
GPU accelerated population annealing algorithm

Lev Yu. Barasha,b, Martin Weigelc, Michal Borovskýb,d, Wolfhard Jankee, Lev N. Shchura,b,f

aLandau Institute for Theoretical Physics, 142432 Chernogolovka, Russia
bScience Center in Chernogolovka,142432 Chernogolovka, Russia

cApplied Mathematics Research Centre, Coventry University, Coventry, CV1 5FB, United Kingdom
dP.J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovak Republic

eInstitut für Theoretische Physik, Universität Leipzig, Postfach 100920 04009, Leipzig, Germany
fNational Research University Higher School of Economics, 101000 Moscow, Russia

Abstract

Population annealing is a promising recent approach for Monte Carlo simulations in statistical physics, in particular for
the simulation of systems with complex free-energy landscapes. It is a hybrid method, combining importance sampling
through Markov chains with elements of sequential Monte Carlo in the form of population control. While it appears
to provide algorithmic capabilities for the simulation of such systems that are roughly comparable to those of more
established approaches such as parallel tempering, it is intrinsically much more suitable for massively parallel computing.
Here, we tap into this structural advantage and present a highly optimized implementation of the population annealing
algorithm on GPUs that promises speed-ups of several orders of magnitude as compared to a serial implementation on
CPUs. While the sample code is for simulations of the 2D ferromagnetic Ising model, it should be easily adapted for
simulations of other spin models, including disordered systems. Our code includes implementations of some advanced
algorithmic features that have only recently been suggested, namely the automatic adaptation of temperature steps and
a multi-histogram analysis of the data at different temperatures.

PROGRAM SUMMARY

Manuscript Title: GPU accelerated population annealing
algorithm
Authors: Lev Yu. Barash, Martin Weigel, Michal Borovský,
Wolfhard Janke, Lev N. Shchur
Program Title: PAIsing
Journal Reference:
Catalogue identifier:
Licensing provisions: Creative Commons Attribution license
(CC BY 4.0)
Programming language: C, CUDA
Computer: System with an NVIDIA CUDA enabled GPU
Operating system: Linux, Windows, MacOS
RAM: 200 Mbytes
Number of processors used: 1 GPU
Supplementary material:
Keywords: Population annealing; Monte Carlo simulation;
Ising model; Parallel computing; GPU; Multi-spin coding
Classification: 23
External routines/libraries: NVIDIA CUDA Toolkit 6.5 or
newer
Subprograms used:
Nature of problem: The program calculates the internal energy,
specific heat, several magnetization moments, entropy and free
energy of the 2D Ising model on square lattices of edge length
L with periodic boundary conditions as a function of inverse
temperature β.

Solution method: The code uses population annealing, a
hybrid method combining Markov chain updates with popu-
lation control. The code is implemented for NVIDIA GPUs

using the CUDA language and employs advanced techniques
such as multi-spin coding, adaptive temperature steps and
multi-histogram reweighting.

Restrictions: The system size and size of the population
of replicas are limited depending on the memory of the GPU
device used.

Unusual features:

Additional comments:

Running time: For the default parameter values used in
the sample programs, L = 64, θ = 100, β0 = 0, βf = 1,
∆β = 0.005, R = 20 000, a typical run time on an NVIDIA
Tesla K80 GPU is 156 seconds for the single spin coded (SSC)
and 18 seconds for the multi-spin coded (MSC) program (see
Sec. 2 for a description of these parameters).

1. Introduction

Monte Carlo methods are among the core techniques for
studying the statics and dynamics of particle systems in
classical and quantum physics, in particular for systems in
statistical physics [1]. Although for a few problems sim-
ple sampling is reasonably efficient, most applications are
based on importance sampling techniques. Among them,
Markov chain Monte Carlo (MCMC) is by far the most
widely used approach in statistical physics. In quantum

Preprint submitted to Computer Physics Communications March 10, 2017

Monte Carlo, on the other hand, one can evaluate the wave
function in a path-integral formulation in imaginary time
by a swarm of particles diffusing in configuration space
that undergo a sequence of birth-death processes [2]. This
is a special case of a procedure more generally known as se-
quential Monte Carlo [3]. Such procedures have been more
reluctantly adopted in statistical physics applications, but
they have gained some traction recently, for example in
variants of “go with the winners” simulations [4]. In se-
quential Monte Carlo, configurations are gradually built
in possibly biased steps, sequentially accumulating weights
that multiply configurations in the final averages. In many
applications such weights fluctuate wildly, thus leading to
rather unstable results. In the “go with the winners” ap-
proaches, configurations are selectively cloned or pruned in
accordance with their weight to tame these fluctuations, a
procedure often referred to as population control.

One recent approach of this type is the population
annealing (PA) algorithm [5, 6]. There, a large num-
ber of configurations are prepared in independent equi-
librium configurations, for instance at infinite tempera-
ture. Each configuration evolves according to a standard
MCMC approach at the given temperature. The popula-
tion is then gradually cooled, and each configuration se-
quentially builds up a weight depending on its energy at
the instant of temperature change. Population control is
used to keep weight fluctuations under control. We here
focus on a variant where “perfect” population control is
used at each temperature step such that all weights re-
main equal to unity at all times [7]. The approach has
been successfully used for equilibrium simulations of spin-
glass systems [8–10], and also for finding ground states in
spin glasses and other systems with frustrated interactions
[11, 12]. Recently, we have studied the behavior of PA for
simulations of the 2D Ising model, analyzing systemati-
cally the dependence on the population size and annealing
protocol, and proposed a number of improvements [13].

The era of serial computing came to an end in the early
2000s when CPU clock frequencies first hit the “wall” of
about 3.5 GHz, beyond which heat dissipation becomes un-
feasible with conventional techniques and the power con-
sumption increases too steeply. While Moore’s law [14]
predicting an exponential growth of the number of transis-
tors in an integrated circuit continues to hold, the resulting
exponential growth of computational power seen for CPUs
essentially stopped being an increase of serial performance
(for instance through the increase of clock speeds) and now
translates into a corresponding increase in the number of
parallel cores or other compute units. Thus the comfort-
able situation where the same old code or, at least, the
same old algorithm could be run on more modern hard-
ware with exponentially decreasing run times with every
new generation of machine, has come to an end. Instead,
it has become necessary to design and implement solu-
tions to our computational problems that scale well up to
thousands or maybe even millions of cores [15]. A compu-
tational environment that recently proved to be a particu-

larly useful pathway towards massively parallel computing
are graphics processing units (GPUs) and similar acceler-
ator devices. They feature a much higher density of ac-
tual compute units than CPUs, at the expense of reduced
cache memories and control logic units that are mostly
useful for accelerating serial and unpredictable loads, and
are hence very well suited for the needs of scientific com-
puting [16, 17]. In statistical physics, significant speed-ups
have been observed for Ising model simulations with local
[18, 19] as well as non-local [20] udpate algorithms; for
continuous-spin systems [21, 22]; for spin glasses [21, 23]
and random-field models [24]; for Potts systems [25]; for
polymers [26] and many other applications.

