Computational Physics with GPUs
Lecture 4: Simulating spin models Il

Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and
Institut fiir Physik, Johannes Gutenberg-Universitat Mainz, Germany

41st Heidelberg Physics Graduate Days
Heidelberg, October 8-12, 2018

8

o L Coventr
X Wit ERUSEatonE: U n | Ve rS |tr¥

Emm
Noether-
Programm

"éomplex System

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 1/39

Random number generators

RNG: definition

Slides and exercises

Stochastic simulations such as Monte Carlo and molecular dynamics (with a
thermostat) require a reliable stream of “randomness”.

Approaches:

o true randomness from, e.g., fluctuations in a resistor: too slow

o pseudorandom number generator: deterministic sequence of (typically integer)
numbers with the following properties
o based on a state vector
o with a finite period
o reproducible if using the same seed
o typically produce uniform distribution on [0, NMAX] or [0, 1]
o further distributions (such as Gaussian) generated from transformations

o generally two types of pseudo RNGs considered

o for general purposes, including simulations
o or for cryptographic purposes, requiring sufficient randomness to prevent
efficient stochastic inference

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 4/39

Check out the lecture notes and example code at
http://users.complexity-coventry.org/~weigel/GPU/
Any questions? Contact me at

Martin.Weigel@mail.com

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 2/39

Random number generators

The story of R250

John von Neumann

"Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin.” (1951)

For any pseudo RNG (or RNG, for short) there must exist an algorithm/test that
distinguishes the generated sequence from a truly random sequence. (If nothing else, this
can be the algorithm generating the sequence itself!)

VOLUME 69, NUMBER 23 PHYSICAL REVIEW LETTERS 7 DECEMBER 1992

Monte Carlo Simulations: Hidden Errors from “Good”” Random Number Generators

Alan M. Ferrenberg and D. P. Landau
Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602

Y. Joanna Wong
1BM Corporation, Supercomputing Systems, Kingston, New York 12401
(Received 29 July 1992)
The Wolff algorithm is now accepted as the best cluster-flipping Monte Carlo algorithm for beating
“critical slowing down.” We show how this method can yield incorrect answers due to subtle correla-
tions in “high quality” random number generators.

PACS numbers: 75.40.Mg, 05.70.Jk, 64.60.Fr

The explosive growth in the use of Monte Carlo simu- ing model, to study the time correlations, but so far there
lations in diverse areas of physics has prompted extensive has been no careful study of the accuracy of the thermo-
investigation of new methods and of the reliability of both dynamic properties which are extracted from the config-
old and new techniques. Monte Carlo simulations are urations generated by this process.

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 5/39

http://users.complexity-coventry.org/~weigel/GPU/
Martin.Weigel@mail.com

Random number generators

The story of R250

HOME PAGE | TODAY'S PAPER | VIDEO | MOST POPULAR [TIMES TOPICS | MOST RECENT

Ehe New Pork Times

Search Al NYTimes.com

Technology

Login | Register Now | Help

G

COLLECTIONS > COMPUTER

More Like This.

Connaisseurs of Chags Offer A
Valuable Product: Randomness

‘The Quest for True
Randomness Finally Appears
Successful

From LB.M,, Help in Intricate

Trading
Find More Storles

Computer

Scientists

M. Weigel (Coventry/Mainz)

Coin-Tossing Computers Found to Show Subtle Bias

'WHEN scientists use computers to try to predict complex trends and events, they often apply a
type of calculation that requires long series of random numbers. But instructing a computer to
produce acceptably random strings of digits is proving maddeningly difficult.

In deciding which team Kicks off a football game, the toss of a real coin is random enough to
satisfy all concerned. But the cost of even a slightly nonrandom string of electronic coin tosses
can be devastating to both practical problem-solving and pure theory, and a new investigation
has revealed that nonrandom computer tosses are much more common than many scientists
had assumed.

