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Abstract. Population annealing (PA) is a population-based algorithm that is designed for
equilibrium simulations of thermodynamic systems with a rough free energy landscape. It is
known to be more efficient in doing so than standard Markov chain Monte Carlo alone. The
algorithm has a number of parameters that can be fine-tuned to improve performance. While
there is some theoretical and numerical work regarding most of these parameters, there appears
to be a gap in the literature concerning the role of resampling in PA. Here, we present a numerical
comparison of a number of resampling schemes for PA simulations of the 2D Ising model.

1. Introduction
Systems with a rough free energy landscape, such as spin glasses, structural glasses and some
polymers, to name a few, appear in many fields of research and are notoriously hard to
simulate [1]. Over the last decades a number of methods have been developed with the aim
of making such systems more accessible such as, e.g., multicanonical simulations [2], the Wang-
Landau algorithm [3], parallel tempering [4] and the population annealing (PA) algorithm [5, 6]
which is the subject of the present work.

While there is no clear-cut answer to the question which of these methods is best and the
answer may depend on the system considered, we motivate the use of PA as follows: First, PA
is well suited for the highly parallel execution on supercomputers, as the number of replicas is
only limited by the underlying computing architecture and not the method itself. In contrast,
in parallel tempering the level of parallelization is limited by the number of temperature points
considered which is bounded by increasing round-trip times as the number of replicas grows.
Additionally, with increasing population size not just the statistical error but also the bias is
systematically reduced [7]. Second, as part of the PA algorithm an equilibration routine is run at
each temperature, which typically consists of a number of Markov chain Monte Carlo (MCMC)
sweeps (MCS). However, the type of update is not specified and can freely be replaced by, e.g., a
cluster algorithm, a rejection-free update or even by molecular dynamics [8]. This allows for an
easy adaptation of PA to the system under study, and any algorithmic improvement in MCMC
immediately translates to PA.

The fundamental idea of PA, first presented by Hukushima and Iba [5, 6], is to perform
parallel simulated annealing (SA) simulations (replicas) subject to a population-control step at
each temperature. It is worth mentioning that thanks to this control step PA is an equilibrium
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Figure 1. Schematic of the population annealing algorithm. Vertical axis corresponds to
R replicas (here five) and horizontal axis to simulation time. Line numbers correspond to
algorithm 1 in Appendix A.

method for calculating canonical averages although SA itself by default is not. The population
control is implemented by a resampling phase employed at each temperature step (or in principle
after M steps, but researchers have focused on M = 1) and is crucial to the performance of
PA. Despite its importance to the success of the algorithm, it has received little attention in the
literature – the effect of different resampling methods has not yet been systematically studied and
particularly the fact that resampling introduces additional artificial noise into the simulations
has not been discussed.

We use the two-dimensional ferromagnetic Ising model in zero field corresponding to the
Hamiltonian

H = −J
∑

〈ij〉
σiσj (1)

where the sum is over nearest neighbors 〈ij〉 only. In our simulations we consider lattices of size
64 × 64 with periodic boundary conditions. Our implementation of the PA algorithm is based
on the Open Source GPU code of Ref. [9] that is available online. The code uses a checkerboard
decomposed Metropolis update as an equilibration routine. All resampling methods were also
implemented on GPUs.

2. Simulation method
2.1. Population annealing
In PA a population of R0 = R replicas is initialized at the starting inverse temperature β0, chosen
to be zero if possible; here, R is the target population size. What follows is an iteration scheme
(see Figure 1) in which in each iteration the inverse temperature βt is increased to βt+1 = βt+∆β.
The step ∆β has to be chosen appropriately and can in principle be adaptive [9, 10].

At the end of iteration t− 1, the population consists of Rt−1 replicas at βt−1. Following the
line of thought of histogram reweighting [11], if we were asked to estimate the energy histogram
at βt based on the population at βt−1, we would attribute a weight wi ∝ exp(−∆βEi) to each
replica i with energy Ei where the weights are normalized such that they sum to one. Next, the
population is resampled according to these weights wi, while attempting to keep the population
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size close to the target size R. In practice, the number of descendants ri of replica i is, on
average,

〈ri〉 = τ̂i = wiR. (2)

Clearly, this only specifies the mean of ri and the exact way how ri is determined depends on
the used resampling method. Note that it is common that ri = 0 for some replicas, in which
case they are culled while others are replicated multiple times.

