
Population Annealing and Large Scale
Simulations in Statistical Mechanics

Lev Shchur1,2(B) , Lev Barash1,3 , Martin Weigel4 , and Wolfhard Janke5

1 Landau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
levshchur@gmail.com

2 National Research University Higher School of Economics, 101000 Moscow, Russia
3 Science Center in Chernogolovka, 142432 Chernogolovka, Russia

4 Applied Mathematics Research Centre, Coventry University,
Coventry CV1 5FB, UK

5 Institut für Theoretische Physik, Universität Leipzig,
Postfach 100 920, 04009 Leipzig, Germany

Abstract. Population annealing is a novel Monte Carlo algorithm
designed for simulations of systems of statistical mechanics with rugged
free-energy landscapes. We discuss a realization of the algorithm for the
use on a hybrid computing architecture combining CPUs and GPGPUs.
The particular advantage of this approach is that it is fully scalable up to
many thousands of threads. We report on applications of the developed
realization to several interesting problems, in particular the Ising and
Potts models, and review applications of population annealing to further
systems.

Keywords: Parallel algorithms · Scalability
Statistical mechanics · Population annealing
Markov Chain Monte Carlo · Sequential Monte Carlo
Hybrid computing architecture CPU+GPGPU

1 Introduction

Over the last decade or so, the development of computational hardware has fol-
lowed two main directions. The first is based on the parallelization of devices
based on traditional silicon technology. This approach splits in turn into two
main groups. The first concerns the further development of CPUs featuring a
growing number of cores placed onto a single silicon die. This direction is some-
times also known as the heavy-core approach, expressing the fact that these
cores are as complex as traditional full CPUs themselves. Currently, the typical
maximum number of such cores is of the order of 30. The second group concerns
the development of auxiliary computing devices, which in turn is represented by
mainly two subgroups. The first type is based on Intel’s Xeon Phi architecture,
featuring more than 70 relatively light, but otherwise fully developed x86 cores
on a single chip. The second and much larger group comprises graphics process-
ing units (GPUs) featuring several thousands of light cores in one device. The
c© Springer Nature Switzerland AG 2019
V. Voevodin and S. Sobolev (Eds.): RuSCDays 2018, CCIS 965, pp. 354–366, 2019.
https://doi.org/10.1007/978-3-030-05807-4_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05807-4_30&domain=pdf
http://orcid.org/0000-0002-4191-1324
http://orcid.org/0000-0002-2298-785X
http://orcid.org/0000-0002-0914-1147
http://orcid.org/0000-0002-5165-9097
https://doi.org/10.1007/978-3-030-05807-4_30

Population Annealing and Large Scale Simulations in Statistical Mechanics 355

use of GPUs in general purpose and scientific computing is sometimes known
as GPGPU – general purpose GPU, used outside of graphics applications. It
is mostly due to the progress of development within this stream that Moore’s
famous law still holds today, even at the level of supercomputers.

The second main direction of recent development of computational hard-
ware concerns the construction of computers based on quantum bits (qubits).
This development also splits into (at least) two main streams. Quantum anneal-
ers or analog quantum computers calculate the ground state for some class of
Hamiltonians. The most famous examples in this class are the D-Wave machines
with currently up to about 2000 qubits annealed in parallel. Digital quantum
computers, on the other hand, are based on logic realizing quantum operators.
Examples of this approach include IBM’s 16 qubit universal quantum computing
processor as well as the recently announced Google 72 qubit quantum processor
Bristlecone.

The big challenge for scientific computing in this landscape is to develop
algorithms and computational frameworks that use the available hardware effi-
ciently. Despite the great attention that quantum computers attract worldwide,
their use for actual calculations is still quite restricted. In the case of the D-Wave
machines, this shortcoming is connected to the fixed Hamiltonian simulated in
the annealing that features a rather special topology of connections between
qubits. Another open issue relates to the problem of decoherence, where progress
is being made by further lowering the operating temperature and minimizing
other noise in the system. At present, quantum annealers have not been able
to demonstrate a fundamental speed-up against classical machines in the sense
of applications to problems that are exponentially hard on classical machines
and only polynomial on the quantum computer. Digital or universal quantum
computers are at present mostly restricted by the limited size of the available
realizations, but more generally there is only a rather limited number of known
quantum algorithms showing the profound speed-up against classical methods
mentioned above, the most prominent example being Shor’s factorization algo-
rithm. Another difficulty concerns error correction, with one of the possible solu-
tions being Kitaev’s topological quantum computations based on anyons [1].

