Simulating spin models on GPU
Lecture 3: Random number generators

Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and
Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

IMPRS School 2012: GPU Computing,
Wroclaw, Poland, October 31, 2012
Outline

1. The problem
2. Linear congruential generators
3. Multiply with carry
4. Lagged Fibonacci generators
5. Mersenne twister
6. XORShift generators
7. Counter-based generators
RNG: definition

Stochastic simulations such as Monte Carlo and molecular dynamics (with a thermostat) require a reliable stream of “randomness”.

Approaches:
- True randomness from, e.g., fluctuations in a resistor: too slow
- Pseudorandom number generator: deterministic sequence of (typically integer) numbers with the following properties:
 - Based on a state vector
 - With a finite period
 - Reproducible if using the same seed
 - Typically produce uniform distribution on $[0, N_{\text{MAX}}]$ or $[0, 1]$
 - Further distributions (such as Gaussian) generated from transformations

Generally two types of pseudo RNGs considered:
- For general purposes, including simulations
- Or for cryptographic purposes, requiring sufficient randomness to prevent efficient stochastic inference

M. Weigel (Coventry/Mainz)
RNG: definition

Stochastic simulations such as Monte Carlo and molecular dynamics (with a thermostat) require a reliable stream of “randomness”.

Approaches:

- true randomness from, e.g., fluctuations in a resistor: too slow
RNG: definition

Stochastic simulations such as Monte Carlo and molecular dynamics (with a thermostat) require a reliable stream of “randomness”.

Approaches:

- true randomness from, e.g., fluctuations in a resistor: too slow
- pseudorandom number generator: deterministic sequence of (typically integer) numbers with the following properties
Stochastic simulations such as Monte Carlo and molecular dynamics (with a thermostat) require a reliable stream of “randomness”.

Approaches:

- **true randomness** from, e.g., fluctuations in a resistor: too slow
- **pseudorandom** number generator: deterministic sequence of (typically integer) numbers with the following properties
 - based on a state vector
 - with a finite period
 - reproducible if using the same seed
 - typically produce uniform distribution on \([0, NMAX] \) or \([0, 1]\)
 - further distributions (such as Gaussian) generated from transformations
RNG: definition

Stochastic simulations such as Monte Carlo and molecular dynamics (with a thermostat) require a reliable stream of “randomness”.

Approaches:

- true randomness from, e.g., fluctuations in a resistor: too slow
- pseudorandom number generator: deterministic sequence of (typically integer) numbers with the following properties
 - based on a state vector
 - with a finite period
 - reproducible if using the same seed
 - typically produce uniform distribution on \([0, NMAX]\) or \([0, 1]\)
 - further distributions (such as Gaussian) generated from transformations
- generally two types of pseudo RNGs considered
 - for general purposes, including simulations
 - or for cryptographic purposes, requiring sufficient randomness to prevent efficient stochastic inference
The story of R250

John von Neumann

“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.” (1951)
The story of R250

John von Neumann

“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.” (1951)

For any pseudo RNG (or RNG, for short) there must exist an algorithm/test that distinguishes the generated sequence from a truly random sequence.
The problem

The story of R250

John von Neumann

“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.” (1951)

For any pseudo RNG (or RNG, for short) there must exist an algorithm/test that distinguishes the generated sequence from a truly random sequence. (If nothing else, this can be the algorithm generating the sequence itself!)
The problem

The story of R250

John von Neumann

“Anyone who considers arithmetical methods of producing random digits is, of course, in a state of sin.” (1951)

For any pseudo RNG (or RNG, for short) there must exist an algorithm/test that distinguishes the generated sequence from a truly random sequence. (If nothing else, this can be the algorithm generating the sequence itself!)

Monte Carlo Simulations: Hidden Errors from “Good” Random Number Generators

Alan M. Ferrenberg and D. P. Landau
Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602

Y. Joanna Wong
IBM Corporation, Supercomputing Systems, Kingston, New York 12401
(Received 29 July 1992)

The Wolff algorithm is now accepted as the best cluster-flipping Monte Carlo algorithm for beating “critical slowing down.” We show how this method can yield incorrect answers due to subtle correlations in “high quality” random number generators.

PACS numbers: 75.40.Mg, 05.70.Jk, 64.60.Fr

The explosive growth in the use of Monte Carlo simulations in diverse areas of physics has prompted extensive investigation of new methods and of the reliability of both old and new techniques. Monte Carlo simulations are
Coin-Tossing Computers Found to Show Subtle Bias

By MALCOLM W. BROWN
Published: January 12, 1993

WHEN scientists use computers to try to predict complex trends and events, they often apply a type of calculation that requires long series of random numbers. But instructing a computer to produce acceptably random strings of digits is proving maddeningly difficult.

In deciding which team kicks off a football game, the toss of a real coin is random enough to satisfy all concerned. But the cost of even a slightly nonrandom string of electronic coin tosses can be devastating to both practical problem-solving and pure theory, and a new investigation has revealed that nonrandom computer tosses are much more common than many scientists had assumed.

Mathematical "models" designed to predict stock prices, atmospheric warming, airplane skin friction, chemical reactions, epidemics, population growth, the outcome of battles, the locations of oil deposits and hundreds of other complex matters increasingly depend on a statistical technique called Monte Carlo Simulation, which in turn depends on reliable and inexhaustible sources of random numbers.

Monte Carlo Simulation, named for Monaco’s famous gambling casino, can help to represent very complex interactions in physics, chemistry, engineering, economics and environmental dynamics mathematically. Mathematicians call such a representation a "model," and if a model is accurate enough, it produces the same responses to manipulations that the real thing would do. But Monte Carlo modeling contains a dangerous flaw: if the supposedly random numbers that must be pumped into a simulation actually form some subtle, nonrandom pattern, the entire simulation (and its predictions) may be wrong.
Random number testing

A sequence u_i of pseudo-random numbers is perfect iff all sequences (u_0, \ldots, u_{t-1}) are uniformly distributed over $[0, 1]^t$ for arbitrary t.
Random number testing

A sequence u_i of pseudo-random numbers is perfect iff all sequences (u_0, \ldots, u_{t-1}) are uniformly distributed over $[0, 1]^t$ for arbitrary t. Clearly, this cannot be the case, already because of the finite period.

- Derived statistical tests:

- Test for uniformity
- Correlation tests
- Comparison to combinatorial identities
- Comparison to other known statistical results
- Application tests (e.g., Ising model)

On the other hand, there are cryptographic tests based on the lack of predictability. No RNG can pass every conceivable test, so a bad RNG is one that fails simple tests, and a good RNG is one that only fails only very complicated tests.

Test batteries:
- DieHard (1995) by G. Marsaglia, now outdated
- TestU01 (2002/2009) by P. L’Ecuyer and co-workers, quasi standard
Random number testing

A sequence u_i of pseudo-random numbers is perfect iff all sequences (u_0, \ldots, u_{t-1}) are uniformly distributed over $[0, 1]^t$ for arbitrary t. Clearly, this cannot be the case, already because of the finite period.

- Derived statistical tests:
 - test for uniformity
 - correlation tests
 - comparison to combinatorial identities
 - comparison to other known statistical results
 - application tests (e.g., Ising model)

On the other hand, there are cryptographic tests based on the lack of predictability. No RNG can pass every conceivable test, so a bad RNG is one that fails simple tests, and a good RNG is one that only fails only very complicated tests.

Test batteries:
- DieHard (1995) by G. Marsaglia, now outdated
- TestU01 (2002/2009) by P. L’Ecuyer and co-workers, quasi standard
Random number testing

A sequence u_i of pseudo-random numbers is perfect iff all sequences (u_0, \ldots, u_{t-1}) are uniformly distributed over $[0, 1]^t$ for arbitrary t. Clearly, this cannot be the case, already because of the finite period.

- Derived statistical tests:
 - test for uniformity
 - correlation tests
 - comparison to combinatorial identities
 - comparison to other known statistical results
 - application tests (e.g., Ising model)

On the other hand, there are cryptographic tests based on the lack of predictability.
Random number testing

A sequence u_i of pseudo-random numbers is perfect iff all sequences (u_0, \ldots, u_{t-1}) are uniformly distributed over $[0, 1]^t$ for arbitrary t. Clearly, this cannot be the case, already because of the finite period.

- Derived statistical tests:
 - test for uniformity
 - correlation tests
 - comparison to combinatorial identities
 - comparison to other known statistical results
 - application tests (e.g., Ising model)

On the other hand, there are cryptographic tests based on the lack of predictability.

No RNG can pass every conceivable test, so a bad RNG is one that fails simple tests, and a good RNG is one that only fails only very complicated tests.
Random number testing

A sequence u_i of pseudo-random numbers is perfect iff all sequences (u_0, \ldots, u_{t-1}) are uniformly distributed over $[0, 1]^t$ for arbitrary t. Clearly, this cannot be the case, already because of the finite period.

- Derived statistical tests:
 - test for uniformity
 - correlation tests
 - comparison to combinatorial identities
 - comparison to other known statistical results
 - application tests (e.g., Ising model)

On the other hand, there are cryptographic tests based on the lack of predictability.

No RNG can pass every conceivable test, so a bad RNG is one that fails simple tests, and a good RNG is one that only fails only very complicated tests.

Test batteries:
- DieHard (1995) by G. Marsaglia, now outdated
- TestU01 (2002/2009) by P. L’Ecuyer and co-workers, quasi standard
The problem

Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in parallel.
Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in parallel. A single “RNG process” producing and handing out the numbers would be a severe bottleneck, impeding scaling.
Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in parallel. A single “RNG process” producing and handing out the numbers would be a severe bottleneck, impeding scaling.

- hence, each thread needs its own RNG (potentially millions of them)
Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in parallel. A single “RNG process” producing and handing out the numbers would be a severe bottleneck, impeding scaling.

- hence, each thread needs its own RNG (potentially millions of them)
- to minimize the pressure on the bus, on registers and shared memory, the RNG state needs to be as small as possible
Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in parallel. A single “RNG process” producing and handing out the numbers would be a severe bottleneck, impeding scaling.

- hence, each thread needs its own RNG (potentially millions of them)
- to minimize the pressure on the bus, on registers and shared memory, the RNG state needs to be as small as possible
- the streams of all RNG instances must be sufficiently uncorrelated to yield reliable results together
The problem

Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in parallel. A single “RNG process” producing and handing out the numbers would be a severe bottleneck, impeding scaling.

- hence, each thread needs its own RNG (potentially millions of them)
- to minimize the pressure on the bus, on registers and shared memory, the RNG state needs to be as small as possible
- the streams of all RNG instances must be sufficiently uncorrelated to yield reliable results together
- This could be reached by

 (a) division of the stream of a long-period generator into non-overlapping sub-streams to be produced and consumed by the different threads of the application, or
In applications such as Monte Carlo of lattice systems, we want to update many spins in parallel. A single “RNG process” producing and handing out the numbers would be a severe bottleneck, impeding scaling.

