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We investigate zero and finite-temperature properties of the one-dimensional spin-glass model for vector spins
in the limit of an infinite number m of spin components where the interactions decay with a power, σ , of the
distance. A diluted version of this model is also studied, but found to deviate significantly from the fully connected
model. At zero temperature, defect energies are determined from the difference in ground-state energies between
systems with periodic and antiperiodic boundary conditions to determine the dependence of the defect-energy
exponent θ on σ . A good fit to this dependence is θ = 3/4 − σ . This implies that the upper critical value of
σ is 3/4, corresponding to the lower critical dimension in the d-dimensional short-range version of the model.
For finite temperatures, the large m saddle-point equations are solved self-consistently, which gives access to the
correlation function, the order parameter, and the spin-glass susceptibility. Special attention is paid to the different
forms of finite-size scaling effects below and above the lower critical value, σ = 5/8, which corresponds to the
upper critical dimension 8 of the hypercubic short-range model.
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I. INTRODUCTION

The problem of understanding the physics of spin glasses
in the form of simple model systems incorporating frustration
and random disorder has challenged theoretical physicists for
the last forty years.1 Although significant progress has been
made,2 predominantly through extensive numerical simula-
tions, a number of important puzzles are still unsolved, and
we do not have a clear understanding yet of the nature of the
spin-glass phase and whether replica-symmetry breaking, the
hallmark of the spin-glass state in mean-field theory,3 carries
over to systems in low dimensions d.4

Unlike the case of ferromagnets, we have currently no
means of performing a well-behaved perturbative expansion
of the replica-field theory of spin glasses in dimensions below
their upper critical dimension du = 6. While this program
effectively starts from the d = ∞ Sherrington-Kirkpatrick
(SK)5 model to understand behavior in finite dimensions,
an alternative approach is to consider vector spin glasses
with an infinite number of spin components m = ∞, but
arbitrary spatial dimension d, and extend these results in a
1/m expansion to the physically more relevant cases with
finite m.6 This approach appears particularly suitable as the
m = ∞ limit implies a number of simplifications as compared
to the models with finite m. Firstly, the model is replica
symmetric even in the mean-field limit,7 in contrast to the
Ising, XY, or Heisenberg spin glasses usually considered (with
m = 1, 2, and 3 spin components, respectively). Secondly, it is
tractable by analytical and numerical means. For calculations
at zero temperature, it turns out to be very useful that the
metastability afflicting finite-m spin glasses disappears,8,9

making it numerically straightforward to determine ground
states. At finite temperatures, the m → ∞ limit leads to
saddle-point equations which allow for the exact calculation
of correlation functions of finite samples for both mean-field
and non-mean-field models.10

On the other hand, the m = ∞ model has peculiarities. It
has been shown that the upper critical dimension du, which is

six for spin glasses with a finite number of spin components,
is elevated to eight.11 Likewise, the lower critical dimension
at which a finite-temperature transition first occurs, appears to
be also increased from that of systems with a finite number of
spin components. It has been estimated from numerical studies
that12,13 dl ≈ 6. The mechanism of effective dimensional
reduction that is at work in lifting du also leads to a violation
of hyperscaling even below the upper critical dimension.11

Finally, regarding the numerical calculations considered here,
one should note that an order of limits, m → ∞ before
N → ∞, is used which is opposite to that used in field
theoretic calculations.11,14 Taking the infinite-component limit
first might be considered the zeroth-order term in a 1/m

expansion around the field-theoretic calculation.15

From studies of ferromagnets, it was realized many years
ago16 that systems with long-range, power-law interactions in
low dimensions could be used to model the nontrivial critical
behavior of the kind expected in short-range systems of higher
dimensions. Similar observations were later made for spin
glasses.17,18 It was subsequently realized that such models
are useful for numerical studies, as finite-size corrections,
known to be strong for spin-glass systems, depend on the
linear extension of the lattice. Hence, studying, for instance, a
one-dimensional system with interactions which fall off with
distance with a power σ allows one to access significantly
larger (linear) system sizes than studying similar systems on
hypercubic lattices.19–21 While these first works considered
Ising spin glasses, Potts,22 and Heisenberg23–25 models have
also recently received some attention. For the m = ∞ limit
considered here, this approach appears to be well suited, as
reasonable system sizes in the dimensions d > 6 where a finite
temperature phase transition occurs are nearly inaccessible
with current computational resources. For the case of Ising spin
glasses, diluted lattices have been used to reach even larger
linear dimensions,26–28 and the usefulness of this approach
for the m = ∞ model will be discussed in some detail
below.
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The paper is organized as follows. In Sec. II, the model and
some theoretical preliminaries will be introduced. Section III
discusses the phase diagram of the one-dimensional spin glass
with power-law interactions for finite and infinite m and the
scaling and finite-size scaling in the vicinity of the critical
point. In Sec. IV, we report on the results of ground-state
calculations and a study of the defect energies. The critical
behavior is examined with finite-temperature methods in
Sec. V. Finally, Sec. VI contains our conclusions.

II. THE MODEL

In this paper, we study flavors of the well-known Edwards-
Anderson Hamiltonian,

H = −1

2

L∑
i,j=1
i �=j

Jij Si · Sj , (1)

where the Si ∈ R
m, i = 1, . . . ,L, are vector spins with m com-

ponents, normalized as |Si | = √
m. The spins are organized in

an effectively one-dimensional (1d) geometry, either chosen
to be a chain with periodic boundary conditions or a ring as
depicted in Fig. 1. In this fully connected version, the exchange
interactions are between all spin pairs, decaying as a power law
with distance,

Jij ∼ ϕij

rσ
ij

, (2)

where rij = |ri − rj | and ϕij is a standard normal random
variable.

For the case of Ising spins (m = 1)17–20,26,27,29 and, more
recently, Heisenberg spins (m = 3),24,25 this model has been
extensively investigated. It is found that, as the range of
interactions is tuned by varying σ , the model has a behavior
which mimics that of the short-range spin glass as its
dimension d is tuned. For large σ , the spin-glass transition
temperature TSG = 0. This corresponds to dimensions below
the lower critical dimension dl . A non-mean-field regime is
adjacent at intermediate σ continuing on to a mean-field
region for small σ , which corresponds to the dimensions above
the upper critical dimension, du. Finally, the SK model5 is
obviously reached in the limit σ → 0. The phase diagram of
the model as a function of σ is shown in Fig. 2, and will be

FIG. 1. (Color online) The 1d power-law spin-glass model on
a ring geometry. The left panel shows the fully connected version
where the magnitude of the interaction strength falls off with distance.
The right panel shows the diluted model with the bond existence
probability falling off with distance, whereas the bond strengths are
distance independent.

FIG. 2. (Color online) Correspondence between the 1d spin-glass
model with power-law interactions characterized by an exponent σ

and the short-range model on a hypercubic lattice of dimension d . The
upper part of the figure applies to finite spin dimensions m, whereas
the lower part describes the limit m = ∞ discussed here. Increasing
σ corresponds to decreasing the analogous lattice dimension d .

discussed in more detail below. A dictionary can be set up
relating the behavior of the 1d power-law model at a given σ

and a corresponding short-range model on hypercubic lattices
of dimension d.26,27 We shall see here that for the limit of an
infinite number m of spin components, the phase diagram is
modified as shown in the lower part of Fig. 2.

A. Choice of couplings

We studied the model (1) in different variants and on
different geometries.

1. Fully connected model

The fully connected system implied by Eq. (1) is realized
with interaction constants

Jij = c(σ,L)
ϕij

rσ
ij

, (3)

where ϕij ∈ N (0,1) are standard normal random variables. It
is the strength of interactions that falls off as 1/rσ here. The
mean-field transition temperature,

[
T MF

SG (c)
]2 = 1

L

L∑
i,j=1
i �=j

[
J 2

ij

]
av = c(σ,L)2

L

L∑
i,j=1
i �=j

1

r2σ
ij

, (4)

diverges for σ � 1/2, unless we prevent this by an appropriate
L dependent choice of the normalization factor c(σ,L), for
instance, by requiring that

T MF
SG (c)

!= 1, (5)

which fixes c(σ,L). While this is only strictly necessary for
σ � 1/2, we apply the same normalization for all σ . Clearly,
the limit σ → 0 corresponds to the SK model. In fact, it can be
shown that mean-field theory is exact (at any temperature) for
all σ � 1/2.30 For numerical simulations employing single-
spin manipulations, this fully connected model is slow as the
number of bonds equals L(L − 1)/2, so that the cost of a lattice
sweep of updates scales quadratically with the system size L.
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2. Bond-diluted model

To improve on this costly update for the fully connected
model and allow numerical studies to get closer to the large
system limit, a number of authors have considered a diluted
version of the 1d power-law spin glass.26 Its Hamiltonian reads

H = − 1

2
√

z

L∑
i,j=1
i �=j

εij Jij Si · Sj , (6)

where now Jij ∈ N (0,1), but the probability distribution of
the dilution variables εij ∈ {0,1} falls off with the distance rij

as

εij =
{

1, p < pij ,

0, otherwise,
(7)

pij ∼ r−2σ
ij , (8)

with p ∈ U[0,1] a uniform random number from the interval
[0,1]. To ensure that the form of pij is a proper probability
density function, we normalize27

pij = 1 − exp
(−A

/
r2σ
ij

)
, (9)

and determine A by fixing the average coordination number

z =
L−1∑
i=1

piL. (10)

Unless stated otherwise, for the data discussed here, we
used z = 12, corresponding to a hypercubic lattice at the
probable lower critical dimension dl = 6.13 We apply the
Newton-Raphson method31 to determine the value of A

that solves Eq. (10) with pij given by Eq. (9) for a given
coordination number z. The factor 1/

√
z in Eq. (6) ensures

that T MF
SG = 1, consistent with the fully connected model. This

diluted version of the model was previously studied for the
Ising,27 Heisenberg,25 and p-spin32 spin-glass models. The
authors of Ref. 26 and subsequent studies claimed this model
to be in the same universality class as the fully connected
system. As we will see below, however, this is not the case for
σ > 1. Also, certain properties differ for σ < 1/2. In the limit
σ → 0, the diluted system corresponds to the Viana-Bray (VB)
model.33 Numerically, the diluted system with zL/2 bonds
reduces the sweep time from quadratic to linear in L.

B. Choice of geometry

Two different effectively one-dimensional geometries have
been previously considered in studying power-law spin
glasses: a ring of spins19 as depicted in Fig. 1 and the
possibly more natural linear chain with periodic boundary
conditions without any embedding space.34 In the ring model,
the distances are measured according to the Euclidean metric
in the plane,

r◦
ij = L

π
sin

(
π |i − j |

L

)
, (11)

and periodic boundaries are incorporated automatically. In the
chain formulation, spins are located at integer positions i on a
straight line with distances

r
�

ij = min(|i − j |,L − |i − j |), (12)

again assuming periodic boundary conditions. While one
expects the specific form of the geometry to influence the finite-
size behavior, in the limit of large distances on large chains
or rings, both formulations become equivalent. Universal
properties, of course, should not depend on these details. On
the other hand, one might argue that finite-size corrections,
which are notoriously important in the study of spin-glass
systems, will differ between the two formulations and might
thus lead to an effective advantage for one or the other form.

