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Slides and exercises

Check out the lecture notes and example code at

http://users.complexity-coventry.org/~weigel/GPU/
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Excursion: Pointers in C

Pointers are an important element of C, contributing essentially to its flexibility and
efficiency, but also leading easily to horrible mistakes!

A pointer is a variable storing the address in memory of another variable. Pointers are
declared with a preceding ∗, the ampersand & takes a variable’s address, and the asterisk
∗ dereferences the pointer.

Example:
int var = 20; // declare variable
int *ip; // declare pointer
char *cp; // another pointer

ip = &var; // store address of var in pointer
cp = &var; // error ! cp must be the address of an int

printf (" Address of var variable : %p\n", &var);
printf (" Address stored in ip variable : %p\n", ip);
printf (" Value of *ip variable : %d\n", *ip);

Some valid pointers:
int *ip; // pointer to an integer
float *fp; // pointer to a float
float ** fpp; // pointer to a pointer
void *vp; // pointer to void
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Excursion: Pointers in C (cont’d)

If a pointer does not point to a valid memory location, it is good practice to initialize it
with the value NULL (which is equal to 0),
int *p = NULL;
p = malloc (10* sizeof (int));
if (!p) printf (" error allocating memory !\n);

Arrays in C are stored in sequential order, so pointers can be used to inspect and
manipulate arrays:
int var [] = {1, 2, 3};
int *p;
p = &var [0]; // point to the first element
p = var; // an equivalent expression
++p; // p now points to the second element
if (p > var)

printf ("p points to an element further to the right than var");

Strings in C are stored as arrays of characters:
char str [10] = " hello ";
str [0]; // returns char ’h’
str; // address of the first character of the string

M. Weigel (Coventry/Mainz) 1st CUDA 08/10/2018 5 / 41

Excursion: Pointers in C (cont’d)

Sometimes it is even useful to have a pointer to a pointer!
int a = 2;
int *ap = &a;
int ** app = &ap;
printf ("%d = %d = %d\n", a, *ap , ** app);

This is particularly useful for two-dimensional arrays:
int **a;

a = (int **) malloc (10* sizeof (* int));
for(int i = 0; i < 10; ++i)

a[i] = (int *) malloc (20* sizeof (int));

a [8][15] = 12;

Pointers are needed in C to alter objects in functions:
void f1(int a) {

a = 10;
}
void f2(int *a) {

*a = 10;
}

int b = 20;
f1(b); printf ("%d\n", b);
f2 (&b); printf ("%d\n", b);
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Basics

GPU workflow

The basic workflow for a GPU code proceeds along the following lines:

Initialize input data (matrices, particle configurations, ...) on CPU.
Allocate memory on GPU and copy data from CPU to GPU.
Execute kernel(s) on GPU, processing the data.
Copy the results back from GPU to CPU.
Iterate or exit.

More elaborate variations:

Use of unified virtual addressing.
Part or full off-loading of calculations to GPU.
Interleaving computation and communication.
Integration with MPI.
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Basics

Kernel execution
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Basics

Execution configuration

Function qualifiers
__global__ void f()

function called from host, executed
on device
must return void

__device__ int f()

function called from device,
executed on device

__host__ int f()

function called from host, executed
on host
__host__ and __device__ can be
combined to generate CPU and
GPU code

Built-in variables
All __global__ and __device__ functions
have the following automatic variables:

dim3 gridDim; — dimension of the
grid in blocks
dim3 blockDim; — dimension of the
block in threads
dim3 blockIdx; — block index within
grid
dim3 threadIdx; — thread index
within block

The indices can be used to construct a
global thread index, for instance for a
block size of 5 threads,
thread_index = blockIdx .x* blockDim .

x + threadIdx .x;
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Basics

Execution configuration

Execution configuration
Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(...);

Execution configuration:
dG: dimension and size of grid in
blocks

two-dimensional, dG.x and dG.y

total number of blocks
launched is dG.x × dG.y

dB: dimension and size of each
block

two- or three-dimensional,
dB.x, dB.y, and dB.z

total number of threads per
block is dB.x × dB.y × dB.z

if not specified, dB.z = 1 is
assumed

Built-in variables
All __global__ and __device__ functions
have the following automatic variables:

dim3 gridDim; — dimension of the
grid in blocks
dim3 blockDim; — dimension of the
block in threads
dim3 blockIdx; — block index within
grid
dim3 threadIdx; — thread index
within block

The indices can be used to construct a
global thread index, for instance for a
block size of 5 threads,
thread_index = blockIdx .x* blockDim .

x + threadIdx .x;
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Basics

Quiz

Possible grid dimensions are specified in the programming guide,

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#compute-capabilities

Index 1
If we need to use each thread to calculate one output element of a vector addition, what
would be the expression for mapping the thread/block indices to the data index?