- hence, each thread needs its own RNG (potentially millions of them)
- to minimize the pressure on the bus, on registers and shared memory, the RNG state needs to be as small as possible
- the streams of all RNG instances must be sufficiently uncorrelated to yield reliable results together

This could be reached by

(a) division of the stream of a long-period generator into non-overlapping sub-streams to be produced and consumed by the different threads of the application, or
(b) use of very large period generators such that overlaps between the sequences of the different instances are improbable, if each instance is seeded differently, or
Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in parallel. A single “RNG process” producing and handing out the numbers would be a severe bottleneck, impeding scaling.

- hence, each thread needs its own RNG (potentially millions of them)
- to minimize the pressure on the bus, on registers and shared memory, the RNG state needs to be as small as possible
- the streams of all RNG instances must be sufficiently uncorrelated to yield reliable results together
- This could be reached by
 (a) division of the stream of a long-period generator into non-overlapping sub-streams to be produced and consumed by the different threads of the application, or
 (b) use of very large period generators such that overlaps between the sequences of the different instances are improbable, if each instance is seeded differently, or
 (c) setup of independent generators of the same class of RNGs using different lags, multipliers, shifts etc.
Outline

1. The problem
2. Linear congruential generators
3. Multiply with carry
4. Lagged Fibonacci generators
5. Mersenne twister
6. XORShift generators
7. Counter-based generators
Simplest choice satisfying these requirements is linear congruential generator (LCG):

\[x_{n+1} = ax_n + c \pmod{m}. \]
Linear congruential generators

Simplest choice satisfying these requirements is linear congruential generator (LCG):

\[x_{n+1} = ax_n + c \pmod{m}. \]

- for \(m = 2^{32} \) or \(2^{32} - 1 \), the maximal period is of the order \(p \approx m \approx 10^9 \), much too short for large-scale simulations.
Simplest choice satisfying these requirements is linear congruential generator (LCG):

$$x_{n+1} = ax_n + c \pmod{m}.$$

- for $m = 2^{32}$ or $2^{32} - 1$, the maximal period is of the order $p \approx m \approx 10^9$, much too short for large-scale simulations
- one should actually use at most \sqrt{p} numbers of the sequence
Simplest choice satisfying these requirements is linear congruential generator (LCG):

\[x_{n+1} = ax_n + c \pmod{m}. \]

- for \(m = 2^{32} \) or \(2^{32} - 1 \), the maximal period is of the order \(p \approx m \approx 10^9 \), much too short for large-scale simulations
- one should actually use at most \(\sqrt{p} \) numbers of the sequence
- for \(m = 2^{32} \), modulo can be implemented as overflow, but then period of lower rank bits is only \(2^k \)

can be improved by choosing \(m = 2^{64} \) and truncation to 32 most significant bits,
period \(p = m \approx 10^{18} \) and 8 bytes per thread
Simplest choice satisfying these requirements is linear congruential generator (LCG):

\[x_{n+1} = ax_n + c \pmod{m}. \]

- for \(m = 2^{32} \) or \(2^{32} - 1 \), the maximal period is of the order \(p \approx m \approx 10^9 \), much too short for large-scale simulations
- one should actually use at most \(\sqrt{p} \) numbers of the sequence
- for \(m = 2^{32} \), modulo can be implemented as overflow, but then period of lower rank bits is only \(2^k \)
- has poor statistical properties, e.g., \(k \)-tuples of (normalized) numbers lie on hyper-planes
Simplest choice satisfying these requirements is linear congruential generator (LCG):

\[x_{n+1} = ax_n + c \pmod{m}. \]
Simplest choice satisfying these requirements is linear congruential generator (LCG):

\[x_{n+1} = ax_n + c \pmod{m}. \]

- for \(m = 2^{32} \) or \(2^{32} - 1 \), the maximal period is of the order \(p \approx m \approx 10^9 \), much too short for large-scale simulations
- one should actually use at most \(\sqrt{p} \) numbers of the sequence
- for \(m = 2^{32} \), modulo can be implemented as overflow, but then period of lower rank bits is only \(2^k \)
- has poor statistical properties, e.g., \(k \)-tuples of (normalized) numbers lie on hyper-planes
- state is just 4 bytes per thread
Linear congruential generators

Simplest choice satisfying these requirements is linear congruential generator (LCG):

\[x_{n+1} = ax_n + c \pmod{m}. \]

- for \(m = 2^{32} \) or \(2^{32} - 1 \), the maximal period is of the order \(p \approx m \approx 10^9 \), much too short for large-scale simulations
- one should actually use at most \(\sqrt{p} \) numbers of the sequence
- for \(m = 2^{32} \), modulo can be implemented as overflow, but then period of lower rank bits is only \(2^k \)
- has poor statistical properties, e.g., \(k \)-tuples of (normalized) numbers lie on hyper-planes
- state is just 4 bytes per thread
- can easily skip ahead via \(x_{n+t} = a_t x_n + c_t \) with

\[
 a_t = a^t \pmod{m}, \quad c_t = \sum_{i=1}^{t} a^i c \pmod{m}.
\]
Simplest choice satisfying these requirements is linear congruential generator (LCG):
\[x_{n+1} = ax_n + c \pmod{m}. \]

- for \(m = 2^{32} \) or \(2^{32} - 1 \), the maximal period is of the order \(p \approx m \approx 10^9 \), much too short for large-scale simulations
- one should actually use at most \(\sqrt{p} \) numbers of the sequence
- for \(m = 2^{32} \), modulo can be implemented as overflow, but then period of lower rank bits is only \(2^k \)
- has poor statistical properties, e.g., \(k \)-tuples of (normalized) numbers lie on hyper-planes
- state is just 4 bytes per thread
- can easily skip ahead via \(x_{n+t} = a_t x_n + c_t \) with
 \[a_t = a^t \pmod{m}, \quad c_t = \sum_{i=1}^{t} a^i c \pmod{m}. \]
- can be improved by choosing \(m = 2^{64} \) and truncation to 32 most significant bits, period \(p = m \approx 10^{18} \) and 8 bytes per thread
LCGs: implementation

The implementation is indeed very simple and can be performed in-line:

```c
#define A32 1664525
#define C32 1013904223
unsigned int ran;
CONVERT ( ran = A32 * ran + C32);
```

The output function for converting from $[0, \text{INTMAX}]$ to $[0, 1]$ could be implemented in different ways:

```c
#define MULT32 2.328306437080797e-10f
#define CONVERT (x) (MULT32 *(( unsigned int )(x)));
```

```c
// #define CONVERT (x) _curand_uniform (x)
// #define CONVERT (x) __fdividef ( __uint2float_rz (x) ,( float )0x100000000 );
```
The implementation is indeed very simple and can be performed in-line:

```c
#define A32 1664525
#define C32 1013904223

unsigned int ran;
CONVERT(ran = A32*ran+C32);
```
The implementation is indeed very simple and can be performed in-line:

```c
#define A32 1664525
#define C32 1013904223

unsigned int ran;
CONVERT(ran = A32*ran+C32);
```

The output function for converting from \([0, \text{INTMAX}]\) to \([0, 1]\) could be implemented in different ways:
The implementation is indeed very simple and can be performed in-line:

```c
#define A32 1664525
#define C32 1013904223

unsigned int ran;
CONVERT(ran = A32*ran+C32);
```

The output function for converting from \([0, \text{INTMAX}]\) to \([0, 1]\) could be implemented in different ways:

```c
#define MULT32 2.328306437080797e-10f

#define CONVERT(x) (MULT32*((unsigned int)(x)))
//#define CONVERT(x) _curand_uniform(x)
//#define CONVERT(x) __fdividef(__uint2float_rz(x),(float)0x100000000);
```
How well do they perform?

Characteristic zig-zag pattern due to commensurability (or not) of block number of with number of multiprocessors.

Peak performance at 58×10^9 (LCG32) and 46×10^9 (LCG64) random numbers per second, respectively.
LCG: performance

How well do they perform?

Characteristic zig-zag pattern due to commensurability (or not) of block number of with number of multiprocessors.
LCG: performance

How well do they perform?

Characteristic zig-zag pattern due to *commensurability* (or not) of block number of with number of multiprocessors.

Peak performance at 58×10^9 (LCG32) and 46×10^9 (LCG64) random numbers per second, respectively.
Use these LCG generators for the previously developed simulation code for the 2D Ising model.
Use these LCG generators for the previously developed simulation code for the 2D Ising model. Exact results are available for comparison.
LCG: overall benchmarks

Use these LCG generators for the previously developed simulation code for the 2D Ising model. Exact results are available for comparison. Test case of 1024×1024 system at $\beta = 0.4$, 10^7 sweeps.

- checkerboard update uses random numbers in different way than sequential update
- linear congruential generators can skip ahead: “right” way uses non-overlapping sub-sequences
- “wrong” way uses sequences from random initial seeds, many of which must overlap
RNG quality: Ising results

Table: Internal energy e per spin and specific heat C_V for a 1024×1024 Ising model with periodic boundary conditions at $\beta = 0.4$.

<table>
<thead>
<tr>
<th>method</th>
<th>e</th>
<th>Δ_{rel}</th>
<th>C_V</th>
<th>Δ_{rel}</th>
<th>$t_{\text{up}}^{k=1}$</th>
<th>$t_{\text{up}}^{k=100}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>1.106079207</td>
<td>0</td>
<td>0.8616983594</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequential update (CPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.1060788(15)</td>
<td>-0.26</td>
<td>0.83286(45)</td>
<td>-63.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1060801(17)</td>
<td>0.49</td>
<td>0.86102(60)</td>
<td>-1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibonacci, $r = 512$</td>
<td>1.1060789(17)</td>
<td>-0.18</td>
<td>0.86132(59)</td>
<td>-0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>checkerboard update (GPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.0944121(14)</td>
<td>-8259.05</td>
<td>0.80316(48)</td>
<td>-121.05</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>1.1060775(18)</td>
<td>-0.97</td>
<td>0.86175(56)</td>
<td>0.09</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1061058(19)</td>
<td>13.72</td>
<td>0.86179(67)</td>
<td>0.14</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>1.1060803(18)</td>
<td>0.62</td>
<td>0.86215(63)</td>
<td>0.71</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>MWC, same a</td>
<td>1.1060800(18)</td>
<td>0.45</td>
<td>0.86161(60)</td>
<td>-0.15</td>
<td>0.2293</td>
<td>0.0435</td>
</tr>
<tr>
<td>MWC, different a</td>
<td>1.1060797(18)</td>
<td>0.28</td>
<td>0.86168(62)</td>
<td>-0.03</td>
<td>0.2336</td>
<td>0.0438</td>
</tr>
<tr>
<td>Fibonacci, $r = 521$</td>
<td>1.1060890(15)</td>
<td>6.43</td>
<td>0.86099(66)</td>
<td>-1.09</td>
<td>0.2601</td>
<td>0.0661</td>
</tr>
<tr>
<td>Fibonacci, $r = 1279$</td>
<td>1.1060800(19)</td>
<td>0.40</td>
<td>0.86084(53)</td>
<td>-1.64</td>
<td>0.2904</td>
<td>0.0700</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>1.1060654(15)</td>
<td>-9.13</td>
<td>0.86167(65)</td>
<td>0.04</td>
<td>0.7956</td>
<td>0.0576</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>1.1060788(18)</td>
<td>-0.23</td>
<td>0.86184(53)</td>
<td>0.27</td>
<td>0.2613</td>
<td>0.0721</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>1.1060778(18)</td>
<td>-0.79</td>
<td>0.86109(65)</td>
<td>-0.93</td>
<td>0.2399</td>
<td>0.0523</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>1.1060777(17)</td>
<td>-0.85</td>
<td>0.86188(61)</td>
<td>0.30</td>
<td>0.2577</td>
<td>0.0622</td>
</tr>
</tbody>
</table>
Use these LCG generators for the previously developed simulation code for the 2D Ising model. Exact results are available for comparison. Test case of 1024×1024 system at $\beta = 0.4$, 10^7 sweeps.

