
Computational Physics with GPUs
Lecture 1: Massively parallel computing

Martin Weigel

Applied Mathematics Research Centre, Coventry University, Coventry, United Kingdom and
Institut für Physik, Johannes Gutenberg-Universität Mainz, Germany

41st Heidelberg Physics Graduate Days
Heidelberg, October 8–12, 2018

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 1 / 36

Moore’s law

June 2018 No. 1 system, “Summit”: 2,282,544 cores,
June 2018 No. 2 system, “Sunway TaihuLight”: 10,649,600 cores.

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 2 / 36

Parallel computing

Parallel computing is not new but:

often it is now massively parallel
we cannot wait until our old serial program runs faster (it never will)
hence today programming is parallel programming
we are probably restrained in first thinking about an algorithm in a serial way
(implicit serialism in programming languages) - example

Many tools are tried for parallel computing:

very explicit ones like MPI (for cluster machines and supercomputers)
lightweight language extensions such as OpenMP, OpenACC, Array Building
Blocks (ArBB), Cilk Plus, ...
domain-specific languages: CUDA, OpenCL, OpenGL, ...
intelligent compilers, automatic parallelizers: PGI Compilers

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 3 / 36

GPU computing

traditional interpretation of GPU computing
M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 4 / 36

GPU computing

traditional interpretation of GPU computing
M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 4 / 36

GPU computing

Core i7 IvyBridge i7-3870: 122 GFLOP/s
NVIDIA Tesla K10: 4580 GFLOP/s (single precision)
M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 4 / 36

GPU computing

Core i7 IvyBridge i7-3870: ≈ 21 GB/s
NVIDIA Tesla K10: 320 GB/s
M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 4 / 36

GPUs in sicentific computing

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 5 / 36

Outline

1 Latency vs. throughput

2 GPU architecture

3 Execution model

4 CUDA Programming

5 Memory hierarchy

6 The CUDA distribution

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 6 / 36

Latency vs. throughput

CPU vs. GPU hardware

CPU

optimized for low-latency access to
cached data
extensive logic for branch prediction
and out-of-order execution
do an unpredictable scalar job as
fast as possible

GPU

optimized for data-parallel
throughput computations
latency hiding
do as many simple, deterministic
jobs in parallel as possible

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 8 / 36

Latency vs. throughput

Latency hiding

GPU threads

T1
T2

T3
T4

Legend

waiting for data
ready to run
processing

CPU threads

T1 T2 T3

CPU must minimize latency of individual thread for responsiveness
GPU hides latency through interleaved execution

