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GPU computing

Core i7 IvyBridge i7-3870: 122 GFLOP/s
NVIDIA Tesla K10: 4580 GFLOP/s (single precision)
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GPU computing

Core i7 IvyBridge i7-3870: ≈ 21 GB/s
NVIDIA Tesla K10: 320 GB/s
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Latency vs. throughput

CPU vs. GPU hardware

CPU

optimized for low-latency access to
cached data
extensive logic for branch prediction
and out-of-order execution
do an unpredictable scalar job as
fast as possible
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CPU vs. GPU hardware

CPU

optimized for low-latency access to
cached data
extensive logic for branch prediction
and out-of-order execution
do an unpredictable scalar job as
fast as possible

GPU

optimized for data-parallel
throughput computations
latency hiding
do as many simple, deterministic
jobs in parallel as possible
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Latency vs. throughput

Latency hiding

GPU threads

T1
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T3
T4

Legend

waiting for data
ready to run
processing

CPU threads
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Latency vs. throughput

Latency hiding

GPU threads

T1
T2

T3
T4

Legend

waiting for data
ready to run
processing

CPU threads

T1 T2 T3

CPU must minimize latency of individual thread for responsiveness
GPU hides latency through interleaved execution
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Latency vs. throughput

General processing flow

Interconnect

SM
Scheduler

DRAM

L2

SM
Scheduler

SM
Scheduler

GigaThread scheduler

Shared
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Shared
Memory

Shared
Memory

Bridge
CPU

CPU Memory PCIe Bus

1 Copy data from host memory to GPU
main (“global”) memory.

2 Load GPU code, cache data on GPU for
performance.

3 Data is persistent in GPU memory,
continuous exchange is possible.

4 Copy result from GPU to CPU memory.
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GPU architecture

GPGPU history

NVIDIA

introduced CUDA in 2007
developed into a fully blown
ecosystem
series of computing cards
academic support programs

CUDA professorships
CUDA research centers
CUDA teaching centers

ATI

ATI Stream introduced in 2007
less viral marketing
higher peak performance
somewhat less flexible
architecture

Other architectures

Intel MIC
started as Larabee in 2006
prototype board Knight’s Ferry (2010)

32 cores with 4 threads/core
2 GB DDR5 memory

Knight’s Corner developed in connection with
SGI in 2012

more than 50 cores per chip
supposedly used in a number of new
supercomputers

(some) special-purpose machines
ANTON by D. E. Shaw research, composed
of purpose-built ASICs
Janus, FPGA based machine for spin-model
simulations
QPace, based on the Cell processor known
from Playstation 3
GRAPE, based on FPGAs and used for
astrophysical N-body simyulations
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GPU architecture

GPU architecture: main components

Main memory

up to 8GB in current GPUs
maximum bandwidth approx. 160
GB/s (Fermi) resp. 320 GB/s
(Kepler)
accessible from CPU and GPU sides
large latency (see below)
optional error correction (ECC
on/off, Fermi onwards)

Several multiprocessors

similar to a multi-core CPU
each has its own set of registers,
scheduler, caches etc.

+ scheduling units, PCIe logic etc.

Interconnect

DRAM

L2

GigaThread scheduler
SM

Scheduler

Shared
Memory

SM
Scheduler

Shared
Memory

SM
Scheduler

Shared
Memory
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GPU architecture

GPU architecture: streaming multiprocessor (Fermi)

SM components

32 cores per SM (Fermi)
32 fp32 ops/s
16 fp64 ops/s (Tesla)
32 int32 ops/s

2 warp schedulers (warp = 32
threads)

up to 1536 threads resident in
total

extra special function units (4 for
Fermi)
64 KB cache on die, re-configurable
as 16 KB cache + 32 KB shared
memory or vice versa
32K 32-bit registers

SM

Core Register
SFCore Core Core

Core Core Core Core
Register
Register
Register

Core Register
SFCore Core Core

Core Core Core Core
Register
Register
Register

Core Register
SFCore Core Core

Core Core Core Core
Register
Register
Register

Core Register
SFCore Core Core

Core Core Core Core
Register
Register
Register

Interconnect

Shared Memory/Cache

Scheduler Scheduler
Dispatch Dispatch

Instruction Cache
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GPU architecture