(a) i=threadIdx.x+threadIdx.y

(b) i=blockIdx.x+threadIdx.x

(c) i=blockIdx.x*blockDim.x+threadIdx.x

(d) i=blockIdx.x*threadIdx.x

Index 2
We want to use each thread to calculate two adjacent elements of a vector addition. What
mapping is correct if i is the index of the first element?
(a) i=blockIdx.x*blockDim.x+threadIdx.x+2

(b) i=blockIdx.x*threadIdx.x*2

(c) i=(blockIdx.x*blockDim.x+threadIdx.x)*2

(d) i=blockIdx.x*blockDim.x*2+threadIdx.x

Threads
For a vector addition, assume that the vector length is 2000, each thread calculates one
output element, and the thread block size is 512 threads. How many threads will be in the
grid?

(a) 2000
(b) 2024
(c) 2048
(d) 2096
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The grid

Thread mapping

The organization of threads in a (1D or 2D) grid of (1D, 2D or 3D) blocks is usually
chosen to match the dimensionality and structure of the input data.

For example, a 2D grid of 2D blocks would probably be used to work on the pixels of an
image.

Note that (dynamic) arrays in C need to be linearized : Mij = M[i ∗ n + j] (row-major).
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The grid

Example: matrix multiplication

Consider multiplication of two square, Width× Width matrices d_M and d_N,
d_P = d_M · d_N.

How should one map threads to data elements? One option is to use one thread per
output element d_Pi,j .
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The grid

Matrix multiplication: a simple kernel

Matrix multiplication kernel

__global__ void MatrixMult ( float * d_M , float * d_N , float * d_P , int Width ) {
// Calculate the row index of the d_P element and d_M
int Row = blockIdx .y* blockDim .y+ threadIdx .y;

// Calculate the column index of d_P and d_N
int Col = blockIdx .x* blockDim .x+ threadIdx .x;

if (( Row < Width ) && (Col < Width )) {
float Pvalue = 0;
// each thread computes one element of the block sub - matrix
for (int k = 0; k < Width ; ++k) {

Pvalue += d_M[Row* Width +k]* d_N[k* Width +Col ];
}
d_P[Row* Width +Col] = Pvalue ;

}
}
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The grid

Matrix multiplication: a simple kernel (cont’d)

In the host code, the split of the matrix into blocks needs to be organized, probably using
an adjustable block size

(Part of) the host code

# define BLOCK_WIDTH 16

int NumBlocks = Width / BLOCK_WIDTH ;
if( Width % BLOCK_WIDTH ) NumBlocks ++;
dim3 dimGrid ( NumBlocks , NumBlocks );
dim3 dimBlock ( BLOCK_WIDTH , BLOCK_WIDTH );

MatrixMult <<<dimGrid , dimBlock >>>(Md , Nd , Pd , Width );

A few notes are in order:

we need to ensure that we have enough threads to cover all matrix elements
the excess threads are then “masked away” in the kernel code
one might want to optimize over difference choices of BLOCK_WIDTH for best
performance
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The grid

Thread scheduling and synchronization

In CUDA, all threads of a grid run the same code, but we can take branches by using if
conditions based on threadIdx.x and blockIdx.x etc.

Threads in the same block can by synchronized using __syncthreads(): all threads of a
block halt there until the last thread has reached this point.

(Note that hence there will be a deadlock if threads in the same block can take different
branches containing __syncthreads() statements!)

On the other hand, threads in different blocks are independent and cannot be
synchronized!

(Unless with tricks via the use of global memory.)