- checkerboard update uses random numbers in different way than sequential update
- linear congruential generators can skip ahead: “right” way uses non-overlapping sub-sequences
- “wrong” way uses sequences from random initial seeds, many of which must overlap

TestU01 results:

- poor for LCG32
- acceptable for LCG64
RNG quality: TestU01 results

The memory footprint is measured in bits per thread. For the TestU01 results, if (too many) failures in SmallCrush are found, Crush and BigCrush are not attempted; likewise with failures in Crush. The performance column shows the peak number of 32-bit uniform floating-point random numbers produced per second on a fully loaded GTX 480 device.

<table>
<thead>
<tr>
<th>generator</th>
<th>bits/thread</th>
<th>failures in TestU01</th>
<th>Ising test</th>
<th>perf. (\times 10^9 / s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SmallCrush Crush BigCrush</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>32</td>
<td>12 - -</td>
<td>failed</td>
<td>58</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>32</td>
<td>3 14 -</td>
<td>passed</td>
<td>58</td>
</tr>
<tr>
<td>LCG64</td>
<td>64</td>
<td>None 6 -</td>
<td>failed</td>
<td>46</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>64</td>
<td>None 2 8</td>
<td>passed</td>
<td>46</td>
</tr>
<tr>
<td>MWC</td>
<td>64 + 32</td>
<td>1 29 -</td>
<td>passed</td>
<td>44</td>
</tr>
<tr>
<td>Fibonacci, (r = 521)</td>
<td>(\geq 80)</td>
<td>None 2 -</td>
<td>failed</td>
<td>23</td>
</tr>
<tr>
<td>Fibonacci, (r = 1279)</td>
<td>(\geq 80)</td>
<td>None (1) 2</td>
<td>passed</td>
<td>23</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>192</td>
<td>None None 1/3</td>
<td>failed</td>
<td>19</td>
</tr>
<tr>
<td>MTGP (cuRAND)</td>
<td>(\geq 44)</td>
<td>None 2 2</td>
<td>-</td>
<td>18</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>32</td>
<td>None None None</td>
<td>passed</td>
<td>18</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>(128)</td>
<td>None None None</td>
<td>passed</td>
<td>41</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>(128)</td>
<td>None None None</td>
<td>passed</td>
<td>30</td>
</tr>
</tbody>
</table>
LCG: overall benchmarks

Use these LCG generators for the previously developed simulation code for the 2D Ising model. Exact results are available for comparison. Test case of 1024×1024 system at $\beta = 0.4$, 10^7 sweeps.

- checkerboard update uses random numbers in different way than sequential update
- linear congruential generators can skip ahead: “right” way uses non-overlapping sub-sequences
- “wrong” way uses sequences from random initial seeds, many of which must overlap

TestU01 results:

- poor for LCG32
- acceptable for LCG64

General conclusion: fast, but not good enough
Outline

1. The problem
2. Linear congruential generators
3. Multiply with carry
4. Lagged Fibonacci generators
5. Mersenne twister
6. XORShift generators
7. Counter-based generators
Multiply-with-carry

An only slightly more complicated recursion suggested by Marsaglia is defined by

\[x_{n+1} = ax_n + c_n \pmod{m}, \]
\[c_{n+1} = \lfloor (ax_n + c_n)/m \rfloor. \]
An only slightly more complicated recursion suggested by Marsaglia is defined by

\[
x_{n+1} = ax_n + c_n \pmod{m},
\]

\[
c_{n+1} = \lfloor (ax_n + c_n)/m \rfloor.
\]

- additive \(c_n\) is the carry of the previous iteration
Multiply-with-carry

An only slightly more complicated recursion suggested by Marsaglia is defined by

\[x_{n+1} = a x_n + c_n \pmod{m}, \]
\[c_{n+1} = \lfloor (a x_n + c_n) / m \rfloor. \]

- additive \(c_n \) is the carry of the previous iteration
- for \(m = 2^{32} \), we can pack the whole state in one 64-bit integer variable
Multiply with carry

An only slightly more complicated recursion suggested by Marsaglia is defined by

\[x_{n+1} = ax_n + c_n \pmod{m}, \]

\[c_{n+1} = \lfloor (ax_n + c_n)/m \rfloor. \]

- additive \(c_n \) is the **carry** of the previous iteration
- for \(m = 2^{32} \), we can pack the whole state in one 64-bit integer variable
- maximal period is \(p = am - 2 \), which can be close to the \(p = 2^{64} \) of the 64-bit LCG
Multiply with carry

An only slightly more complicated recursion suggested by Marsaglia is defined by

\[x_{n+1} = ax_n + c_n \pmod{m}, \]
\[c_{n+1} = \lfloor (ax_n + c_n)/m \rfloor. \]

- additive \(c_n \) is the carry of the previous iteration
- for \(m = 2^{32} \), we can pack the whole state in one 64-bit integer variable
- maximal period is \(p = am - 2 \), which can be close to the \(p = 2^{64} \) of the 64-bit LCG
- to achieve the full period, one requires \(am - 1 \) as well as \((am - 2)/2 \) to be prime (such that \(am - 1 \) is a safe prime)
Multiply with carry

An only slightly more complicated recursion suggested by Marsaglia is defined by

\[x_{n+1} = ax_n + c_n \pmod{m}, \]
\[c_{n+1} = \lfloor (ax_n + c_n)/m \rfloor. \]

- additive \(c_n \) is the carry of the previous iteration
- for \(m = 2^{32} \), we can pack the whole state in one 64-bit integer variable
- maximal period is \(p = am - 2 \), which can be close to the \(p = 2^{64} \) of the 64-bit LCG
- to achieve the full period, one requires \(am - 1 \) as well as \((am - 2)/2 \) to be prime (such that \(am - 1 \) is a safe prime)
- \(\Rightarrow \) expensive to generate many instances, need 64 + 32 bits of state
Multiply-with-carry

An only slightly more complicated recursion suggested by Marsaglia is defined by

\[x_{n+1} = ax_n + c_n \pmod{m}, \]
\[c_{n+1} = \left\lfloor \frac{(ax_n + c_n)}{m} \right\rfloor. \]

- additive \(c_n \) is the carry of the previous iteration
- for \(m = 2^{32} \), we can pack the whole state in one 64-bit integer variable
- maximal period is \(p = am - 2 \), which can be close to the \(p = 2^{64} \) of the 64-bit LCG
- to achieve the full period, one requires \(am - 1 \) as well as \((am - 2)/2 \) to be prime (such that \(am - 1 \) is a safe prime)
- \(\Rightarrow \) expensive to generate many instances, need 64 + 32 bits of state

LCG implementation

```c
unsigned long long int ran;
CONVERT((unsigned int)(ran = (ran&0xfffffffffull)*AMWC+ran>>32));
```
RNG quality: Ising results

Table: Internal energy e per spin and specific heat C_V for a 1024×1024 Ising model with periodic boundary conditions at $\beta = 0.4$.

<table>
<thead>
<tr>
<th>method</th>
<th>e</th>
<th>Δ_{rel}</th>
<th>C_V</th>
<th>Δ_{rel}</th>
<th>$t_{up}^k = 1$</th>
<th>$t_{up}^k = 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>1.106079207</td>
<td>0</td>
<td>0.8616983594</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequential update (CPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.1060788(15)</td>
<td>-0.26</td>
<td>0.83286(45)</td>
<td>-63.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1060801(17)</td>
<td>0.49</td>
<td>0.86102(60)</td>
<td>-1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibonacci, $r = 512$</td>
<td>1.1060789(17)</td>
<td>-0.18</td>
<td>0.86132(59)</td>
<td>-0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>checkerboard update (GPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.0944121(14)</td>
<td>-8259.05</td>
<td>0.80316(48)</td>
<td>-121.05</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>1.1060775(18)</td>
<td>-0.97</td>
<td>0.86175(56)</td>
<td>0.09</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1061058(19)</td>
<td>13.72</td>
<td>0.86179(67)</td>
<td>0.14</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>1.1060803(18)</td>
<td>0.62</td>
<td>0.86215(63)</td>
<td>0.71</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>MWC, same a</td>
<td>1.1060800(18)</td>
<td>0.45</td>
<td>0.86161(60)</td>
<td>-0.15</td>
<td>0.2293</td>
<td>0.0435</td>
</tr>
<tr>
<td>MWC, different a</td>
<td>1.1060797(18)</td>
<td>0.28</td>
<td>0.86168(62)</td>
<td>-0.03</td>
<td>0.2336</td>
<td>0.0438</td>
</tr>
<tr>
<td>Fibonacci, $r = 521$</td>
<td>1.1060890(15)</td>
<td>6.43</td>
<td>0.86099(66)</td>
<td>-1.09</td>
<td>0.2601</td>
<td>0.0661</td>
</tr>
<tr>
<td>Fibonacci, $r = 1279$</td>
<td>1.1060800(19)</td>
<td>0.40</td>
<td>0.86084(53)</td>
<td>-1.64</td>
<td>0.2904</td>
<td>0.0700</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>1.1060654(15)</td>
<td>-9.13</td>
<td>0.86167(65)</td>
<td>0.04</td>
<td>0.7956</td>
<td>0.0576</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>1.1060788(18)</td>
<td>-0.23</td>
<td>0.86184(53)</td>
<td>0.27</td>
<td>0.2613</td>
<td>0.0721</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>1.1060778(18)</td>
<td>-0.79</td>
<td>0.86109(65)</td>
<td>-0.93</td>
<td>0.2399</td>
<td>0.0523</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>1.1060777(17)</td>
<td>-0.85</td>
<td>0.86188(61)</td>
<td>0.30</td>
<td>0.2577</td>
<td>0.0622</td>
</tr>
</tbody>
</table>
RNG quality: TestU01 results

Table: The memory footprint is measured in bits per thread. For the TestU01 results, if (too many) failures in SmallCrush are found, Crush and BigCrush are not attempted; likewise with failures in Crush. The performance column shows the peak number of 32-bit uniform floating-point random numbers produced per second on a fully loaded GTX 480 device.