GPU architecture: computing core

Computing core

Integer and floating-point units:
IEEE-2008 compliant floating
point arithmetic (starting from
Fermi)
Fused multiply-and-add
instruction in hardware

Logic unit
Move, compare unit
Branch unit

Core

Result Queue

FP Unit Int Unit

Operands Collector
Dispatch Port
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GPU architecture

NVIDIA GTX 480

480 streaming processor cores
1.4 GHz clock frequency
single precision peak
performance 1.3 TFLOP/s
1.5 GB GDDR5 RAM
memory bandwidth 178 GB/s
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GPU architecture

GPU computation frameworks

GPGPU = General Purpose Computation on Graphics Processing Unit

“Old” times: use original graphics primitives

OpenGL
DirectX

Vendor specific APIs for GPGPU:

NVIDIA CUDA: library of functions performing computations on GPU (C, C++,
Fortran), additional preprocessor with language extensions
ATI/AMD Stream: similar functionality for ATI GPUs

Device independent schemes:

BrookGPU (Standford University): compiler for the “Brook stream program
language” with backends for different hardware; now merged with AMD Stream
Sh (University of Waterloo): metaprogramming language for programmable GPUs
OpenCL (Open Computing Language): open framework for parallel programming
across a wide range of devices, ranging from CPUs, Cell processors and GPUs to
handheld devices
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Outline

1 Latency vs. throughput

2 GPU architecture

3 Execution model

4 Memory hierarchy

5 CUDA Programming

6 A worked example

7 New in Kepler

M. Weigel (Coventry/Mainz) GPU basics 30/10/2012 15 / 45



Execution model

Definitions

Kernel GPU program
that runs on a
grid of threads

Thread scalar execution
unit

Warp block of 32
threads executed
in lockstep

Block a set of warps
executed on the
same SM

Grid a set of blocks
usually executed
on different SMs

Device (GPU)

Grid 1
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Thread 
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Execution model

Threading hierarchy

Parallel portions of an application are executed on GPU as kernels.
one kernel is executed at a time (later on modified in concept of streams)
each kernel executes in many threads, but on one device

Compare CUDA threads to CPU threads
CUDA threads are lightweight

very little creation overhead
low cost of thread switching

CUDA needs thousands of threads for efficiency
Kernels are executed by an array of threads

all threads run the same code
each thread has a unique threadid for control decisions and memory access

Kernel launched are in grid of thread blocks
threads within block cooperate via shared memory
threads within a block can synchronize
threads within different blocks cannot cooperate (or only via global memory)
block executes on one SM and does not migrate

allows programs to transparently scale to GPUs with different numbers of cores
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Execution model

CUDA code: C with some extra reserved words

Consider a simple “SAXPY” computation, i.e., “Single-Precision A ·X + Y ”.

Standard C code

void saxpy_serial (int n, float a, float *x, float *y)
{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}
// Invoke serial SAXPY kernel
saxpy_serial (n, 2.0 , x, y);

CUDA C code

__global__ void saxpy_parallel (int n, float a, float *x, float *y)
{

int i = blockIdx .x* blockDim .x + threadIdx .x;
if (i < n) y[i] = a*x[i] + y[i];

}
// Invoke parallel SAXPY kernel with 256 threads / block
int nblocks = (n + 255) / 256;
saxpy_parallel <<<nblocks , 256>>>(n, 2.0 , x, y);
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Memory hierarchy

Memory hierarchy

Per thread

Registers (extra fast, no copy for
ops)

Local memory

Thread blocks: shared memory

allocated by thread block, same
lifetime as block
allocate as

__shared__ int shared_array [
DIM ];

low latency (of the order of 10
cycles), bandwidth up to 1 TB/s
use for data sharing and
user-managed cache

Regs Regs Regs Regs Regs Regs
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Memory hierarchy