Currently available universal supercomputers are still based on the tradi-
tional silicon multicore architecture. The motivation for building supercomput-
ers are particularly challenging problems in scientific computing that require
such extensive resources. It is very demanding, however, to efficiently use all
the power of a supercomputer in a single run. Such a program should be able
to run on potentially millions of cores. Hence the computation must be divided
into millions of tasks to be scheduled on individual cores. It is thus of crucial
importance to develop new, fully scalable algorithms, new programming tech-
niques, and new methods to build programs which can efficiently use the power
of supercomputers.

The problem is even more complicated when running code on hybrid super-
computers, with auxiliary accelerated computing devices in addition to the
conventional CPUs. In this case, one needs to take into account the specific

356 L. Shchur et al.

architecture of the auxiliary devices, too. This includes specific arithmetic/logical
operations, a specific memory organization, and a specific input/output layout.

In this paper we present a mini-review of a recently developed parallel algo-
rithm, dubbed “population annealing”, for simulations of spin and particle sys-
tems. The idea of this approach goes back to the beginning of the century [2,3],
and the algorithm as we use it now was presented about a decade later in Ref. [4].
The most promising feature of this algorithm is its near ideal scalability both on
parallel and hybrid architectures.

2 Population Annealing

The population annealing algorithm consists of two alternating steps. The first
is a cooling step [2], where equilibrium is maintained by differential reproduc-
tion (resampling) of replicas. This part is a realization of a sequential Monte
Carlo algorithm. At each temperature step the resampling propagates the popu-
lation from inverse temperature βi = 1/kBTi to the target distribution at inverse
temperature βi+1 = βi + Δβi. The second step is an equilibration of replicas.
It is performed for each replica independently, and any Markov Chain Monte
Carlo (MCMC) algorithm can be used. The initial configurations at β0 should
be chosen at equilibrium. Typically β0 = 0, where equilibrium can be easily
guaranteed.

In total the algorithm comprises the following steps:

1. Set up an equilibrium population of R0 = R independent copies (replicas)
at inverse temperature β0.

2. Propagate the population to the inverse temperature βi (i = 1, 2, . . .):
Resample replicas j = 1, . . . , Ri−1 with their normalized Boltzmann weights
τ̂i(Ej) = (R/Ri−1) exp [−(βi − βi−1)Ej] /Qi, where

Qi =
Ri−1∑

j=1

e−(βi−βi−1)Ej

Ri−1
. (1)

3. Update each replica by θ sweeps of the chosen MCMC algorithm at inverse
temperature βi.

4. Calculate estimates for observables O as population averages
∑

j Oj/Ri.
5. Goto step 2 unless the target temperature βf has been reached.

In addition to the basic algorithm, it was pointed out in Ref. [4] that both
statistical errors as well as bias can be reduced by combining the results of
several independent population annealing simulations. Bias is minimized if the
combination is performed as a weighted average of the results from M runs,
where the weight of the m-th simulation should be chosen as

ωm(βi) =
e−βiF̂m(βi)

∑M
m=1 e−βiF̂m(βi)

. (2)

Population Annealing and Large Scale Simulations in Statistical Mechanics 357

Here, F̂m corresponds to an estimate of the free energy from the m-th run that
can be deduced from the normalization factors Qi in Eq. (1), namely [4]

− βiF̂ (βi) = lnZβ0 +
i∑

k=1

ln Qk, (3)

where Zβ0 is the partition function at the initial inverse temperature β0. At least
for β0 = 0 this can often be determined analytically. It is clear that statistical
errors decrease with the size R of the population as 1/

√
R, and it was proposed

in Ref. [4] that, asymptotically, the bias decays as 1/R.
It follows that statistical as well as systematic errors can be arbitrarily

reduced by adding additional parallel resources used to simulate a larger pop-
ulation. Consequently, population annealing (PA) by construction is an ideally
scalable algorithm. With a well-designed implementation, the approach should
allow one to efficiently utilize nearly arbitrarily large parallel resources (super-
computers). In particular, the method is well suited for GPUs which are known
to be most effective if the number of parallel threads significantly exceeds the
number of available cores and latency hiding works well [5]. For GPUs with a
few thousand cores, efficient operation is guaranteed with a total of several ten
to hundred thousand threads, where each thread simulates a single replica [6].
As a consequence, it is possible to efficiently simulate hundreds of millions of
replicas on compute clusters with hybrid CPU+GPU architecture.