These principles lead to good results for devices with very different scopes of available
resources, known as transparent scalability.

To understand the effect of scheduling, one needs to take into account the resource limits
of the multiprocessors, which can be checked at

https://docs.nvidia.com/cuda/cuda-c-programming-guide/#compute-capabilities

(And they can be queried using cudaGetDeviceProperties().)
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The grid

Quiz

Resident threads
If a CUDA device’s SM can take up to 1536 threads and up to 4 thread blocks, which of
the following block configurations would result in the most number of threads in the SM?

(a) 128 threads per block
(b) 256 threads per block
(c) 512 threads per block
(d) 1024 threads per block

Threads in the grid
For a vector addition, assume that the vector length is 2,000, each thread calculates one
output element, and the thread block size is 512 threads. How many threads will be in the
grid?
(a) 2,000
(b) 2,024
(c) 2,048
(d) 2,096

Scheduling on CUDA devices works in warps of 32 threads that operate in lockstep, always
operating exactly the same code. If a conditional evaluates differently for some threads in
a warp, the code needs to run multiple times, once for each outcome. This is called
thread divergence.

Warps
For the previous question, how many warps do you expect to have divergence due to the
boundary check on the vector length?

(a) 1
(b) 2
(c) 3
(d) 6
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Memory

Memory and performance

Memory accesses are most often the performance limiting factor in GPU applications.

In the first matrix multiplication kernel, the main loop is

for (int k = 0; k < Width ; ++k) {
Pvalue += d_M[Row* Width +k]* d_N[k* Width +Col ];

which loads two values, stores one value and performs a multiplication and an addition.
Hence the compute to global memory access ratio is 1.

Imagine we are using a card which has a memory bandwidth of about 200 GB/s and a
peak single precision FP performance of 1500 GFlop/s.

With 4 bytes per float, the maximum performance of this kernel is 200/4 = 50 GFlop/s,
which is just 3% of the peak performance! To arrive at the peak performance, we would
need 30 FP operations per global memory access.
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Memory

Memory hierarchy

Per thread

Registers (extra fast, no copy for
ops)
Local memory

Thread blocks: shared memory

allocated by thread block, same
lifetime as block
allocate as

__shared__ int s_array [DIM ];

low latency (of the order of 10
cycles), bandwidth up to 1 TB/s
use for data sharing and
user-managed cache

Regs Regs Regs Regs Regs Regs

Local Local Local Local Local Local

Shared Memory
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Memory

Memory hierarchy

Per device: global memory

accessible to all threads on device
lifetime is user-defined

cuda_malloc (void ** pointer ,
size_t nbytes );

cuda_free (void* pointer );

latency several hundred clock cycles
bandwidth ≈ 160 GB/s on Fermi
(access pattern needs to conform to
coalescence rules for good performance)

Per host: device memory

no direct access from CUDA threads
copy data to/from device with

cudaMemcpy (void* dest , void*
src , size_t nbytes ,
cudaMemcpyHostToDevice );

Regs Regs Regs Regs Regs Regs

Local Local Local Local Local Local

Shared Memory

Regs Regs Regs Regs Regs Regs

Local Local Local Local Local Local

Shared Memory

Global Memory

Host Memory

PCIe Bus
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Memory

Memory hierarchy (summary)

More generally, the different types of memory have the following characteristics:

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip (Yes) R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application
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Memory

Unified virtual addressing
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Memory

Unified virtual addressing
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Memory

CUDA variables

Variable declaration Memory Scope Lifetime Penalty/Latency

int var; register thread thread 1X

int array_var[10]; local thread thread 100X (pre-Fermi)

__shared__ int shared_var; shared block block 10X

__device__ int global_var; global grid application 100X

__constant__ int constant_var; constant grid application 1X

automatic scalar variables reside in registers, compiler will spill into local memory in
shortage of registers
automatic array variables (in the absence of qualifiers) reside in thread-local memory
the type of memory used will be crucial for the performance of the application
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Memory

Maxtrix multiplication (again)

In the way we have set up the multiplication kernel,

each value will be loaded Width times from global memory!
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Memory

Maxtrix multiplication (again)

We can improve things by avoiding global memory accesses via the use of shared memory.
If we load tiles of both matrices into shared memory, the loaded values can be re-used.
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Memory

Maxtrix multiplication (again)

We need Width/TILE_WIDTH tiles to to cover each row and column for the calculation of
each element of the result matrix.