<table>
<thead>
<tr>
<th>generator</th>
<th>bits/thread</th>
<th>failures in TestU01</th>
<th>Ising test</th>
<th>perf. (\times 10^9)/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SmallCrush</td>
<td>Crush</td>
<td>BigCrush</td>
</tr>
<tr>
<td>LCG32</td>
<td>32</td>
<td>12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>32</td>
<td>3</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>LCG64</td>
<td>64</td>
<td>None</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>64</td>
<td>None</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>MWC</td>
<td>64 + 32</td>
<td>1</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>Fibonacci, (r = 521)</td>
<td>(\geq 80)</td>
<td>None</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Fibonacci, (r = 1279)</td>
<td>(\geq 80)</td>
<td>None</td>
<td>(1)</td>
<td>2</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>192</td>
<td>None</td>
<td>None</td>
<td>1/3</td>
</tr>
<tr>
<td>MTGP (cuRAND)</td>
<td>(\geq 44)</td>
<td>None</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>32</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>(128)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>(128)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
Outline

1. The problem
2. Linear congruential generators
3. Multiply with carry
4. Lagged Fibonacci generators
5. Mersenne twister
6. XORShift generators
7. Counter-based generators
Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]
Lagged Fibonacci generators

Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]

operator \(\otimes \) typically denotes one of the four operations addition +, subtraction −, multiplication \(*\) and bitwise XOR \(\oplus\)
Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]

- operator \(\otimes \) typically denotes one of the four operations addition \(+\), subtraction \(-\), multiplication \(*\) and bitwise XOR \(\oplus\)
- state size \(32 \times r\) bits (for \(r > s\)) \(\Rightarrow\) use state sharing to reduce effective memory requirements
Lagged Fibonacci generators

Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]

- operator \(\otimes \) typically denotes one of the four operations addition +, subtraction −, multiplication \(*\) and bitwise XOR \(\oplus\)
- state size \(32 \times r\) bits (for \(r > s\)) \(\Rightarrow\) use state sharing to reduce effective memory requirements
- for \(\otimes = +\) maximal period is \(p = 2^r - 1\)
Lagged Fibonacci generators

Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]

- operator \(\otimes \) typically denotes one of the four operations addition \(+\), subtraction \(-\), multiplication \(*\) and bitwise XOR \(\oplus\)
- state size \(32 \times r\) bits (for \(r > s\)) \(\Rightarrow\) use state sharing to reduce effective memory requirements
- for \(\otimes = +\) maximal period is \(p = 2^r - 1\)
- can be implemented directly in floating point arithmetic, \(u_n = u_{n-r} + u_{n-s} \pmod{1}\).
Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]

- operator \(\otimes \) typically denotes one of the four operations addition +, subtraction -, multiplication \(*\) and bitwise XOR \(\oplus\)
- state size \(32 \times r\) bits (for \(r > s\)) \(\Rightarrow\) use state sharing to reduce effective memory requirements
- for \(\otimes = +\) maximal period is \(p = 2^r - 1\)
- can be implemented directly in floating point arithmetic, \(u_n = u_{n-r} + u_{n-s} \pmod{1}\).
- \(s\) random numbers can be generated in one vectorized call
Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]

- operator \(\otimes \) typically denotes one of the four operations addition \(+\), subtraction \(-\), multiplication \(*\) and bitwise XOR \(\oplus\)
- state size \(32 \times r\) bits (for \(r > s\)) \(\Rightarrow\) use state sharing to reduce effective memory requirements
- for \(\otimes = +\) maximal period is \(p = 2^r - 1\)
- can be implemented directly in floating point arithmetic, \(u_n = u_{n-r} + u_{n-s} \pmod{1}\).
- \(s\) random numbers can be generated in one vectorized call
- choose, e.g., \(r = 521, s = 353\) and \(r = 1279, s = 861\), the latter with period \(p \approx 10^{394}\).
Lagged Fibonacci generators

Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]

- operator \(\otimes \) typically denotes one of the four operations addition +, subtraction −, multiplication \(*\) and bitwise XOR \(\oplus\)
- state size \(32 \times r\) bits (for \(r > s\)) \(\Rightarrow\) use state sharing to reduce effective memory requirements
- for \(\otimes = +\) maximal period is \(p = 2^r - 1\)
- can be implemented directly in floating point arithmetic, \(u_n = u_{n-r} + u_{n-s} \pmod{1}\).
- \(s\) random numbers can be generated in one vectorized call
- choose, e.g., \(r = 521, s = 353\) and \(r = 1279, s = 861\), the latter with period \(p \approx 10^{394}\)
- memory requirement \((r + s)/n\) words per thread
Lagged Fibonacci generators

Lagged Fibonacci RNG

Longer period can only be achieved with larger state, e.g.,

\[x_n = a_s x_{n-s} \otimes a_r x_{n-r} \pmod{m}, \]

- operator \(\otimes \) typically denotes one of the four operations addition \(+\), subtraction \(-\), multiplication \(*\) and bitwise XOR \(\oplus\)
- state size \(32 \times r\) bits (for \(r > s\)) \(\Rightarrow\) use state sharing to reduce effective memory requirements
- for \(\otimes = +\) maximal period is \(p = 2^r - 1\)
- can be implemented directly in floating point arithmetic, \(u_n = u_{n-r} + u_{n-s} \pmod{1}\).
- \(s\) random numbers can be generated in one vectorized call
- choose, e.g., \(r = 521, s = 353\) and \(r = 1279, s = 861\), the latter with period \(p \approx 10^{394}\)
- memory requirement \((r + s)/n\) words per thread
- can use skipping or random seeds
Lagged Fibonacci generators

RNG quality: Ising results

Table: Internal energy e per spin and specific heat C_V for a 1024×1024 Ising model with periodic boundary conditions at $\beta = 0.4$.

<table>
<thead>
<tr>
<th>method</th>
<th>e</th>
<th>Δ_{rel}</th>
<th>C_V</th>
<th>Δ_{rel}</th>
<th>$t_{up}^{k=1}$</th>
<th>$t_{up}^{k=10}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>1.106079207</td>
<td>0</td>
<td>0.8616983594</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequential update (CPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.1060788(15)</td>
<td>-0.26</td>
<td>0.83286(45)</td>
<td>-63.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1060801(17)</td>
<td>0.49</td>
<td>0.86102(60)</td>
<td>-1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibonacci, $r = 512$</td>
<td>1.1060789(17)</td>
<td>-0.18</td>
<td>0.86132(59)</td>
<td>-0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>checkerboard update (GPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.0944121(14)</td>
<td>-8259.05</td>
<td>0.80316(48)</td>
<td>-121.05</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>1.1060775(18)</td>
<td>-0.97</td>
<td>0.86175(56)</td>
<td>0.09</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1061058(19)</td>
<td>13.72</td>
<td>0.86179(67)</td>
<td>0.14</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>1.1060803(18)</td>
<td>0.62</td>
<td>0.86215(63)</td>
<td>0.71</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>MWC, same a</td>
<td>1.1060800(18)</td>
<td>0.45</td>
<td>0.86161(60)</td>
<td>-0.15</td>
<td>0.2293</td>
<td>0.0435</td>
</tr>
<tr>
<td>MWC, different a</td>
<td>1.1060797(18)</td>
<td>0.28</td>
<td>0.86168(62)</td>
<td>-0.03</td>
<td>0.2336</td>
<td>0.0438</td>
</tr>
<tr>
<td>Fibonacci, $r = 521$</td>
<td>1.1060890(15)</td>
<td>6.43</td>
<td>0.86099(66)</td>
<td>-1.09</td>
<td>0.2601</td>
<td>0.0661</td>
</tr>
<tr>
<td>Fibonacci, $r = 1279$</td>
<td>1.1060800(19)</td>
<td>0.40</td>
<td>0.86084(53)</td>
<td>-1.64</td>
<td>0.2904</td>
<td>0.0700</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>1.1060654(15)</td>
<td>-9.13</td>
<td>0.86167(65)</td>
<td>0.04</td>
<td>0.7956</td>
<td>0.0576</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>1.1060788(18)</td>
<td>-0.23</td>
<td>0.86184(53)</td>
<td>0.27</td>
<td>0.2613</td>
<td>0.0721</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>1.1060778(18)</td>
<td>-0.79</td>
<td>0.86109(65)</td>
<td>-0.93</td>
<td>0.2399</td>
<td>0.0523</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>1.1060777(17)</td>
<td>-0.85</td>
<td>0.86188(61)</td>
<td>0.30</td>
<td>0.2577</td>
<td>0.0622</td>
</tr>
</tbody>
</table>
RNG quality: TestU01 results

Table: The memory footprint is measured in bits per thread. For the TestU01 results, if (too many) failures in SmallCrush are found, Crush and BigCrush are not attempted; likewise with failures in Crush. The performance column shows the peak number of 32-bit uniform floating-point random numbers produced per second on a fully loaded GTX 480 device.

<table>
<thead>
<tr>
<th>generator</th>
<th>bits/thread</th>
<th>failures in TestU01</th>
<th>Ising test</th>
<th>perf. $\times 10^9$/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SmallCrush</td>
<td>Crush</td>
<td>BigCrush</td>
</tr>
<tr>
<td>LCG32</td>
<td>32</td>
<td>12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>32</td>
<td>3</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>LCG64</td>
<td>64</td>
<td>None</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>64</td>
<td>None</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>MWC</td>
<td>64 + 32</td>
<td>1</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>Fibonacci, $r = 521$</td>
<td>≥ 80</td>
<td>None</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Fibonacci, $r = 1279$</td>
<td>≥ 80</td>
<td>None</td>
<td>(1)</td>
<td>2</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>192</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>MTGP (cuRAND)</td>
<td>≥ 44</td>
<td>None</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>32</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>(128)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>(128)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

M. Weigel (Coventry/Mainz)
Outline

1. The problem
2. Linear congruential generators
3. Multiply with carry
4. Lagged Fibonacci generators
5. Mersenne twister
6. XORShift generators
7. Counter-based generators
Mersenne twister

See:

Outline

1. The problem
2. Linear congruential generators
3. Multiply with carry
4. Lagged Fibonacci generators
5. Mersenne twister
6. XORShift generators
7. Counter-based generators
XORShift: definition

Another generator proposed by Marsaglia based on the observation that an XOR of a word with a shifted version of itself can be performed very fast.
Another generator proposed by Marsaglia based on the observation that an XOR of a word with a shifted version of itself can be performed very fast. The suggested recursion is

$$x_n = x_{n-1}(I \oplus L^a)(I \oplus R^b)(I \oplus L^c) =: x_{n-1} M,$$

where L^a and R^b denote left shift by a bits and right shift by b positions, respectively.
Another generator proposed by Marsaglia based on the observation that an XOR of a word with a shifted version of itself can be performed very fast. The suggested recursion is

\[x_n = x_{n-1} (I \oplus L^a)(I \oplus R^b)(I \oplus L^c) =: x_{n-1} M, \]

where \(L^a \) and \(R^b \) denote left shift by \(a \) bits and right shift by \(b \) positions, respectively.