Mathematical "models” designed to predict stock prices, atmospheric warming, airplane skin
friction, chemical reactions, epidemics, population growth, the outcome of battles, the locations
of oil deposits and hundreds of other complex matters increasingly depend on a statistical
technique called Monte Carlo Simulation, which in turn depends on reliable and inexhaustible
sources of random numbers.

Monte Carlo Simulation, named for Monaco's famous gambling casino, can help to represent
very complex interactions in physics, chemistry, engineering, economics and environmental
dynamics math ically. th icians call such a ion a "model,” and if a model
is accurate enough, it produces the same responses to manipulations that the real thing would
do. But Monte Carlo modeling contains a dangerous flaw: if the supposedly random numbers
that must be pumped into a simulation actually form some subtle, nonrandom pattern, the
entire simulation (and its predictions) may be wrong.

spin models 11

Random number generators

Requirements for parallel computing

B SGNINTOE
AL

& e

08/10/2018

5/39

Random number generators

Random number testing

In applications such as Monte Carlo of lattice systems, we want to update many spins in

parallel. A single “RNG process”producing and handing out the numbers would be a

severe bottleneck, impeding scaling.

o hence, each thread needs its own RNG (potentially millions of them)

O to minimize the pressure on the bus, on registers and shared memory, the RNG state
needs to be as small as possible

o the streams of all RNG instances must be sufficiently uncorrelated to yield reliable

results together

o This could be reached by

(a) division of the stream of a long-period generator into non-overlapping
sub-streams to be produced and consumed by the different threads of the
application, or

(b) use of very large period generators such that overlaps between the sequences of
the different instances are improbable, if each instance is seeded differently, or

(c) setup of independent generators of the same class of RNGs using different lags,
multipliers, shifts etc.

M. Weigel (Coventry/Mainz)

spin models 11

08/10/2018

7/39

A sequence u; of pseudo-random numbers is perfect iff all sequences (uo, .. .

,Ut—1) are

uniformly distributed over [0, 1]* for arbitrary ¢. Clearly, this cannot be the case, already

because of the finite period.

o Derived statistical tests:

test for uniformity

correlation tests

comparison to combinatorial identities
comparison to other known statistical results
application tests (e.g., Ising model)

© © 0 0 o

On the other hand, there are cryptographic tests based on the lack of predictability.

No RNG can pass every conceivable test, so a bad RNG is one that fails simple tests, and

a good RNG is one that only fails only very complicated tests.
Test batteries:
o DieHard (1995) by G. Marsaglia, now outdated
o TestUO1 (2002/2009) by P. L'Ecuyer and co-workers, quasi standard

M. Weigel (Coventry/Mainz) spin models 11

08/10/2018

Random number generators

Linear congruential generators

6/39

Simplest choice satisfying these requirements is linear congruential generator (LCG):

Tnt+1 = aZn + ¢ (mod m).

o for m = 2% or 232
short for large-scale simulations

@ one should actually use at most ,/p numbers of the sequence

©

bits is only 2"

0 has poor statistical properties, e.g., k-tuples of (normalized) numbers lie on
hyper-planes

O state is just 4 bytes per thread

o can easily skip ahead via xp4++ = arx, + ¢ with

t
ar=a' (modm), ¢ = Z a‘c (mod m).
i=1

o can be improved by choosing m = 2% and truncation to 32 most significant bits,
period p = m ~ 10'® and 8 bytes per thread

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018

— 1, the maximal period is of the order p & m ~ 10°, much too

for m = 232, modulo can be implemented as overflow, but then period of lower rank

8/39

Random number generators

Linear congruential generators

Simplest choice satisfying these requirements is linear congruential generator (LCG):

Tnt+1 = aZn + ¢ (mod m).

(Source: Wikipedia)

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 8/39

Random number generators

LCG: performance

Random number generators

LCGs: implementation

How well do they perform?

