
Computational Physics with GPUs
Lecture 4: Simulating spin models II

Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and
Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

41st Heidelberg Physics Graduate Days
Heidelberg, October 8–12, 2018

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 1 / 39

Slides and exercises

Check out the lecture notes and example code at

http://users.complexity-coventry.org/~weigel/GPU/

Any questions? Contact me at

Martin.Weigel@mail.com

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 2 / 39

Random number generators

RNG: definition

Stochastic simulations such as Monte Carlo and molecular dynamics (with a
thermostat) require a reliable stream of “randomness”.

Approaches:

true randomness from, e.g., fluctuations in a resistor: too slow
pseudorandom number generator: deterministic sequence of (typically integer)
numbers with the following properties

based on a state vector
with a finite period
reproducible if using the same seed
typically produce uniform distribution on [0,NMAX] or [0, 1]
further distributions (such as Gaussian) generated from transformations

generally two types of pseudo RNGs considered
for general purposes, including simulations
or for cryptographic purposes, requiring sufficient randomness to prevent
efficient stochastic inference

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 4 / 39

Random number generators

The story of R250

John von Neumann
“Anyone who considers arithmetical methods of producing random digits is, of course, in a
state of sin.” (1951)

For any pseudo RNG (or RNG, for short) there must exist an algorithm/test that
distinguishes the generated sequence from a truly random sequence. (If nothing else, this
can be the algorithm generating the sequence itself!)

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 5 / 39

http://users.complexity-coventry.org/~weigel/GPU/
Martin.Weigel@mail.com

Random number generators

The story of R250

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 5 / 39

Random number generators

Random number testing

A sequence ui of pseudo-random numbers is perfect iff all sequences (u0, . . . , ut−1) are
uniformly distributed over [0, 1]t for arbitrary t. Clearly, this cannot be the case, already
because of the finite period.

Derived statistical tests:
test for uniformity
correlation tests
comparison to combinatorial identities
comparison to other known statistical results
application tests (e.g., Ising model)

On the other hand, there are cryptographic tests based on the lack of predictability.

No RNG can pass every conceivable test, so a bad RNG is one that fails simple tests, and
a good RNG is one that only fails only very complicated tests.

Test batteries:
DieHard (1995) by G. Marsaglia, now outdated
TestU01 (2002/2009) by P. L’Ecuyer and co-workers, quasi standard

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 6 / 39

Random number generators

Requirements for parallel computing

In applications such as Monte Carlo of lattice systems, we want to update many spins in
parallel. A single “RNG process”producing and handing out the numbers would be a
severe bottleneck, impeding scaling.

hence, each thread needs its own RNG (potentially millions of them)
to minimize the pressure on the bus, on registers and shared memory, the RNG state
needs to be as small as possible
the streams of all RNG instances must be sufficiently uncorrelated to yield reliable
results together
This could be reached by
(a) division of the stream of a long-period generator into non-overlapping

sub-streams to be produced and consumed by the different threads of the
application, or

(b) use of very large period generators such that overlaps between the sequences of
the different instances are improbable, if each instance is seeded differently, or

(c) setup of independent generators of the same class of RNGs using different lags,
multipliers, shifts etc.

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 7 / 39

Random number generators

Linear congruential generators

Simplest choice satisfying these requirements is linear congruential generator (LCG):

xn+1 = axn + c (mod m).

for m = 232 or 232 − 1, the maximal period is of the order p ≈ m ≈ 109, much too
short for large-scale simulations
one should actually use at most √p numbers of the sequence
for m = 232, modulo can be implemented as overflow, but then period of lower rank
bits is only 2k

has poor statistical properties, e.g., k-tuples of (normalized) numbers lie on
hyper-planes
state is just 4 bytes per thread
can easily skip ahead via xn+t = atxn + ct with

at = at (mod m), ct =
t∑

i=1

aic (mod m).

can be improved by choosing m = 264 and truncation to 32 most significant bits,
period p = m ≈ 1018 and 8 bytes per thread
M. Weigel (Coventry/Mainz) spin models II 08/10/2018 8 / 39

Random number generators

Linear congruential generators

Simplest choice satisfying these requirements is linear congruential generator (LCG):

xn+1 = axn + c (mod m).