3 Algorithmic Improvements

A number of algorithmic improvements to the algorithm as discussed in the previ-
ous section have been attempted [6–8]. From the description of the algorithm one
identifies a number of tunable parameters: the temperature step Δβi = βi−βi−1,
the number of MCMC rounds θ, and the size R of the population. For the
approach using weighted averages, one can additionally vary the number M of
independent runs. Optimal values of these parameters will depend on the model
simulated and on the prescribed accuracy. In Sect. 5 we present some exam-
ples of simulations of different models, but first we discuss some considerations
regarding the parameter choice.

We first turn to the choice of temperature step. For too large a step the
resampling factors will be dominated by rare events, leading to very low diver-
sity in the population after resampling. Very small temperature steps, on the
other hand, lead to resampling factors that are all very close to unity, and so
the resampling just leaves the population invariant. How can a close to opti-
mal value of the temperature step be found? In Ref. [6] we have proposed an
adaptive scheme for choosing temperature steps to achieve this. It calculates the
overlap of energy histograms between the neighbouring temperatures, and either
increases or decreases the inverse temperature step in a way to keep the over-
lap of neighbouring energy histograms fixed. We find that values of histogram
overlap between 50% and 90% usually provide a good compromise between suf-
ficient histogram overlap without an unnecessary proliferation of temperature

358 L. Shchur et al.

steps. If the simulation procedure needs to use averaging over independent runs,
obtaining the sequence of temperatures via calculations of histogram overlap is
carried out only once, during the first run, and the rest of the runs use the same
annealing schedule.

Regarding θ and R, it turns out that θ needs to have a (model dependent)
minimal value to ensure that the anneal remains in equilibrium, especially if
the energy is a slowly relaxing variable. Beyond that, increasing R reduces sta-
tistical as well as systematic errors. A detailed discussion of the dependence of
performance on these parameters can be found in Ref. [7].

Another algorithmic improvement is given by the multi-histogram reweight-
ing method, also referred to as Weighted Histogram Analysis Method (WHAM)
[9–11]. Assume that we have performed a PA simulation with inverse tempera-
ture points β1, β2, ..., βK and population sizes Ri, where i = 1, ...,K. The multi-
histogram reweighting technique is based on reweighting the measurements from
all temperatures to a chosen reference point and combining them by calculating
error weighted averages. If we have histograms Pβi

(E) at the inverse temper-
atures βi (normalized such that

∑
E Pβi

(E) = Ri), we obtain from the error-
weighted combined histogram at the common reference point [6]

Ω(E) =

K∑
i=1

Pβi
(E)

K∑
i=1

Ri exp[βi(Fi − E)]
, (4)

which is an estimate of the density of states (DOS). As we have the estimates
(3) from a PA run at hand, we can immediately evaluate (4) and in many cases
find good results without further iterations (which, nevertheless, can always
be used to further improve the accuracy). Note that if one refrains from using
iterations, one needs to store and update at each temperature step only the single
partially summed histogram

∑K
i=1 Pβi

(E) for each energy. Therefore, memory
requirements are quite moderate and, for example, for the 2D Ising model only
∼ L2 values have to be stored in total.