0.3
|
| | ——— Fibonacci]
| |= LCG64
| | — LCG32
0.2 [f1 u
2 |
- |
= I} |
o |
= \
= \
L\ |
Lo\
VN ro
[N ~ T T, —— ———~—]

0.0L | | | |
1 30 60 90 120 150
blocks

Characteristic zig-zag pattern due to commensurability (or not) of block number of with
number of multiprocessors.

Peak performance at 58 x 10° (LCG32) and 46 x 10° (LCG64) random numbers per
second, respectively.

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 10/39

The implementation is indeed very simple and can be performed in-line:
LCG implementation

#define A32 1664525
#define C32 1013904223

unsigned int ran;
CONVERT (ran = A32xran+C32);

The output function for converting from [0, INTMAX] to [0, 1] could be implemented in
different ways:

LCG implementation

#define MULT32 2.328306437080797e-10f

#define CONVERT (x) (MULT32*((unsigned int) (x)))
//#define CONVERT(x) _curand_uniform(x)

//#define CONVERT(x) __fdividef (__uint2float_rz(x),(float)0x100000000) ;

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 9/39

Random number generators

LCG: overall benchmarks

Use these LCG generators for the previously developed simulation code for the 2D Ising

model. Exact results are available for comparison. Test case of 1024 x 1024 system at
B =0.4, 107 sweeps.

o checkerboard update uses random numbers in different way than sequential update

o linear congruential generators can skip ahead: “right” way uses non-overlapping

sub-sequences

o “wrong” way uses sequences from random initial seeds, many of which must overlap

TestUO1 results:

o poor for LCG32
O acceptable for LCG64

General conclusion: fast, but not good enough

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 11/39

Random number generators Random number generators

RNG quality: Ising results RNG quality: TestUO1 results

Table: Internal energy e per spin and specific heat Cv- for a 1024 X 1024 Ising model with Table: The memory footprint is measured in bits per thread. For the TestUO1 results, if (too
periodic boundary conditions at § = 0.4. many) failures in SmallCrush are found, Crush and BigCrush are not attempted; likewise with
-
exact 1.106079207 0 0.8616983594 0 Y '
sequential update (CPU)
LCG32 1.1060788(15) —0.26 0.83286(45) —63.45 generator bits/thread failures in TestUO1 Ising test perf.
LCG64 1.1060801(17) 0.49 0.86102(60) —1.14 SmallCrush Crush BigCrush x109/s
Fibonacci, r = 512 1.1060789(17) —0.18 0.86132(59) —0.64 LCG32 32 12 — — failed 58
checkerboard update (GPU) LCG32, random 32 3 14 — passed 58
LCCan, rand LI0GOTTS(1S) 007 OSGITB(S6) 000 05221 0.0402 LCGoa o4 Nome 6 — fald 40
, random . —0.
LCG64 1.1061058(19) 13.72 0.86179(67) 0.14 0.2311 0.0471 k/lcv(\;/g4' T - & 2 Nci”e 229 e passej 12
LCG64, random 1.1060803(18) 0.62 0.86215(63) 0.71 0.2311 0.0471 : _ + - passe
MWC, same a 1.1060800(18) 045 0.86161(60) —0.15 0.2293 0.0435 Fibonacci, r = 521 >80 None 2 — failed 23
MWC, different a 1.1060797(18) 0.28 0.86168(62) —0.03 0.2336 0.0438 Fibonacci, r = 1279 > 80 None (1) 2 passed 23
Fibonacci, r = 521 1.1060890(15) 6.43 0.86099(66) —1.09 0.2601 0.0661 XORWOW (cuRAND) 192 None None 1/3 failed 19
Fibonacci, 7 = 1279 1.1060800(19) 0.40 0.86084(53) —1.64 0.2904 0.0700 MTGP (cuRAND) > 44 None 2 2 — 18
XORShit/Werl | LL0GZSS(E) 0.8 OSSIA 027 00813 0021 XORShift/ Wyl 32 None None None passed 18
ift/Wey : = - 2 Uk : Philox4x32 12 N N N 41
Philoxdx32_7 1.1060778(18) —0.79 0.86109(65) —0.93 0.2399 0.0523 thlox 4X§2—IO (122) None None None passej 20
Philox4x32_10 1.1060777(17) —0.85 0.86188(61) 0.30 0.2577 0.0622 Hoxax32_ (128) one one TNone passe
M. Weigel (Coventry/Mainz) spin models 1 08/10/2018 12/39 M. Weigel (Coventry/Mainz) spin models 1 08/10/2018 14/39
Random number generators Local updates (again)
Other generators Ising model: Measurements
So linear congruential generators are not in general good enough. What are the other Consider Metropolis kernel for the 2D Ising model discussed before:
options? GPU code v3 - kernel
__global__ void metro_checkerboard_three (spin_t *s, int *ranvec, int offset)