When studying long-range interactions one needs to be
careful about defining a controlled approach to the ther-
modynamic limit. Using the periodic boundary conditions
preferred to suppress boundary effects, each spin effectively
interacts with an infinite set of periodic images. The resulting
infinite sums are usually performed in reciprocal space (Ewald
summation). For the fully connected one-dimensional chain,
i.e., Eq. (12), they can be performed without a cutoff. Summing
over images for the couplings of Eq. (3), one obtains the
effective coupling

J̃ij = c(σ,L)

√√√√ ∞∑
n=−∞

1

|r �

ij + Ln|2σ
ϕij

= c(σ,L)

|L|σ

√√√√ ∞∑
n=−∞

1

|r �

ij /L + n|2σ
ϕij

= c(σ,L)

|L|σ

√
ζ

(
2σ,

r
�

ij

L

)
+ ζ

(
2σ,1 − r

�

ij

L

)
ϕij , (13)

with the Hurwitz Zeta function35

ζ (s,q) :=
∞∑

k=0

1

(k + q)s
. (14)

The corresponding mean-field critical temperature is then[
T MF

SG (c)
]2 = 1

L

∑
i �=j

[
J̃ 2

ij

]
av = c(σ,L)2 1

|L|2σ+1

×
∑
i �=j

[
ζ

(
2σ,

r
�

ij

L

)
+ ζ

(
2σ,1 − r

�

ij

L

)]
, (15)

which, with the normalization T MF
SG (c) = 1, fixes c(σ,L).

While for ferromagnetic systems summation over image
“charges” is crucial, for a spin-glass system with average
magnetization 〈m〉 = 0, it should not change the asymptotic
behavior.36 It might modify finite-size corrections, however.
In Fig. 3, we compare the nonrandom part of the interactions
for the ring geometry as well as the bare and summed chain
interactions. The differences are small and, as we shall see
below, the alterations of the finite-size scaling (FSS) behavior
are rather minor. Note that for the special case σ = 1, the
constants c(σ,L) for the ring and the summed line geometries
coincide, which is easily understood from the identity35

ζ (2,r
�

ij /L) + ζ (2,1 − r
�

ij /L) = π2

sin2(πr
�

ij /L)
=

(
L

r◦
ij

)2

.

Unless stated otherwise, all of the calculations presented below
have been performed for the ring geometry.
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FIG. 3. (Color online) The nonrandom part c(σ,L)/rσ
ij of the

interaction constants in Eq. (3), i.e., for the fully connected model,
for the line and ring geometries and the resummed (Hurwitz) version
(σ = 3/4 and L = 256). Note the logarithmic scale of the ordinate.

III. PHASE DIAGRAM AND CRITICAL BEHAVIOR

To understand the expected critical behavior of the model
in the m = ∞ limit, it is useful to review and generalize
the results for the m < ∞ case. The most distinct feature
of the m = ∞ limit on hypercubic lattices is the elevation
of the upper critical dimension (UCD) to du = 8 and the
accompanying violation of hyperscaling.11

A. Mean-field critical exponents

Recall that the mean-field exponents of (say) the Ising
ferromagnet are

α = 0, β = 1/2, γ = 1, ν = 1/2, η = 0. (16)

These satisfy hyperscaling,

dν = 2 − α, (17)

(only) at the standard upper critical dimension du = 4.
For the (m < ∞) spin glass, the upper critical dimension

is1 du = 6 and the mean-field value of the exponents are

α = −1, β = 1, γ = 1, ν = 1/2, η = 0. (18)

These again satisfy hyperscaling only at the upper critical
dimension, du = 6. α and β are the exponents of the SK
model.1

For the m = ∞, spin glass the upper critical dimension
is11 du = 8. This model, however, violates hyperscaling also
in the non-mean-field regime, and the hyperscaling relation is
replaced by a dimensionally reduced version,

(d − 2)ν = 2 − α. (19)

The mean-field exponents for the m = ∞ model are the same
as those of the Ising spin glass i.e.,

α = −1, β = 1, γ = 1, ν = 1/2, η = 0. (20)

B. Finite-size scaling above the upper critical dimension

To understand the behavior of the model in the mean-field
regime, it is useful to recall the relevant form of scaling and
FSS above the UCD. Below the UCD, finite-size corrections

depend on the ratio of correlation lengths in the finite and
infinite systems, ξL/ξ∞ ∼ Ltν , where t = (T − Tc)/Tc is the
reduced temperature. For a singular quantity A, we therefore
expect the FSS form37

A ∼ Lκ/νA(L1/ν t), d < du, (21)

where κ is the critical exponent associated to A. For a
dimensionless quantity such as the finite-size correlation
length normalized by the system size, we expect

ξ/L ∼ X (L1/ν t), d < du. (22)

At and above the UCD, FSS should hold with mean-field
exponents with the role of the correlation length ξL ∼ L taken
on by some effective length38,39 ζL ∼ � ∼ N1/du = Ld/du , such
that

A ∼ Nκ/duνA(Ld/duν t), d � du, (23)

where ν and κ take on their mean-field values. Similarly, for
the case of a dimensionless quantity, we arrive at

ξ/Ld/du ∼ X (Ld/duν t), d � du. (24)

We can therefore extend the hyperscaling law beyond its usual
range of validity d � du by replacing the correlation length
exponent ν with a renormalized value

ν ′ =
{

ν, d < du,

duν/d = du/2d, d � du,
(25)

since then dν ′ = 2 − α in all dimensions. As a consequence,
at d = du, we find

dν ′ = du/2 = 2 − α, (26)

leading to α = 0 for du = 4 and α = −1 for du = 6.
Comparing the critical scaling of the Landau-Ginzburg-

Wilson (GLW) effective Hamiltonian for the one-dimensional
long-range model and the short-range model in general
dimensions d, one infers that close to the UCD, one has26

deff = 2

2σ − 1
. (27)

As we will see below, ν = 1/(2σ − 1) = deff/2 in the
mean-field region, such that d/du = deff/du = ν/3 and
d/duν = 1/3 and it follows from Eqs. (23) and (24) that

χSG ∼ N1/3C(tN1/3), (28a)

qEA ∼ N−1/3Q(tN1/3), (28b)
ξ

Lν/3
∼ X (tN1/3). (28c)

C. 1d long-range spin glass

The long-range Ising spin glass was discussed analytically
in Refs. 17, 18, 40, and 41. In Ref. 42, it was proven
rigorously that there is no phase transition for σ > 1. Studying
the effective GLW Hamiltonian in replica space,17 it was
inferred that there is a finite-temperature phase transition for
1/2 � σ � 1, which is of mean-field type for 1/2 � σ � 2/3
and of non-mean-field type for 2/3 < σ � 1. Therefore the
lower critical σl = 2/3 corresponds to the upper critical du = 6
for systems on hypercubic lattices and, similarly, for the upper
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critical σu = 1 and the lower critical dl . It is useful to set up
a dictionary of correspondences between the 1d long-range
model and the short-range models on hypercubic lattices,
cf. Fig. 2. Arguments were given in Larson et al.32 that the
effective dimensionality for 2/3 � σ � 1 was approximately
given by27

deff = 2 − η(deff)

2σ − 1
, (29)

where η(deff) is the exponent of the corresponding short-range
model. The upper critical σu = 1 can be inferred from the
result18

θLR = 1 − σ (30)

for the long-range defect-energy exponent (see Sec. IV B).
Since θSR = −1 for the short-range Ising spin glass in 1d, a
finite-temperature transition ceases to exist at θLR = 0, that is,
at σu = 1.

In order to determine the correlation length ξ for long-range
models with power-law interactions, one uses the fact that
the propagator is modified from the well-known Ornstein-
Zernicke form to (in reciprocal space)43,44

G(k) ∼ 1

m2 + k2σ−1
. (31)

For the spin-glass, the analogous form is for the spin-glass cor-
relator χSG(k). Consequently, the second-moment definition of
the correlation length is modified to

ξSG = 1

2 sin(kmin/2)

[
χSG(0)

χSG(kmin)
− 1

]1/(2σ−1)

, (32)

with kmin = (2π/L) 
e1 ∈ R
d , where 
e1 is a lattice basis vector.

At criticality (where m = 1/ξ = 0), it is found that the
Gaussian propagator ∼1/k2σ−1 does not receive any correc-
tions away from mean field45 and hence

2 − η = 2σ − 1, σ � 1. (33)

The upper critical value σu = 1 also follows directly from
observing that at the lower critical dimension (LCD), we
expect the critical correlation function decay G(r) ∼ 1/rd−2+η

to be constant, i.e., dl − 2 + η = 0. Since we have d = 1 and
2 − η = 2σ − 1, it follows that σu = 1.

In the mean-field regime of the Ising model, Kotliar,
Anderson, and Stein (KAS) find17

ν = 1/(2σ − 1), 1/2 � σ � 2/3. (34)

This implies that

γ = (2 − η)ν = 1, 1/2 � σ � 2/3. (35)

Using modified hyperscaling, Eq. (26), for σ < 2/3, we expect

dν ′ = 1
1

2σ − 1

6

2/(2σ − 1)
= 3

!= 2 − α, (36)

i.e., α = −1 and ν ′ = 3 for 1/2 � σ � 2/3 and, consequently,

β = (2 − α) − γ

2
= 1, 1/2 � σ � 2/3. (37)

Note that with

2 − η = 2σ − 1 = (2 − ηMF)/deff (38)

and

ν = 1

2σ − 1
= νMFdeff, (39)

where deff = 2/(2σ − 1), all exponents take their expected
mean-field values.

In the non-mean-field regime, 2/3 < σ < 1, KAS showed
that an expansion around the lower critical value σl = 2/3
in the variable ε = σ − 2/3 was possible and yielded to first
order in ε,

1

ν
= 1

3
− 4ε. (40)

Expansions around the upper critical σu = 1 have also been
proposed.17,41

D. 1d long-range m = ∞ spin glass

For the m = ∞ model, we know11 that the UCD is
elevated from the usual (spin-glass) du = 6 to du = 8 and that,
additionally, there is a failure of hyperscaling, even below the
UCD. For hypercubic lattices at the UCD, FSS should work in
N (see above), e.g.,

χSG ∼ Lγ/ν = L2−η = N (2−η)/d = N1/4, d � 8. (41)

For the 1d long-range model, we expect the long-range form
of the exponent of the correlation function, Eq. (38), to carry
over to the m = ∞ model. At the lower critical σl , where
mean-field behavior first becomes modified, we should find

(2 − η)/d = 2 − η = 2σl − 1
!= 1/4 (42)

or σl = 5/8. Therefore the mean-field regime is here defined
as

1/2 � σ � 5/8. (43)

Of course, this range can be also obtained directly via
the calculational methods in Green et al.11 The effective
correlation length exponent thus becomes ν ′ = 4 and, due
to dimensional reduction, we expect a modified hyperscaling
relation to hold,

(d − �)ν ′ = 2 − α, (44)

with some violation-of-hyperscaling exponent � for the long-
range case. Since we should have α = −1, we infer � = 1/4
for 1/2 � σ � 5/8. The “bare” correlation length exponent
should be unaltered,

ν = 1

2σ − 1
= νMFdeff, (45)

so that then γ = 1 and β = 1 as expected from mean-field
theory.