The PA algorithm that requires the parallel simulation
of a population of tens of thousands up to millions of repli-
cas appears to be a perfect match for this new type of
computational resource. The quality of approximation in-
creases with population size [9, 13] such that a higher par-
allel load is clearly advantageous. As we will show below,
we observe a GPU speed-up of up to 230 times over a
serial CPU based code, thus bringing the wall-clock time
for typical calculations of the 2D Ising system considered
here down to minutes in many cases. For such models
with Ising spins, the additional application of multi-spin
coding yields a further up to 10-fold speed-up, such that
we reach a peak performance of 10 ps per spin flip of the
whole PA simulation code, including the resampling and
measurement parts. We provide a flexible implementation
that can be configured using command-line switches and
should be easily adaptable to simulations of related models
such as 3D Ising systems, Potts and O(n) models, and spin
glasses. In extension to the standard PA algorithm, our
code also allows for the adaptive choice of inverse temper-
ature steps and an analysis of the simulation results with
a multi-histogram approach.

The rest of the paper is organized as follows. In Sec. 2
we summarize the PA algorithm and the extensions em-
ployed here. Section 3 discusses our implementation on
GPU, while Sec. 4 introduces the program variant that
employs multi-spin coding. In Sec. 5 we investigate the
performance and reliability of our code. Finally, Sec. 6
contains our conclusions.

2. Algorithm

The population annealing method was first discussed
by Iba [5] in the general context of population-based al-
gorithms and later applied to spin glasses by Hukushima
and Iba [6]. More recently, Machta [7] used a method that
avoids the recording of weight functions through popula-
tion control in every step. This is the variant we discuss
and implement here.

2.1. Population annealing

As outlined above, the approach is a hybrid of sequen-
tial algorithm and MCMC that simulates a population of

2

configurations at each time, updating them with MCMC
methods and resampling the population periodically as the
temperature is gradually lowered. The algorithm can be
summarized as follows:

1. Set up an equilibrium ensemble of R0 = R indepen-
dent copies (replicas) of the system at inverse temper-
ature β0. Typically β0 = 0, where this can be easily
achieved.

2. To create an approximately equilibrated sample at
βi > βi−1, resample configurations with their relative
Boltzmann weight τi(Ej) = exp[−(βi − βi−1)Ej]/Qi,
where

Qi ≡ Q(βi−1, βi) =
1

Ri−1

Ri−1∑
j=1

exp[−(βi − βi−1)Ej].

(1)

3. Update each replica by θ rounds of an MCMC algo-
rithm at inverse temperature βi.

4. Calculate estimates for observable quantities O as
population averages

∑
j Oj/Ri.

5. Goto step 2 unless the target temperature βf has been
reached.

If we choose β0 = 0, equilibrium configurations for the
replicas can be generated by simple sampling, i.e., by as-
signing independent, purely random spin configurations to
each copy. The resampling process in step 2 can be real-
ized in different ways [6, 7]. Here we use the following ap-
proach [11]. For each replica j in the population at inverse
temperature βi−1 we draw a random number r uniformly
in [0, 1). The number of copies of replica j in the new
population is then taken to be

rji =

{
bτ̂i(Ej)c if r > τ̂i(Ej)− bτ̂i(Ej)c
bτ̂i(Ej)c+ 1 otherwise

, (2)

where τ̂i(Ej) = (R/Ri−1)τi(Ej) is renormalized to ensure
that the population size stays close to the target value R.
Here, bxc denotes the largest integer that is less than or
equal to x (i.e., rounding down). The new population size
is Ri =

∑
j r

j
i . This method requires only a single call to

the random number generator for each replica in the cur-
rent population and leads to very small fluctuations in the
total population size. Note that it is possible that rji = 0,
in which case the corresponding replica disappears from
the population, while other configurations will be repli-
cated several times. In the standard setup, steps of equal
size in inverse temperature are taken, i.e.,

βi = βi−1 + ∆β,

and ∆β is an adjustable parameter. We discuss an
adaptive, automatic choice of temperature steps below in
Sec. 2.3. In the code presented here, we use θ sweeps

of Metropolis single-spin flip updates to equilibrate each
replica in each temperature step. Other updates such as
heat-bath dynamics or even non-local cluster moves could
be employed easily as well.

Measurements are taken as population averages, and our
code produces estimates for the following quantities,

e =
1

Ri

∑
j

Ej/N,

C = β2N
(
e2 − e2

)
,

|m| = 1

Ri

∑
j

|Mj |/N,

m2 =
1

Ri

∑
j

(Mj/N)2,

m4 =
1

Ri

∑
j

(Mj/N)4.

(3)

Here, Ej denotes the configurational energy and Mj the
configurational magnetization of replica j, and N is the
number of spins. Additionally, PA provides a natural es-
timate of the free energy,

−βiF (βi) = lnZβ0
+

i∑
k=1

lnQk, (4)

where Zβ0
is the partition function at inverse temperature

β0, Zβ0 = 2N for Ising spins and β0 = 0, and Qk is the
reweighting factor used in the resampling. From Eqs. (3)
and (4) we can also compute the entropy per site via

S(βi)/N = βie(βi)− βiF (βi)/N. (5)

2.2. Weighted averages

It was shown in Ref. [7] that one of the strengths of the
PA approach is that by combining the data from indepen-
dent runs not only statistical errors are decreased, but also
systematic deviations can be reduced. This is the case if
one uses weighted averages of results of independent runs.
As was shown in Refs. [7, 9], an unbiased way of combin-
ing the results of M independent runs of PA for the same
system and target population size is to weight them by the
free energies as estimated according to Eq. (4),

Ã(βi) =

M∑
m=1

ωm(βi)Ām(βi), (6)

with

ωm(βi) =
e−βiFm(βi)∑
m e
−βiFm(βi)

, (7)

where Ām(βi) denotes the average of observable A in simu-
lation m and Fm(βi) the corresponding free-energy estima-
tor according to Eq. (4). The concept of weighted averages
allows for an additional parallelization in splitting the total
simulation into independent parts. The weighting ensures

3

that this does not substantially degrade the quality of the
results [9, 13]. Note that the concept of weighted averages
is more general than the PA approach [27], but for the
present algorithm the necessary free-energy estimates are
a free by-product of the simulation according to Eq. (4).
In the implementation provided here, multiple runs can be
requested on the command line, but the weighted averag-
ing of results is left to the user to perform separately.

2.3. Adaptive temperature steps

While an annealing cycle of the population is valid for
any choice of the temperature sequence β0, β1, . . ., and
given a sufficiently large number θ of MCMC sweeps em-
ployed at each temperature it also leads to essentially un-
biased estimates of observables, the resampling step is only
effective if βi− βi−1 is sufficiently small [13]. The optimal
size of temperature steps will itself depend on tempera-
ture, and a uniform stepping is not in general ideal. As
was recently shown in Ref. [13] uniform effectiveness of
resampling is achieved by ensuring a constant overlap of
the energy histograms of population members between the
neighboring temperatures. This overlap can be computed
from the reweighting factors before actually performing
the resampling step, and one finds

α(βi−1, β
′) =

1

Ri−1

Ri−1∑
j=1

min

(
1,
R exp[−(β′ − βi−1)Ej]

Ri−1Q(βi−1, β′)

)
.