4 GPU Accelerated PA Algorithm

As explained above, the PA algorithm appears to be ideally suited for imple-
mentations on massively parallel hardware. We presented an implementation of
PA for the Ising model on Nvidia GPUs in Ref. [6]. The individual GPU kernels
are [6,12]:

(1) initialization of the population of replicas (kernel ReplicaInit)
(2) equilibrating MCMC process (kernel checkKerALL)
(3) calculation of energy and magnetization for each replica (kernel energyKer)
(4) calculation of Q(β, β′) (kernel QKer)
(5) calculation of the number of copies ni of each replica i (kernel CalcTauKer)

Population Annealing and Large Scale Simulations in Statistical Mechanics 359

(6) calculation of the partial sums
∑j

i=1 ni, which identify the positions of
replicas in the new population (kernel CalcParSum)

(7) copying of replicas (kernel resampleKer)
(8) calculation of observables via averaging over the population (kernel

CalcAverages)
(9) calculation of histogram overlap (kernel HistogramOverlap)

(10) updating the sum of energy histograms
∑K

i=1 Pβi
(E) for the multi-

histogram reweighting (kernel UpdateShistE)

Some details for the most important GPU kernels (1)–(4) are as follows:

(1) Equilibration process. To create sufficient parallel work for the GPU devices,
it turns out to be useful to combine the replica-level parallelism with an
additional domain decomposition, thus exploiting also spin-level parallelism.
The basic step consists of a checkerboard decomposition of the lattice which
allows for independent updates of all spins of one sub-lattice [13,14]. The
code works with thread blocks of size EQthreads, which should be a power of
two. The optimal value of EQthreads is 128 for L < 128, and it is sometimes
beneficial to increase it to 256, 512 or 1024 in the case of large system size
L ≥ 128. Each block of threads works on a single replica of the population,
using its threads to update tiles of size 2 × EQthreads spins. To this end it
flips spins on one checkerboard sub-lattice first, moving the tiles over the lat-
tice until it is covered, synchronizes and then updates the other sub-lattice.
An important (if well known) trick for optimization is that the value of the
exponential function for the Metropolis criterion should not be calculated
at each spin flip, since the exponential is not a fast single-cycle operation.
However, there are only a few possible values of ΔE. For example, for the
2D Ising model, ΔE = 2Jsi

∑
neighb sj +2Hsi. A lookup table containing 10

possible values of min[1, exp(−βΔE)] is placed in the fast texture memory
of the GPU for an optimal performance.

(2) Calculation of energies and other observables. The GPU parallel reduction
algorithm is employed. First, each of the N = 2n threads calculates one
particular summand. All calculated N summands s1, . . . , sN are placed in
shared memory. Then, the first N/2i threads perform si := si + si+N/2i

for i = 1, 2, 3, This scheme can be visualized as a binary tree [15]. For
the case of modern devices with CUDA compute capability ≥3.0, we use
the “shuffle” operations that allow threads to access registers from different
threads in the same warp. The latter approach is faster, but it is not sup-
ported by older devices, where we use the former method and store partial
results in shared memory.

(3) Calculation of the normalization factorQi = 1
Ri−1

∑Ri−1
j=1 exp[−(βi−βi−1)Ej].

Since Qi is a large sum, each of the summands can be independently calculated
with one GPU thread. Then, the same reduction method as in (2) can be used.

(4) Calculation of numbers of copies ni. For each replica, the values τi and ni

are calculated by a separate GPU thread.

360 L. Shchur et al.

In the present program we use the random number generator PHILOX available
also in the CURAND library [16,17]. Alternatively, one might employ the gener-
ators previously developed by some of us in Refs. [18–21]. These libraries allow
to use up to 1019 uncorrelated parallel streams of random numbers.

5 Applications

In this Section we discuss a number of applications of the method, including the
Ising model that undergoes a continuous phase transition, the Potts model with
an additional first-order regime, models with disorder and frustration as well as
simulations of off-lattice systems.

5.1 Ising Model and Second-Order Phase Transitions

The Ising model plays the same role in statistical mechanics as the fruit fly in
biology. New algorithms and other new ideas are usually tested on the Ising
model first. It is the first model of statistical mechanics which was proven to
have singularities near the spontaneous transition from the disordered to the
ordered phase. The Ising model is the simplest model of a ferromagnet, for
example for a piece of iron that develops a spontaneous magnetic moment below
the Curie temperature Tc, while it is paramagnetic above Tc. The ferromagnetic
Ising model in zero external magnetic field and on a square lattice of linear size
L is given by the Hamiltonian