The FSS forms of the critical quantities become modified
by du = 8 according to the discussion outlined above to
read

χSG ∼ N1/4C(tN1/4), (46a)

qEA ∼ N−1/4Q(tN1/4), (46b)
ξ

Lν/4
∼ X (tN1/4). (46c)

014431-5



FRANK BEYER, MARTIN WEIGEL, AND M. A. MOORE PHYSICAL REVIEW B 86, 014431 (2012)

A consistent definition of the violation-of-hyperscaling
exponent � is given by

� =
{

2σ − 1 = 2/deff, 5/8 � σ,

1/4, 1/2 � σ < 5/8.
(47)

When σ > 5/8, this follows from the form of the propagators
at Tc, which go as 1/k2σ−1, and the results in Ref. 11. � is used
in scaling relations that involve the dimensionality d when one
replaces d by d − �. Thus the scaling relation β/ν = (d − 2 +
η)/2, with the replacements d → d − �, 2 − η = 2σ − 1, and
d = 1 becomes

β/ν = (3 − 4σ )/2. (48)

This is consistent with our numerical results shown in Fig. 25.
It is possible to determine exactly the value of the upper critical
σu from generalizing the argument that at the lower critical
dimension d − 2 + η = 0. Replacing once again d → d − �

and 2 − η = 2σ − 1, one has at σ = σu, 1 − (2σu − 1) −
(2σu − 1) = 3 − 4σu = 0, so σu = 3/4.

As will be discussed below, the defect-energy calculations
for m = ∞ presented here, cf. Fig. 12, can be summarized
as θ (σ = 3/4) = 0, i.e., σu = 3/4, and θ (σ = 1/2) = 1/4,
which lead us to conjecture that

θLR = 3
4 − σ. (49)

In the following, we refer to θLR simply as θ . The form (49)
works over a rather wide range of σ , even for σ > 3/4
in the fully connected model. When σ > 3/4, there is no
finite temperature transition. We have been unable to give a
formal derivation of this result, but suspect that this might be
possible by generalizing the formalism of Aspelmeier et al.46

to spatially varying solutions. One can, however, understand
Eq. (49) from the following considerations. From the scaling
arguments in Ref. 18 for long-range Ising spin glasses, 2θ =
2d − 2σ . This would also follow from the formalism of Ref. 46
that would result in an expression for the variance of the defect
energy, (which scales as L2θ ) proportional to a double sum over
i and j of [J 2

ij ]av if a spatially nonuniform solution for the
defect energies is studied. We have to consider how the failure
of hyperscaling for the large m limit might affect this relation.

θ is not a critical point exponent, but an exponent associated
with the fixed point at zero temperature. For it, we suspect that
the mean-field form of � = 1/4 is relevant for both σ greater
than and less than 5/8, since zero-temperature exponents like
θ can usually be obtained by a simple minimization of the
defect energy, just as one determines mean-field behavior by
minimizing the total energy of the system. Thus allowing
for the failure of hyperscaling, the equation 2θ = 2d − 2σ

becomes 2θ = 2(d − �) − 2σ . With � = 1/4, Eq. (49) for θ

is obtained on setting d = 1. We would expect this argument
to still be valid in the fully connected model even for σ > 3/4
when there is no finite-temperature transition.

McMillan40,47 has argued that the relevant renormalization
group equation for the flow of the temperature T near the lower
critical dimension is

dT

d ln L
= −θT + cT 3 + · · · . (50)

For θ small and positive, (i.e., for σ below, but close to 3/4),
one finds a fixed point at TSG ∝ √

θ ∝ √
3 − 4σ . If we choose

the proportionality constant so that TSG(σ � 1/2) = 1, then

TSG = √
3 − 4σ , (51)

which fits the critical temperature quite well in the whole
regime 1/2 � σ � 3/4 (cf. Fig. 25). The eigenvalue at this
fixed point is

ν = 1

2θ
= 2

3 − 4σ
. (52)

This appears to be consistent with the data shown in Fig. 23
for the regime 5/8 � σ � 3/4, but it cannot be regarded as
anything but an interpolation formula, exact only at the end
points σ = 5/8 and σ = 3/4. For σ > 3/4 TSG = 0. Then one
expects48 ν = −1/θ .

From the scaling relation γ = ν(2 − η) with ν given by
Eq. (52), one has the approximate result that

γ = 4σ − 2

3 − 4σ
, (53)

in the regime 5/8 � σ � 3/4. γ = 1 is thus expected at σ =
5/8 and γ → ∞ as σ → 3/4 from below.

By combining Eq. (48) with Eq. (52), one finds β = 1
throughout the interval 5/8 � σ � 3/4. Thus the expectation
is that β remains close to its mean-field value even in the
non-mean-field region.

IV. ZERO-TEMPERATURE CALCULATIONS

We start our numerical investigations of the m = ∞ spin
glass by studying its ground-state properties as a function of
σ . Due to the possibility of studying large system sizes, we
first concentrated on the diluted model of Eq. (6). For most
calculations, the ring arrangement was used. Compared to the
ground-state problem for generic spin glasses, which is found
to be NP hard,49 ground states for the m = ∞ limit are much
easier to determine. Starting out with the Ising model with
m = 1, with increasing spin dimension the energy landscape
simplifies gradually until, for m → ∞, all metastability has
vanished and the ground state becomes unique. This fact was
already exploited for hypercubic systems in Ref. 13, where
the lower critical dimension was determined with the defect-
energy approach and for different boundary conditions.

The possibility to realize the limit m → ∞ in numerical
calculations rests on the fact that for a finite system of N spins,
the ground state occupies a finite-dimensional submanifold
in spin space,50,51 the dimension of which is limited by the
rigorous upper bound

mmax(N ) = �(
√

8N + 1 − 1)/2� ∼ Nμ, μ = 1/2, (54)

where �x� stands for the largest integer smaller than or
equal to x. Hence, for each system size, a finite number
m∗(N ) � mmax(N ) of spin components is sufficient to
describe the m = ∞ model. For commonly used spin-glass
models, the scaling is in fact weaker than m∗(N ) ∼ N1/2. For
the SK model realized, e.g., in the limit σ → 0 of our fully
connected 1d spin glass, one finds6,50 μ = 2/5. As the degree
of connectivity is lowered, μ is reduced. We determined
the required number of spin components m∗(N ) for each
single realization of the bonds Jij and computed the disorder
average m0 = [m∗(N )]av. The values of m∗(N ) are found
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to vary only slightly between disorder realizations, such
that using mact ≈ 1.1[m∗(N )]av was sufficient to ensure that
m = ∞ ground states are found for all realizations. The
procedure of determining the number of necessary spin
dimensions m∗ will be described at the end of Sec. IV A.

Due to the lack of metastability for m → ∞, it is quite
straightforward to determine true ground states numerically.
Here, we employ a local spin-quench procedure for which the
spins are iteratively aligned with their respective local molec-
ular fields Hi , so that the new value of the spin Si is given by

S′
i ‖ Hi =

∑
j ∈N (i)

Jij Sj , (55)

where the sum runs over the set N (i) of connected neighbors
of the spin at site i. It is easily seen that alignment of each spin
with its molecular field is a necessary condition for the system
to be in its ground state. For the present case of a system
without metastable states,50 it is also sufficient. These updates
are interspersed with sweeps of over-relaxation moves to speed
up convergence, which have also been found to improve the
decorrelation of systems with finite spin dimension m in Monte
Carlo simulations.52 These moves, again being local, preserve
the energy of the whole spin configuration since the updated
spin is merely rotated around its local field and therefore
moves at constant energy. The simplest way of implementing
such a procedure, in particular for the case of arbitrary spin
dimensions m, is to reflect the spin along Hi , such that

S′
i = −Si + 2

Si · Hi

|Hi |2 Hi . (56)

This maximal movement can also be argued to lead to a
maximal decorrelation effect within the constant-energy
manifold of single-spin movements. The whole procedure of
spin-quench and over-relaxation moves can be implemented
very efficiently, since only a few elementary operations are
required for each step and no random numbers are involved.

A. Ground-state properties

Finite-size corrections to the ground-state energy of spin
glasses have been extensively discussed recently for the case
of the short-range Edwards-Anderson system,53–55 spin glasses
on the Bethe lattice and random graphs,56 and the SK model.57

The dominant contribution for short-range systems is due to
the presence of domain-wall defects, leading to corrections
proportional to Ld−θ (see Ref. 54). For the system studied
here, however, these effects, although presumably present, are
masked by corrections stemming from the power-law nature
of the interactions. As indicated in Eq. (4), the relevant energy
scale for the case of unrenormalized coupling strengths, i.e.,
c(σ,L) = 1, is set by the integral over the couplings,

∑
i �=j

[
J 2

ij

]
av =

L−1∑
i=1

1

r2σ
ij

∼ const + cL2σ−1, L � 1.

Hence the ground-state energy per spin and spin component,
i.e., e(L) = E/Lm, is expected to scale as

e′(L) = −
√

e′∞
2 + c′L1−2σ + · · · , (57)

where further finite-size corrections stemming from the pres-
ence of domain-wall excitations have been neglected. We will
see below that these are subleading and cannot be resolved by
the numerics. The primed quantities in Eq. (57) are meant
to indicate the unrenormalized case with c(σ,L) = 1. For
large systems, we therefore expect different limiting behaviors
depending on whether σ ≷ 1/2, viz.,

e′(L) ∼
{

e′
∞

(
1 + c′

2e′∞
2 L

1−2σ
)
, σ > 1/2, L � 1,√

c′L1/2−σ , σ < 1/2, L � 1,
(58)

with logarithmic scaling right at σ = 1/2. If we choose to
make the energy scale convergent for σ � 1/2 by setting

c(σ,L)2 =
L−1∑
i=1

1

r2σ
ij

, (59)

we instead consider e(L) = e′(L) c(σ,L) with limiting
behavior

e(L) ∼
{
e∞ + cL1−2σ , σ > 1/2, L � 1,

const, σ < 1/2, L � 1.
(60)

For the case of the diluted model, similar considerations lead
to the same results, where now A of Eq. (9) takes on the role
of c(σ,L)2. In Fig. 4, we present the results of the scaling of
ground-state energies. The correction exponents result from
fits of the general form

e(L) = e∞ + cL−b, e′(L) = e′
∞ + c′L−b′

, (61)

to the data. The number of disorder realizations used for
the ground-state calculations are summarized in Table I. As
is seen from the middle panel of Fig. 4, the predictions
b′ = 2σ − 1 for σ > 1/2 and b′ = σ − 1/2 for σ < 1/2 for
the e′(L) and b = 2σ − 1 for σ > 1/2 in the renormalized
case are borne out well in the data. For σ < 1/2, where we
predict b = 0, sub-leading corrections become visible. The
resulting correction exponent b = 2/5 is consistent with the
expectations for the SK model, cf. Ref. 58 and the discussion
in Sec. V D below. For the renormalized energies e(L), we
see a dip of the correction exponent for 0.5 � σ � 0.6, which
is possibly due to additional finite-size effects resulting from
the crossover between the forms for σ ≷ 1/2. As shown in
the bottom panel of Fig. 4, the asymptotic ground-state energy
e∞ smoothly increases for interaction ranges σ > 1/2. For
σ � 1/2, it is independent of σ and takes the value −1 in the
fully connected version of the model.8 The independence of
this nonuniversal quantity on σ in this regime is a clear sign of
the exactness of mean-field theory for σ � 1/2 as proposed in
Ref. 30. For models of lower connectivity, however, this energy
is increased. Calculations on a Bethe lattice58 are consistent
with our results, for instance e∞(σ = 0.1) = −0.8784(1), if
the average coordination number is taken into account.