o Multiply with carry: Marsaglia generator, part of (some versions of) cuRAND 1
int n = blockDim.x*blockIdx.x + threadldx.x;

int cur = blockDim.x*blockIdx.x + threadIdx.x + offset*(N/2);
int north = cur + (1-2xoffset)*(N/2);

o Lagged Fibonacci generators

Tn = AsTn—s @ ArTn—r (mOd m), int east = ((north+1)%L) ? north + 1 : north-L+1;
int west = (north%L) ? north - 1 : north+L-1;
Easily parallelized, good properties for large lags, but memory intensive. i gewih = (@ = ((I=2veffsed)wl & W/2)HM/2) + (=eifzes)=(/2)
o Variants of Mersenne twister. int ide = s[curl*(s[west]l+s[northl+s[east]l+s[southl);
if (fabs (RAN(ranvec[n]) *4.656612e-10f) < texiDfetch(boltzT, ide+2*xDIM)) {
o XORShift generator using words of, e.g., 1024 bits: fast and excellent properties. slcur] = -slcurl;
}
o “Cryptographic” generators: Philox and friends, very well suited and good properties, }
now part of cuRAND.)

Comprehensive discussion in How can measurements of the internal energy, say, be incorporated?

M. Mansen, M. Weigel, and A. K. Hartmann, Eur. Phys. J. Special Topics 210, 53 (2012.) = local changes can be tracked

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 16/39 M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 18/39

Local updates (again)

Ising model: Measurements (cont'd)

Local updates (again)

Ising model: Measurements (cont'd)

energy changes

__global__ void metro_checkerboard_three(spin_t *s, int *ranvec, int offset)

{

int n = blockDim.x*blockIdx.x + threadIdx.x;
int south = (n - (1-2%offset)*L + N/2)%(N/2) + (1-offset)*(N/2);

int ide = s[curl*(s[westl+s[northl+s[east]l+s[southl);

int ie = 0;

if (fabs (RAN(ranvec [n]) *4.656612e-10f) < texlDfetch(boltzT, ide+2*DIM)) {
s[cur] = -slcur];
ie -= 2xide;

| L'J
\,

butterfly sum

__shared__ int deltaE[THREADS];
deltaE[n] = ie;

for(int stride = THREADS>>1; stride > 0; stride >>= 1) {
__syncthreads () ;
if(n < stride) deltaE[n] += deltaE[n+stridel;

3

if(n == 0) result[blockIdx.y*GRIDL+blockIdx.x] += deltaE[0];

y

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 19/39

Local updates (again)

Ising Spin glass

Access pattern for reduction:

o
N
N
w
HSN
3
o
~

o
N
N
w
N
o
o
~

Recall Hamiltonian:

H=— Z Jijsis,
(2,3)
where J;; are quenched random variables. For reasonable equilibrium results, average over
thousands of realizations is necessary.

o same domain decomposition (checkerboard)
o slightly bigger effort due to non-constant couplings
o higher performance due to larger independence?

o very simple to combine with parallel tempering

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 21/39

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 20/39
Local updates (again)
Spin glass: performance
T T T T T
A— A A A A
10' - .
—&— CPU
—— Tesla C1060
—a— GTX 480
=
=N
s 100
5
1071 [
| | | | |
1 10 100 1000 10000
]\Lephca
M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 22/39

Local updates (again)

Spin glasses: continued

Seems to work well with

o 15 ns per spin flip on CPU
o 70 ps per spin flip on GPU

but not better than ferromagnetic Ising model.