H = −J
∑

〈 ij 〉
sisj , (5)

where J > 0. The summation is restricted to nearest neighbours and the variables
si can take one of two values, si = +1 or si = −1. Periodic boundary conditions
are assumed. The ground state is achieved when all variables are equal, i.e.,
either all of them take the value +1 or all of them are −1. Hence the ground
state is two-fold degenerate. The interpretation is that the variables si can be
viewed as magnetic moments, pointing only in two directions, up for the +1
value of si, or down for −1. In other words, all spins are aligned in the ground
state, and the total magnetic moment |M | of the system is equal to the maximal
possible value L2 and the energy E is equal to −2L2J . This ground state is
reached at zero temperature. For high temperatures the spins will take random
orientations and, consequently, the average magnetic moment will be zero. A
phase transition occurs at inverse temperature βc = J/kBTc = ln(1+

√
2)/2 [22].

The model admits an exact solution, which was first derived by Onsager [23].
The resulting detailed knowledge about its non-trivial behavior turns this model
into an ideal testing ground for new ideas.

Simulating the square-lattice Ising model with population annealing as imple-
mented on GPU and a reference CPU implementation, we show in Table 1 the
performance of the two codes in terms of time per spin flip in nanoseconds, for

Population Annealing and Large Scale Simulations in Statistical Mechanics 361

Table 1. Peak performance of the CPU and GPU PA implementations in units of the
total run time divided by the total number of spin flips performed, for different system
sizes. The best GPU performance is achieved for large θ, and here θ = 500 was chosen
for a population of R = 50 000 replicas. GPU performance data are for the Tesla K80
(Kepler card) and GeForce GTX 1080 (Pascal card). The sequential CPU code was
benchmarked on a single core of Intel Xeon E5-2683 v4 CPU running at 2.1 GHz.

Time per spin flip (ns)

CPU GPU (Kepler card) GPU (Pascal card)

L = 16 23.1 0.094 0.038

L = 32 22.9 0.092 0.034

L = 64 22.6 0.092 0.036

L = 128 22.6 0.097 0.039

θ = 500 and a population size R = 50 000 for different system sizes. The GPU
code is found to be about 620 times faster than the sequential CPU program. The
additional application of a multi-spin coding technique yields a further speedup
of up to 10 times for the GPU implementation, for details see Ref. [6].

Figure 1 shows the temperature steps generated by our adaptive stepping
algorithm applied to the two-dimensional Ising model with J = 1, while imposing
a histogram overlap of approximately 85% (see also Sect. 3). One can see that
the closest inverse temperature spacing is found close to the transition point, as
expected. The adaptive algorithm automatically suggests the optimal annealing
schedule and often saves a significant amount of computing time.

5.2 Potts Model and First-Order Phase Transitions

A natural generalization of the Ising model is the q-state Potts model with
Hamiltonian

H = −J
∑

〈ij〉
δsisj

, (6)

where the spins si can take q values, si = 1, 2, ..., q, and J > 0 is the fer-
romagnetic coupling constant. We study the model on the square lattice with
periodic boundary conditions, where the sum in Eq. (6) goes over all nearest-
neighbour pairs 〈ij〉. Below we set J = 1 to fix units. The transition tempera-
ture of the model follows from self-duality and is given [24,25] by the relation
βt = J/kBTt = ln (1+

√
q). The phase transition is continuous for a number of

states q ≤ 4, with additional logarithmic corrections at q = 4. For q > 4 the
phase transition is discontinuous with a jump in the internal energy, i.e., a first-
order phase transition. The distinctive features of first-order phase transitions
are phase coexistence and metastability, which can be observed experimentally
in the process of heating and cooling the system [26]. These effects are also
pronounced in simulations with canonical Monte Carlo methods, leading to hys-
teresis of magnetization and energy profiles in a heating/cooling cycle [27]. The

362 L. Shchur et al.

Fig. 1. Schedule of temperature steps for the adaptive temperature-step extension
of the PA algorithm applied to the Ising model on an L = 64 square lattice with
parameters θ = 100, R = 5000, and overlap ≈ 0.85.

strength of the transition increases with q. The correlation length ξ does not
diverge at the transition temperature Tt, i.e., it is finite, although the value can
be extremely large depending on the number of states q. For q = 20 it is as small
as 2.7 lattice spacings and for q = 5 states it is extremely large, ξ ≈ 2552 [28].