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 9 / 36

Latency vs. throughput

General processing flow

Interconnect

SM
Scheduler

DRAM

L2

SM
Scheduler

SM
Scheduler

GigaThread scheduler

Shared
Memory

Shared
Memory

Shared
Memory

Bridge
CPU

CPU Memory PCIe Bus

1 Copy data from host memory to GPU
main (“global”) memory.

2 Load GPU code, cache data on GPU for
performance.

3 Data is persistent in GPU memory,
continuous exchange is possible.

4 Copy result from GPU to CPU memory.

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 10 / 36

Latency vs. throughput

General processing flow

Interconnect

SM
Scheduler

DRAM

L2

SM
Scheduler

SM
Scheduler

GigaThread scheduler

Shared
Memory

Shared
Memory

Shared
Memory

Bridge
CPU

CPU Memory PCIe Bus

1 Copy data from host memory to GPU
main (“global”) memory.

2 Load GPU code, cache data on GPU for
performance.

3 Data is persistent in GPU memory,
continuous exchange is possible.

4 Copy result from GPU to CPU memory.

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 10 / 36

Latency vs. throughput

General processing flow

Interconnect

SM
Scheduler

DRAM

L2

SM
Scheduler

SM
Scheduler

GigaThread scheduler

Shared
Memory

Shared
Memory

Shared
Memory

Bridge
CPU

CPU Memory PCIe Bus

1 Copy data from host memory to GPU
main (“global”) memory.

2 Load GPU code, cache data on GPU for
performance.

3 Data is persistent in GPU memory,
continuous exchange is possible.

4 Copy result from GPU to CPU memory.

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 10 / 36

Latency vs. throughput

General processing flow

Interconnect

SM
Scheduler

DRAM

L2

SM
Scheduler

SM
Scheduler

GigaThread scheduler

Shared
Memory

Shared
Memory

Shared
Memory

Bridge
CPU

CPU Memory PCIe Bus

1 Copy data from host memory to GPU
main (“global”) memory.

2 Load GPU code, cache data on GPU for
performance.

3 Data is persistent in GPU memory,
continuous exchange is possible.

4 Copy result from GPU to CPU memory.

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 10 / 36

Latency vs. throughput

General processing flow

Interconnect

SM
Scheduler

DRAM

L2

SM
Scheduler

SM
Scheduler

GigaThread scheduler

Shared
Memory

Shared
Memory

Shared
Memory

Bridge
CPU

CPU Memory PCIe Bus

1 Copy data from host memory to GPU
main (“global”) memory.

2 Load GPU code, cache data on GPU for
performance.

3 Data is persistent in GPU memory,
continuous exchange is possible.

4 Copy result from GPU to CPU memory.

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 10 / 36

GPU architecture

GPGPU history

NVIDIA

introduced CUDA in 2007
developed into a fully blown
ecosystem
series of computing cards
academic support programs

CUDA professorships
CUDA research centers
CUDA teaching centers

ATI

ATI Stream introduced in 2007
less viral marketing
higher peak performance
somewhat less flexible
architecture

Other architectures

Intel MIC
started as Larabee in 2006
prototype board Knight’s Ferry (2010)

32 cores with 4 threads/core
2 GB DDR5 memory

Knight’s Corner, released in 2012
more than 50 cores per chip

Knight’s Landing, released in 2016
up to 72 cores per board
used in a number of recent supercomputers

(some) special-purpose machines
ANTON by D. E. Shaw research, composed
of purpose-built ASICs
Janus, FPGA based machine for spin models
QPace, based on the Cell processor known
from Playstation 3
GRAPE, based on FPGAs and used for
astrophysical N-body simyulations

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 12 / 36

GPU architecture

GPU architecture: main components

Main memory

up to 16GB in current GPUs
maximum bandwidth up to 900
GB/s on Volta (V100)
accessible from CPU and GPU sides
large latency (see below)
optional error correction (ECC
on/off, Fermi onwards)

Several multiprocessors

similar to a multi-core CPU
each has its own set of registers,
scheduler, caches etc.

+ scheduling units, PCIe logic etc.

Interconnect

DRAM

L2

GigaThread scheduler
SM

Scheduler

Shared
Memory

SM
Scheduler

Shared
Memory

SM
Scheduler

Shared
Memory

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 13 / 36

GPU architecture

GPU architecture: streaming multiprocessor (Fermi)

SM components

32 cores per SM (Fermi)
32 fp32 ops/s
32 int32 ops/s

Maxwell: 192 core, Pascal: 128
2/4 warp schedulers (warp=32
threads)

max. 1536/2048 resident
threads

extra special function units (4 for
Fermi)
64/96 KB cache on die,
re-configurable as 16 KB cache +
32 KB shared memory or vice versa
32–128K 32-bit registers

SM

Core Register
SFCore Core Core

Core Core Core Core
Register
Register
Register

Core Register
SFCore Core Core

Core Core Core Core
Register
Register
Register

Core Register
SFCore Core Core

Core Core Core Core
Register
Register
Register

Core Register
SFCore Core Core

Core Core Core Core
Register
Register
Register

Interconnect

Shared Memory/Cache

Scheduler Scheduler
Dispatch Dispatch

Instruction Cache

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 14 / 36

GPU architecture

NVIDIA microarchitectures

Latest generations: Volta (2017/18), Turing (2019/20)
Disclaimer: this is promotional material!