(8)
Clearly, 0 ≤ α(βi−1, β

′) ≤ 1, and one can use numeri-
cal root finding techniques such as, for instance, bisection
search, to find β′ such that α(βi−1, β

′) = α∗ and then
set βi = β′. Values of 0.5 . α∗ . 0.9 provide sufficient
histogram overlap without an unnecessary proliferation of
temperature steps. In practice, if M runs are performed
for additional averaging, our code used in adaptive mode
decides about temperature steps only in the first run and
keeps the temperature sequence fixed for the remaining
passes.

2.4. Multihistogram reweighting

As a PA sweep produces samples at a large number of
closely spaced temperatures (typically at least 100, even
for small systems), it is natural to combine these data to
increase the accuracy and reduce statistical fluctuations
in the spirit of the multi-histogram analysis of Ferrenberg
and Swendsen [27]. Neglecting correlations between the
data at different temperatures as well as the effect of au-
tocorrelations, an optimized combination of histograms to
yield an estimate of the density of states is given by [13]

Ω(E) =

Nβ∑
i=1

Pβi(E)

Nβ∑
i=1

Ri exp[βiF (βi)− βiE]

. (9)

Here, Nβ denotes the total number of temperatures, and
we assumed a normalization of the histogram at inverse

temperature βi such that
∑
E Pβi(E) = Ri. We note that

the storage requirements are moderate as at each time
one only needs to store the sum of histograms up to the
current temperature and not each histogram individually.
Generalizations to other quantities such as magnetizations
are possible [13].

3. GPU realization

For definiteness we focus on an implementation for the
ferromagnetic, zero-field Ising model on the square lattice
with Hamiltonian

H = −J
∑
〈i,j〉

sisj . (10)

Here, interactions are only between nearest neighbors 〈i, j〉
and periodic boundary conditions are assumed. As is well
known, this model undergoes a continuous phase transition
at the inverse temperature βc = 1

2 ln(1 +
√

2) [28]. The
question of how well suited population annealing is as a
simulation technique to study this model and its transition
is discussed in Ref. [13]. Here, we are not concerned with
this aspect, but we use this model as a convenient starting
point since a wealth of exact or extremely accurate results
are available for it as reference points, and a generalization
of the code to other spin models and even more general
systems such as polymers or particle systems should be
rather straightforward.

General considerations. Inspecting the algorithm given in
Sec. 2.1, one identifies three computationally demanding
steps: a resampling of the population that involves the de-
termination of weight factors and the copying of replicas,
the update of individual configurations with MCMC moves
(i.e., spin flips), and the measurement of observables. As
we shall see below when reporting the performance results,
most time (on CPU or GPU) is normally spent on spin flips
(see also Ref. [13]), while for typical choices of θ (θ ≥ 10,
say) the resampling step and the measurements of the ele-
mentary quantities listed in Eqs. (3)–(5) are much less time
consuming1. These observations suggest to also choose the
effort for optimization of each of these parts correspond-
ingly. We hence first focus on the spin updates.

One of the basic features of present day GPU devices
that is of paramount importance for performance is the
technique of latency hiding implemented in the scheduling
algorithm [29]. Each time an elementary group of threads
(given by a warp of 32 threads on current NVIDIA GPUs)
accesses some data in memory that is currently not cached,
there is a latency of hundreds or even thousands of clock
cycles until the read or write operation completes. In-
stead of leaving the compute units idle, the scheduler puts
the present warp in the queue and allows another warp

1As we shall see below, however, this balance is somewhat changed
for the case of a multi-spin coded implementation.

4

that has already completed its data transaction to use the
compute units. If only enough such thread groups are
available, the compute cores will be kept constantly busy
and hence the memory latencies are hidden away. Good
GPU performance thus requires to break the work into
many threads, optimal performance is often only reached
for thread numbers in excess of ten times the number of
available physical cores [30].

A second crucial requirement for exploiting the full po-
tential of GPUs relates to the minimization of costly global
memory accesses. This includes a reasonable level of com-
pression of the data to be transferred for the updates. For
the present problem with Ising variables si = ±1 it sug-
gests to use the narrowest available native data type to
represent spins, which is an 8-bit integer, or to revert to
a multi-spin coding approach. A discussion of the latter
technique is postponed until the next section. Further,
the relative slowness of memory makes it useful to cache
and re-use data as much as possible, which could involve
using automatic caches or the user-managed cache known
as shared memory [29]. Finally, it implies optimization
geared towards increasing the locality of memory opera-
tions as each direct access to global memory (implying a
cache miss) fetches a full cache line of 128 bytes. Ide-
ally, the threads in a warp access memory locations in the
same cache line(s), thus making use of all of the data that
is actually loaded. This concept is known as memory coa-
lescence.

Spin updates. By construction population annealing sug-
gests to parallelize the calculations for different members
of the population. One particularly simple code setup is
hence to assign one thread to the updating of each replica
such that in total Ri threads are used for the MCMC
part of the algorithm, i.e., for flipping spins. Each thread
then goes sequentially through the lattice. To ensure good
memory coalescence in this case, the same spins of each
replica should be placed next to each other in memory,
so configurations should be stored in replica-major order.
In practice this code setup, which we denote as replica-
parallel , does show good but not optimal performance,
especially for smaller population sizes where it does not
provide enough parallelism. Where this approach does not
provide optimal performance, it still has the advantage of
being completely general, and it could consequently be ap-
plied unaltered to PA simulations of any other model. We
hence mention it here as a safe fall-back solution especially
for problems for which it is not possible or straightforward
to implement a domain decomposition (for instance for
systems with long-range interactions).

To increase the amount of parallel work, for the present
code for the 2D Ising model we opted to additionally par-
allelize the updates for each single replica, using a do-
main decomposition of the lattice. This was extensively
used previously for simulations using MCMC (single-spin
flips) only. The basic step consists of a checkerboard de-
composition of the lattice which allows for independent

Figure 1: Diagrammatic representation of the mapping of thread
blocks to spins in the updating kernel. The code works with thread
blocks of size EQthreads. Each block works on a single replica of the
population, using its threads to update tiles of size 2 × EQthreads

spins. To this end it flips spins on one checkerboard sub-lattice first,
moving the tiles over the lattice until it is covered, sychronizes and
then updates the other sub-lattice.

updates of all spins of one sub-lattice2. We denote the
corresponding scheme that parallelizes over replicas and
spins as spin-parallel . As the number of threads per block
is limited to 1024 on current CUDA devices, one either
lets each thread update a certain range of spins or em-
ploys a further decomposition of the lattice, be it in strips
[18], a second layer of checkerboard tiles [19, 21] or some
other form of subdivision [23]. For the present code, we
used one of the simplest solutions and let the EQthreads

threads of a block employed for the spin-updating kernel
checkKerALL() handle the spins of a full replica in the
following way (cf. Fig. 1): the first EQthreads spins of
the blue sub-lattice are updated in parallel, then the next
EQthreads blue spins and so forth until all blue spins of
the replica have been dealt with. After a synchronization
of all threads they update the white spins of the current
configuration in the same way, followed by another syn-
chronization of threads. Finally, this whole procedure is
repeated θ times until all spin updates have been imple-
mented. This setup is illustrated in Fig. 1 for an L = 32
lattice and EQthreads = 64. To increase memory coa-
lescence we store the spins of each sub-lattice together,
separate from the spins of the other sub-lattice. Note that
for this setup the spins are stored in a spin-major order as
the threads of a block work on spins in the same replica.
We are not explicitly using shared memory for the spin

2Generalizations to other lattice structures and larger, but finite
interaction ranges are available [21].