Like standard canonical simulations, PA as described above also leads to
hysteresis effects for the Potts model in the first-order regime and as such it is not
immediately well suited for simulating systems undergoing first-order transitions.
Using the inherent free-energy estimate provided by Eq. (3) leads to a possible
way of determining the transition temperature, however. To this end, one extends
the free-energy branches of the ordered and disordered phases and locates the
transition at the point where the two curves cross [27]. For the case of the cooling
temperature schedule, we start with the initial inverse temperature β0 = 0 at
which the partition function value is given by Z(β0) = qN , where N is the
number of lattice sites. Additionally, we also use a heating temperature schedule,
where the initial free energy at zero temperature β → ∞ can be calculated as [29]

− βFβ→∞ = ln q − βE0, (7)

with the ground-state energy E0 = −2N .
Figure 2 shows the resulting metastable free-energy branches calculated dur-

ing cooling from infinite temperature and heating from zero temperature for the
Potts model with a number of spin components of q = 6 and q = 10, respectively.

Population Annealing and Large Scale Simulations in Statistical Mechanics 363

Fig. 2. Metastable free energy for the q-state Potts model with q = 6 (green) and
q = 10 (magenta) for a cooling (solid lines) and a heating (dashed lines) cycle. The
vertical dotted lines indicate the locations of the transition points βt. The lattice size
is L = 32, and the PA parameters are θ = 10, R = 10000, and Δβ = 0.01. Taken from
Ref. [29]. (Color figure online)

The cooling and heating curves intersect close to the transition temperature, our
results being compatible with the presence of small deviations of the order of
1/L2 as predicted in Ref. [27].

5.3 Frustrated Models and Spin Glasses

Similar to the parallel tempering heuristic, population annealing is an approach
particularly suited for the simulation of systems with complex free-energy land-
scapes. A number of applications to frustrated and disordered systems have been
reported in the literature. Population annealing has been successfully used for
the relaxation to the ground state of a frustrated Ising antiferromagnet on the
stacked triangular lattice with a ferromagnetic interlayer coupling [30]. Previous
simulations using conventional, canonical Monte Carlo algorithms were not able
to reach the ground state. More generally, the properties of PA for ground-state
searches of spin systems were investigated in Ref. [31]. Apart from that, PA has
been used in a series of simulational studies of spin glasses [32–34]. Among the
questions addressed there is that of the number of thermodynamic states in the
low-temperature phase. The results appear to be fully compatible with a single
pair of pure states such as in the droplet-scaling picture. However, the results for
whether or not domain walls induced by changing boundary conditions are space
filling are also compatible with scenarios having many thermodynamic states,
such as the chaotic pairs picture and the replica-symmetry breaking scheme.

364 L. Shchur et al.

Substantially larger system sizes would be required to clearly determine whether
domain walls induced by the boundary conditions are space filling or not using
average spin overlaps in windows or link overlaps.

5.4 Off-Lattice Systems

PA is not restricted to lattice spin systems, but it can be used for a range of off-
lattice applications too. This was first demonstrated in Ref. [35] for simulations of
a binary mixture of hard disks. While this system is often studied using molecular
dynamics, it was here treated with PA Monte Carlo simulations, using a range of
steps in density instead of in temperature. The authors determined the equation
of state in the glassy region of a 50/50 mixture of hard spheres with the diameter
ratio 1.4:1 and obtained precise results that are in reasonable agreement with
previous simulations using parallel tempering [36].

Very recently, it was also demonstrated that PA can be combined with molec-
ular dynamics simulations in place of the equilibrating sub-routine [37]. As the
authors show for the benchmark example of the penta-peptide met-enkephalin,
PA combined with molecular dynamics with a stochastic thermostat shows a
performance similar to that of the more established parallel tempering method
for this problem while providing far superior parallel scaling properties.

6 Conclusion

We have given a brief review of recent developments relating to the population
annealing algorithm. The method is attractive especially since it is a highly par-
allel approach and efficient realizations can be quite easily developed for any
known parallel architecture. In particular, we discussed here an implementation
of the algorithm with CUDA, and demonstrated an acceleration of the simu-
lations as compared with a conventional CPU realization by several orders of
magnitude. The corresponding simulations work well for systems with contin-
uous transitions such as the Ising model. For first-order transitions as present
in the Potts model with a sufficiently large number of states, the approach suf-
fers from metastability, but the natural free-energy estimate at least allows for a
determination of the transition point by thermodynamic integration. Population
annealing in the micro- or multicanonical ensembles promises to provide poten-
tial improvements in this respect. There is further scope for improvement in the
implementation of the algorithm: a realization within the MPI-CUDA paradigm
is currently being developed.