Memory hierarchy

Per device: global memory

accessible to all threads on device
lifetime is user-defined

cuda_malloc (void ** pointer ,
size_t nbytes );

cuda_free (void* pointer );

latency several hundred clock cycles
bandwidth ≈ 160 GB/s on Fermi
(access pattern needs to conform to
coalescence rules for good performance)

Per host: device memory

no direct access from CUDA threads
copy data to/from device with

cudaMemcpy (void* dest , void*
src , size_t nbytes ,
cudaMemcpyHostToDevice );

Regs Regs Regs Regs Regs Regs

Local Local Local Local Local Local

Shared Memory

Regs Regs Regs Regs Regs Regs

Local Local Local Local Local Local

Shared Memory

Global Memory
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Memory hierarchy

Memory hierarchy (summary)

More generally, the different types of memory have the following characteristics:

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip (Yes) R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Constant Off-chip Yes R All threads + host Application
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Memory hierarchy

Unified virtual addressing
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Memory hierarchy

DirectGPU data transfers

GPUDirect 1.0: direct GPU memory access by devices such as network adaptors
GPUDirect 2.0: direct copies from GPU to GPU inside a node
GPUDirect/CUDA 5.0: direct communication between GPUs in different nodes
MPI integration under development
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CUDA Programming
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CUDA Programming

CUDA variables

Variable declaration Memory Scope Lifetime Penalty/Latency

int var; register thread thread 1X

int array_var[10]; local thread thread 100X (pre-Fermi)

__shared__ int shared_var; shared block block 10X

__device__ int global_var; global grid application 100X

__constant__ int constant_var; constant grid application 1X

automatic scalar variables reside in registers, compiler will spill into local memory in
shortage of registers
automatic array variables (in the absence of qualifiers) reside in thread-local memory
the type of memory used will be crucial for the performance of the application
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CUDA Programming

Elementary data transfers with CUDA

Memory allocation
Arrays in device global memory are typically allocated from CPU code. Functions:

cudaMalloc(void ** pointer, size_t nbytes);

cudaMemset(void * pointer, int value, size_t count);

cudaFree(void* pointer);

int n = 1024;
int nbytes = 1024* sizeof (int);
int *a_d = 0;
cudaMalloc ( (void **)&a_d , nbytes );
cudaMemset ( a_d , 0, nbytes );
cudaFree (a_d);

Data transfers
The elementary function for data transfers is

cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

direction is one of cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost or
cudaMemcpyDeviceToDevice and specifies location of src and dst

blocks CPU thread (asynchronous transfers possible in streams)
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int nbytes = 1024* sizeof (int);
int *a_d = 0;
cudaMalloc ( (void **)&a_d , nbytes );
cudaMemset ( a_d , 0, nbytes );
cudaFree (a_d);

Data transfers
The elementary function for data transfers is

cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

direction is one of cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost or
cudaMemcpyDeviceToDevice and specifies location of src and dst

blocks CPU thread (asynchronous transfers possible in streams)
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CUDA Programming

Kernel execution

Function qualifiers
__global__ void f()

function called from host, executed
on device
must return void

__device__ int f()

function called from device,
executed on device

__host__ int f()

function called from host, executed
on host
__host__ and __device__ can be
combined to generate CPU and
GPU code

Built-in variables
All __global__ and __device__ functions
have the following automatic variables:

dim3 gridDim; — dimension of the
grid in blocks
dim3 blockDim; — dimension of the
block in threads
dim3 blockIdx; — block index within
grid
dim3 threadIdx; — thread index
within block

The indices can be used to construct a
global thread index, for instance for a
block size of 5 threads,
thread_index = blockIdx .x* blockDim .

x + threadIdx .x;
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CUDA Programming

Kernel execution

Execution configuration
Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(...);

Execution configuration:
dG: dimension and size of grid in
blocks
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A worked example
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A worked example

The Julia set

Definition
Let f (z) = p(z)/q(z) be a complex
function, where p(z) and q(z) are
complex polynomials.