(Source: Wikipedia)

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 8 / 39

Random number generators

LCGs: implementation

The implementation is indeed very simple and can be performed in-line:
LCG implementation

define A32 1664525
define C32 1013904223

unsigned int ran;
CONVERT (ran = A32*ran+C32);

The output function for converting from [0, INTMAX] to [0, 1] could be implemented in
different ways:
LCG implementation

define MULT32 2.328306437080797e -10f

define CONVERT (x) (MULT32 *((unsigned int)(x)))
//# define CONVERT (x) _curand_uniform (x)
//# define CONVERT (x) __fdividef (__uint2float_rz (x) ,(float)0 x100000000);

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 9 / 39

Random number generators

LCG: performance

How well do they perform?

0.0

0.1

0.2

0.3

ti
m
e
in

n
s

1 30 60 90 120 150
blocks

Fibonacci
LCG64
LCG32

Characteristic zig-zag pattern due to commensurability (or not) of block number of with
number of multiprocessors.

Peak performance at 58× 109 (LCG32) and 46× 109 (LCG64) random numbers per
second, respectively.

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 10 / 39

Random number generators

LCG: overall benchmarks

Use these LCG generators for the previously developed simulation code for the 2D Ising
model. Exact results are available for comparison. Test case of 1024× 1024 system at
β = 0.4, 107 sweeps.

checkerboard update uses random numbers in different way than sequential update
linear congruential generators can skip ahead: “right” way uses non-overlapping
sub-sequences
“wrong” way uses sequences from random initial seeds, many of which must overlap

TestU01 results:

poor for LCG32
acceptable for LCG64

General conclusion: fast, but not good enough

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 11 / 39

Random number generators

RNG quality: Ising results

Table: Internal energy e per spin and specific heat CV for a 1024× 1024 Ising model with
periodic boundary conditions at β = 0.4.

method e ∆rel CV ∆rel tk=1
up tk=100

up
exact 1.106079207 0 0.8616983594 0

sequential update (CPU)
LCG32 1.1060788(15) −0.26 0.83286(45) −63.45
LCG64 1.1060801(17) 0.49 0.86102(60) −1.14
Fibonacci, r = 512 1.1060789(17) −0.18 0.86132(59) −0.64

checkerboard update (GPU)
LCG32 1.0944121(14) −8259.05 0.80316(48) −121.05 0.2221 0.0402
LCG32, random 1.1060775(18) −0.97 0.86175(56) 0.09 0.2221 0.0402
LCG64 1.1061058(19) 13.72 0.86179(67) 0.14 0.2311 0.0471
LCG64, random 1.1060803(18) 0.62 0.86215(63) 0.71 0.2311 0.0471
MWC, same a 1.1060800(18) 0.45 0.86161(60) −0.15 0.2293 0.0435
MWC, different a 1.1060797(18) 0.28 0.86168(62) −0.03 0.2336 0.0438
Fibonacci, r = 521 1.1060890(15) 6.43 0.86099(66) −1.09 0.2601 0.0661
Fibonacci, r = 1279 1.1060800(19) 0.40 0.86084(53) −1.64 0.2904 0.0700
XORWOW (cuRAND) 1.1060654(15) −9.13 0.86167(65) 0.04 0.7956 0.0576
XORShift/Weyl 1.1060788(18) −0.23 0.86184(53) 0.27 0.2613 0.0721
Philox4x32_7 1.1060778(18) −0.79 0.86109(65) −0.93 0.2399 0.0523
Philox4x32_10 1.1060777(17) −0.85 0.86188(61) 0.30 0.2577 0.0622