Further improvement: use multi-spin coding

o Synchronous multi-spin coding: different spins in a single configurations in one word

o Asynchronous multi-spin coding: spins from different realizations in one word

= brings us down to about 2 ps per spin flip

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018

Local updates (again)

Spin glasses: continued

23/39

Seems to work well with

o 15 ns per spin flip on CPU
@ 70 ps per spin flip on GPU

but not better than ferromagnetic Ising model.

Further improvement: use multi-spin coding

o Synchronous multi-spin coding: different spins in a single configurations in one word

o Asynchronous multi-spin coding: spins from different realizations in one word

= brings us down to about 2 ps per spin flip

M. Weigel (Coventry/Mainz) spin models 11

08/10/2018

25 /39

Local updates (again)

Implementation

for(int i = 0; i < SWEEPS_LOCAL; ++i) {
float r = RAN(ranvecS[n]);
if(r < boltzD[4]) sS(x1,y) = ~sS(x1,y);
else {
pl = JSx(xim,y) ~ sS(x1,y) ~ sS(xim,y); p2
p3 = JSy(x1,ym) ~ sS(x1,y) ~ sS(xi,ym); péd
if(r < boltzD[2]) {
ido = p1 | p2 | p3 | p4;
sS(x1,y) = ido = sS(x1,y);
} else {
idol = pl & p2; ido2 = p1 " p2
ido3 = p3 & p4; ido4 = p3 " p4;
ido = idol | ido3 | (ido2 & ido4)
sS(x1,y) = ido ~ sS(x1,y);
3
bs

JSx(x1,y) ~ sS(x1,y) " sS(x1p,y);
JSy(x1,y) ~ sS(x1,y) ~ sS(x1,yp);

__syncthreads();

r = RAN(ranvecS[n]);

if(r < boltzD[4]) sS(x2,y) = ~sS(x2,y);

else {
pl = JSx(x2m,y) ~ sS(x2,y) ~ sS(x2m,y); p2
p3 = JSy(x2,ym) " sS(x2,y) ~ sS(x2,ym); p4
if(r < boltzD[2]) {

ido = p1 | p2 | p3 | p4;

sS(x2,y) = ido ~ sS(x2,y);

else {

idol = pl & p2; ido2 = pl ~ p2;

ido3 = p3 & p4; ido4 = p3 ~ p4;

ido = idol | ido3 | (ido2 & ido4);

sS(x2,y) = ido ~ sS(x2,y);

Jsx(x2,y) ~ sS(x2,y) ~ sS(x2p,y);
JSy(x2,y) ~ sS(x2,y) ~ sS(x2,yp);

&

syncthreads();

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018

Local updates (again)

Janus

24 /39

JANUS, a modular massively parallel and reconfigurable FPGA-based computing system.

08/10/2018

spin models 11

M. Weigel (Coventry/Mainz)

26/39

Local updates (again)

Janus

JANUS, a modular massively parallel and reconfigurable FPGA-based computing system.