- maximum period is \(p = 2^w - 1 \), where \(w \) is the number of bits in \(x \).
Another generator proposed by Marsaglia based on the observation that an XOR of a word with a shifted version of itself can be performed very fast. The suggested recursion is

\[x_n = x_{n-1}(I \oplus L^a)(I \oplus R^b)(I \oplus L^c) =: x_{n-1} M, \]

where \(L^a \) and \(R^b \) denote left shift by \(a \) bits and right shift by \(b \) positions, respectively.

- maximum period is \(p = 2^w - 1 \), where \(w \) is the number of bits in \(x \)
- the combination of \(w = 160 \) with a Weyl generator defines XORWOW included in CUDA (state is already too large)
Another generator proposed by Marsaglia based on the observation that an XOR of a word with a shifted version of itself can be performed very fast. The suggested recursion is

\[
x_n = x_{n-1}(I \oplus L^a)(I \oplus R^b)(I \oplus L^c) =: x_{n-1} M,
\]

where \(L^a\) and \(R^b\) denote left shift by \(a\) bits and right shift by \(b\) positions, respectively.

- maximum period is \(p = 2^w - 1\), where \(w\) is the number of bits in \(x\)
- the combination of \(w = 160\) with a Weyl generator defines XORWOW included in CUDA (state is already too large)
- instead, use \(w = 1024\) and employ state sharing again, using the one 32-bit word for each of the 32 threads of a warp
XORShift: definition

Another generator proposed by Marsaglia based on the observation that an XOR of a word with a shifted version of itself can be performed very fast. The suggested recursion is

\[x_n = x_{n-1}(I \oplus L^a)(I \oplus R^b)(I \oplus L^c) =: x_{n-1}M, \]

where \(L^a \) and \(R^b \) denote left shift by \(a \) bits and right shift by \(b \) positions, respectively.

- maximum period is \(p = 2^w - 1 \), where \(w \) is the number of bits in \(x \)
- the combination of \(w = 160 \) with a Weyl generator defines XORWOW included in CUDA (state is already too large)
- instead, use \(w = 1024 \) and employ state sharing again, using the one 32-bit word for each of the 32 threads of a warp
- with appropriate parameters, period is \(2^{1024} - 1 \)
XORShift: definition

Another generator proposed by Marsaglia based on the observation that an XOR of a word with a shifted version of itself can be performed very fast. The suggested recursion is

\[x_n = x_{n-1}(I \oplus L^a)(I \oplus R^b)(I \oplus L^c) =: x_{n-1}M, \]

where \(L^a \) and \(R^b \) denote left shift by \(a \) bits and right shift by \(b \) positions, respectively.

- maximum period is \(p = 2^w - 1 \), where \(w \) is the number of bits in \(x \)
- the combination of \(w = 160 \) with a Weyl generator defines XORWOW included in CUDA (state is already too large)
- instead, use \(w = 1024 \) and employ state sharing again, using the one 32-bit word for each of the 32 threads of a warp
- with appropriate parameters, period is \(2^{1024} - 1 \)
- shifts can be implemented efficiently over word boundaries using padding of the state array
We use $a = 329$, $b = 347$ and $c = 344$, such that $\text{WORDSHIFT} = \lfloor a/32 \rfloor = 10$.
XORShift: implementation

We use $a = 329$, $b = 347$ and $c = 344$, such that $\text{WORDSHIFT} = \lfloor a/32 \rfloor = 10$.

LCG implementation

```c
__device__ state_t rng_update(state_t state, int tid,
                               volatile state_t* stateblock)
{
    /* Indices. */
    int wid = tid / WARPSIZE;        // Warp index in block
    int lid = tid % WARPSIZE;         // Thread index in warp
    int woff = wid * (WARPSIZE + WORDSHIFT + 1) + WORDSHIFT + 1;
                                       // warp offset
    /* Shifted indices. */
    int lp = lid + WORDSHIFT;         // Left word shift
    int lm = lid - WORDSHIFT;         // Right word shift

    /* << A. */
    stateblock[woff + lid] = state;   // Share states
    state ^= stateblock[woff + lp] << RAND_A;     // Left part
    state ^= stateblock[woff + lp + 1] >> WORD - RAND_A; // Right part

    /* >> B. */
    stateblock[woff + lid] = state;   // Share states
    state ^= stateblock[woff + lm - 1] << WORD - RAND_B; // Left part
    state ^= stateblock[woff + lm] >> RAND_B;      // Right part

    /* << C. */
    stateblock[woff + lid] = state;   // Share states
    state ^= stateblock[woff + lp] << RAND_C;     // Left part
    state ^= stateblock[woff + lp + 1] >> WORD - RAND_C; // Right part

    return state;
}
```
XORShift: implementation

We use \(a = 329 \), \(b = 347 \) and \(c = 344 \), such that \(\text{WORDSHIFT} = \lfloor a/32 \rfloor = 10 \).
We use $a = 329$, $b = 347$ and $c = 344$, such that $\text{WORDSHIFT} = \lfloor a/32 \rfloor = 10$.

- due to single-thread scheduling, no thread synchronization is required
- use `volatile` keyword to ensure writes
- use skip-ahead to create sub-streams
- combine with Weyl generator, $y_n = (y_{n-1} + c) \mod 2^w$, to further improve quality
Table: Internal energy e per spin and specific heat C_V for a 1024×1024 Ising model with periodic boundary conditions at $\beta = 0.4$.

<table>
<thead>
<tr>
<th>method</th>
<th>e</th>
<th>Δ_{rel}</th>
<th>C_V</th>
<th>Δ_{rel}</th>
<th>$t_{up}^{k=1}$</th>
<th>$t_{up}^{k=100}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>1.106079207</td>
<td>0</td>
<td>0.8616983594</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequential update (CPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.1060788(15)</td>
<td>-0.26</td>
<td>0.83286(45)</td>
<td>-63.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1060801(17)</td>
<td>0.49</td>
<td>0.86102(60)</td>
<td>-1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibonacci, $r = 512$</td>
<td>1.1060789(17)</td>
<td>-0.18</td>
<td>0.86132(59)</td>
<td>-0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>checkerboard update (GPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.0944121(14)</td>
<td>-8259.05</td>
<td>0.80316(48)</td>
<td>-121.05</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>1.1060775(18)</td>
<td>-0.97</td>
<td>0.86175(56)</td>
<td>0.09</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1061058(19)</td>
<td>13.72</td>
<td>0.86179(67)</td>
<td>0.14</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>1.1060803(18)</td>
<td>0.62</td>
<td>0.86215(63)</td>
<td>0.71</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>MWC, same a</td>
<td>1.1060800(18)</td>
<td>0.45</td>
<td>0.86161(60)</td>
<td>-0.15</td>
<td>0.2293</td>
<td>0.0435</td>
</tr>
<tr>
<td>MWC, different a</td>
<td>1.1060797(18)</td>
<td>0.28</td>
<td>0.86168(62)</td>
<td>-0.03</td>
<td>0.2336</td>
<td>0.0438</td>
</tr>
<tr>
<td>Fibonacci, $r = 521$</td>
<td>1.1060890(15)</td>
<td>6.43</td>
<td>0.86099(66)</td>
<td>-1.09</td>
<td>0.2601</td>
<td>0.0661</td>
</tr>
<tr>
<td>Fibonacci, $r = 1279$</td>
<td>1.1060800(19)</td>
<td>0.40</td>
<td>0.86084(53)</td>
<td>-1.64</td>
<td>0.2904</td>
<td>0.0700</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>1.1060654(15)</td>
<td>-9.13</td>
<td>0.86167(65)</td>
<td>0.04</td>
<td>0.7956</td>
<td>0.0576</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>1.1060788(18)</td>
<td>-0.23</td>
<td>0.86184(53)</td>
<td>0.27</td>
<td>0.2613</td>
<td>0.0721</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>1.1060778(18)</td>
<td>-0.79</td>
<td>0.86109(65)</td>
<td>-0.93</td>
<td>0.2399</td>
<td>0.0523</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>1.1060777(17)</td>
<td>-0.85</td>
<td>0.86188(61)</td>
<td>0.30</td>
<td>0.2577</td>
<td>0.0622</td>
</tr>
</tbody>
</table>
XORShift generators

RNG quality: TestU01 results

Table: The memory footprint is measured in bits per thread. For the TestU01 results, if (too many) failures in SmallCrush are found, Crush and BigCrush are not attempted; likewise with failures in Crush. The performance column shows the peak number of 32-bit uniform floating-point random numbers produced per second on a fully loaded GTX 480 device.

<table>
<thead>
<tr>
<th>generator</th>
<th>bits/thread</th>
<th>failures in TestU01</th>
<th>Ising test</th>
<th>perf. $\times 10^9$/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SmallCrush Crush</td>
<td>BigCrush</td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>32</td>
<td>12</td>
<td>—</td>
<td>failed</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>32</td>
<td>3</td>
<td>14</td>
<td>passed</td>
</tr>
<tr>
<td>LCG64</td>
<td>64</td>
<td>None</td>
<td>6</td>
<td>failed</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>64</td>
<td>None</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>MWC</td>
<td>64 + 32</td>
<td>1</td>
<td>29</td>
<td>passed</td>
</tr>
<tr>
<td>Fibonacci, $r = 521$</td>
<td>≥ 80</td>
<td>None</td>
<td>2</td>
<td>failed</td>
</tr>
<tr>
<td>Fibonacci, $r = 1279$</td>
<td>≥ 80</td>
<td>None</td>
<td>(1) 2</td>
<td>passed</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>192</td>
<td>None</td>
<td>None 1/3</td>
<td>failed</td>
</tr>
<tr>
<td>MTGP (cuRAND)</td>
<td>≥ 44</td>
<td>None</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>32</td>
<td>None</td>
<td>None</td>
<td>passed</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>(128)</td>
<td>None</td>
<td>None</td>
<td>passed</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>(128)</td>
<td>None</td>
<td>None</td>
<td>passed</td>
</tr>
</tbody>
</table>

M. Weigel (Coventry/Mainz)
Outline

1. The problem
2. Linear congruential generators
3. Multiply with carry
4. Lagged Fibonacci generators
5. Mersenne twister
6. XORShift generators
7. Counter-based generators
Cryptographic generators

For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$
Cryptographic generators

For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$

This can be interpreted as applying a simple, bijective function to a counter n,

$$x_n = f_k(n).$$
For the Weyl generator above, we can evaluate the \(n \) element in one step,

\[
y_n = (y_0 + nc) \mod 2^w.
\]

This can be interpreted as applying a simple, bijective function to a counter \(n \),

\[
x_n = f_k(n).
\]

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad.
For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$

This can be interpreted as applying a simple, bijective function to a counter n,

$$x_n = f_k(n).$$

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad. If f_k is bijective, the period is 2^w.

Are there better choices for f_k? Yes, for instance cryptographic functions that are (a) bijective, (b) depend on a key k, and (c) translate the plaintext n into the ciphertext x_n.

