̃(μ)
y

}

=
∏

∂A+
ν

(
1 − p(ν)

xy

)
exp

{
−2β

∑
∂A+

ν
Jxys̃(ν)

x s̃(ν)
y

} .

This equation is satisfied if

pxy = 1 − exp(−2βJxys̃xs̃y)

and the condition of detailed balance is fulfilled. For I = 2
the algorithm is equivalent to the algorithm of Jörg [19] and
the occupied bonds are equal to the blue bonds in the CMR
representation [18].
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