JANUS PC
MODEL Algorithm | Max size | perfs | AMSC | SMSC | NO MSC
3D Ising EA Metropolis 963 6 ps 45x% 190x
3D Ising EA Heat Bath 96° 16 p; 60x
@ = 4 3D Glassy Potts Metropolis 163 64 ps | 1250x | 1900x
@ =4 3D disordered Potts Metropolis 883 32 ps 125x 1800x
Q =4, Cp, = 4 random graph | Metropolis 24000 25ns | 2.4x 10x

Costs:

o Janus: 256 units, total cost about 700,000 Euros

o Same performance with GPU: 64 PCs (2000 Euros) with 2 GTX 295 cards (500
Euros) = 200, 000 Euros

o Same performance with CPU only (assuming a speedup of ~ 50): 800 blade servers
with two dual Quadcore sub-units (3500 Euros) = 2,800,000 Euros

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 26/39

Generalized ensembles

Parallel multicanonical simulations

Generalized ensembles

One way out is to use many Markov chains in parallel. This can be done, in particular, for
multicanonical simulations that are used for problems with complex free-energy landscapes
and systems with 1st order transitions.

Parallel multicanonical simulations (Zierenberg et al., 2013)

In practise, each walker is represented by a single thread in a grid.

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 29/39

Performance
102 —
—A—T =4
1(]1 [——T =28 —
—=—T =16
- ——T =32
S 100 .
E
107! - 8
1072 | | | | | | | | | | |

16 32 64 128 256 512 1024 2048 4096 819216384
L

For sufficiently large lattices, one achieves spin-flip times as low as 20 ps, about 250
times faster than a single CPU core.

The number of threads is limited by the number of spins.

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 28/39

Generalized ensembles

Parallel muca (cont'd)

Each walker samples its own histogram, all of them are combined for the next
weight update,

H(E) =Y H(B).

i

This scheme can be efficiently implemented on MPI clusters (zierenberg et al., 2013)
and on GPUs.

time per spin flip [ns]

0 10000 20000 30000 40000 50000 60000 70000
number of GPU walkers

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 30/39

Generalized ensembles

Combining histograms

How does one best go about in combining the histograms H(")(E)? (At least) three
solutions come to mind

o Each walker keeps its own histogram in global memory. Individual histograms are
then combined in a separate kernel.
= good memory layout for sampling histograms is not good for combining them

o Each walker stores a list (time series) of energies encountered at each step. The lists
are used to create the (total) histogram in a separate kernel.
=> memory coalescence, but long lists

o All threads write directly into one global histogram, using atomic operations.
= good in case of few collisions, which is the case for not too small systems

atomicAdd (d_histogram + E, 1);

(Atomic operations guarantee the absence of data races, where the result of an operation
depends on whether another parallel thread accesses the data in between read and write
operations.)

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 31/39

Generalized ensembles

Population annealing

Generalized ensembles

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):

@ Set up an equilibrium ensemble of R independent copies of the system at
inverse temperature §y. Typically By = 0, where this can be easily achieved.

@ To create an approximately equilibrated sample at 8; > (;_1, resample
configurations with their relative Boltzmann weight exp[—(3; — 8i—1)E;]/Q,

where Q =Y exp(—(8; — Bi—1)E;).
@ Update each copy (replica) by 6 rounds of an MCMC algorithm at inverse
temperature ;.

@ Calculate estimates for observable quantities O as population averages
Ej Oj/R-

@ Goto step @ until target temperature is reached.

To improve it, all configurations undergo evolution with a standard Markov chain
Monte Carlo (MCMC) algorithm (‘single spin flips’).

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 33/39

" RO 88C088
2 ()]

2

/
™ [

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 32/39

Generalized ensembles

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

2.8
2.6
2.4 |\
22|\

r r
—+— GPU, R=2000 @ |
—»%— GPU, R = 10000
—— GPU, R = 50000
GPU, R = 100000
CPU, R = 10000

opt.
SF
S

18 |
1.6 |
14 F

tsp/t,

3 . . .
L single-spin coding |
12 '\\\=\-‘—e~§._
1k —
s s
1 10 100

L. Barash, MW, M. Borovsky, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).
Code at github.com/LevBarash/PAising.

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 34/39

Generalized ensembles

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

CPU GPU

SSC MSC
L tsp [ns] tsg [ns] speedup tsp [ns] speedup
16 23.1 0.092 251 0.0096 2406
32 22.9 0.094 243 0.0095 2410
64 22,6 0.095 238 0.0098 2306
128 22.6 0.098 230 0.0098 2306
256 225 0.099 227 0.0098 2295