5

flips as it was not found to improve performance on the
devices tested here. A further optimization could consist
of storing the spin arrays in texture memory as suggested
in Ref. [23] which simplifies index arithmetics and allows
to make use of the separate texture cache, but for the
sake of simplicity we refrain from such additional opti-
mizations that are expected to yield only quite moderate
further speed improvements.

In this spin-parallel setup utilizing additional parallel
work inside of each replica, different replicas are handled
by different thread blocks. We request Ri thread blocks at
kernel invocation which will cause no problems for realis-
tic population sizes on recent devices where the maximum
number of blocks is 231 − 1 ≈ 2× 109. For the actual spin
updates, we use pre-calculated tables of the Metropolis
factors exp(−β∆E), stored in texture memory3 [21]. For
deciding about the acceptance of proposed spin flips the
algorithm requires one random number per spin update.
Random number generation on GPUs and in other mas-
sively parallel contexts requires a way of producing many
uncorrelated (sub-)sequences, and certain parameters such
as the memory footprint make some of the standard gen-
erators in serial environments unsuitable for a massively
parallel application. Some of the related issues are dis-
cussed in Refs. [31, 32]. A suite of generators loosely based
on cryptographic algorithms turned out to be particularly
competitive in this context, namely the series of Philox
generators of Ref. [33]. In the tests conducted in Ref. [31]
it combined excellent GPU performance with a passing of
all tests of the TestU01 suite [34]. Also, in the meantime it
has been included as one of the generators in the curand

library that is part of NVIDIA’s CUDA distribution. It
hence requires no further code to be used for the present
application. Additionally, users can readily replace it by
any of the alternative RNGs included in curand if they so
desire. One of the important advantages of the Philox gen-
erator is that it does not require the transfer of a generator
state between GPU main memory and the multiprocessors
doing the actual calculations. This is a consequence of it
being a counter-based generator, i.e., the generation of the
number xn = f(n) in the sequence does not require knowl-
edge of xn−1 or any other previous state. We use one in-
stance of the Philox 4x32 10 generator per thread, which
is initialized in the kernel with a sequence number deter-
mined from the grid and block indices of the thread and a
global iteration parameter. The required numbers in (0, 1)
are then generated by in-line calls to curand uniform() in
the spin-updating kernel checkKerALL(). This inline pro-
duction of random numbers is faster than a pre-generation
in dedicated arrays in a separate kernel and also much
more efficient in terms of the memory footprint as no ar-
rays are required.

3Note, however, that these tables need to be re-calculated for each
(inverse) temperature step.

Resampling and measurements. The resampling process
is also fully handled on GPU. To determine the resam-
pling factors τ̂i(Ej) of Eq. (2) one first needs the nor-
malization constant Qi of Eq. (1), which equals the sum
of all (unnormalized) resampling factors. There are Ri
summands, and the corresponding kernel QKer() is called
with Nthreads threads best chosen to equal the maximum
block size (1024 for current NVIDIA GPUs) and, corre-
spondingly, dRi/Nthreadse blocks. (Here, dxe denotes the
smallest integer that is larger or equal to x, i.e., round-
ing up.) Within each block, we use the standard parallel
reduction method that adds elements pairwise in several
generations until only one element (the sum) is left — a
scheme that can be visualized as a binary tree [35]. This
approach stores the intermediate results in shared mem-
ory. As threads from different blocks cannot directly com-
municate, the sum of partial results of each thread block
is typically determined by an additional kernel invocation
[29]. Alternatively, one can make use of the atomicAdd()

device function provided by CUDA to complete the reduc-
tion in the same kernel call, or use threadfence() to
ensure synchronization across blocks. As for the solution
using atomicAdd() the order of summation is not well de-
fined, different runs with the same parameters and random
number seeds could potentially lead to slightly different
values of Qi (at the level of the floating-point precision)
and hence, ultimately, to a divergence of trajectories of the
associated Markov chains through different decisions in the
resampling kernel. Although we never observed such a case
in practice, we decided to use a deterministic version of
parallel reduction for the calculation of Qi to rule out this
possibility. For the calculation of averages discussed below,
we use the semantically simpler code with atomicAdd().
A second kernel, CalcTauKer() is used with the same ex-
ecution configuration to determine the number of copies
of each replica to be created according to Eq. (2). Here,
another random number is used for each replica in the cur-
rent population to determine whether the number of copies
is bτ̂i(Ej)c or bτ̂i(Ej)c+ 1. To facilitate the parallel place-
ment of new copies in the vector storing the resampled
population, we also calculate the partial sums

∑k
j=1 r

j
i ,

i.e., the offsets into that vector, again using the same par-
allel reduction approach. This calculation is completed in
the kernel CalcParSum(). In the end, resampleKer() is
used to copy the selected individual replicas into the pre-
viously calculated locations of the new population vector,
using one thread per spin in a tile of size EQthreads and a
number of blocks that covers the full population and each
individual lattice with tiles.

Finally, measurements of the quantities of Eqs. (3)–(5)
are computed using a parallel reduction algorithm to first
calculcate the configurational energy and magnetization of
each replica in the kernel energyKer(). As only one block
is assigned to each replica in this case, no further reduction
of block values is required here. Finally, another parallel
reduction is used in the kernel CalcAverages() to deter-
mine the population averages, employing atomicAdd() for

6

the inter-block reduction.

Further optimization and parameters. We note that
through the fluctuations of Ri the execution configuration
of the kernels changes with each temperature step. For
a fully loaded GPU this causes only negligible variations
in the total performance, however. An important feature
of the provided implementation is that all calculations are
performed on GPU, so no significant memory transfers to
or from CPU occur during the PA run time. A number
of further optimizations have been employed to achieve
good performance. We request a larger L1 cache over
shared memory using the cudaDeviceSetCacheConfig()

command as this turns out to be beneficial for the memory
accesses in the main checkKerALL() kernel that does not
make use of shared memory. There is a maximal number
of threads that can be resident on a multiprocessor at any
given time, and in general it is found that latency hiding
works better the more threads are resident. This occu-
pancy of multiprocessors can be limited by the number of
available registers, however. Depending on the GPU em-
ployed, it can be beneficial to request a maximum number
of registers to be consumed per thread using the command-
line option --maxregcount of the nvcc compiler. The oc-
cupancy achieved with a given setup and register usage can
be determined using the occupancy calculator spreadsheet
that comes with the CUDA distribution.

We provide here two separate codes, one for single-spin
coding and one for multi-spin coding (see below). The rel-
evant parameters such as R, θ, β0 and βf , as well as the
number of runs M can be specified either through con-
stants (#defines) at the beginning of the source code or
through command-line arguments. There are two GPU
specific parameters, EQthreads and Nthreads, which de-
cide about the block size in the different kernels. These
can be adjusted by changing the values in the #defines in
the source code, but the default choices, EQthreads = 128
and Nthreads = 1024, are virtually always (near) optimal
on modern cards. The seed of the RNG can be changed by
adapting RNGseed, and in the default setup it is initialized
using the system time.