By definition, if x_n contains any structure that makes it differ from a random sequence of bits, the cipher is susceptible to an attack. Well-known and proven symmetric-key cryptosystems are DES and AES.
Counter-based generators

Cryptographic generators

For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$

This can be interpreted as applying a simple, bijective function to a counter n,

$$x_n = f_k(n).$$

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad. If f_k is bijective, the period is 2^w. Are there better choices for f_k?
For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$

This can be interpreted as applying a simple, bijective function to a counter n,

$$x_n = f_k(n).$$

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad. If f_k is bijective, the period is 2^w.

Are there better choices for f_k? Yes, for instance cryptographic functions that are (a) bijective,
For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$

This can be interpreted as applying a simple, bijective function to a counter n,

$$x_n = f_k(n).$$

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad. If f_k is bijective, the period is 2^w.

Are there better choices for f_k? Yes, for instance cryptographic functions that are (a) bijective, (b) depend on a key k, and
Counter-based generators

Cryptographic generators

For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$

This can be interpreted as applying a simple, bijective function to a counter n,

$$x_n = f_k(n).$$

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad. If f_k is bijective, the period is 2^w.

Are there better choices for f_k? Yes, for instance cryptographic functions that are (a) bijective, (b) depend on a key k, and (c) translate the plaintext n into the ciphertext x_n.

By definition, if x_n contains any structure that makes it differ from a random sequence of bits, the cipher is susceptible to an attack.

Well-known and proven symmetric-key cryptosystems are DES and AES.
Cryptographic generators

For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$

This can be interpreted as applying a simple, bijective function to a counter n,

$$x_n = f_k(n).$$

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad. If f_k is bijective, the period is 2^w.

Are there better choices for f_k? Yes, for instance cryptographic functions that are (a) bijective, (b) depend on a key k, and (c) translate the plaintext n into the ciphertext x_n. By definition, if x_n contains any structure that makes it differ from a random sequence of bits, the cipher is susceptible to an attack.
Counter-based generators

Cryptographic generators

For the Weyl generator above, we can evaluate the n element in one step,

$$y_n = (y_0 + nc) \mod 2^w.$$

This can be interpreted as applying a simple, bijective function to a counter n,

$$x_n = f_k(n).$$

Here, skip-ahead is trivial. Unfortunately, the quality of the Weyl sequence is very bad. If f_k is bijective, the period is 2^w.

Are there better choices for f_k? Yes, for instance cryptographic functions that are (a) bijective, (b) depend on a key k, and (c) translate the plaintext n into the ciphertext x_n. By definition, if x_n contains any structure that makes it differ from a random sequence of bits, the cipher is susceptible to an attack.

Well-known and proven symmetric-key cryptosystems are DES and AES.
Excursion: simplified DES

DES is a block cipher, where each block is encrypted separately. Consider a single block

\[
\begin{array}{c|c}
L_0 & R_0 \\
6 \text{ bits} & 6 \text{ bits} \\
\end{array}
\]

of 12 bits.
Excursion: simplified DES

DES is a block cipher, where each block is encrypted separately. Consider a single block

\[
\begin{align*}
L_0 & \quad R_0 \\
\text{6 bits} & \quad \text{6 bits}
\end{align*}
\]

of 12 bits. Encryption works iteratively, where in the \(i\)th round an 8-bit key \(K_i\) is used to transform \(L_{i-1} R_{i-1}\) to the output \(L_i R_i\) as follows.
Counter-based generators

Excursion: simplified DES

DES is a block cipher, where each block is encrypted separately. Consider a single block

\[
\begin{align*}
L_0 & \quad R_0 \\
6 \text{ bits} & \quad 6 \text{ bits}
\end{align*}
\]

of 12 bits. Encryption works iteratively, where in the \(i\)th round an 8-bit key \(K_i\) is used to transform \(L_{i-1}R_{i-1}\) to the output \(L_iR_i\) as follows

\[
L_i = R_{i-1}, \quad R_i = L_{i-1} \oplus f(R_{i-1}, K_i),
\]

where \(\oplus\) denotes XOR or bitwise addition modulo 2.
DES is a block cipher, where each block is encrypted separately. Consider a single block

\[
L_0 \quad R_0 \\
6 \text{ bits} \quad 6 \text{ bits}
\]

of 12 bits. Encryption works iteratively, where in the \(i\)th round an 8-bit key \(K_i\) is used to transform \(L_{i-1}R_{i-1}\) to the output \(L_iR_i\) as follows

\[
L_i = R_{i-1}, \quad R_i = L_{i-1} \oplus f(R_{i-1}, K_i),
\]

where \(\oplus\) denotes XOR or bitwise addition modulo 2.

After \(n\) rounds (known as Feistel iterations), we have \(L_nR_n\). To decrypt, switch to \(R_nL_n\) and use the keys in reverse order,

\[
[L_n][R_n \oplus f(L_n, K_n)].
\]
Excursion: simplified DES

DES is a block cipher, where each block is encrypted separately. Consider a single block

\[
\begin{align*}
L_0 & \quad R_0 \\
6 \text{ bits} & \quad 6 \text{ bits}
\end{align*}
\]

of 12 bits. Encryption works iteratively, where in the \(i\)th round an 8-bit key \(K_i\) is used to transform \(L_{i-1}R_{i-1}\) to the output \(L_iR_i\) as follows

\[
L_i = R_{i-1}, \quad R_i = L_{i-1} \oplus f(R_{i-1}, K_i),
\]

where \(\oplus\) denotes XOR or bitwise addition modulo 2.

After \(n\) rounds (known as Feistel iterations), we have \(L_nR_n\). To decrypt, switch to \(R_nL_n\) and use the keys in reverse order,

\[
[L_n][R_n \oplus f(L_n, K_n)].
\]

From encryption we know \(L_n = R_{n-1}, \quad R_n = L_{n-1} \oplus f(R_{n-1}, K_n)\) and hence

\[
[L_n][R_n \oplus f(L_n, K_n)] = [R_{n-1}] [L_{n-1} \oplus f(R_{n-1}, K_n) \oplus f(L_n, K_n)] = [R_{n-1}] [L_{n-1}],
\]

where \(f(R_{n-1}, K_n) \oplus f(L_n, K_n) = 0\) since \(L_n = R_{n-1}\).
Excursion: simplified DES

DES is a block cipher, where each block is encrypted separately. Consider a single block

\[
\begin{array}{c@{}c}
L_0 & R_0 \\
6 \text{ bits} & 6 \text{ bits}
\end{array}
\]

of 12 bits. Encryption works iteratively, where in the \(i\)th round an 8-bit key \(K_i\) is used to transform \(L_{i-1} R_{i-1}\) to the output \(L_i R_i\) as follows

\[
L_i = R_{i-1}, \quad R_i = L_{i-1} \oplus f(R_{i-1}, K_i),
\]

where \(\oplus\) denotes XOR or bitwise addition modulo 2.

After \(n\) rounds (known as Feistel iterations), we have \(L_n R_n\). To decrypt, switch to \(R_n L_n\) and use the keys in reverse order,

\[
[L_n][R_n \oplus f(L_n, K_n)].
\]

From encryption we know \(L_n = R_{n-1}, \ R_n = L_{n-1} \oplus f(R_{n-1}, K_n)\) and hence

\[
[L_n][R_n \oplus f(L_n, K_n)] = [R_{n-1}] \ [L_{n-1} \oplus f(R_{n-1}, K_n) \oplus f(L_n, K_n)] = [R_{n-1}] \ [L_{n-1}],
\]

where \(f(R_{n-1}, K_n) \oplus f(L_n, K_n) = 0\) since \(L_n = R_{n-1}\). Continuing with the key sequence \(K_n, K_{n-1}, \ldots, K_0\), we arrive at \(R_0 L_0\) and hence \(L_0 R_0\).
One advantage of this procedure is that encryption and decryption are almost identical, use the same keys and can hence use the same hardware.

How should we choose f? Obviously, it should not be “nice”, e.g., linear and bijective.

We use the following combination

The 6-bit input R_{i-1} is sent through an expander function,

$$e(m_1 m_2 m_3 m_4 m_5 m_6) = m_1 m_2 m_4 m_3 m_4 m_3 m_5 m_6,$$

yielding 8 bits.

We derive the key K_i for round i from $K = k_0 k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8$ by

$$K_i = k_i \pmod{9} k_i \pmod{9} k_{i+1} \pmod{9} \cdots k_{i+6} \pmod{9}.$$

The 8 bits from the expander are then XORed with K_i.

In a third step, these 8 bits are passed through one of two S-boxes,

$S_1 = \begin{bmatrix} 101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011 \end{bmatrix}$

$S_2 = \begin{bmatrix} 100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 100 \end{bmatrix}$
Counter-based generators

Excursion: simplified DES (cont’d)

One advantage of this procedure is that encryption and decryption are almost identical, use the same keys and can hence use the same hardware.

How should we choose f?
Excursion: simplified DES (cont’d)

One advantage of this procedure is that encryption and decryption are almost identical, use the same keys and can hence use the same hardware.

How should we choose f? Obviously, it should not be “nice”, e.g., linear and bijective.
One advantage of this procedure is that encryption and decryption are almost identical, use the same keys and can hence use the same hardware.

How should we choose f? Obviously, it should not be “nice”, e.g., linear and bijective. We use the following combination

- The 6-bit input R_{i-1} is sent through an expander function,

$$e(m_1 m_2 m_3 m_4 m_5 m_6) = m_1 m_2 m_4 m_3 m_4 m_3 m_5 m_6,$$

yielding 8 bits.
Excursion: simplified DES (cont’d)

One advantage of this procedure is that encryption and decryption are almost identical, use the same keys and can hence use the same hardware.

How should we choose \(f \)? Obviously, it should not be “nice”, e.g., linear and bijective. We use the following combination

- The 6-bit input \(R_{i-1} \) is sent through an expander function,
 \[
 e(m_1 m_2 m_3 m_4 m_5 m_6) = m_1 m_2 m_4 m_3 \quad m_4 m_3 m_5 m_6,
 \]
yielding 8 bits.
- We derive the key \(K_i \) for round \(i \) from \(K = k_0 k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8 \) by
 \[
 K_i = k_{(i-1)} \mod 9 k_i \mod 9 k_{(i+1)} \mod 9 \cdots k_{(i+6)} \mod 9.
 \]
Excursion: simplified DES (cont’d)

One advantage of this procedure is that encryption and decryption are almost identical, use the same keys and can hence use the same hardware.

How should we choose f? Obviously, it should not be “nice”, e.g., linear and bijective. We use the following combination

- The 6-bit input R_{i-1} is sent through an expander function,

$$e(m_1m_2m_3m_4m_5m_6) = m_1m_2m_4m_3m_4m_3m_5m_6,$$

yielding 8 bits.

- We derive the key K_i for round i from $K = k_0k_1k_2k_3k_4k_5k_6k_7k_8$ by

$$K_i = k_{(i-1)} \mod 9 k_i \mod 9 k_{(i+1)} \mod 9 \cdots k_{(i+6)} \mod 9.$$

The 8 bits from the expander are then XORed with K_i.