At T = 0 the free energy F reduces to the internal
energy. We can use this fact to consider its sample-to-sample
fluctuations,

σN ∼ N�f (62)

in a FSS analysis. The scaling of this quantity has been the
subject of a number of recent analytical and numerical studies
see, e.g., Refs. 53 and 59–63. For the (m = 1) Ising SK model,
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FIG. 4. (Color online) Average ground-state energies of the 1d
power-law model in the m → ∞ limit. Top: ground-state energies e as
a function of system size L and interaction range σ . The lines show fits
of the form (61) to the data. The corresponding correction exponents
b are shown in the middle. The blue lines indicate the expectations for
the unrenormalized energies e′(L) that are b′ = σ − 1/2 for σ < 1/2
and b′ = 2σ − 1 for σ � 1/2. The bottom panel shows the resulting
asymptotic ground-state energies e∞, for the diluted and the fully
connected models, respectively.

there has been some debate as to whether �f = 1/6 (see
Ref. 64) or �f = 1/4 (see Ref. 46), but now there is growing
consensus that �f = 1/6 (see Ref. 57). For the m = ∞ model

TABLE I. Estimates of the spin stiffness exponent θ in the diluted
model resulting from fits of the functional form (68) to the data,
including system sizes Nmin � N � Nmax. Q denotes the quality
of fit.

aLθ (1 + b/L)

σ Samples/103 Nmin Nmax θ Q

0.1 2.4–10 32 32768 0.245(02) 0.12
0.2 2.9–10 512 16384 0.243(09) 0.39
0.3 3.1–9.1 512 16384 0.255(08) 0.70
0.4 3.3–9.5 1024 16384 0.260(12) 0.54
0.5 3.6–10 512 16384 0.245(08) 0.31
0.6 3.1–9.5 512 32768 0.177(06) 0.98
2/3 3.2–9.2 512 32768 0.126(07) 0.13
0.7 3.2–10 1024 32768 0.076(08) 0.96
0.73 3.2–9.1 512 32768 0.046(07) 0.89
0.75 3.2–9.1 512 32768 0.021(07) 0.56
0.77 3.2–9.3 1024 32768 −0.006(09) 0.28
0.8 3.2–9.0 512 32768 −0.046(06) 0.75
0.85 3.1–6.4 512 32768 −0.127(07) 0.44
0.9 2.8–10 2048 16384 −0.183(26) 0.65
1.0 1.8–9.7 512 16384 −0.467(09) 0.67

discussed here, the situation is less well studied. For the replica
symmetric spherical SK model it was shown that �f = 1/3
(see Ref. 59). As the m = ∞ limit is also replica symmetric,7

one might suspect this value to carry over to the present case.
In Ref. 63, however, it was argued on the basis of connections
of the problem to bond chaos that, instead, �f = 1/5. For the
long-range model studied here, we therefore expect �f = 1/5
in the infinite-range regime σ � 1/2 and a trivial �f = 1/2
for σ > 1/2. Using our data for the ground-state energies to
study this problem, we find clear power-law scaling of the
distribution widths σN irrespective of the chosen value of σ .
An example is presented in Fig. 5 for σ = 0.1. As shown
in Fig. 6, the value of �f for the fully connected model is
found to approach �f = 1/5 in the SK limit as predicted,
hence confirming that the m = ∞ model is not in the same
universality class as the spherical spin glass. In the short-range
limit σ → ∞, we arrive at a trivial �f = 1/2. The transition
between these two extremes, expected to be sharp at σ = 1/2
in the thermodynamic limit, is found to be rather smeared
out, however, indicating the presence of strong corrections
to scaling. In contrast, the situation for the diluted model is
found to be rather different with the fluctuation exponent being
compatible with �f = 1/2 irrespective of σ , cf. Fig. 6. This is
some first evidence of a lack of universality between the fully
connected and diluted versions of the 1d power-law model.
In fact, a similar behavior was predicted in Ref. 62 for the
case of diluted Ising systems, where it was attributed to the
local heterogeneities caused by the fluctuating coordination
number.

We also checked the distribution functions of the ground-
state energies for the diluted as well as the fully connected
model and each power-law exponent σ . While these show
a nontrivial form for the (Ising) SK model,60 Gaussian
distributions have been reported for short-range models.53
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the prediction �f = 1/5 in the SK limit (σ → 0).

For the 1d Ising power-law chain, a crossover from Gaussian
to nontrivial distribution has been found on moving into the
mean-field regime.20 The distribution of ground-state energies
for the 1d m = ∞ model is analyzed in Fig. 7. For all values of
the power-law exponent σ considered here (0.1 � σ � 1), the
distributions seem to be compatible with a Gaussian. This is
indicated by a showcase example for σ = 0.1 and N = 32 678
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FIG. 6. (Color online) Sample-to-sample fluctuations differ for
the diluted and the fully connected model. Whereas the characteristic
exponent is fixed to 1/2 for the diluted model, for the fully connected
model it jumps in the thermodynamic limit from 1/5 to 1/2 when
changing from σ < 1/2 to σ > 1/2. For the range of system sizes
and numbers of disorder samples see the parameters collected in
Tables I and II.
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assuming a Gaussian distribution function. The lower panel shows
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with a quantile-quantile plot as well as an analysis of the
skewness of the distribution, estimated by

γ̂1(E) = 1

Ns

Ns∑
i=1

(
Ei − Ê

σ̂E

)3

(63)

in dependence of the system size for several values of σ

spanning the mean-field as well as non-mean-field regimes.
Here, Ns denotes the number of disorder realizations. Ê =
(1/Ns)

∑Ns
j=1 Ej is the usual estimator for the expectation

value 〈E〉 and σ̂ 2
E = [1/(Ns − 1)]

∑Ns
j=1(Ej − Ê)2 estimates

the variance σ 2
E . Comparing to the results of Ref. 20, it

is worthwhile to note that lattice sizes used there were
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considerably smaller (L � 192) due to the fact that a Monte
Carlo simulation was employed on the fully connected 1d
power-law model. As shown in the lower panel of Fig. 7, for
such small systems, we see a significant decay for increasing
lattice size similar to the one reported in Ref. 20. The data
shown stem from calculations using the diluted version of the
model. We also checked the fully connected version, however,
and found identical results (not shown).

For the case of the m = ∞ model considered here, another
zero-temperature property concerns the average number m0 =
[m∗]av of spin components required to form the ground state.
We determine m∗ for each realization by ordering all spin
vectors of the ground-state configuration into an m × N

matrix M = {S1, . . . ,SN } and performing a singular value
decomposition (SVD) in order to calculate the number of
nonzero singular values, which is equal to the rank of the
matrix. Since the rank of a matrix determines the number
of linearly independent columns, i.e., spin vectors, it is the
desired number m∗. In practice, we monitor the size of all
singular values of M online as the quench into the ground state
proceeds. As the precision of the ground-state determination is
increased, those singular values that vanish in the exact ground
state will scale to zero, whereas all the other singular values
reach finite limiting values. This is illustrated for a sample of
size N = 4096 and σ = 0.1 in the top panel of Fig. 8.

For the average number of spin components in the ground
state, we assume the scaling form

m0 = [m∗]av = const × Nμ + c, (64)

where the additive correction c can account for the fact that
for small systems m0 will not scale to zero, but will be m0 = 1
for tiny systems with N = 1 and 2. We present the results
of this analysis for the infinite-range value σ = 0.1 and the
diluted model in the middle panel of Fig. 8. Since mean-field
theory is exact there, we expect to see the value μ = 2/5 found
for the SK model,6,50 which is indeed borne out rather well.
For σ > 1/2, μ continuously decreases below μ = 2/5, cf.
the summary of our data for the diluted model in Fig. 9. A fit
to a parabola yields μ(σ ) = 0.3995 − 0.55(σ − 0.504)2. Note
that since m0 ∼ Nμ and due to the boundedness of μ � 2/5 <

1, it follows that m0/N ∼ Nμ−1 → 0 in the thermodynamic
limit. Hence, as T → 0, the spins condense into a subspace
of vanishing relative size, just as in the more familiar Bose-
Einstein condensation.6

To check for the influence of the different geometries intro-
duced above in Sec. II B on the scaling results, we performed
some calculations for the bare and resummed line geometries.
The effect of these changes on m0 is illustrated for σ = 3/4,
where we expect the largest deviations, in the bottom panel of
Fig. 8. We find a small overall shift in m0 but, as expected,
no change in μ. Moreover, there appear to be no significant
alterations of corrections to the leading FSS behavior.

B. Defect energies

The defect-energy approach65 is widely used in studying
systems with spin-glass phases. It is based on the assumption
that the cost Edef of the insertion of a system-size defect into
a state of the ordered phase scales as66

Edef ∝ Lθ, (65)
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FIG. 8. (Color online) Top: singular values of the spin matrix
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responds to the functional form μ(σ ) = 0.3995 − 0.55(σ − 0.504)2.

where θ is known as the spin-stiffness exponent. Generalizing
Peierls’ argument for the stability of the ordered phase of a
ferromagnet, one predicts TSG = 0 whenever θ < 0, whereas
the ordered phase is stable at finite temperatures for θ > 0. The
limiting case θ = 0 corresponds to the LCD of the system.
Additionally, for the case θ < 0 with a zero-temperature
transition, θ is related to the correlation length exponent as66

ν = −1/θ .
Numerically, defect energies are conventionally determined

by comparing ground states of systems with a pair of different
boundary conditions (BCs) chosen such that the respective
ground states must differ by a relative domain-wall type
excitation. Then the defect energy corresponds to the energy
difference. The most commonly used set of such BCs are
periodic and antiperiodic boundaries. The defect energy of a
given realization is then

�E = |EAP − EP|, (66)

where the modulus is required since, for symmetric coupling
distributions, the two boundary conditions are statistically
equivalent. For the case of the long-range ring geometry con-
sidered here, a ground-state search is performed for the original
coupling configuration, yielding EP. In the second step, the
boundary exchange couplings are flipped to the antiperiodic
state by choosing one arbitrary nearest-neighbor pair (Sa ,
Sa+1), a ∈ 1, . . . ,N (without having them necessarily interact
in the diluted version of the model) and changing the sign
of all interaction constants Jij between spin Si and Sj for all
i �= j if the shorter path between those two spins falls on top of
the path between Sa and Sa+1.19 A second ground-state search
for this altered configuration then yields EAP. There has been
some discussion in the past about whether this setup is suitable
for the case of continuous spins, since both periodic and
antiperiodic boundaries induce some defects, such that the
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FIG. 10. (Color online) Convergence of the defect energy for the
diluted model as a function of the precision of the ground-state energy
calculation. For large σ , this should be monitored accurately.

energy difference EP − EAP does not directly correspond to
a defect energy.13,67–69 Therefore boundary conditions that
allow directly to measure the energy of a single defect seem
preferable. For the case of the m = ∞ spin glass on hypercubic
lattices, we indeed found different stiffness exponents from
such “domain wall” BCs.13 For the 1d long-range system,
however, it is not obvious how to implement such alternative
prescriptions.