Acknowledgment. This work was partially supported by the grant 14-21-00158 from
the Russian Science Foundation and by the Landau Institute for Theoretical Physics
in the framework of the tasks from the Federal Agency of Scientific Organizations.
The authors acknowledge support from the European Commission through the IRSES
network DIONICOS under Contract No. PIRSES-GA-2013-612707.

Population Annealing and Large Scale Simulations in Statistical Mechanics 365

References

1. Kitaev, A.Yu.: Fault-tolerant quantum computation by anyons. Annals Phys. 303,
2–30 (2003)

2. Iba, Y.: Population Monte Carlo algorithms. Trans. Jpn. Soc. Artif. Intell. 16,
279–286 (2001)

3. Hukushima, K., Iba, Y.: Population annealing and its application to a spin glass.
In: AIP Conference Proceedings, vol. 690, pp. 200–206 (2003)

4. Machta, J.: Population annealing with weighted averages: a Monte Carlo method
for rough free-energy landscapes. Phys. Rev. E 82, 026704 (2010)

5. Weigel, M.: Monte Carlo methods for massively parallel computers. In: Holovatch,
Yu. (ed.) Order, Disorder and Criticality, vol. 5, pp. 271–340. World Scientific,
Singapore (2018)

6. Barash, L.Yu., Weigel, M., Borovský, M., Janke, W., Shchur, L.N.: GPU acceler-
ated population annealing algorithm. Comp. Phys. Comm. 220, 341–350 (2017)

7. Weigel, M., Barash, L.Yu., Shchur, L.N., Janke, W.: Understanding population
annealing Monte Carlo simulations (in preparation)

8. Amey, C., Machta, J.: Analysis and optimization of population annealing. Phys.
Rev. E 97, 033301 (2018)

9. Ferrenberg, A.M., Swendsen, R.H.: Optimized Monte Carlo data analysis. Phys.
Rev. Lett. 63, 1195–1198 (1989)

10. Kumar, S., Bouzida, D., Swendsen, R.H., Kollman, P.A., Rosenberg, J.M.: The
weighted histogram analysis method for free-energy calculations on biomolecules.
I. The method. J. Comp. Chem. 13, 1011–1021 (1992)

11. Kumar, S., Rosenberg, J.M., Bouzida, D., Swendsen, R.H., Kollman, P.A.:
Mu1tidimensional free-energy calculations using the weighted histogram analysis
method. J. Comp. Chem. 16, 1339–1350 (1995)

12. Code repository for the GPU accelerated PA algorithm is located at: https://
github.com/LevBarash/PAising

13. Weigel, M.: Performance potential for simulating spin models on GPU. J. Comput.
Phys. 231, 3064–3082 (2012)

14. Yavors’kii, T., Weigel, M.: Optimized GPU simulation of continuous-spin glass
models. Eur. Phys. J. Special Topics 210, 159–173 (2012)

15. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns
for Efficient Computation. Morgan Kaufman, Waltham (2012)

16. Salmon, J.K., Moraes, M.A., Dror, R.O., Shaw, D.E.: Parallel random numbers:
as easy as 1, 2, 3. In: Proceedings of 2011 International Conference for High Per-
formance Computing, Networking, Storage and Analysis, SC 2011, article no. 16.
ACM, New York (2011)

17. Manssen, M., Weigel, M., Hartmann, A.K.: Random number generators for mas-
sively parallel simulations on GPU. Eur. Phys. J. Special Topics 210, 53–71 (2012)

18. Barash, L.Yu., Shchur, L.N.: RNGSSELIB: program library for random number
generation, SSE2 realization. Comp. Phys. Comm. 182, 1518–1526 (2011)

19. Barash, L.Yu., Shchur, L.N.: RNGSSELIB: program library for random number
generation. More generators, parallel streams of random numbers and Fortran com-
patibility. Comp. Phys. Comm. 184, 2367–2369 (2013)