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 15 / 36

GPU architecture

GPU architecture: computing core

Computing core

Integer and floating-point units:
IEEE-2008 compliant floating
point arithmetic (starting from
Fermi)
Fused multiply-and-add
instruction in hardware

Logic unit
Move, compare unit
Branch unit

Core

Result Queue

FP Unit Int Unit

Operands Collector
Dispatch Port

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 16 / 36

GPU architecture

NVIDIA Geforce GTX Titan

Kepler generation card
2688 streaming processor
cores
837 MHz clock frequency
(1.5 GHz memory clock)
single precision peak
performance 4.4 TFLOP/s
1.5 GB GDDR5 RAM
memory bandwidth 288 GB/s

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 17 / 36

GPU architecture

GPU computation frameworks

GPGPU = General Purpose Computation on Graphics Processing Unit

“Old” times: use original graphics primitives

OpenGL
DirectX

Vendor specific APIs for GPGPU:

NVIDIA CUDA: library of functions performing computations on GPU (C, C++,
Fortran), additional preprocessor with language extensions
ATI/AMD Stream: similar functionality for ATI GPUs

Device independent schemes:

superseded approaches: BrookGPU, AMD Stream, Sh
OpenCL (Open Computing Language): open framework for parallel programming
across a wide range of devices, ranging from CPUs, Cell processors and GPUs to
handheld devices
OpenACC: pragma based parallelization of code parts
M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 18 / 36

Execution model

Definitions

Kernel GPU program
that runs on a
grid of threads

Thread scalar execution
unit

Warp block of 32
threads executed
in lockstep

Block a set of warps
executed on the
same SM

Grid a set of blocks
usually executed
on different SMs

Device (GPU)

Grid 1

Host
(CPU)

Block (0,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Block (1,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Block (2,0)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Block (0,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Block (1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Block (2,1)

Thread
(0,0)

Thread
(1,0)

Thread
(0,1)

Thread
(1,1)

Kernel 1

Kernel 2 Grid 2

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 20 / 36

Execution model

Threading hierarchy

Parallel portions of an application are executed on GPU as kernels.
one kernel is executed at a time (later on modified in concept of streams)
each kernel executes in many threads, but on one device

Compare CUDA threads to CPU threads
CUDA threads are lightweight

very little creation overhead
low cost of thread switching

CUDA needs thousands of threads for efficiency
Kernels are executed by an array of threads

all threads run the same code
each thread has a unique threadid for control decisions and memory access

Kernel launched are in grid of thread blocks
threads within block cooperate via shared memory
threads within a block can synchronize
threads within different blocks cannot cooperate (or only via global memory)
block executes on one SM and does not migrate

allows programs to transparently scale to GPUs with different numbers of cores

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 21 / 36

Execution model

CUDA code: C with some extra reserved words

Consider a simple “SAXPY” computation, i.e., “Single-Precision A · X + Y ”.

Standard C code

void saxpy_serial (int n, float a, float *x, float *y)
{

for (int i = 0; i < n; ++i)
y[i] = a*x[i] + y[i];

}
// Invoke serial SAXPY kernel
saxpy_serial (n, 2.0 , x, y);

CUDA C code

__global__ void saxpy_parallel (int n, float a, float *x, float *y)
{

int i = blockIdx .x* blockDim .x + threadIdx .x;
if (i < n) y[i] = a*x[i] + y[i];

}
// Invoke parallel SAXPY kernel with 256 threads / block
int nblocks = (n + 255) / 256;
saxpy_parallel <<<nblocks , 256>>>(n, 2.0 , x, y);

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 22 / 36

CUDA Programming

CUDA variables

Variable declaration Memory Scope Lifetime Penalty/Latency

int var; register thread thread 1X

int array_var[10]; local thread thread 100X (pre-Fermi)

__shared__ int shared_var; shared block block 10X

__device__ int global_var; global grid application 100X

__constant__ int constant_var; constant grid application 1X

automatic scalar variables reside in registers, compiler will spill into local memory in
shortage of registers (use –ptxas-options=-v to check)
automatic array variables (in the absence of qualifiers) reside in thread-local memory
the type of memory used will be crucial for the performance of the application

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 24 / 36

CUDA Programming

Elementary data transfers with CUDA

Memory allocation
Arrays in device global memory are typically allocated from CPU code. Functions:

cudaMalloc(void ** pointer, size_t nbytes);

cudaMemset(void * pointer, int value, size_t count);

cudaFree(void* pointer);

int n = 1024;
int nbytes = 1024* sizeof (int);
int *a_d = 0;
cudaMalloc ((void **)&a_d , nbytes);
cudaMemset (a_d , 0, nbytes);
cudaFree (a_d);