Immediately after resampling, the population is potentially highly correlated as it may contain
identical configurations. To reduce the correlation among replicas, an equilibration routine is
used (here a checkerboard decomposed version of the Metropolis algorithm, see Ref. [9] for
details). After θ MCS, population averages for observables of interest are calculated. The
scheme then proceeds with the iteration for inverse temperature βt+1 until the final temperature
is reached.

For a pseudocode implementation of the PA algorithm we refer to Appendix A.

2.2. Resampling methods
When the number of copies of one replica ri is chosen only based on the value of τ̂i of the same
replica i, the resampling method is completely described by a univariate distribution Pτ̂i(ri = k).
In this case the sum of all ri’s is a random variable and thus the population size fluctuates with
time. In this group we consider “nearest integer” resampling [12] and Poisson resampling [13]
given by

Pτ̂i(ri = k) =





τ̂i − dτ̂ie if k = dτ̂ie
1− (τ̂i − dτ̂ie) if k = bτ̂ic
0 else

(3)

R = 10

U1 U2U3U8U9 U10

(a) multinomial

R = 10

U1 U2U3 U8 U9 U10

(c) stratified

R = 10

U1 U2 U3 U8 U9 U10

(b) systematic

R = 10

U1U2U3 U4U5

(d) residual

Figure 2. Visualization of various population size preserving resampling methods. Colored
boxes correspond to different replicas i and their lengths are proportional to τ̂i. The number
of copies of replica i is determined by the number of arrows in box i. (a) - (c) R arrows are
distributed over the interval [0, R]. (a) multinomial: Each arrow is uniformly distributed over
the interval [0, R]. (b) systematic: The first arrow is uniformly distributed within [0, 1]. The
remaining R− 1 arrows are placed with unit spacing. (c) stratified: In each square exactly one
arrow is placed with uniform probability, i.e., Ui ∼ U([i−1, i]). (d) residual: At first each replica
is copied bτ̂ic times. The population is brought to its original size by multinomially drawing
from the residuals, i.e., performing (a) with τi − bτic replacing τi.
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for nearest-integer and

Pτ̂i(ri = k) =
τ̂ki
k!
e−τ̂i (4)

for Poisson, respectively. Here, dxe denotes the smallest integer that is larger than or equal to
x, i.e., rounding up, and similarly bxc denotes the largest integer smaller than or equal to x,
i.e., rounding down.

Vice versa, if one requires the population size to be fixed, the set {ri} is drawn at once and the
individual ri’s may show some correlation. See Figure 2 for a visualization of the population size
preserving resampling methods used here and the caption for explanations. These methods are
quite well known in the field of particle filters [14] whereas within the PA community multinomial
resampling is the only population size preserving method used so far.

In principle, one might come up with many more methods such as geometric resampling.
Here we restrict ourselves to methods with sampling variance less than or equal to that of the
widely used multinomial resampling.

2.3. Benchmarking quantities
The most obvious quantities to use for comparing the algorithmic performance are systematic
and statistical errors. We looked at various observables and present here the errors measured
for the specific heat Cv, as this is where we found the strongest differences among the methods.

Additionally, Ref. [12] introduced population quantities designed to identify the maximal
correlation within the population introduced through the resampling step, i.e.,

ρt = R
R∑

i=1

n2i , ρs = R exp

(
R∑

i=1

ni ln ni

)
and f =

∑

i=1

min{1, Rni}, (5)

where ni is the fraction of replicas descending from the initial replica i, ρt is known as the mean
square family size, ρs as the entropic family size and f is the number of families. As the authors
of Ref. [12] show, these quantities are closely related to each other.