L. Barash, MW, M. Borovsky, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).
Code at github.com/LevBarash/PAising.

Generalized ensembles

Parallel scaling

M. Weigel (Coventry/Mainz) spin models Il 08/10/2018 35/39
Generalized ensembles
Performance
Benchmark results for various models considered:
CPU C1060 GTX 480
System Algorithm L ns/flip ns/flip ns/flip speed-up
2D lIsing Metropolis 32 8.3 2.58 1.60 3/5
2D lIsing Metropolis 16 384 8.0 0.077 0.034 103/235
2D lIsing Metropolis, k =1 16384 8.0 0.292 0.133 28/60
3D Ising Metropolis 512 14.0 0.13 0.067 107/209
2D Heisenberg Metro. double 4096 183.7 4.66 1.94 39/95
2D Heisenberg Metro. single 4096 183.2 0.74 0.50 248/366
2D Heisenberg ~ Metro. fast math 4096 183.2 0.30 0.18 611/1018
2D spin glass Metropolis 32 14.6 0.15 0.070 97,/209
2D spin glass Metro. multi-spin 32 0.18 0.0075 0.0023 24/78
2D Ising Swendsen-Wang 10240 77.4 — 2.97 —-/26
2D lIsing multicanonical 64 421 — 0.33 —/128
2D lIsing Wang-Landau 64 43.6 — 0.94 —/46
M. Weigel (Coventry/Mainz) spin models I 08/10/2018 37/39

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have

WxpE+T.
and statistical errors are o< 1/+/T. On the other hand, for PA one needs
W x R.
The parallel speedup is hence
E+T p—00 I
S:Q: BiTlp 1+ % MCMC,
— 00
T, p Pz 00 PA
100 ————
90 MCMC —— i
PA ——
80 | .
70 F i
60 -
& 50 b -
40 F -
30 | .
M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 36/39

10 <|
0 L L L L L L L L L

10 20 30 40 50 60 70 80 90 100

Generalized ensembles

Summary and outlook

This lecture

In this session we considered a number of advanced features of Monte Carlo simulations
on GPU, including the choice and implementation of suitable parallel random number
generators, the implementation of measurement routines using parallel reductions, as well
as generalized-ensemble simulations such as the multicanonical and population annealing
methods that replace parallelism via domain decomposition by parallel simulations of
system copies.

Next lecture

In the next and final lecture, we leave the issue of spin models behind and look into some
advanced GPU computing features such as the integration with MPI and the use of
OpenACC.

Reading

@ M. Manssen, M. Weigel, and A. K. Hartmann, Eur. Phys. J. Special Topics 210, 53 (2012).

@ L. Yu. Barash, M. Weigel, M. Borovsky, W. Janke, and L. N. Shchur, Comput. Phys. Commun. 220,
341 (2017).

@ J. Gross, J. Zierenberg, M. Weigel, and W. Janke, Comput. Phys. Commun. 224, 387 (2018).

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 38/39

Generalized ensembles

Exercises

Ising and Heisenberg models:

o Add some of the improvements discussed in this lecture. In most cases, this
also requires changes to the driver code (execution configuration, memory
layout etc.), not just insertion of the kernel code.

o Compare timings for different kernel versions and different block sizes etc.
o Change the code for simulations of the Heisenberg model. Check the stability.

o Add the necessary statements for measuring energies and magnetizations. Use
parallel reductions.

Histograms: check the code sample nistogram.tgz and write the corresponding
kernel(s) to implement a code that creates a histogram out of a sequence of events.

M. Weigel (Coventry/Mainz) spin models 11 08/10/2018 39/39

	Random number generators
	Local updates (again)
	Generalized ensembles