In a third step, these 8 bits are passed through one of two S-boxes, $S_1 = \begin{bmatrix}
101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\
001 & 100 & 110 & 010 & 000 & 111 & 101 & 011
\end{bmatrix}$, $S_2 = \begin{bmatrix}
100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\
101 & 011 & 000 & 111 & 110 & 010 & 001 & 100
\end{bmatrix}$. M. Weigel (Coventry/Mainz)
One advantage of this procedure is that encryption and decryption are almost identical, use the same keys and can hence use the same hardware.

How should we choose f? Obviously, it should not be “nice”, e.g., linear and bijective. We use the following combination

- The 6-bit input R_{i-1} is sent through an expander function,

 $$e(m_1 m_2 m_3 m_4 m_5 m_6) = m_1 m_2 m_4 m_3 m_4 m_3 m_5 m_6,$$

 yielding 8 bits.

- We derive the key K_i for round i from $K = k_0 k_1 k_2 k_3 k_4 k_5 k_6 k_7 k_8$ by

 $$K_i = k_{(i-1)} \mod 9 \ k_i \mod 9 \ k_{(i+1)} \mod 9 \cdots k_{(i+6)} \mod 9.$$

 The 8 bits from the expander are then XORed with K_i.

- In a third step, these 8 bits are passed through one of two S-boxes,

 $S_1 = \begin{bmatrix}
 101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\
 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011
 \end{bmatrix}$

 $S_2 = \begin{bmatrix}
 100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\
 101 & 011 & 000 & 111 & 110 & 010 & 001 & 100
 \end{bmatrix}$
Excursion: simplified DES (cont’d)

For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to S_1 and the second part to S_2. The first bit of each part selects the row in the S-box, the remaining three bits the column.

Then, 1100 is sent to S_1. The second row, fifth column contains 000. The second part 1111 is sent to S_2, yielding 100. Hence the total output is $f(R_{i-1}, K_i) = 000100$.

In total, we have $L_{i-1} R_{i-1} \rightarrow R_{i-1} L_{i-1} \oplus f(R_{i-1}, K_i)$.

Breaking DES

A successful approach to cryptosystems of the DES type is differential cryptanalysis (which was suggested by Biham and Shamir in 1990 but was, in fact, known to the inventor of DES in 1979): the idea is to compare the differences in ciphertexts for suitably chosen pairs of plaintext. It has been shown that for DES this is no better than a brute force attack.

A more sophisticated approach is linear cryptanalysis which attempts to find a linear approximation to the function f. This is better than brute force.
For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to S_1 and the second part to S_2. The first bit of each part selects the row in the S-box, the remaining three bits the column. Altogether, we have, e.g., for $R_{i-1} = 100110$ and $K_i = 01100101$

$$e(100110) \oplus K_i = 10101010 \oplus 01100101 = 11001111.$$
For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to S_1 and the second part to S_2. The first bit of each part selects the row in the S-box, the remaining three bits the column. Altogether, we have, e.g., for $R_{i-1} = 100110$ and $K_i = 01100101$

$$e(100110) \oplus K_i = 10101010 \oplus 01100101 = 11001111.$$

Then, 1100 is sent to S_1. The second row, fifth column contains 000. The second part 1111 is sent to S_2, yielding 100.
For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to S_1 and the second part to S_2. The first bit of each part selects the row in the S-box, the remaining three bits the column. Altogether, we have, e.g., for $R_{i-1} = 100110$ and $K_i = 01100101$

$$e(100110) \oplus K_i = 10101010 \oplus 01100101 = 11001111.$$

Then, 1100 is sent to S_1. The second row, fifth column contains 000. The second part 1111 is sent to S_2, yielding 100. Hence the total output is $f(R_{i-1}, K_i) = 000100$.

A more sophisticated approach is linear cryptanalysis which attempts to find a linear approximation to the function f. This is better than brute force.
For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to S_1 and the second part to S_2. The first bit of each part selects the row in the S-box, the remaining three bits the column. Altogether, we have, e.g., for $R_{i-1} = 100110$ and $K_i = 01100101$

$$e(100110) \oplus K_i = 10101010 \oplus 01100101 = 11001111.$$

Then, 1100 is sent to S_1. The second row, fifth column contains 000. The second part 1111 is sent to S_2, yielding 100. Hence the total output is $f(R_{i-1}, K_i) = 000100$. In total, we have

$$L_{i-1} \quad R_{i-1} \quad \mapsto \quad R_{i-1} \quad L_{i-1} \quad \oplus \quad f(R_{i-1}, K_i)$$

$$
\begin{array}{cccc}
011100 & 100110 & \mapsto & 100110 & 011100 & \oplus & 000100 \\
011100 & 100110 & & 100110 & 011000 & & 011000 \\
\end{array}
$$

A successful approach to cryptosystems of the DES type is differential cryptanalysis (which was suggested by Biham and Shamir in 1990 but was, in fact, known to the inventor of DES in 1979): the idea is to compare the differences in ciphertexts for suitably chosen pairs of plaintext. It has been shown that for DES this is no better than a brute force attack. A more sophisticated approach is linear cryptanalysis which attempts to find a linear approximation to the function f. This is better than brute force.
Excursion: simplified DES (cont’d)

For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to S_1 and the second part to S_2. The first bit of each part selects the row in the S-box, the remaining three bits the column. Altogether, we have, e.g., for $R_{i-1} = 100110$ and $K_i = 01100101$

$$e(100110) \oplus K_i = 10101010 \oplus 01100101 = 11001111.$$

Then, 1100 is sent to S_1. The second row, fifth column contains 000. The second part 1111 is sent to S_2, yielding 100. Hence the total output is $f(R_{i-1}, K_i) = 000100$. In total, we have

<table>
<thead>
<tr>
<th></th>
<th>L_{i-1}</th>
<th>R_{i-1}</th>
<th>R_{i-1}</th>
<th>L_{i-1}</th>
<th>\oplus</th>
<th>$f(R_{i-1}, K_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>011100</td>
<td>100110</td>
<td>100110</td>
<td>011100</td>
<td>\oplus</td>
<td>011000</td>
</tr>
</tbody>
</table>

Breaking DES

A successful approach to cryptosystems of the DES type is differential cryptanalysis (which was suggested by Biham and Shamir in 1990 but was, in fact, known to the inventor of DES in 1979):
Excursion: simplified DES (cont’d)

For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to S_1 and the second part to S_2. The first bit of each part selects the row in the S-box, the remaining three bits the column. Altogether, we have, e.g., for $R_{i-1} = 100110$ and $K_i = 01100101$

$$e(100110) \oplus K_i = 10101010 \oplus 01100101 = 11001111.$$

Then, 1100 is sent to S_1. The second row, fifth column contains 000. The second part 1111 is sent to S_2, yielding 100. Hence the total output is $f(R_{i-1}, K_i) = 000100$. In total, we have

<table>
<thead>
<tr>
<th>L_{i-1}</th>
<th>R_{i-1}</th>
<th>R_{i-1}</th>
<th>L_{i-1}</th>
<th>\oplus</th>
<th>$f(R_{i-1}, K_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>011100</td>
<td>100110</td>
<td>100110</td>
<td>011100</td>
<td>\oplus</td>
<td>000100</td>
</tr>
<tr>
<td>011100</td>
<td>100110</td>
<td>100110</td>
<td>011000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Breaking DES

A successful approach to cryptosystems of the DES type is differential cryptanalysis (which was suggested by Biham and Shamir in 1990 but was, in fact, known to the inventor of DES in 1979): the idea is to compare the differences in ciphertexts for suitably chosen pairs of plaintext.
For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to S_1 and the second part to S_2. The first bit of each part selects the row in the S-box, the remaining three bits the column. Altogether, we have, e.g., for $R_{i-1} = 100110$ and $K_i = 01100101$

$$e(100110) \oplus K_i = 10101010 \oplus 01100101 = 1100\ 1111.$$

Then, 1100 is sent to S_1. The second row, fifth column contains 000. The second part 1111 is sent to S_2, yielding 100. Hence the total output is $f(R_{i-1}, K_i) = 000100$. In total, we have

$$L_{i-1} \quad R_{i-1} \quad \mapsto \quad R_{i-1} \quad L_{i-1} \quad \oplus \quad f(R_{i-1}, K_i)$$

$$011100 \quad 100110 \quad \mapsto \quad 100110 \quad 011100 \quad \oplus \quad 000100$$

Breaking DES

A successful approach to cryptosystems of the DES type is **differential cryptanalysis** (which was suggested by Biham and Shamir in 1990 but was, in fact, known to the inventor of DES in 1979): the idea is to compare the differences in ciphertexts for suitably chosen pairs of plaintext. It has been shown that for DES this is no better than a brute force attack.
Excursion: simplified DES (cont’d)

For the S-boxes, the 8 bits from step two are broken into two 4-bit parts. The first part is sent to \(S_1 \) and the second part to \(S_2 \). The first bit of each part selects the row in the S-box, the remaining three bits the column. Altogether, we have, e.g., for \(R_{i-1} = 100110 \) and \(K_i = 01100101 \):

\[
e(100110) \oplus K_i = 10101010 \oplus 01100101 = 11001111.
\]

Then, 1100 is sent to \(S_1 \). The second row, fifth column contains 000. The second part 1111 is sent to \(S_2 \), yielding 100. Hence the total output is \(f(R_{i-1}, K_i) = 000100 \). In total, we have:

\[
\begin{array}{cc}
L_{i-1} & R_{i-1} \\
011100 & 100110 \\
011100 & 100110
\end{array}
\rightarrow
\begin{array}{cc}
R_{i-1} & L_{i-1} \\
100110 & 01100101 \oplus 000100
\end{array}
\]

Breaking DES

A successful approach to cryptosystems of the DES type is differential cryptanalysis (which was suggested by Biham and Shamir in 1990 but was, in fact, known to the inventor of DES in 1979): the idea is to compare the differences in ciphertexts for suitably chosen pairs of plaintext. It has been shown that for DES this is no better than a brute force attack. A more sophisticated approach is linear cryptanalysis which attempts to find a linear approximation to the function \(f \). This is better than brute force.
DES and AES can be used as RNGs, and there are even modern CPUs that implement them in hardware.
DES and AES can be used as RNGs, and there are even modern CPUs that implement them in hardware. Then, they are very fast.
Philox et al.

DES and AES can be used as RNGs, and there are even modern CPUs that implement them in hardware. Then, they are very fast.

As an alternative due to Salmon et al., consider simplified iteration in the spirit of AES. The following,

\[
\text{mulhi}(a, b) = \lfloor (a \times b)/2^w \rfloor, \\
\text{mullo}(a, b) = (a \times b) \mod 2^w,
\]

is very fast on most architectures.
DES and AES can be used as RNGs, and there are even modern CPUs that implement them in hardware. Then, they are very fast.