The Julia set of f can be described as
the set of points for which

lim
n→∞

|f (n)(z)| <∞,

where f (n)(z) denotes the n-fold
repeated application of f on z.

In general, the Julia set is a self-similar
fractal. Standard example:

f (x) = z2 + c,

where c is a complex constant.

(Color codes are for different rates of
divergence.)
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A worked example

Julia: CPU code 1
Driver
int main( void ) {

CPUBitmap bitmap ( DIM , DIM );
unsigned char *ptr = bitmap . get_ptr ();

kernel ( ptr );

bitmap . display_and_exit ();
}

Kernel
void kernel ( unsigned char *ptr ){

for (int y=0; y<DIM; y++) {
for (int x=0; x<DIM; x++) {

int offset = x + y * DIM;

int juliaValue = julia ( x, y );
ptr[ offset *4 + 0] = 255 * juliaValue ;
ptr[ offset *4 + 1] = 0;
ptr[ offset *4 + 2] = 0;
ptr[ offset *4 + 3] = 255;

}
}

}

CPUbitmap

externally
defined
display_and_exit

() externally
defined

julia() will
return 1 if
point in set
choose red and
black colors,
respectively
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A worked example

Julia: CPU code 2

Julia set function
int julia ( int x, int y ) {

const float scale = 1.5;
float jx = scale * ( float )(DIM /2 - x)/( DIM /2);
float jy = scale * ( float )(DIM /2 - y)/( DIM /2);

cuComplex c( -0.8 , 0.156) ;
cuComplex a(jx , jy);

int i = 0;
for (i=0; i <200; i++) {

a = a * a + c;
if (a. magnitude2 () > 1000)

return 0;
}

return 1;
}

shift center of image to (0, 0)
re-scale to unit square in complex plane
use scale factor to zoom
arbitrary constant c in zn+1 = z2

n + c
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A worked example

Julia: CPU code 3

Data structure
struct cuComplex {

float r;
float i;
cuComplex ( float a, float b ) : r(a), i(b) {}
float magnitude2 ( void ) { return r * r + i * i; }
cuComplex operator *( const cuComplex & a) {

return cuComplex (r*a.r - i*a.i, i*a.r + r*a.i);
}
cuComplex operator +( const cuComplex & a) {

return cuComplex (r+a.r, i+a.i);
}

};

use cuComplex structure to represent complex numbers
operator overloading for natural semantics
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A worked example

Julia: GPU code 1

Driver
int main( void ) {

DataBlock data;
CPUBitmap bitmap ( DIM , DIM , &data );
unsigned char * dev_bitmap ;

HANDLE_ERROR ( cudaMalloc ( (void **)& dev_bitmap , bitmap . image_size () ) );
data. dev_bitmap = dev_bitmap ;

dim3 grid(DIM ,DIM);
kernel <<<grid ,1>>>( dev_bitmap );

HANDLE_ERROR ( cudaMemcpy ( bitmap . get_ptr () , dev_bitmap ,
bitmap . image_size () ,
cudaMemcpyDeviceToHost ) );

HANDLE_ERROR ( cudaFree ( dev_bitmap ) );

bitmap . display_and_exit ();
}

use cudaMalloc to allocate memory on device
assign one thread per pixel, one thread per block, resulting in a DIM × DIM grid
third dimension in dim3 defaults to one ⇒ 2D grid
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A worked example

Julia: GPU code 2

Kernel
__global__ void kernel ( unsigned char *ptr ) {

// map from blockIdx to pixel position
int x = blockIdx .x;
int y = blockIdx .y;
int offset = x + y * gridDim .x;

// now calculate the value at that position
int juliaValue = julia ( x, y );
ptr[ offset *4 + 0] = 255 * juliaValue ;
ptr[ offset *4 + 1] = 0;
ptr[ offset *4 + 2] = 0;
ptr[ offset *4 + 3] = 255;

}

__global__ qualifier for device function to be called from host
each thread gets threadIdx.x, threadIdx.y, blockIdx.x, and blockIdx.y

translate to offset in image array
note that for loops have gone away
four chars to represent R, G, B and alpha channels
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A worked example