The results of each run of the algorithm are stored in
a separate output file in text format. Each line of the
output contains the values β, e, C, m, m2, m4, βF/N ,
S/N , R, lnQ, i.e., the inverse temperature, energy per site,
specific heat, magnetization per site and its moments, free
energy density divided by temperature, entropy per site,
population size, and logarithm of partition function ratio,
respectively.

4. Multi-spin coding

It is clear from the general design principles for efficient
GPU code as discussed above in Sec. 3 that a minimiza-
tion of memory transfers will often result in more efficient
code. More specifically, this will always be the case for

Table 1: Speedup of MSC implementations of PA with p spins per
word as compared to the SSC version. The calculations were per-
formed on a Tesla K80 card, but very similar results are expected
for other GPUs. The parameters of the simulations were L = 128,
θ = 500, R = 80 000, and ∆β = 0.02. The spin update used
nRNG random numbers of the underlying generator (Philox) to de-
cide about the acceptance of flips of the p spins coded in a word. For
the data in the last section an additional linear congruential genera-
tor seeded by the underlying generator (Philox) is used to generate
p derived random numbers for the flipping of individual spins. The
last column indicates the increase in statistical errors (in the low-
temperature phase) through the re-use of random numbers [see also
Fig. 2(c)].

p nRNG LCG speedup σ2
MSC(C)/σ2

SSC(C)
8 8 NO 1.82 1

16 16 NO 1.78 1
32 32 NO 1.83 1
64 64 NO 1.76 1
8 1 NO 6.74 8

16 1 NO 10.56 16
32 1 NO 13.61 32
64 1 NO 9.40 64
8 1 YES 6.09 1

16 1 YES 8.94 1
32 1 YES 10.22 1
64 1 YES 8.16 1

code that is memory-bound , i.e., for which the mix of mem-
ory transactions and arithmetic operations is such that the
performance limiting factor is the latency and bandwidth
of memory transactions [29]. Since the Metropolis update
of the Ising model used in the equilibrating subroutine is
arithmetically very light, especially when using a precom-
puted table for the exponential function, this is indeed
the case for the present application. Under these circum-
stances any modification that reduces memory transfers
can be expected to increase performance. Since an Ising
spin is a single-bit variable, it is clear that storing it in a
standard built-in variable (even if it is of 8-bit length) is
not ideal and an explicit one-bit representation promises
some performance improvement. This can be implemented
using multi-spin coding (MSC), i.e., by storing the states
of p spin variables in a single machine word of p bits [36].
Natural choices for the architecture are p = 8, 16, 32 and
64. While for simulations of single systems as discussed
in Refs. [36, 37] the spins represented by p bits in a word
correspond to different lattice sites (synchronous MSC),
for the present application it is more convenient to have
the bits in a word represent the spins on the same lattice
site but in different replicas (asynchronous MSC) [21, 38].
Quite efficient bitwise operations are available to imple-
ment a parallel Metropolis update of the spins coded in
a p-bit word. This approach has been extensively used in
simulations, in particular, of spin-glass models [23, 38–41].

The resulting MSC variant of the code shows increased
performance over a single-spin coded (SSC) version, with

7

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

σ
(C

)/
C

β

p = 8
p = 16
p = 32
p = 64

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

σ
(C

)/
C

β

p = 64, nRNG = 64
p = 64, nRNG = 1
p = 64, nRNG = 1, reordering
p = 64, nRNG = 1, reordering, LCG

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c)

σ
2 M

S
C
(C

)/
σ
2 S
S
C
(C

)

β

p = 64, nRNG = 1
p = 64, nRNG = 1, reordering
p = 64, nRNG = 1, reordering, LCG

Figure 2: (a) Relative error of estimates of the specific heat from
PA runs for an L = 64 2D Ising system with θ = 100, ∆β = 0.002
and population size R = 80 000 using asynchronous multi-spin coding
(MSC) with p = 8, 16, 32 and 64 bits. The same random numbers are
used to decide about spin flips in all replicas coded in the same words.
(b) Relative error of the specific heat for p = 64 with nRNG = 64 and
for nRNG = 1 with additional reordering of replicas and with using
different random numbers for each replica coded in the same word,
produced by an in-line linear congruential generator (LCG) seeded
by the main generator (Philox). The data for this last variant and
that of nRNG = 64 are practically indistinguishable. (c) Ratio of the
estimated variances σ2(C) of the multi-spin coded (MSC) variants as
compared to the single-spin coded (SSC) reference implementation.

an improvement that depends only weakly on the number
of spins p coded together. This is illustrated in the data
in the first section of Table 1, where a different random
number is drawn using the base generator for each of the

p spins coded in a word, i.e., nRNG = p. The relatively
moderate and mostly p independent improvement is a re-
sult of the fact that the time taken per spin update is in
this setup limited by the time it takes to generate the ran-
dom numbers used to decide about the acceptance of spin
flips. A number of implementations of this scheme for spin
glasses [23, 39, 40] have used the same random number for
deciding about flipping all of the p spins in a word. This
introduces some correlations, however, and while it is ar-
gued that this effect is minor for spin-glass problems due to
the property of bond chaos in such systems [42], we expect
it to be much more relevant for the case of the ferromag-
net studied here. If the same random numbers are used
for deciding about flips of the p spins coded together, this
implies that these replicas develop in a correlated manner.
In particular, if (some of) these p replicas have identical
spin configurations as is the case if they are copies of the
same parent configuration in the resampling process, they
are coupled and remain identical for all future times. This
clearly interferes with the goal of fair sampling. To illus-
trate this effect, we show in Fig. 2(a) the relative errors
of the specific heat of the 2D Ising model sampled with
the MSC PA implementation with p = 8, 16, 32 and 64
spins coded together, respectively, while using the same
random numbers to flip spins in all p replicas coded to-
gether. As is clearly seen, the errors in this setup increase
with p, and a rescaling of the y axis reveals that σ(C)/C in
fact increases proportional to

√
p as expected from general

statistical arguments (not shown). On the other hand, the
performance of this variant using only one random num-
ber for p spins is found to be excellent, cf. the data in the
second section of Table 1. Note that here in contrast to
the case with nRNG = p the speedup varies considerably
with p, and we find the best result for p = 32.

In an attempt to alleviate the correlation effect, we in-
troduced a rearrangement of replicas after resampling in
such a way as to avoid placing offspring of the same parent
configuration in the same word. This is achieved by the
following procedure. If we enumerate all replicas as k = 1,
. . . , Ri, then for a given n, 0 ≤ n < dRi/pe, the spins of
the replicas np+1, np+2, . . . , np+p are originally stored
in the same words. Or, equivalently, replicas with the same
value of dk/pe are stored in the same word. The popula-
tion is then rearranged such that replicas with the same
value of k mod dRi/pe are stored in the same word, i.e.,
when initially replicas 1, 2, . . ., p occupy the first word, this
now contains replicas 1, dRi/pe+ 1, . . ., (p− 1)dRi/pe+ 1.
This process can be pictured as transposing a p× dRi/pe
matrix, followed by reshaping the result to again occupy
p rows. Unless a parent has more than dRi/pe children
(which is unlikely for sufficiently large populations), this
setup ensures that descendants from the same parent con-
figuration are placed in different words. As a result, their
next spin updates are governed by independent random
number samples. However, it is clear that at a lower tem-
perature some of these sibling replicas could again end up
in the same machine word and hence remain correlated.