3. Results
The following results were obtained from simulations of the Ising model on a square lattice with
periodic boundary conditions of dimensions 64 × 64. The numerical data presented here was
attained through independent PA simulations for each resampling method and was averaged
over 5 000 simulations per method. The target population size is R = 20 000 and the annealing
schedule was chosen to be βk = k/300 with k ∈ {0, . . . , 299}. The choice of β0 = 0 allows us
to initialize each spin configuration simply by choosing every spin as up or down with equal
probabilities which can easily be implemented. At each temperature θ = 5 MCS were carried
out.

Figure 3 shows bias and statistical error immediately after resampling (before the
equilibration routine) of the specific heat. We calculate the bias by using the known exact
solution [15, 16], whereas the statistical errors were obtained by estimating the standard
deviation of independent runs. Both quantities peak around the critical temperature. The
bias shows little deviation among the methods, although multinomial and Poisson resampling
appear to have slightly stronger bias in the vicinity of the critical temperature. Around the
critical temperature statistical errors are almost indistinguishable and away from criticality
the statistical error using multinomial and Poisson resampling is significantly larger compared
to the other methods. The inset, which shows all errors normalized to the nearest-integer
errors, illustrates that Poisson and multinomial resampling have statistical errors of up to 25%
higher than nearest-integer resampling and outside the depicted near-critical regime these even
exceed 30%. We argue that near criticality fluctuations intrinsic to the model are very strong
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Figure 3. Relative (a) systematic and (b) statistical error of the specific heat measured after
the resampling step for various resampling methods. (a) Systematic errors hardly differ between
different resampling schemes. (b) The inset shows the statistical error relative to the error using
nearest-integer resampling. Away from criticality, the curves differ significantly whereas around
βc ≈ 0.44 the choice of the resampling method appears to have little effect on the statistical
error.

and dominate the observed statistical errors whereas further away the resampling noise has a
significant effect.

The family quantity ρt is shown in Figure 4(a). It increases rapidly around the critical
point and slowly otherwise. It agrees with the previous observations in the sense that again
multinomial and Poisson resampling stick out and ρt consistently takes its highest values for
these two methods. Larger average family size typically corresponds to more correlation within
the population and thus poorer statistics. The same observations are made for the entropic
family size ρs and the inverse of the number of families R/f .

4. Conclusion
We have demonstrated that resampling has a significant effect on the data obtained through
population annealing, and we see a difference in error bars of up to 30% using standard
resampling methods. Furthermore, we identified that resampling matters most away from
criticality when it contributes as much or more to the statistical error as the fluctuations intrinsic
to the system. Through the study of family quantities we found that higher variance in ri at
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Figure 4. Family quantities (a) ρt, (b) ρs and (c) R/f for various resampling methods.
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high temperatures causes fewer families of larger sizes surviving, thus causing more correlation
in the population.

In a quest of finding the best resampling method nearest-integer resampling is the front runner
due to it consistently outperforming the other methods and due to its simple implementation.
Systematic resampling is also a good choice, in particular if a constant population size is desired,
as it provides similar performance although its implementation is slightly more involved. In
particular, we note that it performs significantly better than the multinomial method usually
used for this purpose.
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Doctoral College “L4” under Grant No. CDFA-02-07.

Appendix A. Population Annealing algorithm

Algorithm 1 Standard Population Annealing algorithm (introduced in Ref. [6])

Require: R,{βk},θ, M
1: k ← 0
2: Initialize population of R independent replicas at β0
3: while βk+1 < βmax do
4: k ← t+ 1
5: Calculate Boltzmann weights wi of the replicas at βt
6: if k ≡ 0(mod M) then resample population according to weights

(on avg. τi = Rwi copies of replica i)
7: Monte Carlo update of the replicas (θ MC sweeps at βk)
8: Measure observables O

Algorithm 1 shows the standard population annealing algorithm as originally devised by
Hukushima and Iba [6]. The parameters are the target population size R (throughout
the simulation Ri might fluctuate around R), the annealing schedule {βk}, the number
of equilibration updates θ (typically MCMC) between each temperature step and M , the
resampling interval (usually M = 1).
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