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 12 / 39

Random number generators

RNG quality: TestU01 results

Table: The memory footprint is measured in bits per thread. For the TestU01 results, if (too
many) failures in SmallCrush are found, Crush and BigCrush are not attempted; likewise with
failures in Crush. The performance column shows the peak number of 32-bit uniform
floating-point random numbers produced per second on a fully loaded GTX 480 device.

generator bits/thread failures in TestU01 Ising test perf.
SmallCrush Crush BigCrush ×109/s

LCG32 32 12 — — failed 58
LCG32, random 32 3 14 — passed 58
LCG64 64 None 6 — failed 46
LCG64, random 64 None 2 8 passed 46
MWC 64 + 32 1 29 — passed 44
Fibonacci, r = 521 ≥ 80 None 2 — failed 23
Fibonacci, r = 1279 ≥ 80 None (1) 2 passed 23
XORWOW (cuRAND) 192 None None 1/3 failed 19
MTGP (cuRAND) ≥ 44 None 2 2 — 18
XORShift/Weyl 32 None None None passed 18
Philox4x32_7 (128) None None None passed 41
Philox4x32_10 (128) None None None passed 30

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 14 / 39

Random number generators

Other generators

So linear congruential generators are not in general good enough. What are the other
options?

Multiply with carry: Marsaglia generator, part of (some versions of) cuRAND
Lagged Fibonacci generators

xn = asxn−s ⊗ arxn−r (mod m),

Easily parallelized, good properties for large lags, but memory intensive.
Variants of Mersenne twister.
XORShift generator using words of, e.g., 1024 bits: fast and excellent properties.
“Cryptographic” generators: Philox and friends, very well suited and good properties,
now part of cuRAND.

Comprehensive discussion in

M. Mansen, M. Weigel, and A. K. Hartmann, Eur. Phys. J. Special Topics 210, 53 (2012.)

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 16 / 39

Local updates (again)

Ising model: Measurements

Consider Metropolis kernel for the 2D Ising model discussed before:
GPU code v3 - kernel

__global__ void metro_checkerboard_three (spin_t *s, int *ranvec , int offset)
{

int n = blockDim .x* blockIdx .x + threadIdx .x;
int cur = blockDim .x* blockIdx .x + threadIdx .x + offset *(N/2);
int north = cur + (1 -2* offset)*(N/2);
int east = ((north +1)%L) ? north + 1 : north -L+1;
int west = (north %L) ? north - 1 : north +L -1;
int south = (n - (1 -2* offset)*L + N/2) %(N/2) + (1- offset)*(N/2);

int ide = s[cur]*(s[west]+s[north]+s[east]+s[south]);
if(fabs(RAN(ranvec [n]) *4.656612e -10f) < tex1Dfetch (boltzT , ide +2* DIM)) {

s[cur] = -s[cur];
}

}

How can measurements of the internal energy, say, be incorporated?

⇒ local changes can be tracked

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 18 / 39

Local updates (again)

Ising model: Measurements (cont’d)
energy changes

__global__ void metro_checkerboard_three (spin_t *s, int *ranvec , int offset)
{

int n = blockDim .x* blockIdx .x + threadIdx .x;
...
int south = (n - (1 -2* offset)*L + N/2) %(N/2) + (1- offset)*(N/2);

int ide = s[cur]*(s[west]+s[north]+s[east]+s[south]);
int ie = 0;
if(fabs(RAN(ranvec [n]) *4.656612e -10f) < tex1Dfetch (boltzT , ide +2* DIM)) {

s[cur] = -s[cur];
ie -= 2* ide;

}

butterfly sum

__shared__ int deltaE [THREADS];
deltaE [n] = ie;

for(int stride = THREADS > >1; stride > 0; stride >>= 1) {
__syncthreads ();
if(n < stride) deltaE [n] += deltaE [n+ stride];

}

if(n == 0) result [blockIdx .y* GRIDL + blockIdx .x] += deltaE [0];
}

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 19 / 39

Local updates (again)

Ising model: Measurements (cont’d)