8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 10 100

(a)

single-spin coding

t S
F
/
to

p
t

S
F

θ

GPU, R = 2000
GPU, R = 10 000
GPU, R = 50 000
GPU, R = 100 000
CPU, R = 10 000

5

10

15

20

25

30

1 10 100

(b)

multi-spin coding

t S
F
/
to

p
t

S
F

θ

GPU, R = 2000
GPU, R = 10 000
GPU, R = 50 000
GPU, R = 100 000
CPU, R = 10 000

Figure 3: (a) Time per spin flip tSF of the single-spin coded GPU and
CPU codes as a function of the number θ of equilibration sweeps rel-
ative to the time toptSF achieved in the fastest case considered, namely
for θ = 500. The different lines show different population sizes. (b)
The same comparison for the multi-spin coded GPU code. The ref-
erence line for CPU is again for the single-spin coded algorithm.

The behavior of statistical errors of the resulting improved
algorithm is illustrated in Fig. 2(b). It leads to a slight
reduction of the inflation of statistical errors against the
non-MSC implementation, but by no means removes it.
Additionally, the improvement appears to vanish for tem-
peratures below the transition point βc = ln(1 +

√
2)/2.

A method that provides high performance without com-
promising the statistical quality of data can be constructed
by combining the underlying RNG with a particularly fast
in-line generator used to supply the p random numbers
used to flip the spins stored in the same word. For this pur-
pose, we use a simple linear-congruential generator (LCG)
of the form

rn+1 = Arn + C mod 232,

with A = 1 664 525 and C = 1 013 904 223 [43]. For each
call to the spin-updating kernel and each word of p spins,
this generator is seeded by a call to the underlying, high-
quality generator (Philox). Although LCG generators are
no longer recommended for general purpose applications
in simulations (see, e.g., Ref. [31] and references therein),
we believe that this does not cause any problems in the

Table 2: Peak performance of the CPU and GPU PA implementa-
tions in units of the total run time divided by the total number of
spin flips performed, tSF, for different system sizes. The best GPU
performance is achieved for large θ, and here θ = 500 was chosen for
a population of R = 50 000 replicas. The speedups for the SSC and
MSC GPU codes are relative to the CPU results. GPU performance
data are for the Tesla K80. The CPU code was benchmarked on an
Intel Xeon E5-2683 v4 CPU running at 2.1 GHz.

CPU GPU

SSC MSC
L tSF [ns] tSF [ns] speedup tSF [ns] speedup

16 23.1 0.092 251 0.0096 2406
32 22.9 0.094 243 0.0095 2410
64 22.6 0.095 238 0.0098 2306

128 22.6 0.098 230 0.0098 2306
256 22.5 0.099 227 0.0098 2295

present context as the LCG is only used to multiply a
sample of the underlying RNG and additionally the re-
sampling is done with the base RNG alone. Empirical
testing confirms this assumption as no biases or increases
in statistical fluctuations are observed. The corresponding
results shown in Fig. 2(b) and (c) reveal that the relative
error for this approach is identical to that of simulations
using p samples from the base RNG. As the data in the
last section of Table 1 illustrate, the performance of this
combined approach is excellent, providing an about 10-
fold speed-up of the simulations with MSC and p = 32 as
compared to the simulations with SSC (both running on
GPU).

5. Performance

In order to compare performance across different choices
of the algorithmic parameters R, θ and ∆β, we normalize
the time for a full PA run by the total number of spin flips
performed,

tSF =
trun

L2θ
∑Nβ
i=1Ri

, (11)

where Nβ denotes the number of temperature steps. We
compare the GPU codes proposed here to our reference
CPU implementation which is a scalar program, so only
uses one core. Instead of discussing the performance of a
range of different CPUs and GPUs, we here restrict our-
selves to the GPUs and CPUs available in an HPC cluster
machine recently installed at the home institution of one of
us (Coventry University), which are Intel Xeon E5-2683 v4
CPUs and NVIDIA Tesla K80 GPU cards, which should
be fairly representative of present-day HPC cluster config-
urations. The K80 is a double card, of which only one card
is actually used for the measurements at a time, featuring
2880 cores and 12GB of RAM.

In general, the best performance in terms of the met-
ric (11) is achieved when minimizing the frequency of re-
sampling steps, such that practically all time is invested
in flipping spins. First focusing on this optimal case, we

9

Table 3: Times tSF per spin flip (in ns) for SSC and MSC GPU codes
run on the Tesla K80 GPU for a L = 128 system.

R
2 000 10 000 50 000 100 000

single-spin coding (SSC)
1 0.264 0.250 0.245 0.249
5 0.131 0.126 0.128 0.129

10 0.115 0.113 0.114 0.114
θ 50 0.103 0.102 0.101 0.101

100 0.102 0.0994 0.0991 0.0994
200 0.100 0.0994 0.0980 0.0985
500 0.100 0.0980 0.0986 0.0984

multi-spin coding (MSC)
1 0.2413 0.1710 0.1869 0.1749
5 0.0577 0.0431 0.0424 0.0423

10 0.0349 0.0268 0.0260 0.0266
θ 50 0.0166 0.0141 0.0126 0.0123

100 0.0143 0.0126 0.0110 0.0109
200 0.0132 0.0120 0.0104 0.0101
500 0.0125 0.0118 0.0098 0.0096

collect in Table 2 the times tSF for θ = 500 and a popula-
tion size R = 50 000 for different system sizes. It is seen
that in the range 16 ≤ L ≤ 256 considered the perfor-
mance of all three codes is almost independent of system
size. For the GPU codes this is an indication that through
the replica parallelism and the additional spin-parallelism
there is enough parallel work to saturate the device al-
ready for moderate system sizes. The single-spin coded
GPU code is found to be about 230 times faster than the
CPU case. The multi-spin coding with p = 32 and the
additional combination with an LCG generator yields a
further factor of 10, resulting in a total peak speedup of
the MSC code of about 2300 as compared to the scalar
program.

While the performance of the CPU code is almost inde-
pendent of θ and R in the ranges studied here, the speed of
the GPU codes varies significantly with these parameters,
in particular with θ. This is illustrated in Fig. 3, while the
corresponding data is collected in Table 3. For the SSC
program, there is almost no dependence on R in the range
2 000 ≤ R ≤ 100 000 shown here, but for small values of
θ the times per spin flip increase by up to a factor of 2.4
as compared to the optimal case, cf. Fig. 3(a). Hence, for
the extreme case of θ = 1, the speedup reduces to a factor
of 100. For θ = 10, on the other hand, which was typ-
ically used in previous applications of the PA algorithm
[8, 11], the performance is only about 20% below the opti-
mum and the speedup is still approximately 200. For the
multi-spin coded program, this effect becomes even much
more pronounced as the time per spin flip is reduced by
a factor of 10, but the time taken for the resampling is
not improved at the same rate. Additionally, the propor-
tion of time taken for the sampling of observables increases
significantly. As a consequence, there is a rather strong θ

Table 4: The fraction of the total computing time spent in the spin-
flip kernel checkKerALL() of the SSC and MSC GPU codes for a
L = 128 system simulated on the Tesla K80 GPU.