Julia: GPU code 3

Julia function
__device__ int julia ( int x, int y ) {

const float scale = 1.5;
float jx = scale * ( float )(DIM /2 - x)/( DIM /2);
float jy = scale * ( float )(DIM /2 - y)/( DIM /2);

cuComplex c( -0.8 , 0.156) ;
cuComplex a(jx , jy);

int i = 0;
for (i=0; i <200; i++) {

a = a * a + c;
if (a. magnitude2 () > 1000)

return 0;
}

return 1;
}

__device__ qualifier for device function to be called from device code
identical to CPU code apart from function qualifier
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A worked example

Julia: GPU code 4

Data structure
struct cuComplex {

float r;
float i;
__device__ cuComplex ( float a, float b ) : r(a), i(b) {}
__device__ float magnitude2 ( void ) {

return r * r + i * i;
}
__device__ cuComplex operator *( const cuComplex & a) {

return cuComplex (r*a.r - i*a.i, i*a.r + r*a.i);
}
__device__ cuComplex operator +( const cuComplex & a) {

return cuComplex (r+a.r, i+a.i);
}

};

almost identical to CPU version
only difference are __device__ function qualifiers
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A worked example

Julia: result

Play around with code, cf.

J. Sanders, E. Kandrot: “CUDA by example — An Introduction to General-Purpose
GPU Programming”, (Addison Wesley, Upper Saddle River, 2011).
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A worked example

Julia: GPU code — improvements

On Fermi, maximum number of resident blocks per SM is 8 (16 for Kepler), hence 24
out 32 cores (176 out of 192 for Kepler) are idle

To improve, one could introduce tiles of, say, 16× 16 pixels with execution
configuration

dim3 grid (( DIM +15) /16 ,( DIM +15) /16);
dim3 block (16 , 16);
kernel <<<grid ,block >>>( dev_bitmap );

and corresponding modification to kernel,

int x = blockIdx .x* blockDim .x+ threadIdx .x;
int y = blockIdx .y* blockDim .y+ threadIdx .y;
int offset = x + y * DIM;
if(x >= DIM or y >= DIM) return ;

could have used virtual unified addressing to eliminate the CPU copy of the image
could integrate with OpenGL for interactive rendering
. . .
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New in Kepler

Extended streaming multiprocessor (SMX)

Features

192 (instead of 32) cores
one special function unit per
6 cores (instead of 8)
maximum number of
threads/SM 2048 (instead
of 1536)
64K 32-bit registers
4 warp schedulers
more flexible shared memory
configurations
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New in Kepler

Dynamic parallelism

kernels can more easily generate new threads
kernels can manage associated streams
more versatile for recursive algorithms
altogether better load balancing
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New in Kepler

Hyper-Q

several work queues allowed to access GPU
in particular, several CPU threads can access came GPU
optimized for mixed-type parallelism in MPI clusters
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New in Kepler

Kepler: further improvements

quad-warp scheduler
warp shuffle instruction
some features, such as HyperQ and Dynamic Parallelism are disabled in
desktop/gaming GPUs!
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New in Kepler

Summary and outlook
This lecture
This lecture has given a basic introduction into GPGPU and, in particular, the
CUDA framework of GPU programming. A basic example has provided a feel for
how to go about in using these devices for scientific computing.

Next lecture
In lecture 2, we will start using GPUs for simulating spin models with local
algorithms. In terms of GPU programming, a number of additional concepts such
as thread synchronization, memory coalescence, and atomic operations will be
introduced.

Reading
Zillions of internet resources, e.g., N. Matloff, “Programming on Parallel Machines”,
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

D. B. Kirk, W.-m. W. Hwu, “Programming Massively Parallel Processors” (Morgan
Kaufmann, Amsterdam, 2010).
J. Sanders, E. Kandrot: “CUDA by example — An Introduction to General-Purpose GPU
Programming”, (Addison Wesley, Upper Saddle River, 2011).
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