Access pattern for reduction:

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 20 / 39

Local updates (again)

Ising Spin glass

Recall Hamiltonian:
H = −

∑
〈i,j〉

Jijsisj ,

where Jij are quenched random variables. For reasonable equilibrium results, average over
thousands of realizations is necessary.

same domain decomposition (checkerboard)
slightly bigger effort due to non-constant couplings
higher performance due to larger independence?
very simple to combine with parallel tempering

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 21 / 39

Local updates (again)

Spin glass: performance

10−1

100

101

t fl
ip
[n
s]

1 10 100 1000 10000
Nreplica

CPU
Tesla C1060
GTX 480

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 22 / 39

Local updates (again)

Spin glasses: continued

Seems to work well with

15 ns per spin flip on CPU
70 ps per spin flip on GPU

but not better than ferromagnetic Ising model.

Further improvement: use multi-spin coding

Synchronous multi-spin coding: different spins in a single configurations in one word
Asynchronous multi-spin coding: spins from different realizations in one word

⇒ brings us down to about 2 ps per spin flip

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 23 / 39

Local updates (again)

Implementation
for(int i = 0; i < SWEEPS_LOCAL; ++i) {

float r = RAN(ranvecS[n]);
if(r < boltzD[4]) sS(x1,y) = ~sS(x1,y);
else {

p1 = JSx(x1m,y) ^ sS(x1,y) ^ sS(x1m,y); p2 = JSx(x1,y) ^ sS(x1,y) ^ sS(x1p,y);
p3 = JSy(x1,ym) ^ sS(x1,y) ^ sS(x1,ym); p4 = JSy(x1,y) ^ sS(x1,y) ^ sS(x1,yp);
if(r < boltzD[2]) {

ido = p1 | p2 | p3 | p4;
sS(x1,y) = ido ^ sS(x1,y);

} else {
ido1 = p1 & p2; ido2 = p1 ^ p2;
ido3 = p3 & p4; ido4 = p3 ^ p4;
ido = ido1 | ido3 | (ido2 & ido4);
sS(x1,y) = ido ^ sS(x1,y);

}
}

__syncthreads();

r = RAN(ranvecS[n]);
if(r < boltzD[4]) sS(x2,y) = ~sS(x2,y);
else {

p1 = JSx(x2m,y) ^ sS(x2,y) ^ sS(x2m,y); p2 = JSx(x2,y) ^ sS(x2,y) ^ sS(x2p,y);
p3 = JSy(x2,ym) ^ sS(x2,y) ^ sS(x2,ym); p4 = JSy(x2,y) ^ sS(x2,y) ^ sS(x2,yp);
if(r < boltzD[2]) {

ido = p1 | p2 | p3 | p4;
sS(x2,y) = ido ^ sS(x2,y);

} else {
ido1 = p1 & p2; ido2 = p1 ^ p2;
ido3 = p3 & p4; ido4 = p3 ^ p4;
ido = ido1 | ido3 | (ido2 & ido4);
sS(x2,y) = ido ^ sS(x2,y);

}
}

__syncthreads();
}

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 24 / 39

Local updates (again)

Spin glasses: continued

Seems to work well with

15 ns per spin flip on CPU
70 ps per spin flip on GPU

but not better than ferromagnetic Ising model.

Further improvement: use multi-spin coding

Synchronous multi-spin coding: different spins in a single configurations in one word
Asynchronous multi-spin coding: spins from different realizations in one word

⇒ brings us down to about 2 ps per spin flip

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 25 / 39

Local updates (again)

Janus

JANUS, a modular massively parallel and reconfigurable FPGA-based computing system.

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 26 / 39

Local updates (again)

Janus

JANUS, a modular massively parallel and reconfigurable FPGA-based computing system.