R
2 000 10 000 50 000 100 000

single-spin coding (SSC)
1 35.7% 37.1% 37.8% 36.9%
5 73.0% 74.3% 74.4% 74.5%

10 83.9% 84.2% 85.2% 85.2%
θ 50 96.5% 92.4% 92.0% 96.1%

100 98.2% 98.3% 98.1% 98.2%
200 99.1% 96.1% 98.9% 98.7%
500 99.6% 99.6% 99.5% 99.5%

multi-spin coding (MSC)
1 5.5% 5.5% 4.5% 4.8%
5 21.3% 24.8% 20.1% 19.6%

10 34.8% 39.7% 33.1% 31.4%
θ 50 72.6% 76.7% 72.6% 73.9%

100 84.1% 86.8% 85.1% 84.2%
200 91.4% 93.0% 91.5% 91.6%
500 96.4% 97.2% 96.7% 96.6%

dependence of the performance of the MSC version, which
is almost 20 times slower for θ = 1 than for θ = 500, see the
data shown in Fig. 3(b). In this extreme case, the speedup
is reduced to about 140, almost comparable to the perfor-
mance of the SSC program. For the choice θ = 10, on the
other hand, the MSC code still performs at 860 times the
CPU code’s speed, see also the data collected in the lower
part of Table 3.

When discussing the optimization of the GPU code
above, we stated that most of the time in PA is spent
on spin flips. To see whether this is indeed the case, we
calculated the fraction of the total run time spent in the
spin updating kernel checkKerALL(). The corresponding
data are collected in Table 4. For the SSC program, the
percentage of time spent updating spins is indeed generally
high, and exceeding 85% for θ ≥ 10. On the other hand,
for the minimal θ = 1 it drops to about 35%. For the MSC
version, the relative cost of resampling and measurements
of the energy and magnetization is much more significant,
and a fraction of 85% of time for spin flips is only reached
for θ = 100, see the lower part of Table 4. The CPU code,
in contrast, spends 90% of time on flipping spins even for
θ = 1. These differences are a consequence of the addi-
tional overhead resulting from the parallel reductions for
calculating Qi and the resampling factors τ̂i, as well as
copying replicas and measuring observable values. For the
MSC version of the code there is the additional complica-
tion that for the energy and magetization calculation the
individual spins need to be unpacked from the bit-coded
words, which is quite costly.

Nevertheless, it is crucial to move as much of the cal-
culation as possible onto GPU instead of possibly using
a hybrid approach. This is illustrated in Table 5, where
we compare the performance in terms of tSF for a variant

10

Table 5: Time tSF per spin-flip for a hybrid version of the SSC GPU
code, where at each temperature step the full population is copied
between GPU and CPU to perform the resampling as compared to
the fully GPU-embedded standard version proposed here. While for
large values of θ both versions show similar performance, for small θ
the copying slows down the hybrid version significantly, a fact that is
consistent with the general observation [17] that fully GPU enabled
code is almost always preferable over hybrid solutions. Simulations
are for L = 128 and R = 50 000 on the NVIDIA Tesla K80.

tSF [ns]
θ 1 5 10 50 100 500

standard 0.245 0.129 0.114 0.102 0.101 0.099
hybrid 1.460 0.373 0.237 0.126 0.113 0.101

that does the spin flips on GPU, but transfers the pop-
ulation of replicas back to CPU for the implementation
of the resampling process. At least for small values of θ,
this hybrid version is significantly less performant. On the
other hand, it is conceptually simpler as it does not make
use of parallel reductions etc., so users could consider this
simpler approach for simulations where a large θ is used.

6. Conclusion

We have presented an efficient implementation of the
population annealing algorithm on GPUs, using the 2D
Ising model as a benchmark problem. The code takes
into account a range of fundamental optimization heuris-
tics for GPU computing, including the principles of la-
tency hiding and memory coalescence and thus achieves
peak speedups of more than 200 times above a reference
serial implementation on CPU. To create sufficient par-
allel work for the GPU devices it turns out to be useful
to combine the replica-level parallelism with an additional
domain decomposition, thus exploiting also spin-level par-
allelism. We also provide here a multi-spin coded version
of the program that yields peak performances of more than
2000 times that of the serial, single-spin coded variant.

While we provide code for the 2D Ising ferromagnet, we
hope it to be used as a template for the simulation also
of further problems with the same algorithm. Generaliza-
tions for models on different lattices in various dimensions,
the case of different couplings including spin glasses and
random-field systems as well as more general spin systems
such as Potts [44] or O(n) models are straightforward. Ap-
plications to off-lattice systems are also straightforward
conceptually [45], although the optimization of the code
in such cases might be a little bit more difficult.

Large populations can be simulated on standard GPUs.
For the present implementation, for L = 64 it is possible
on the K80 GPUs to simulate R = 1.5×106 replicas using
the SSC variant and R = 1.2×107 for the MSC version. It
is worthwhile noting that one can combine simulations to
effectively achieve the precision expected from a single run
with the combined population size by using the weighted
averaging scheme as discussed above in Sec. 2.2 [7, 13].

Additionally, it should be possible to combine GPU par-
allelization with MPI and run very large populations on a
cluster of GPU enabled nodes, and we expect population
annealing to show excellent scaling properties for such se-
tups.

7. Acknowledgments

The work of L.B. M.B. and L.S. is supported by the
grant 14-21-00158 from the Russian Science Foundation.
M.B. was also supported by the Scientific Grant Agency
of the Ministry of Education of the Slovak Republic
(Grant No. 1/0331/15). The authors acknowledge sup-
port from the European Commission through the IRSES
network DIONICOS under Contract No. PIRSES-GA-
2013-612707. The simulations were performed on the HPC
facilities of Coventry University and the Science Center in
Chernogolovka. M.W. acknowledges fruitful and pleasant
discussions with Jon Machta and Helmut Katzgraber on
the subject of population annealing.

[1] D. P. Landau, K. Binder, A Guide to Monte Carlo Simulations
in Statistical Physics, 4th Edition, Cambridge University Press,
Cambridge, 2015.

[2] I. Kosztin, B. Faber, K. Schulten, Introduction to the diffusion
Monte Carlo method, Am. J. Phys. 64 (1996) 633.

[3] A. Doucet, N. de Freitas, N. Gordon (Eds.), Sequential Monte
Carlo Methods in Practice, Springer, New York, 2001.

[4] P. Grassberger, Go with the winners: a general Monte Carlo
strategy, Comput. Phys. Commun. 147 (2002) 64.

[5] Y. Iba, Population Monte Carlo algorithms, Trans. Jpn. Soc.
Artif. Intell. 16 (2001) 279–286.

[6] K. Hukushima, Y. Iba, Population annealing and its application
to a spin glass, AIP Conf. Proc. 690 (2003) 200–206.

[7] J. Machta, Population annealing with weighted averages: A
Monte Carlo method for rough free-energy landscapes, Phys.
Rev. E 82 (2010) 026704.

[8] W. Wang, J. Machta, H. G. Katzgraber, Evidence against
a mean-field description of short-range spin glasses revealed
through thermal boundary conditions, Phys. Rev. B 90 (2014)
184412.

[9] W. Wang, J. Machta, H. G. Katzgraber, Population annealing:
Theory and application in spin glasses, Phys. Rev. E 92 (2015)
063307.