The reduction in global memory accesses is then a factor of TILE_WIDTH!

The tile width is mostly limited by the shared memory size: we need 4× 2× TILE_WIDTH
bytes, e.g., a width of 64 results in 32K of shared memory used.
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Memory

Maxtrix multiplication (again)

Matrix multiplication kernel

__global__ void MatrixMult ( float * d_M , float * d_N , float * d_P , int Width ) {
__shared__ float Mds[ TILE_WIDTH ][ TILE_WIDTH ];
__shared__ float Nds[ TILE_WIDTH ][ TILE_WIDTH ];

int bx = blockIdx .x, by = blockIdx .y;
int tx = threadIdx .x, ty = threadIdx .y;

// Identify the row and column of the d_P element
int Row = by* TILE_WIDTH +ty , Col = bx* TILE_WIDTH +tx;

float Pvalue = 0;
// Loop over d_M and d_N tiles
for (int m = 0; m < Width / TILE_WIDTH ; ++m) {

// Collaborative loading of tile
Mds[ty ][ tx] = d_M[Row* Width +m* TILE_WIDTH +tx ];
Nds[ty ][ tx] = d_N [(m* TILE_WIDTH +ty)* Width +Col ];
__syncthreads ();

for (int k = 0; k < TILE_WIDTH ; ++k)
Pvalue += Mds[ty ][k] * Nds[k][ tx ];

__syncthreads ();
}
d_P[Row* Width +Col] = Pvalue ;

}
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A worked example

The Julia set

Definition
Let f(z) = p(z)/q(z) be a complex
function, where p(z) and q(z) are
complex polynomials.

The Julia set of f can be described as
the set of points for which

lim
n→∞

|f (n)(z)| <∞,

where f (n)(z) denotes the n-fold
repeated application of f on z.

In general, the Julia set is a self-similar
fractal. Standard example:

f(x) = z2 + c,

where c is a complex constant.
(Color codes are for different rates of
divergence.)
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A worked example

Julia: CPU code 1
Driver
int main( void ) {

CPUBitmap bitmap ( DIM , DIM );
unsigned char *ptr = bitmap . get_ptr ();

kernel ( ptr );

bitmap . display_and_exit ();
}

Kernel
void kernel ( unsigned char *ptr ){

for (int y=0; y<DIM; y++) {
for (int x=0; x<DIM; x++) {

int offset = x + y * DIM;

int juliaValue = julia ( x, y );
ptr[ offset *4 + 0] = 255 * juliaValue ;
ptr[ offset *4 + 1] = 0;
ptr[ offset *4 + 2] = 0;
ptr[ offset *4 + 3] = 255;

}
}

}

CPUbitmap

externally
defined
display_and_exit

() externally
defined

julia() will
return 1 if
point in set
choose red and
black colors,
respectively
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A worked example

Julia: CPU code 2

Julia set function
int julia ( int x, int y ) {

const float scale = 1.5;
float jx = scale * ( float )(DIM /2 - x)/( DIM /2);
float jy = scale * ( float )(DIM /2 - y)/( DIM /2);

cuComplex c( -0.8 , 0.156) ;
cuComplex a(jx , jy);

int i = 0;
for (i=0; i <200; i++) {

a = a * a + c;
if (a. magnitude2 () > 1000)

return 0;
}

return 1;
}

shift center of image to (0, 0)
re-scale to unit square in complex plane
use scale factor to zoom
arbitrary constant c in zn+1 = z2

n + c
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A worked example

Julia: CPU code 3

Data structure
struct cuComplex {

float r;
float i;
cuComplex ( float a, float b ) : r(a), i(b) {}
float magnitude2 ( void ) { return r * r + i * i; }
cuComplex operator *( const cuComplex & a) {

return cuComplex (r*a.r - i*a.i, i*a.r + r*a.i);
}
cuComplex operator +( const cuComplex & a) {

return cuComplex (r+a.r, i+a.i);
}

};

use cuComplex structure to represent complex numbers
operator overloading for natural semantics
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A worked example