Costs:

Janus: 256 units, total cost about 700, 000 Euros
Same performance with GPU: 64 PCs (2000 Euros) with 2 GTX 295 cards (500
Euros) ⇒ 200, 000 Euros
Same performance with CPU only (assuming a speedup of ∼ 50): 800 blade servers
with two dual Quadcore sub-units (3500 Euros) ⇒ 2, 800, 000 Euros

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 26 / 39

Generalized ensembles

Performance

10−2

10−1

100

101

102

t fl
ip
[n
s]

16 32 64 128 256 512 1024 2048 4096 8192 16384
L

T = 4

T = 8

T = 16

T = 32

T = 16, Titan

For sufficiently large lattices, one achieves spin-flip times as low as 20 ps, about 250
times faster than a single CPU core.

The number of threads is limited by the number of spins.
M. Weigel (Coventry/Mainz) spin models II 08/10/2018 28 / 39

Generalized ensembles

Parallel multicanonical simulations

One way out is to use many Markov chains in parallel. This can be done, in particular, for
multicanonical simulations that are used for problems with complex free-energy landscapes
and systems with 1st order transitions.

Parallel multicanonical simulations (Zierenberg et al., 2013)

H(n) W (n+1)

MC MC

MC MC

MC MC

.

.

.

.

.

.

In practise, each walker is represented by a single thread in a grid.

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 29 / 39

Generalized ensembles

Parallel muca (cont’d)

Each walker samples its own histogram, all of them are combined for the next
weight update,

H(n)(E) =
∑

i

H
(n)
i (E).

This scheme can be efficiently implemented on MPI clusters (Zierenberg et al., 2013)
and on GPUs.

0.1

1

0 10000 20000 30000 40000 50000 60000 70000

CPU

TITAN

TESLA

ti
m
e
p
er

sp
in

fl
ip

[n
s]

number of GPU walkers

L = 64
L = 32
L = 16

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 30 / 39

Generalized ensembles

Combining histograms

How does one best go about in combining the histograms H(n)(E)? (At least) three
solutions come to mind

Each walker keeps its own histogram in global memory. Individual histograms are
then combined in a separate kernel.
⇒ good memory layout for sampling histograms is not good for combining them
Each walker stores a list (time series) of energies encountered at each step. The lists
are used to create the (total) histogram in a separate kernel.
⇒ memory coalescence, but long lists
All threads write directly into one global histogram, using atomic operations.
⇒ good in case of few collisions, which is the case for not too small systems

atomicAdd (d_histogram + E, 1);

(Atomic operations guarantee the absence of data races, where the result of an operation
depends on whether another parallel thread accesses the data in between read and write
operations.)

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 31 / 39

Generalized ensembles

Population annealing

T1

T2

T3

T4

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 32 / 39

Generalized ensembles

Population annealing

Population annealing algorithm (Hukushima + Iba, 2003; Machta, 2010):

1 Set up an equilibrium ensemble of R independent copies of the system at
inverse temperature β0. Typically β0 = 0, where this can be easily achieved.

2 To create an approximately equilibrated sample at βi > βi−1, resample
configurations with their relative Boltzmann weight exp[−(βi − βi−1)Ej]/Q,
where Q =

∑
exp(−(βi − βi−1)Ej).

3 Update each copy (replica) by θ rounds of an MCMC algorithm at inverse
temperature βi.

4 Calculate estimates for observable quantities O as population averages∑
j Oj/R.

5 Goto step 2 until target temperature is reached.

To improve it, all configurations undergo evolution with a standard Markov chain
Monte Carlo (MCMC) algorithm (‘single spin flips’).

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 33 / 39

Generalized ensembles

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

1 10 100

(a)

single-spin coding

t S
F
/
to

p
t

S
F

θ

GPU, R = 2000
GPU, R = 10 000
GPU, R = 50 000
GPU, R = 100 000
CPU, R = 10 000

L. Barash, MW, M. Borovský, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).
Code at github.com/LevBarash/PAising.

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 34 / 39

Generalized ensembles

Massively parallel approach

The approach is naturally suitable for an implementation on massively parallel
hardware such as GPUs.