[10] W. Wang, J. Machta, H. G. Katzgraber, Chaos in spin glasses
revealed through thermal boundary conditions, Phys. Rev. B 92
(2015) 094410.

[11] W. Wang, J. Machta, H. G. Katzgraber, Comparing Monte
Carlo methods for finding ground states of Ising spin glasses:
Population annealing, simulated annealing, and parallel tem-
pering, Phys. Rev. E 92 (2015) 013303.

[12] M. Borovský, M. Weigel, L. Y. Barash, M. Žukovič, GPU-
accelerated population annealing algorithm: Frustrated Ising
antiferromagnet on the stacked triangular lattice, EPJ Web
Conf. 108 (2016) 02016.

[13] M. Weigel, L. Y. Barash, M. Borovský, W. Janke, L. N. Shchur,
in preparation.

[14] G. E. Moore, Cramming more components onto integrated cir-
cuits, Electronics 38 (1965) 114.

[15] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hus-
bands, K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf,
S. W. Williams, K. A. Yelick, The landscape of parallel com-
puting research: A view from Berkeley, Tech. rep., Technical
Report UCB/EECS-2006-183, EECS Department, University
of California, Berkeley (2006).

11

[16] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone,
J. C. Phillips, GPU computing, Proceedings of the IEEE 96
(2008) 879–899.

[17] W. W. Hwu (Ed.), GPU Computing Gems: Emerald Edition,
Morgan Kaufmann, Amsterdam, 2011.

[18] T. Preis, P. Virnau, W. Paul, J. J. Schneider, GPU accelerated
Monte Carlo simulation of the 2D and 3D Ising model, J. Comp.
Phys. 228 (2009) 4468.

[19] M. Weigel, Simulating spin models on GPU, Comput. Phys.
Commun. 182 (2011) 1833–1836.

[20] M. Weigel, Connected-component identification and cluster up-
date on graphics processing units, Phys. Rev. E 84 (2011)
036709.

[21] M. Weigel, Performance potential for simulating spin models on
GPU, J. Comp. Phys. 231 (2012) 3064–3082.

[22] T. Yavors’kii, M. Weigel, Optimized GPU simulation of
continuous-spin glass models, Eur. Phys. J. Special Topics 210
(2012) 159.

[23] M. Lulli, M. Bernaschi, G. Parisi, Highly optimized simula-
tions on single-and multi-GPU systems of the 3d Ising spin glass
model, Comput. Phys. Commun. 196 (2015) 290–303.

[24] C. A. Navarro, W. Huang, Y. Deng, Adaptive multi-GPU ex-
change Monte Carlo for the 3D random field Ising model, Com-
put. Phys. Commun. 205 (2016) 48–60.

[25] E. E. Ferrero, J. P. De Francesco, N. Wolovick, S. A. Cannas,
q-state Potts model metastability study using optimized GPU-
based Monte Carlo algorithms, Comput. Phys. Commun. 183
(2012) 1578–1587.

[26] J. Gross, W. Janke, M. Bachmann, Massively parallelized
replica-exchange simulations of polymers on GPUs, Comput.
Phys. Commun. 182 (2011) 1638–1644.

[27] A. M. Ferrenberg, R. H. Swendsen, Optimized Monte Carlo data
analysis, Phys. Rev. Lett. 63 (1989) 1195.

[28] B. M. McCoy, T. T. Wu, The two-dimensional Ising model,
Harvard University Press, Massachusetts, 1973.

[29] D. B. Kirk, W. W. Hwu, Programming Massively Parallel Pro-
cessors, Elsevier, Amsterdam, 2010.

[30] J. Gross, J. Zierenberg, M. Weigel, W. Janke, Parallel multi-
canonical simulations on GPUs, in preparation.

[31] M. Manssen, M. Weigel, A. K. Hartmann, Random number gen-
erators for massively parallel simulations on GPU, Eur. Phys.
J. Special Topics 210 (2012) 53.

[32] L. Y. Barash, L. N. Shchur, PRAND: GPU accelerated parallel
random number generation library: Using most reliable algo-
rithms and applying parallelism of modern GPUs and CPUs,
Comput. Phys. Commun. 185 (2014) 1343–1353.

[33] J. K. Salmon, M. A. Moraes, R. O. Dror, D. E. Shaw, Parallel
random numbers: As easy as 1, 2, 3, in: Proceedings of 2011 In-
ternational Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’11, ACM, New York, NY,
USA, 2011.

[34] P. L’Ecuyer, R. Simard, TestU01: A C library for empirical
testing of random number generators, ACM Trans. Math. Softw.
33 (2007) 22.

[35] M. McCool, J. Reinders, A. Robison, Structured Parallel Pro-
gramming: Patterns for Efficient Computation, Morgan Kauf-
man, Waltham, MA, 2012.

[36] R. Zorn, H. J. Herrmann, C. Rebbi, Tests of the multi-spin-
coding technique in Monte Carlo simulations of statistical sys-
tems, Comput. Phys. Commun. 23 (1981) 337–342.

[37] N. Ito, Y. Kanada, Monte Carlo simulation of the Ising model
and random number generation on the vector processor, in: Pro-
ceedings of the 1990 ACM/IEEE conference on Supercomput-
ing, IEEE Computer Society Press, 1990, pp. 753–763.

[38] F. Belletti, M. Cotallo, A. Cruz, L. A. Fernández, A. G. Guer-
rero, M. Guidetti, A. Maiorano, F. Mantovani, E. Marinari,
V. Mart́ın-Mayor, A. Muñoz Sudupe, D. Navarro, G. Parisi,
S. P. Gaviro, M. Rossi, J. J. Ruiz-Lorenzo, S. F. Schifano,
D. Sciretti, A. Tarancón, R. L. Tripiccione, Janus: An FPGA-
based system for high-performance scientific computing, Com-
put. Sci. Eng. 11 (2009) 48–58.

[39] M. Hasenbusch, A. Pelissetto, E. Vicari, The critical behavior
of 3D Ising glass models: universality and scaling corrections,
J. Stat. Mech.: Theory and Exp. (2008) L02001.

[40] Y. Fang, S. Feng, K.-M. Tam, Z. Yun, J. Moreno, J. Ramanu-
jam, M. Jarrell, Parallel tempering simulation of the three-
dimensional Edwards–Anderson model with compact asyn-
chronous multispin coding on GPU, Comput. Phys. Commun.
185 (2014) 2467–2478.

[41] L. A. Fernández, E. Marinari, V. Mart́ın-Mayor, G. Parisi,
J. J. Ruiz-Lorenzo, Universal critical behavior of the two-
dimensional Ising spin glass, Phys. Rev. B 94 (2016) 024402.

[42] A. J. Bray, M. A. Moore, Chaotic nature of the spin-glass phase,
Phys. Rev. Lett. 58 (1987) 57–60.

[43] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flan-
nery, Numerical Recipes: The Art of Scientific Computing, 3rd
Edition, Cambridge University Press, Cambridge, 2007.

[44] L. Y. Barash, M. Weigel, L. Shchur, W. Janke, Exploring first-
order phase transitions with population annealing, Eur. Phys.
J. Special Topics 226, in print.

[45] J. Callaham, J. Machta, Population annealing simulations of a
binary hard sphere mixture (Jan. 2017). arXiv:1701.00263.

12