Julia: GPU code 1

Driver
int main( void ) {

DataBlock data;
CPUBitmap bitmap ( DIM , DIM , &data );
unsigned char * dev_bitmap ;

HANDLE_ERROR ( cudaMalloc ( (void **)& dev_bitmap , bitmap . image_size () ) );
data. dev_bitmap = dev_bitmap ;

dim3 grid(DIM ,DIM);
kernel <<<grid ,1>>>( dev_bitmap );

HANDLE_ERROR ( cudaMemcpy ( bitmap . get_ptr () , dev_bitmap ,
bitmap . image_size () ,
cudaMemcpyDeviceToHost ) );

HANDLE_ERROR ( cudaFree ( dev_bitmap ) );

bitmap . display_and_exit ();
}

use cudaMalloc to allocate memory on device
assign one thread per pixel, one thread per block, resulting in a DIM × DIM grid
third dimension in dim3 defaults to one ⇒ 2D grid
M. Weigel (Coventry/Mainz) 1st CUDA 08/10/2018 35 / 41

A worked example

Julia: GPU code 2

Kernel
__global__ void kernel ( unsigned char *ptr ) {

// map from blockIdx to pixel position
int x = blockIdx .x;
int y = blockIdx .y;
int offset = x + y * gridDim .x;

// now calculate the value at that position
int juliaValue = julia ( x, y );
ptr[ offset *4 + 0] = 255 * juliaValue ;
ptr[ offset *4 + 1] = 0;
ptr[ offset *4 + 2] = 0;
ptr[ offset *4 + 3] = 255;

}

__global__ qualifier for device function to be called from host
each thread gets threadIdx.x, threadIdx.y, blockIdx.x, and blockIdx.y

translate to offset in image array
note that for loops have gone away
four chars to represent R, G, B and alpha channels
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A worked example

Julia: GPU code 3

Julia function
__device__ int julia ( int x, int y ) {

const float scale = 1.5;
float jx = scale * ( float )(DIM /2 - x)/( DIM /2);
float jy = scale * ( float )(DIM /2 - y)/( DIM /2);

cuComplex c( -0.8 , 0.156) ;
cuComplex a(jx , jy);

int i = 0;
for (i=0; i <200; i++) {

a = a * a + c;
if (a. magnitude2 () > 1000)

return 0;
}

return 1;
}

__device__ qualifier for device function to be called from device code
identical to CPU code apart from function qualifier
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A worked example

Julia: GPU code 4

Data structure
struct cuComplex {

float r;
float i;
__device__ cuComplex ( float a, float b ) : r(a), i(b) {}
__device__ float magnitude2 ( void ) {

return r * r + i * i;
}
__device__ cuComplex operator *( const cuComplex & a) {

return cuComplex (r*a.r - i*a.i, i*a.r + r*a.i);
}
__device__ cuComplex operator +( const cuComplex & a) {

return cuComplex (r+a.r, i+a.i);
}

};

almost identical to CPU version
only difference are __device__ function qualifiers
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A worked example

Julia: result

Play around with code, cf.

J. Sanders, E. Kandrot: “CUDA by example — An Introduction to General-Purpose
GPU Programming”, (Addison Wesley, Upper Saddle River, 2011).
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A worked example

Julia: GPU code — improvements

On Fermi, maximum number of resident blocks per SM is 8 (16 for Kepler), hence 24
out of 32 cores (176 out of 192 for Kepler) are idle
To improve, one could introduce tiles of, say, 16× 16 pixels. How would the program
need to be modified?
could have used virtual unified addressing to eliminate the CPU copy of the image
could integrate with OpenGL for interactive rendering
. . .
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A worked example

Summary and outlook

This lecture
You should by now by quite comfortable with the basic ideas of CUDA programming
and have some feeling for what is important to get reasonable performance.

Next lecture
In lecture 3, we will apply these ideas to the problem of simulating classical spin
models with local update algorithm. Suitable tuning will result in several 100-fold
speed-ups.

Reading
If using the book by Kirk and Hwu, you could work through all material until Chapter 5. More
about the Julia set problem on GPU can be found in Sanders and Kandroot: CUDA by example.
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