CPU GPU
SSC MSC

L tSF [ns] tSF [ns] speedup tSF [ns] speedup
16 23.1 0.092 251 0.0096 2406
32 22.9 0.094 243 0.0095 2410
64 22.6 0.095 238 0.0098 2306
128 22.6 0.098 230 0.0098 2306
256 22.5 0.099 227 0.0098 2295

L. Barash, MW, M. Borovský, W, Janke, and L. Shchur,
Comput. Phys. Commun. 220, 341 (2017).
Code at github.com/LevBarash/PAising.

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 35 / 39

Generalized ensembles

Parallel scaling

Compare MCMC and PA regarding parallel scaling.

Consider total work of parallel implementation. For MCMC we have
W ∝ pE + T.

and statistical errors are ∝ 1/
√
T . On the other hand, for PA one needs

W ∝ R.
The parallel speedup is hence

S = T1

Tp
=

{
E+T

E+T/p

p→∞−→ 1 + T
E MCMC,

p
p→∞−→ ∞ PA

0

10

20

30

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100

S
p

p

MCMC
PA

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 36 / 39

Generalized ensembles

Performance

Benchmark results for various models considered:

CPU C1060 GTX 480
System Algorithm L ns/flip ns/flip ns/flip speed-up
2D Ising Metropolis 32 8.3 2.58 1.60 3/5
2D Ising Metropolis 16 384 8.0 0.077 0.034 103/235
2D Ising Metropolis, k = 1 16 384 8.0 0.292 0.133 28/60
3D Ising Metropolis 512 14.0 0.13 0.067 107/209
2D Heisenberg Metro. double 4096 183.7 4.66 1.94 39/95
2D Heisenberg Metro. single 4096 183.2 0.74 0.50 248/366
2D Heisenberg Metro. fast math 4096 183.2 0.30 0.18 611/1018
2D spin glass Metropolis 32 14.6 0.15 0.070 97/209
2D spin glass Metro. multi-spin 32 0.18 0.0075 0.0023 24/78
2D Ising Swendsen-Wang 10240 77.4 — 2.97 –/26
2D Ising multicanonical 64 42.1 — 0.33 –/128
2D Ising Wang-Landau 64 43.6 — 0.94 –/46

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 37 / 39

Generalized ensembles

Summary and outlook

This lecture
In this session we considered a number of advanced features of Monte Carlo simulations
on GPU, including the choice and implementation of suitable parallel random number
generators, the implementation of measurement routines using parallel reductions, as well
as generalized-ensemble simulations such as the multicanonical and population annealing
methods that replace parallelism via domain decomposition by parallel simulations of
system copies.

Next lecture
In the next and final lecture, we leave the issue of spin models behind and look into some
advanced GPU computing features such as the integration with MPI and the use of
OpenACC.

Reading
M. Manssen, M. Weigel, and A. K. Hartmann, Eur. Phys. J. Special Topics 210, 53 (2012).
L. Yu. Barash, M. Weigel, M. Borovský, W. Janke, and L. N. Shchur, Comput. Phys. Commun. 220,
341 (2017).
J. Gross, J. Zierenberg, M. Weigel, and W. Janke, Comput. Phys. Commun. 224, 387 (2018).

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 38 / 39

Generalized ensembles

Exercises

Ising and Heisenberg models:
Add some of the improvements discussed in this lecture. In most cases, this
also requires changes to the driver code (execution configuration, memory
layout etc.), not just insertion of the kernel code.
Compare timings for different kernel versions and different block sizes etc.
Change the code for simulations of the Heisenberg model. Check the stability.
Add the necessary statements for measuring energies and magnetizations. Use
parallel reductions.

Histograms: check the code sample histogram.tgz and write the corresponding
kernel(s) to implement a code that creates a histogram out of a sequence of events.

M. Weigel (Coventry/Mainz) spin models II 08/10/2018 39 / 39

	Random number generators
	Local updates (again)
	Generalized ensembles