20. Guskova, M.S., Barash, L.Yu., Shchur, L.N.: RNGAVXLIB: program library for
random number generation, AVX realization. Comp. Phys. Comm. 200, 402–405
(2016)

https://github.com/LevBarash/PAising
https://github.com/LevBarash/PAising

366 L. Shchur et al.

21. Barash, L.Yu., Shchur, L.N.: PRAND: GPU accelerated parallel random number
generation library: using most reliable algorithms and applying parallelism of mod-
ern GPUs and CPUs. Comp. Phys. Comm. 185, 1343–1353 (2014)

22. Kramers, H.A., Wannier, G.H.: Statistics of the two-dimensional ferromagnet. Part
I. Phys. Rev. 60, 252–262 (1941)

23. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder
transition. Phys. Rev. 65, 117–149 (1944)

24. Baxter, R.J.: Potts model at the critical temperature. J. Phys. C Solid State Phys.
6, L445–L448 (1973)

25. Wu, F.Y.: The Potts model. Rev. Mod. Phys. 54, 235–268 (1982). ibid 55, 315
(1983). Erratum

26. Binder, K., Heermann, D.: Monte Carlo Simulation in Statistical Physics. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-03163-2

27. Janke, W.: First-order phase transitions. In: Dünweg, B., Landau, D.P., Milchev,
A.I. (eds.) Computer Simulations of Surfaces and Interfaces, NATO Science Series,
II. Mathematics, Physics and Chemistry, vol. 114, pp. 111–135. Kluwer, Dordrecht
(2003)

28. Borgs, C., Janke, W.: An explicit formula for the interface tension of the 2D Potts
model. J. Physique I 2, 2011–2018 (1992)

29. Barash, L.Yu., Weigel, M., Shchur, L.N., Janke, W.: Exploring first-order phase
transitions with population annealing. Eur. Phys. J. Special Topics 226, 595–604
(2017)

30. Borovský, M., Weigel, M., Barash, L.Yu., Žukovič, M.: GPU-accelerated population
annealing algorithm: frustrated Ising antiferromagnet on the stacked triangular
lattice. In: EPJ Web of Conferences, vol. 108, p. 02016 (2016)

31. Wang, W., Machta, J., Katzgraber, H.G.: Comparing Monte Carlo methods for
finding ground states of Ising spin glasses: population annealing, simulated anneal-
ing, and parallel tempering. Phys. Rev. E 92, 013303 (2015)

32. Wang, W., Machta, J., Katzgraber, H.G.: Evidence against a mean-field description
of short-range spin glasses revealed through thermal boundary conditions. Phys.
Rev. B 90, 184412 (2014)

33. Wang, W., Machta, J., Katzgraber, H.G.: Chaos in spin glasses revealed through
thermal boundary conditions. Phys. Rev. B 92, 094410 (2015)

34. Wang, W., Machta, J., Munoz-Bauza, H., Katzgraber, H.G.: Number of thermo-
dynamic states in the three-dimensional Edwards-Anderson spin glass. Phys. Rev.
B 96, 184417 (2017)

35. Callaham, J., Machta, J.: Population annealing simulations of a binary hard-sphere
mixture. Phys. Rev. E 95, 063315 (2017)

36. Odriozola, G., Berthier, L.: Equilibrium equation of state of a hard sphere binary
mixture at very large densities using replica exchange Monte Carlo simulations. J.
Chem. Phys. 134, 054504 (2011)

37. Christiansen, H., Weigel, M., Janke, W.: Population annealing for molecular
dynamics simulations of biopolymers. Preprint arXiv:1806.06016

https://doi.org/10.1007/978-3-642-03163-2
http://arxiv.org/abs/1806.06016

	Population Annealing and Large Scale Simulations in Statistical Mechanics
	1 Introduction
	2 Population Annealing
	3 Algorithmic Improvements
	4 GPU Accelerated PA Algorithm
	5 Applications
	5.1 Ising Model and Second-Order Phase Transitions
	5.2 Potts Model and First-Order Phase Transitions
	5.3 Frustrated Models and Spin Glasses
	5.4 Off-Lattice Systems

	6 Conclusion
	References