The resulting energy differences are averaged,

Edef = [�E]av = [|EAP − EP|]av (67)

to yield an estimate Edef of the defect energy. Ground states
were computed for σ in the interval 0.1 � σ � 1 for the diluted
version of the model (some extra data have also been produced
for σ = 1.3, cf. Fig. 13). For most of the values of σ a range
of system sizes 512 � L � 32 768 has been considered with
about 3000 disorder realizations for larger and up to 10 000
samples for smaller system sizes, see the parameters collected
in Table I. We ensured convergence by monitoring Edef as the
ground-state quench proceeds, cf. Fig. 10. This is of particular
importance for large σ , where choosing a fixed precision fails
to produce converged results for sufficiently large systems.

The averaged defect energies are shown for the available
interaction ranges σ in Fig. 11. To extract the stiffness
exponents, we performed fits of the functional form

Edef = aLθ (1 + b/L) (68)

to the data. Similarly to our experience from the hypercubic
systems, we found this form to describe the corrections rather
well.13 While this form parametrizes the leading analytical
correction for θ < 0, a constant would be asymptotically
dominant over b/L for θ > 0. Fits including a constant but
no 1/L correction, however, are not found to describe the
data well for θ > 0, such that we stick with the form (68)
for all σ . Any nonanalytic corrections, if present, appear
to be subleading. These fits are shown in Fig. 11 and the
corresponding fit parameters are collected in Table I. Fit
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FIG. 11. (Color online) Defect energies for the diluted 1d power-
law m = ∞ spin glass as a function of lattice size L for a number
of different interaction ranges σ . The solid lines show fits of the
functional form (68) to the data. The corresponding fit parameters are
summarized in Table I. The defect-energy exponent θ changes sign
in the vicinity of σ = 0.77, cf. Fig. 12.

qualities are found to be high throughout, indicating the
suitability of the form chosen in Eq. (68).

Figure 12 summarizes our results for θ as a function of
σ . The stiffness exponent θ clearly becomes constant at a
value compatible with θ = 1/4 in the infinite-range regime
σ � 1/2. To determine the upper critical σu where θ (σu) = 0,
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FIG. 12. (Color online) The stiffness exponent θ extracted from
the diluted model as a function of the interaction range exponent σ .
See Table I for the corresponding fit parameters. θ changes sign for
the critical value σu = 0.76(3) marked by the shaded area. Below
σ = 1/2, the spin stiffness exponent levels off at the infinite-range
value θ = 1/4. The dashed line denotes the conjectured form θ =
3/4 − σ , cf. Eq. (49). The inset shows analogous results for the fully
connected model and a wider range of σ .
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FIG. 13. (Color online) Dependence of defect energies and
stiffness exponents in the diluted model on the average coordination
number z. While for σ < 1, this is merely a finite-size correction,
we observe a nonuniversal θ for σ = 1, and non-power-law scaling
implying an effective θ = −∞ for σ > 1.

we performed a linear fit to the results in the range 0.5 � σ �
0.9, resulting in an intercept of σu = 0.76(3). In connection
with the observation of a linear behavior in the regime 1/2 �
σ � 3/4, this is compatible with the conjectured form θLR =
3/4 − σ , cf. Eq. (49). This behavior is clearly different from
the corresponding Ising spin-glass model with θLR = 1 − σ .
Notice that the change to the value 1/4 at σ = 1/2 is not due to
a failure of Eq. (49) for σ < 1/2, but because for σ < 1/2 we
have rescaled the bonds down by a factor of L1/2−σ . If we had
not done that θ would have continued to be fitted by Eq. (49).

For larger σ , however, we observe clear deviations
of the data for the diluted model from θ = 3/4 − σ . In fact,
the data for Edef at σ = 1.3, not shown in Fig. 11 (but see
the lower left panel of Fig. 13), show a strong downward
curvature, more resembling an exponential decay. A closer
look reveals that there is no universality between the diluted
and fully connected models for σ > 1, where the properties of
the diluted graphs change significantly. As has been shown
in Refs. 71 and 72, 1d graphs defined by Eq. (9) always
percolate for σ � 1/2 and they percolate for sufficiently
large A (namely, for any z > 1/2) in the regime 1/2 <

σ � 1. In contrast, percolation is (asymptotically) absent for
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σ > 1. For the defect-energy calculations considered here, this
means that such nonpercolating samples contribute �E = 0
to Edef , leading to much smaller averages than expected
from the scaling Eq. (65). For the average coordination
numbers considered here, such breakdown of percolation is
only observed for very large systems, mostly beyond the reach
of our numerical calculations. If we remove the links up to a
finite range, however, for instance all nearest-neighbor links,
the remaining graph does not percolate for σ > 1 already
for moderate sizes such that the long-range nature is lost.
An alternative way of understanding this phenomenon is to
note that the diameters of the graphs considered here grow
proportional to (log L)δ for 1/2 � σ < 1, corresponding to
an infinite-dimensional or small-world graph, whereas they
grow proportional to L for σ > 1, corresponding to a truly
one-dimensional graph.73 This explains the strong downwards
deviations of θ from the form θ = 3/4 − σ seen in Fig. 12
for σ � 1. Right at σ = 1, we expect nonuniversality with θ

depending on the average coordination number z which, in
turn, is a function of the parameter A in Eq. (9).

This is illustrated in Fig. 13 showing our estimates for
θ from diluted lattices with different average coordination
numbers z. While, for σ < 1, the measured θ is essentially
independent of z, as expected, there is a dramatic z dependence
right at σ = 1, with the nonuniversal θ (z) approaching the
value expected for the fully connected model in the limit
z → ∞. Similar z-dependent critical behavior at σ = 1 was
also recently found for random walks on such graphs.74 For
σ > 1, on the other hand, the curves Edef cease to follow power
laws and, instead, cross over to the θ = −∞ or exponential
decay expected for short-range one-dimensional systems.9

These deviations are specific to the diluted model: in-
dependent ground-state calculations for the fully connected
model, summarized in the inset of Fig. 12, are consistent
with θ = 3/4 − σ also for σ > 1. The relevant parameters
and results for this model are summarized in Table II. In
contrast to the diluted model, a constant was found to be a
good description of the leading scaling corrections for θ > 0,

TABLE II. Estimates of the spin stiffness exponent θ in the fully
connected model resulting from fits of the functional form (69) (for
σ � 0.75) and (68) (for σ > 0.75), respectively, to the data.

σ Samples/103 Nmin Nmax θ Q

0.1 3.9–4 64 4096 0.238(19) 0.98
0.2 3.9–4 64 4096 0.238(19) 0.06
0.3 3.9–4 64 4096 0.275(20) 0.12
0.4 3.9–4 64 4096 0.247(21) 0.31
0.5 3.9–4 64 4096 0.262(24) 0.76
0.57 3.9–4 128 4096 0.180(41) 0.86
0.6 3.8–4 128 4096 0.200(46) 0.52
0.625 3.9–4 64 4096 0.168(36) 0.52
0.75 3.8–4 64 4096 0.052(95) 0.87

0.8 3.8–4 256 4096 0.014(15) 0.73
1.0 2 256 4096 −0.209(21) 0.28
1.3 1.9–2 256 4096 −0.436(33) 0.99
2.0 1–2 256 2048 −1.132(37) 0.96
2.5 1–2 128 1024 −1.518(47) 0.96

such that we used the form

Edef = aLθ + c (69)

for σ � 3/4 and the form (68) for σ > 3/4. Apart from the
fact that only the fully connected model does represent the
long-range universality class for σ � 1, we also find scaling
corrections for σ < 1 to be less pronounced there than for
the diluted system, such that it appears questionable whether
considering the diluted model offers a significant advantage in
terms of the precision and accuracy of the final results.

Note that the results for θ as σ is increased are in contrast
to those for the Ising case, where θSR = −1, so that the (fully
connected) long-range Ising system is governed by short-range
behavior for θSR > θLR, viz., σ > 2 (whereas the diluted Ising
system would be truly short ranged already for σ > 1). The
m = ∞ model, instead, is truly long-range everywhere, and
crossover to the θSR = −1 of the nearest-neighbor 1d chain
system is not seen. Instead, the limit σ → ∞ of our fully
connected model corresponds to the 1d ladder system with9

θ = −∞.

V. FINITE-TEMPERATURE CALCULATIONS

The critical behavior which arises when σ < 3/4 can only
be studied with techniques appropriate to finite temperatures.
While the ground-state calculations were greatly facilitated
by the disappearance of metastability in the m → ∞ limit,
the use of a saddle-point procedure permits the exact solution
at finite temperatures. As will be discussed in this section,
this approach leads to an iterative set of matrix equations
that allow one to determine the thermally averaged spin-spin
correlation function that, in turn, gives access to the Edwards-
Anderson order parameter, the spin-glass susceptibility, and
the spin-glass correlation length. Due to the nature of the
matrix equations, use of a diluted model does not have any
computational advantages, so that all calculations have been
performed on the fully connected model of Eq. (3).

A. Saddle-point equations

The saddle-point equations for the m = ∞ model were
first derived in Ref. 10 and later discussed again in Refs. 6, 9,
and 50. Starting point is the partition function corresponding
to the Hamiltonian in Eq. (1),

Z =
∫ ∞

−∞

∏
i,μ

dS
μ

i e
β

2

∑
i,j,μ Jij S

μ

i S
μ

j

∏
i

δ

[
m −

∑
μ

(
S

μ

i

)2

]
. (70)

The spin integrations can be performed using integral repre-
sentations of the δ functions to yield

Z =
∫ i∞

−i∞

∏
i

βdHi

4π
exp

[
m

2

( ∑
i

βHi + ln det
χ

β

)]
, (71)

where the susceptibility matrix χ is defined by

χij = (A−1)ij (72)

Aij = Hiδij − Jij . (73)

The Hi in Eq. (71) are initially just new integration variables
introduced by the Fourier representation of the δ constraints,
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FIG. 14. (Color online) The eigenvalue density ρ(λ) of the matrix A, see Eq. (73), for the 1d m = ∞ model at σ = 0.1. At high
temperatures, the distribution follows Wigner’s semicircle law.6 Lowering the temperature shifts the whole distribution to the left, until for
T → 0 m0 eigenvalues {λa} vanish, while the majority (N − m0) of eigenvalues {λb} stay finite. In the thermodynamic limit, the Wigner
semicircle law is restored again also there, since m0/N → 0.

but it will turn out that they have a profound physical meaning.
The matrix A is obviously symmetric, since Jij = Jji . The
correlation matrix,

Cij = 1

m
〈Si · Sj 〉, (74)

is identical to10

Cij = T (A−1)ij , (75)

which can be seen via saddle-point approximation. Taking the
normalization of the spins |Si | = √

m into account and using
Eq. (74), the main diagonal of C needs to be such that

Cii = 1. (76)

Then Eqs. (73), (75), and (76) can be solved self-consistently
for the values of the N variables Hi . Equation (76) is the
saddle-point equation for the integrals in (71) and is valid as
m → ∞ at fixed N .

At T = 0 these equations are no longer well defined.
Instead, as described above, it is a necessary condition for
the system to be in a ground state for each spin to be aligned
with its local molecular field Hi , cf. Eq. (55). Due to the lack
of metastability, for m → ∞, this condition is also sufficient.
As was first noted in Ref. 50, for T → 0 the variables Hi of
Eq. (73) are equivalent to the rescaled amplitudes |Hi |/√m of
the local fields.