As an alternative due to Salmon et al., consider simplified iteration in the spirit of AES. The following,

\[\text{mulhi}(a, b) = ⌊(a \times b)/2^w⌋, \]
\[\text{mullo}(a, b) = (a \times b) \mod 2^w, \]

is very fast on most architectures. Then, pick two words \((L, R)\) out of \(N\) and define an S-box

\[L' = \text{mullo}(R, M), \]
\[R' = \text{mulhi}(R, M) \oplus k \oplus L, \]

and perform \(r\) Feistel iterations on \(N/2\) such S-boxes with constant key \(k\) (use permutations, or P-boxes in between the S-box applications).
DES and AES can be used as RNGs, and there are even modern CPUs that implement them in hardware. Then, they are very fast.

As an alternative due to Salmon et al., consider simplified iteration in the spirit of AES. The following,

\[
\begin{align*}
\text{mulhi}(a, b) &= \lfloor (a \times b)/2^w \rfloor, \\
\text{mullo}(a, b) &= (a \times b) \mod 2^w,
\end{align*}
\]

is very fast on most architectures. Then, pick two words \((L, R)\) out of \(N\) and define an S-box

\[
\begin{align*}
L' &= \text{mullo}(R, M), \\
R' &= \text{mulhi}(R, M) \oplus k \oplus L,
\end{align*}
\]

and perform \(r\) Feistel iterations on \(N/2\) such S-boxes with constant key \(k\) (use permutations, or P-boxes in between the S-box applications). This generates a bijection of the desired form.
DES and AES can be used as RNGs, and there are even modern CPUs that implement them in hardware. Then, they are very fast.

As an alternative due to Salmon et al., consider simplified iteration in the spirit of AES. The following,

\[
\text{mulhi}(a, b) = \lfloor (a \times b)/2^w \rfloor, \\
\text{mullo}(a, b) = (a \times b) \mod 2^w,
\]

is very fast on most architectures. Then, pick two words \((L, R)\) out of \(N\) and define an S-box

\[
L' = \text{mullo}(R, M), \\
R' = \text{mulhi}(R, M) \oplus k \oplus L,
\]

and perform \(r\) Feistel iterations on \(N/2\) such S-boxes with constant key \(k\) (use permutations, or P-boxes in between the S-box applications). This generates a bijection of the desired form. It defines a class of RNGs dubbed

\[
\text{Philox-Nxw}_r
\]
it is found empirically that for 4×32 bits, 7 Feistel iterations are sufficient to achieve Crush-resistance.
it is found empirically that for 4×32 bits, 7 Feistel iterations are sufficient to achieve Crush-resistance

quality can be tuned with varying r
it is found empirically that for 4×32 bits, 7 Feistel iterations are sufficient to achieve Crush-resistance

quality can be tuned with varying r

depending on the implementation, the generator can be very fast
it is found empirically that for 4×32 bits, 7 Feistel iterations are sufficient to achieve \textit{Crush-resistance}

- quality can be tuned with varying r
- depending on the implementation, the generator can be very fast
- the generator \textbf{does not have a state} per se as it is counter based; this significantly reduces bus pressure in parallel environments
it is found empirically that for 4×32 bits, 7 Feistel iterations are sufficient to achieve Crush-resistance

quality can be tuned with varying r

depending on the implementation, the generator can be very fast

the generator does not have a state per se as it is counter based; this significantly reduces bus pressure in parallel environments

different keys can be used to generate independent sequences of random numbers; 64-bit keys allow for 2^{64} independent sequences
it is found empirically that for 4×32 bits, 7 Feistel iterations are sufficient to achieve Crush-resistance

- quality can be tuned with varying r
- depending on the implementation, the generator can be very fast
- the generator does not have a state per se as it is counter based; this significantly reduces bus pressure in parallel environments
- different keys can be used to generate independent sequences of random numbers; 64-bit keys allow for 2^{64} independent sequences
- can use intrinsic variables such as particle number, temperature, disorder index, etc. to select sequences
Philox et al.: properties

- it is found empirically that for 4×32 bits, 7 Feistel iterations are sufficient to achieve Crush-resistance
- quality can be tuned with varying r
- depending on the implementation, the generator can be very fast
- the generator does not have a state per se as it is counter based; this significantly reduces bus pressure in parallel environments
- different keys can be used to generate independent sequences of random numbers; 64-bit keys allow for 2^{64} independent sequences
- can use intrinsic variables such as particle number, temperature, disorder index, etc. to select sequences
- counter could be iteration number in Monte Carlo
it is found empirically that for 4×32 bits, 7 Feistel iterations are sufficient to achieve Crush-resistance.

Quality can be tuned with varying r.

Depending on the implementation, the generator can be very fast.

The generator does not have a state per se as it is counter based; this significantly reduces bus pressure in parallel environments.

Different keys can be used to generate independent sequences of random numbers; 64-bit keys allow for 2^{64} independent sequences.

Can use intrinsic variables such as particle number, temperature, disorder index, etc. to select sequences.

Counter could be iteration number in Monte Carlo.

This ensures identical results independent of the parallel setup.
RNG quality: Ising results

Table: Internal energy e per spin and specific heat C_V for a 1024×1024 Ising model with periodic boundary conditions at $\beta = 0.4$.

<table>
<thead>
<tr>
<th>method</th>
<th>e</th>
<th>Δ_{rel}</th>
<th>C_V</th>
<th>Δ_{rel}</th>
<th>$t_{up}^{k=1}$</th>
<th>$t_{up}^{k=100}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>exact</td>
<td>1.106079207</td>
<td>0</td>
<td>0.8616983594</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sequential update (CPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.1060788(15)</td>
<td>−0.26</td>
<td>0.83286(45)</td>
<td>−63.45</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1060801(17)</td>
<td>0.49</td>
<td>0.86102(60)</td>
<td>−1.14</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>Fibonacci, $r = 512$</td>
<td>1.1060789(17)</td>
<td>−0.18</td>
<td>0.86132(59)</td>
<td>−0.64</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>checkerboard update (GPU)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCG32</td>
<td>1.0941121(14)</td>
<td>−8259.05</td>
<td>0.80316(48)</td>
<td>−121.05</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>1.1060775(18)</td>
<td>−0.97</td>
<td>0.86175(56)</td>
<td>0.09</td>
<td>0.2221</td>
<td>0.0402</td>
</tr>
<tr>
<td>LCG64</td>
<td>1.1061058(19)</td>
<td>13.72</td>
<td>0.86179(67)</td>
<td>0.14</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>1.1060803(18)</td>
<td>0.62</td>
<td>0.86215(63)</td>
<td>0.71</td>
<td>0.2311</td>
<td>0.0471</td>
</tr>
<tr>
<td>MWC, same a</td>
<td>1.1060800(18)</td>
<td>0.45</td>
<td>0.86161(60)</td>
<td>−0.15</td>
<td>0.2293</td>
<td>0.0435</td>
</tr>
<tr>
<td>MWC, different a</td>
<td>1.1060797(18)</td>
<td>0.28</td>
<td>0.86168(62)</td>
<td>−0.03</td>
<td>0.2336</td>
<td>0.0438</td>
</tr>
<tr>
<td>Fibonacci, $r = 521$</td>
<td>1.1060890(15)</td>
<td>6.43</td>
<td>0.86099(66)</td>
<td>−1.09</td>
<td>0.2601</td>
<td>0.0661</td>
</tr>
<tr>
<td>Fibonacci, $r = 1279$</td>
<td>1.1060800(19)</td>
<td>0.40</td>
<td>0.86084(53)</td>
<td>−1.64</td>
<td>0.2904</td>
<td>0.0700</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>1.1060654(15)</td>
<td>−9.13</td>
<td>0.86167(65)</td>
<td>0.04</td>
<td>0.7956</td>
<td>0.0576</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>1.1060788(18)</td>
<td>−0.23</td>
<td>0.86184(53)</td>
<td>0.27</td>
<td>0.2613</td>
<td>0.0721</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>1.1060778(18)</td>
<td>−0.79</td>
<td>0.86109(65)</td>
<td>−0.93</td>
<td>0.2399</td>
<td>0.0523</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>1.1060777(17)</td>
<td>−0.85</td>
<td>0.86188(61)</td>
<td>0.30</td>
<td>0.2577</td>
<td>0.0622</td>
</tr>
</tbody>
</table>
RNG quality: TestU01 results

Table: The memory footprint is measured in bits per thread. For the TestU01 results, if (too many) failures in SmallCrush are found, Crush and BigCrush are not attempted; likewise with failures in Crush. The performance column shows the peak number of 32-bit uniform floating-point random numbers produced per second on a fully loaded GTX 480 device.

<table>
<thead>
<tr>
<th>generator</th>
<th>bits/thread</th>
<th>failures in TestU01</th>
<th>Ising test</th>
<th>perf. $\times 10^9$/s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>SmallCrush</td>
<td>Crush</td>
<td>BigCrush</td>
</tr>
<tr>
<td>LCG32</td>
<td>32</td>
<td>12</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>LCG32, random</td>
<td>32</td>
<td>3</td>
<td>14</td>
<td>—</td>
</tr>
<tr>
<td>LCG64</td>
<td>64</td>
<td>None</td>
<td>6</td>
<td>—</td>
</tr>
<tr>
<td>LCG64, random</td>
<td>64</td>
<td>None</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>MWC</td>
<td>$64 + 32$</td>
<td>1</td>
<td>29</td>
<td>—</td>
</tr>
<tr>
<td>Fibonacci, $r = 521$</td>
<td>≥ 80</td>
<td>None</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>Fibonacci, $r = 1279$</td>
<td>≥ 80</td>
<td>None</td>
<td>(1)</td>
<td>2</td>
</tr>
<tr>
<td>XORWOW (cuRAND)</td>
<td>192</td>
<td>None</td>
<td>None</td>
<td>1/3</td>
</tr>
<tr>
<td>MTGP (cuRAND)</td>
<td>≥ 44</td>
<td>None</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>XORShift/Weyl</td>
<td>32</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Philox4x32_7</td>
<td>(128)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Philox4x32_10</td>
<td>(128)</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>
This lecture has given a survey of random number generators in a massively parallel environment. On GPUs, we need a massive number of independent RNGs with small state. Two strategies have been explored: individual generators with small states which, however, suffer from small periods and state-sharing among several instances. An independent alternative are counter-based generators.
Summary and outlook

This lecture

This lecture has given a survey of random number generators in a massively parallel environment. On GPUs, we need a massive number of independent RNGs with small state. Two strategies have been explored: individual generators with small states which, however, suffer from small periods and state-sharing among several instances. An independent alternative are counter-based generators.

Next lecture

In lecture 4, we will have a look at some more advanced simulation of spin models, including cluster-update and multicanonical simulations.
This lecture has given a survey of random number generators in a massively parallel environment. On GPUs, we need a massive number of independent RNGs with small state. Two strategies have been explored: individual generators with small states which, however, suffer from small periods and state-sharing among several instances. An independent alternative are counter-based generators.

Next lecture

In lecture 4, we will have a look at some more advanced simulation of spin models, including cluster-update and multicanonical simulations.

Reading