It was suggested in Ref. 10 that the density ρ(λ) of
(real) eigenvalues of χ−1 or A was useful in discussions of
the physics of random spin systems. For example, it was
shown that the smallest eigenvalue would vanish at the critical
temperature for N → ∞. For the case of the m = ∞ SK
model in the thermodynamic limit, ρ(λ) follows a Wigner
semicircle. Decreasing the temperature from TSG, where the
first eigenvalue vanishes, a fraction m0 ∼ N2/5 of eigenvalues
becomes zero as T → 0.6 This corresponds to the contraction
of the spin orientations into an m0-dimensional subspace in
the limit of zero temperature, an effect reminiscent of the
Bose-Einstein condensation in atomic systems. The behavior
of the eigenvalue density on cooling the system from high
temperatures is illustrated for our 1d system in the infinite-
range regime σ < 1/2 in Fig. 14.

B. Order parameter and spin-glass susceptibility

The saddle-point equations for systems on hypercubic
lattices in two and three dimensions (as well as in the SK
limit) have been previously examined by Lee, Dhar, and
Young in Ref. 15. They considered the correlation function
Cij of Eq. (75) and determined the Edwards-Anderson order
parameter as

q2
EA = lim

rij →∞
[
C2

ij

]
av (77)

or as q2
EA = [C2

ij ]av, i �= j for the SK model. Taking into
account the scaling m0 ∼ Nμ of the number of nonzero
spin components, they concluded that q2

EA ∼ N−μ in the
ground state, i.e., that the order parameter vanishes in the
thermodynamic limit. Similarly, defining

χ0
SG = 1

N

∑
i,j

[
C2

ij

]
av, (78)

they inferred algebraically decaying correlations [C2
ij ]av ∼

r
−dμ

ij in the m = ∞ model, i.e., merely quasi-long-range order.
This is in contrast to the findings of Ref. 7 for the case of the
N → ∞ limit being taken before the m → ∞ limit.

We believe, however, that one needs to consider the
connected correlation function and on-site correlations to de-
termine χSG and qEA, and we will see that this leads to different
conclusions. The basic idea is to separate contributions from
the zero and nonzero modes. Consider Eq. (74) and factor out
the cumulant part C̃ij of the correlation function,

Cij = 1

m
〈Si〉 · 〈Sj 〉 + 1

m
(〈Si · Sj 〉 − 〈Si〉 · 〈Sj 〉)︸ ︷︷ ︸

C̃ij

. (79)

Due to the symmetry of A and Eq. (75), the matrix C is also
real and symmetric, and hence invertible. For the eigenvalues
λ of A and ω of C, we have the relation

ω = T

λ
. (80)

Using the spectral theorem, C has an orthonormal basis of
real independent eigenvectors {
vn|n = 1, . . . ,N} for the set of
eigenvalues {ωn ∈ R}, which do not need to be distinct.
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The spectral decomposition reads

C =
N∑

n=1

ωn
vn · (
vn)T, (81)

where we use the outer product and the transpose denoted by
(·)T. Thus, with (
vn)T · 
vm = δmn and for T < TSG, the corre-
lation matrix C has the eigenvalue decomposition

Cij =
N∑

n=1

ωnv
n
i v

n
j = T

∑
a

va
i v

a
j

λa

+ T
∑

b

vb
i v

b
j

λb

, (82)

where a = 1, . . . ,m0 labels the m0 eigenvalues λa that vanish
as T → 0, and λb, b = N − m0 + 1, . . . ,N refers to the
remaining N − m0 eigenvalues which stay finite. Here, λx

denotes the x th eigenvalue and vx
k is the kth component of the

corresponding normalized eigenvector 
vx of A.
Working at m = m0, the construction introduced in Ref. 6

leads to

〈
Sa

i

〉 = ±
√

m0T

λa

va
i , (83)

such that the cumulant part of the correlation function can be
identified with

C̃ij = T
∑

b

vb
i v

b
j

λb

, (84)

being a function of the nonvanishing eigenvalues. It is natural
to define the spin-glass susceptibility in terms of this connected
correlation function,

χSG = 1

Nm2

∑
i,j

[〈Si · Sj 〉 − 〈Si〉 · 〈Sj 〉]2

= 1

N

∑
ij

C̃2
ij = T 2

N

∑
b

1

λ2
b

, (85)

where the λb are the nonvanishing eigenvalues in the limit
T → 0. Furthermore, the Edwards-Anderson order parameter
is then given by

qEA = 1

N

∑
i

〈Si〉 · 〈Si〉
m0

= T

N

∑
i

∑
a

va
i v

a
i

λa

= T

N

∑
a

1

λa

,

(86)

where the λa are the vanishing eigenvalues as T → 0.
The chosen formalism leads to a nonvanishing order

parameter at T = 0. To see this, consider

1

N

N∑
i=1

Cii = T

N

∑
a

1

λa

+ T

N

∑
b

1

λb

= 1 (87)

resulting from the normalization condition Cii = 1, Eq. (76).
The finite eigenvalues λb scale to a constant as N → ∞
and T → 0, hence the second sum in Eq. (87) is roughly
proportional to N−1N1−μ = N−μ and thus vanishes in the
thermodynamic limit. Therefore qEA = 1 in this limit. The
“zero” eigenvalues λa vanish as T → 0 and as N → ∞.
Assuming them to be proportional to T/Np, we conclude
from Eq. (87) that p = 1 − μ.

C. Numerical approach

We solve Eqs. (73), (75), and (76) iteratively using the
Newton-Raphson method for systems with σ < 0.85, see the
discussion in Ref. 15. For larger σ , this approach has some nu-
merical instabilities leading to singular matrices in the course
of the LU decomposition. We switched to a method using a QR
decomposition similarly to the way Broyden’s method31 is usu-
ally implemented. However, in both cases, we utilized the exact
Jacobian to speed up calculations. Next, we will show that this
extra speed-up comes for free. According to Eqs. (73), (75),
and (76), we can proceed by introducing the N functions

fi({Hk}) = T (A−1)ii − 1 (88)

and solving for their zeros. Taking into account A−1A = 1,
we have

∂1
∂Hj

= ∂A−1

∂Hj

A + A−1 ∂A

∂Hj

= 0, (89)

so that after multiplying with A−1 from the right and solving
for the needed derivative, we arrive at

∂A−1

∂Hj

= −A−1 ∂A

∂Hj

A−1. (90)

By virtue of Eq. (73), it is(
∂A

∂Hj

)
nm

= δjnδmn, (91)

such that we finally find(
∂A−1

∂Hj

)
ii

= −
∑

n

∑
m

(A−1)inδjnδmn(A−1)mi

= −(A−1)ij (A−1)ji = −(A−1)2
ij . (92)

Hence the desired Jacobian reads

(Jf )ij = ∂fi

∂Hj

= −T (A−1)2
ij . (93)

We start the iterations at high temperature where we expect6

Hi = T + 1/T (94)

for the SK model, resulting in reasonable initial values also for
the 1d long-range system with σ > 0 considered here. This is
illustrated in Fig. 15 for σ = 0.1 and σ = 1. For all systems
considered here, we found a starting temperature of T1 = 10
to be a suitable and sufficient choice. The set of temperature
points may be chosen in a geometrical fashion, such that the
inverse temperature β = 1/T is distributed equidistantly. In
all our simulations, the lowest temperature was chosen to
be Tf = 0.01. On decreasing the temperature, one may use
the converged result of the previous calculation as a starting
point. Alternatively, decreasing the temperature from Tk to
Tk+1 (k > 0, Tk+1 < Tk) a new guess for the values of the Hi

can be obtained by using the differential equation6

dHi

dβ
= −

∑
j

(B−1)ij , (95)

Bij = (βCij )2. (96)

To perform the analysis outlined above in Sec. V B, we
need to separate zero from nonzero eigenvalues. For finite
temperatures and finite systems, however, no eigenvalues are
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FIG. 15. (Color online) Density plots for the parameters Hi in Eq. (73) for σ = 0.1 (left) and σ = 1.0 (right). In the limit T → 0, they
correspond to the (rescaled) local fields |Hi |/

√
m. As is seen here, Eq. (94) yields suitable starting values for the iteration at high temperatures,

cf. the bold ticks on the Hi axis. For increasing values of σ , the distribution broadens. The normalization of the histograms is arbitrary. The
system size used for this plot was N = 1448.

exactly zero. Instead, there is a difference in scaling behavior
between the “zero” eigenvalues that vanish proportional to
T/N1−μ and the other eigenvalues that scale to a constant. This
is illustrated in Fig. 16. To automatically distinguish between
the two types of eigenvalues, one might count all those as
zero that fall below a chosen threshold at the lowest considered
temperature. It turned out to be more reliable, however, to base
the distinction criterion directly on the temperature scaling
∝T of the “zero” eigenvalues. Determining the slope of
ln λ(T ) at the lowest considered temperatures, we counted
those eigenvalues as scaling to zero whose slope was above
0.5. Even with this rather reliable criterion, however, there
always remains a certain ambiguity as the slopes change quite
continuously over the different eigenvalues, and a number of
borderline cases always exists, cf. the example in Fig. 16.
We do not find any signs of the number of zero eigenvalues
changing with temperature. Instead, our results are compatible
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FIG. 16. (Color online) The evolution of eigenvalues λ of the
matrix A of Eq. (73) with temperature for a L = 1448 system with
σ = 0.1. The nonzero eigenvalues (black, dot-dashed) stay finite in
the limit T → 0 (biggest are left away). The others (blue, solid) scale
to zero as ∼T . Note that both axes have logarithmic scales.

with all relevant eigenvalues starting to scale to zero as soon
as T < TSG.

The analysis of the eigenvalue density allows for an
alternative method of calculating the spin dimension scaling
exponent μ already discussed in Sec. IV A. To implement it,
we determined the rank of the matrix M composed of the
ground-state spin vectors. Instead, we could have extracted
the local field values |Hi |, fed them into Eq. (73) and
determined the number of zero eigenvalues. These approaches
are equivalent since the rows of M correspond to the null
eigenvectors of A and the row and column ranks of a
matrix are identical.6 This would not have allowed us to
consider sufficiently large systems, however, since there an
N × N matrix must be inverted, which is in contrast to
the T = 0 ground-state calculations where it was sufficient
to determine the rank of the auxiliary, but smaller, m × N

ground-state spin matrix M . The results for m0 extracted
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μ (T = 0, dil.)
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FIG. 17. (Color online) Spin-dimension exponent μ calculated
from the eigenvalue density at finite temperatures (T > 0) as
compared to the result reported in Sec. IV A from the ground-state
computations (T = 0). For σ = 0, the SK model was considered
directly. For the fully connected model, the results of the calculations
at T = 0 and for T > 0 are well compatible.
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FIG. 18. (Color online) The eigenvalue distribution of the matrix A, cf. Eq. (73), at temperature T = 0.01 for different values of the
power-law exponent σ (N = 1448). Wigner’s semicircle form holds for the infinite-range region 0 < σ � 1/2 in the thermodynamic limit.
The red bold line shows fits of the functional form (99) to the data. A positive exponent x results for σ < 3/4.

from the finite-temperature calculation are summarized in
Fig. 17. The outcomes are mostly compatible with those of the
zero-temperature approach for the case of the fully connected
model. In contrast, the T = 0 results for the diluted model
systematically deviate from those of the fully connected model
for σ > 1 as discussed above in Sec. IV B, and some signs of
this nonuniversality are already seen for σ � 0.8.

D. Distribution of eigenvalues

Braun and Aspelmeier58 suggested using the eigenvalue
spectrum for a more general understanding of scaling correc-
tions for the case of the two competing limits N → ∞ and
m → ∞. Their analysis is valid for the system on a Bethe lat-
tice, but some results might generalize to the model considered
here. They discuss the ground-state energy e(m,N ) = E/Nm

per spin and spin component, which is argued to have two
contributions: the ground-state energy in the limit N → ∞
with m = m0 large and fixed, e∞ + 1

4m
−y

0 + O(m2
0), and

the additional energy required for forcing the N spins into
an m0 dimensional subspace. This second contribution is
proportional to the required shift of the eigenvalue spectrum
ρ(λ) to push m0 eigenvalues to zero. Assuming the density at
small λ to scale as ρ(λ) ∼ λx ,10 the first m0 eigenvalues occupy
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FIG. 19. The density exponent x as determined by fitting a power
law, Eq. (99), to the eigenvalue densities shown in Fig. 18.

the interval [0,(m0/N)1/(1+x)], such that the total energy is

e(m,N ) = e∞ + c1m
−y

0 + c2

(
m0

N

)1/(1+x)

. (97)

Minimizing with respect to the number m0 of spin components
yields the scaling relation

μ = 1

y(x + 1) + 1
. (98)

For the SK model with x = 1/2 (the Wigner semicircle law)
and y = 1,8 we therefore arrive at the observed μ = 2/5
as desired. This scaling should hold independent of lattice
structure.

We determined the exponent x of the density of eigenvalues
as λ → 0 from fits of the functional form

ρ(λ) = a(λ + �λ)x (99)

to the data. Here, the shift �λ is required to take the zero
eigenvalues into account. To perform the fits, eigenvalues from
a large number of disorder samples were accumulated, and the
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FIG. 20. (Color online) A comparison of the exponent z = (1 +
μ)/(1 + x) determined from the T > 0 calculations (black diamonds)
with the ground-state energy correction exponent b as determined in
Sec. IV A (green circles).
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FIG. 21. (Color online) The spin-glass correlation length ξL/L (for σ � 5/8) and ξ/Lν/4 (for 1/2 < σ < 5/8), respectively, for different
lattice sizes L. For σ < 3/4, the lines show a clear crossing point. The crossing vanishes at σ = 3/4, where the lines for lattice sizes
L = N > 362 lie approximately on top of each other below a certain temperature.

limit λ → 0 was modeled by successively omitting more of the
larger eigenvalues while monitoring the resulting estimate of x

as well as the goodness of fit. Statistical errors on the fit results
were determined using a sophisticated jackknifing analysis.75

Some example results are collected in Fig. 18. Fits of this
functional form are possible for σ < 3/4, while the vanishing
of the phase transition is signaled by x = 0. This is expected
since at the upper critical value σu = 3/4 the vanishing
of eigenvalues at any finite temperature ceases to exist.10

Collecting the results for all values of σ considered, we arrive
at the data shown in Fig. 19 that confirms our expectations
of x = 1/2 for σ � 1/2 and x = 0 for σ = 3/4. In view of
the above expectations, which are in-line with our numerical
results, it is tempting to speculate that x(σ ) = 3/2 − 2σ ,
but we have not been able to substantiate this claim with a
theoretical argument.

TABLE III. Realizations used for the T > 0 calculations.

σ Samples/103

0.1 0.9–2.4
0.2 0.7–1.5
0.3 0.9–2.0
0.4 0.9–2.0
0.5 0.9–1.4
0.51 0.8–1.3
0.54 0.7–2.3
0.57 0.7–2.4
0.6 1.0–3.2
2/3 0.9–1.3
0.7 0.8–1.4
0.73 1.0–2.9
0.75 1.0–1.9
0.77 1.0–2.8
0.8 0.9–2.8
0.85 0.9–2.8
0.9 0.7–2.0
1.0 0.2–2.0

Additionally, the authors of Ref. 58 suggest the scaling
ansatz

e(m,N ) − e∞ = m−yF (mN−μ), (100)

where F (x) is a scaling function. In the relevant limit of m →
∞ before N → ∞, this implies a scaling of the ground-state
energy according to

e(m = ∞,N ) − e∞ ∼ N−z (101)

with z = μy = (1 − μ)/(1 + x), where we used Eq. (98).
In Fig. 20, we show the correction-to-scaling exponent b

for the ground-state energies as determined in Sec. IV A in
comparison to z = (1 − μ)/(1 + x) as determined from the
results of μ and x for our system. Both exponents agree for
σ � 1/2 where b = z = 2/5. For larger values of σ , however,
b is consistently smaller than z. Therefore, if the corrections
predicted here are present, they are subleading and cannot be
resolved by our numerical analysis.

E. Critical behavior

We now turn to studying the behavior of the physical
observables extracted from the solution to the saddle-point
equations in the vicinity of the critical point. The analysis
of the spin-glass correlation length, the Edwards-Anderson
order parameter and the spin-glass susceptibility allows us to
compare our simulations to the theoretical predictions outlined
in Sec. III D.

1. Correlation length

The spin-glass correlation function can be calculated from
the spin-spin correlation function (75) via

GSG(r) = 1

L

∑
r

�

ij =r

[
C2

ij

]
av = T 2

L

∑
r

�

ij =r

[
(A−1)2

ij

]
av. (102)

Note that here we use the algebraic graph distance r
�

ij =
min(|i − j |,L − |i − j |) irrespective of whether the ring or
chain geometry is considered. To arrive at the usual second-
moment definition of the correlation length, we use the Fourier
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FIG. 22. (Color online) Scaling collapse of the correlation length ratios ξL/L and ξL/Lν/4, respectively. For optimizing parameters,
a general form ξL = LbX (tLa) was assumed. For σ > 3/4, the transition temperature was fixed at TSG = 0, since the according collapses
yielded values around zero. The resulting parameters are summarized in Fig. 23.

decomposition,

χ0
SG(k) = T 2

L

∑
i,j

[
(A−1)2

ij

]
ave

ik[(i−j ) mod L]

= T 2

L

∑
i,j

[
(A−1)2

ij

]
av cos(k[(i − j ) mod L])

= 2
�L/2�∑
r=0

GSG(r) cos(kr), (103)

and plug it into Eq. (32),

ξL = 1

2 sin(kmin/2)

[
χ0

SG(0)

χ0
SG(kmin)

− 1

]1/(2σ−1)

. (104)

Here, kmin = 2π/L. In practice, we determine GSG(r) per
disorder realization from the saddle-point equations. For space
efficiency, storing GSG(r) is then preferable over storing
Cij directly. Note that since we are using the disconnected
correlation function here, the estimators (104) only represent
the correlation length above TSG. Close to criticality, we expect
the scaling form

ξL ∼
{

Lν/4X (tL1/4), 1/2 < σ � 5/8,

LX (tL1/ν), σ > 5/8.
(105)

In the ordered phase, on the other hand, ξL diverges even
more strongly with the system size.76 As a consequence,
the curves for ξL/L (σ � 5/8) and ξL/Lν/4 (1/2 < σ <

5/8), respectively, will cross in the vicinity of the critical
temperature.

Plots of ξL/L and ξL/Lν/4 resulting from the finite-
temperature calculations with parameters summarized in
Table III for three examples of σ are shown in Fig. 21.
Below σu = 3/4, we find a crossing of the curves as shown
for σ = 0.54. For σ > 3/4, on the other hand, the curves

only merge in the limit T → 0. At the critical σ , we see a
merging of the curves with an onset temperature scaling to 0 as
L → ∞. We note that the scaling of ξL/Lν/4 is hard to observe
numerically for σ close to 1/2, where ν = 1/(2σ − 1) → ∞,
such that a crossing point of ξL/Lν/4 is not visible for the
system sizes considered here for σ = 0.51. It is possible to
extract estimates for the spin-glass temperature TSG and the
correlation length exponent ν by rescaling the data for different
system sizes such that they collapse on the scaling function
X (x). We used two complementary approaches for performing
this collapse: method (a) consists of a joint fit of all data sets to
a third-order polynomial approximating the scaling function
in the chosen regime; method (b) is the collapsing procedure
suggested in Ref. 77 which, in turn, is based on Ref. 78.
In both cases, we performed the collapse on the logarithm
of the actual data. This turns out to be necessary since, in
particular for small σ , ξL/L spans many orders of magnitude
in the range of temperatures considered here. In some cases,
we also employed weights of the data points involved that
decay exponentially away from the adaptively chosen value
of the critical temperature. Statistical errors on the collapse
parameters have been determined by a bootstrap sampling
over the whole collapsing procedure.75 In the region σ > 5/8,
ν was determined from the scale tL1/ν of the abscissa. On
the contrary, for the mean-field region 1/2 < σ � 5/8, it was
determined from the scaling ξL/Lν/4 of the ordinate. For the
latter collapses, we find that the expected scaling of tL1/4 of the
argument of the scaling function is not very well reproduced,
and we allow for this exponent to fluctuate to accommodate
scaling corrections.

As illustrated in Fig. 22, these collapses work rather well
over the whole range of σ . The resulting estimates of the
correlation length exponent ν and the critical temperature
are summarized in Fig. 23. The transition temperature is
consistent with TSG = 0 for σ � 3/4 and approaches TSG = 1
as σ → 1/2. In between, it is compatible with the estimate
TSG ≈ √

3 − 4σ obtained in Sec. III D. As mentioned above, in
the mean-field regime with σ → 1/2+, finite-size corrections
become very pronounced due to the divergent exponent ν.
This leads to rather strong fluctuations of ν and TSG as
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FIG. 23. (Color online) Spin-glass transition temperature TSG and correlation length exponent ν as estimated from collapses of the correlation
length data according to the functional form Eq. (105). Left: transition temperature TSG as compared to the prediction TSG = √

3 − 4σ of
Eq. (51). Right: 1/ν and the relations 1/ν = 2σ − 1 valid in the mean-field region 1/2 < σ � 5/8, cf. Eq. (34), and 1/ν ≈ (3 − 4σ )/2, cf.
Eq. (52). For σ > 3/4, where TSG = 0, we additionally show 1/ν = −θ with our estimates of θ resulting from the defect-energy calculations
as well as the conjectured 1/ν = −θ = σ − 3/4.

estimated from the collapsing procedures, cf. Fig. 23. In
the right panel of this figure, we also compare our result
for 1/ν extracted from collapses for σ > 3/4 with −θ from
the defect-energy calculations. In general, we find acceptable
agreement between zero- and finite-temperature calculations.
The observed systematic deviations give an indication of the
level of unresolved finite-size corrections. As σ → 1−, results
for the diluted system start to systematically deviate from
those for the fully connected system due to the observed
nonuniversality discussed in Sec. IV B.

Comparing the estimates for 1/ν and TSG for the ring, line
and resummed line geometries introduced in Sec. II B, we
find complete consistency, cf. the example results for σ = 3/4
collected in Table IV.

2. Edwards-Anderson order parameter

According to the discussion of FSS in our model, we expect

qEA ∼
{

L−1/4Q(tL1/4), σ � 5/8,

L−β/νQ(tL1/ν), σ > 5/8
(106)

for temperatures in the scaling window. In the thermodynamic
limit, for σ < 1/2, β = 1,6,7 while for σ > 5/8, β is expected

TABLE IV. Results for different choices of the geometry of the
model, which were introduced in Sec. II B. There are no significant
differences for the value σ = 3/4 checked here.

Quantity Ring Line Summed line

μ 0.372(6) 0.374(8) 0.371(7)
ξL

1/ν 0.000(5) −0.01(1) −0.03(5)
TSG 0.00(4) 0.04(6) 0.01(16)

qEA

β/ν 0.01(4) −0.02(5) 0.00(2)
TSG 0.06(19) −0.09(27) 0.00(13)

to remain close to unity, so that

qEA ≈
{

1 − T/TSG, T < TSG,

0, T � TSG.
(107)

As is illustrated with the unscaled data in the left panel of
Fig. 24, these expectations are borne out well by our results. In
particular, the thus defined order parameter becomes unity as
T → 0, in contrast to the differently defined q0

EA of Eq. (77)
and Ref. 15.

Right at TSG, qEA scales to zero. To extract TSG and
determine β/ν, we again employed scaling collapses. Due
to the observed instability of the collapsing procedure, we
also developed an independent approach based on the quality
of power-law scaling. Since scaling proportional to Lβ/ν

is only expected at criticality, the critical point might be
determined under the assumption that it coincides with the
temperature where power-law scaling is best observed. We
hence performed fits according to the form

qEA(T = T ′) = cLβ/ν, (108)

for an interval of temperatures Ti � T ′ � Tf around the
expected value of TSG. If power-law scaling only occurs at
T = TSG asymptotically, the quality-of-fit parameter Q should
be maximized at this point, such that the information of both
the critical temperature and the exponent β/ν can be extracted
by this procedure. An example for this approach for σ = 0.1
is shown in the right panel of Fig. 24.

The overall results for the transition temperature TSG and
the critical exponent β/ν resulting from this analysis are
summarized in Fig. 25, together with the corresponding results
of a collapsing procedure. The estimates of the spin-glass
temperature are consistent with TSG = √

3 − 4σ in the relevant
regime and become constant at TSG = 1 for σ � 1/2, while
they vanish for σ > 3/4, as expected. From the present
analysis, TSG can be resolved with more precision than
from the correlation length particularly in the mean-field
regime σ < 5/8. The exponent β/ν is consistent with the
expectations summarized in Sec. III D, i.e., β/ν = 1/4 for
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FIG. 24. (Color online) Scaling of the Edwards-Anderson order parameter qEA. The left panel shows the dependence of qEA on temperature
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see Fig. 25.

σ < 5/8 and β/ν = (3 − 4σ )/2 for 5/8 < σ � 3/4. The
statistical precision of our determination, however, is not
sufficient to rule out possible different scenarios and, in
particular, to decide whether β/ν = (3 − 4σ )/2 might be exact
in the non-mean-field regime. Again, statistical errors are
calculated by an elaborate jackknifing procedure. As shown
in Table IV, no significant deviations between the results for
the different models of a 1d geometry are observed.

3. Spin-glass susceptibility

We finally analyzed the scaling behavior of the spin-
glass susceptibility as defined from the connected correlation
function in Eq. (85). From the discussion in Sec. III D, we
expect scaling according to

χSG ∼
{

L1/4C(tL1/4) σ � 5/8,

Lγ/νC(tL1/ν) σ > 5/8.
(109)

In contrast to the scaling of qEA it is possible here without
reference to numerical derivatives to define a series of
pseudocritical temperatures from the locations of the maxima
of the susceptibility,

T
(max)

SG = TSG + cL−1/ν, (110)

while the values of χSG at the maxima should then follow

χ
(max)
SG = cLγ/ν. (111)

Fits of the corresponding forms to the data for σ = 0.1
are shown in Fig. 26. We find, however, that the resulting
parameter estimates are afflicted by very strong finite-size
corrections. In particular, the resulting estimates of 1/ν are
far off from our theoretical predictions as well as the results
from the analysis of the correlation length.

The presence of strong corrections in the scaling of χSG is
well-known from studies, e.g., of the Ising spin glass. It has
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FIG. 25. (Color online) Transition temperature TSG and critical exponent β/ν as extracted from the Q-maximization procedure described
in the main text and in Fig. 24. As a comparison, we extracted these quantities from a data collapse as well.
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FIG. 26. (Color online) Scaling of maxima of the spin-glass
susceptibility χSG in a showcase example with σ = 0.1.

been suggested79 that modified scaling forms incorporating
scaling corrections might contribute towards resolving such
corrections and the proposed extended scaling forms have been
successfully applied to the Ising spin glass.80 In particular,
one problem of the scaling form (109) is that it cannot
reproduce the observed behavior χSG → 1 as T → ∞, cf.
Fig. 26: assuming that C(x) ∼ xα for x � 1, asymptotic size
independence of the data at large T requires that α = −γ

and hence Lγ/νC(tL1/ν) → 0 as T → ∞. While this is not in
contradiction to scaling theory as the assumed scaling form
should only apply in the critical region, having a scaling form
consistent with the behavior as T → 0 or T → ∞ might
allow to extend the scaling regime or, equivalently, reduce
the observed finite-size corrections. A modified scaling form
that serves this purpose is given by79

χSG = (LT )γ /ν C̃[(LT )1/ν t], (112)

which is compatible with χSG → 1 as T → ∞. We used this
extended scaling form to perform collapses of the finite-size
data for the spin-glass susceptibility. Even though some scaling
corrections are implicitly included in Eq. (112), these collapses
are found to be rather unstable and, hence, sensitive to the
choice of starting values for the parameters and the range
of data points to be included for each lattice size. In view
of these uncertainties, we found it impossible to extract all
three parameters, TSG, γ /ν, and 1/ν reliably from a single
collapsing procedure. We hence decided to keep TSG fixed at
the theoretical prediction TSG = √

3 − 4σ which, as is evident
from the results of Fig. 24 for the order parameter, is well
compatible with our numerical results. An example collapse
is shown in the top panel of Fig. 27. The bottom panel shows
our resulting estimates of γ /ν for σ � 0.8. These are roughly
compatible with our expectations of γ /ν = 0.25 for σ � 5/8
and σ/ν = 2σ − 1 for σ > 5/8. For σ � 3/4, we do not
find stable collapses with reasonable parameters which we
attribute to the fact that, there, TSG = 0, but our data only
reach down to Tmin = 0.01. The resulting values of 1/ν are
strongly fluctuating and hence not useful as reliable estimates
of this quantity. An alternative collapsing exercise using a plot
of χSG as a function of ξ/L, which should have the theoretical
advantage of involving only a single adjustable parameter γ /ν

did, unfortunately, not lead to more reliable results.
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FIG. 27. (Color online) Top: A collapse of χSG according to the
extended scaling form (112) for σ = 0.1 with adaptively determined
parameters γ /ν = 0.24 and ν = 0.37 (TSG = 1). Bottom: Estimates
of γ /ν resulting from an adaptive collapsing routine together with the
theoretical expectations γ /ν = 0.25 for σ � 5/8 and σ/ν = 2σ − 1
for σ > 5/8, respectively.

VI. CONCLUSIONS

We have used extensive numerical simulations together
with a number of phenomenological scaling arguments to give
a rather comprehensive account of the critical behavior of the
one-dimensional spin-glass model with power-law interactions
in the limit of an infinite number of spin components m.
Compared to the more familiar case with m < ∞, we find
a number of remarkable differences that are, in part, related
to the shift in the lower and upper critical dimensions of the
model.

The lack of metastability in the model allows to perform
quasi-exact ground-state calculations. The resulting defect
energies are well described by a long-range stiffness exponent
θ = 3/4 − σ . This relation can also be deduced from scaling
arguments, but we have not been able to provide a more
rigorous derivation. This relation results in an upper critical
σu = 3/4, where finite-temperature spin-glass transitions first
disappear. On lowering σ , mean-field behavior sets in at
σl = 5/8. These critical interaction ranges are different from
the σl = 2/3 and σu = 1 found for spin glasses with finite m.17

For hypercubic lattices, it has been speculated that dl = du

if m → ∞.14,15 According to our analysis of the 1d model
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theoretical as well as numerical evidence exists showing that
the upper and lower critical σ are well separated. We also
investigated the distribution of ground-state energies, and it is
found to be Gaussian for the full range of σ , again in contrast to
the Ising case where non-Gaussian distributions where found
in the mean-field regime.20 Sample-to-sample fluctuations are
trivial with �f = 1/2 for σ > 1/2, but cross over to a value
consistent with �f = 1/5 for σ < 1/2 as conjectured for the
SK model in Ref. 63.

In Ref. 26, it has been suggested to study a diluted version of
the 1d long-range spin-glass model to reach even larger system
sizes. As we point out here, however, the two models are not
in the same universality class for σ > 1, where the diluted
model becomes equivalent to a short-range 1d system. Right at
σ = 1, critical exponents depend continuously on the average
coordination number z. Also, sample-to-sample fluctuations
are trivial for the diluted model with �f = 1/2 for all σ , an
effect anticipated for the Ising case.62 Additionally, we observe
more pronounced scaling corrections for the diluted model
even in the regime 1/2 � σ � 1 such that we cannot find an
advantage for numerical simulations in the larger system sizes
reachable through the dilution. Additionally, we compared
different realizations of the 1d geometry using rings and chains
with and without Ewald summation of interactions. As scaling
corrections for this class of models are pronounced, one could
hope that some variant of the model leads to a substantial
reduction in corrections. For zero temperature (cf. Fig. 8) as
well as for the critical behavior at T > 0, however, we find
no significant differences in the FSS of the different model
variants considered, cf. the data collected in Table IV.

The ground-state calculations are complemented by results
from an iterative solution of the saddle-point equations result-
ing in the m → ∞ limit, yielding access to the order parameter,
spin-glass susceptibility and correlation length. In contrast to
Ref. 15, we argue that using appropriate definitions of the basic

observables, the model does show true long-range order in the
low-temperature phase, even for the order of limits m → ∞
before N → ∞ naturally taken in numerical studies. The
critical exponents ν, β, and γ numerically determined from
this approach are consistent with our theoretical arguments
in the full range of σ . The critical exponents in the non-
mean-field regime have been hard to determine with precision.
However, one of the surprises is the utility of the simple
approximate RG scheme first suggested by McMillan47 that
seems to work quite well over the entire non-mean-field region,
5/8 < σ � 3/4.

As an aside, we find clear-cut evidence of the recently
suggested exactness of mean-field theory for spin-glass models
in the regime σ < 1/2,30 where we see nonuniversal properties
such as the average ground-state energy to be independent of
the interaction range σ .

The m → ∞ model studied in this paper is an interesting
model in its own right, partly because it is one of relatively
few models known which have a failure of hyperscaling. The
phenomenon of dimensional reduction occurs in its short-
range d-dimensional version that suggests that there might be
some elegant supersymmetry in the model, but this has yet to
be discovered. But our chief motivation in understanding this
model was to clear the ground for our future 1/m expansion
study of spin glasses.
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