Data transfers
The elementary function for data transfers is

cudaMemcpy(void *dst, void *src, size_t nbytes, enum cudaMemcpyKind direction);

direction is one of cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost or
cudaMemcpyDeviceToDevice and specifies location of src and dst

blocks CPU thread (asynchronous transfers possible in streams)
M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 25 / 36

CUDA Programming

Kernel execution

Function qualifiers
__global__ void f()

function called from host, executed
on device
must return void

__device__ int f()

function called from device,
executed on device

__host__ int f()

function called from host, executed
on host
__host__ and __device__ can be
combined to generate CPU and
GPU code

Built-in variables
All __global__ and __device__ functions
have the following automatic variables:

dim3 gridDim; — dimension of the
grid in blocks
dim3 blockDim; — dimension of the
block in threads
dim3 blockIdx; — block index within
grid
dim3 threadIdx; — thread index
within block

The indices can be used to construct a
global thread index, for instance for a
block size of 5 threads,
thread_index = blockIdx .x* blockDim .

x + threadIdx .x;

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 26 / 36

CUDA Programming

Kernel execution

Execution configuration
Modified C function call syntax:

kernel<<<dim3 dG, dim3 dB>>>(...);

Execution configuration:
dG: dimension and size of grid in
blocks

two-dimensional, dG.x and dG.y

total number of blocks
launched is dG.x × dG.y

dB: dimension and size of each
block

two- or three-dimensional,
dB.x, dB.y, and dB.z

total number of threads per
block is dB.x × dB.y × dB.z

if not specified, dB.z = 1 is
assumed

Built-in variables
All __global__ and __device__ functions
have the following automatic variables:

dim3 gridDim; — dimension of the
grid in blocks
dim3 blockDim; — dimension of the
block in threads
dim3 blockIdx; — block index within
grid
dim3 threadIdx; — thread index
within block

The indices can be used to construct a
global thread index, for instance for a
block size of 5 threads,
thread_index = blockIdx .x* blockDim .

x + threadIdx .x;

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 26 / 36

Memory hierarchy

Memory hierarchy

Per thread

Registers (extra fast, no copy for
ops)
Local memory

Thread blocks: shared memory

allocated by thread block, same
lifetime as block
allocate as

__shared__ int shared_array [
DIM];

low latency (of the order of 10
cycles), bandwidth up to 1 TB/s
use for data sharing and
user-managed cache

Regs Regs Regs Regs Regs Regs

Local Local Local Local Local Local

Shared Memory

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 28 / 36

Memory hierarchy

Memory hierarchy

Per device: global memory

accessible to all threads on device
lifetime is user-defined

cuda_malloc (void ** pointer ,
size_t nbytes);

cuda_free (void* pointer);

latency several hundred clock cycles
bandwidth ≈ 160 GB/s on Fermi
(access pattern needs to conform to
coalescence rules for good performance)

Per host: device memory

no direct access from CUDA threads
copy data to/from device with

cudaMemcpy (void* dest , void*
src , size_t nbytes ,
cudaMemcpyHostToDevice);

Regs Regs Regs Regs Regs Regs

Local Local Local Local Local Local

Shared Memory

Regs Regs Regs Regs Regs Regs

Local Local Local Local Local Local

Shared Memory

Global Memory

Host Memory

PCIe Bus

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 29 / 36

Memory hierarchy

Memory hierarchy (summary)

More generally, the different types of memory have the following characteristics:

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip (Yes) R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 30 / 36

Memory hierarchy

Unified virtual addressing

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 31 / 36

Memory hierarchy

Unified virtual addressing

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 31 / 36

Memory hierarchy

DirectGPU data transfers

GPUDirect 1.0: direct GPU memory access by devices such as network adaptors
GPUDirect 2.0: direct copies from GPU to GPU inside a node
GPUDirect/CUDA 5.0: direct communication between GPUs in different nodes
MPI integration under development
M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 32 / 36

The CUDA distribution

CUDA distributrion

CUDA is available together with documentation and libraries on CUDA zone,

https://developer.nvidia.com/cuda-zone

current version is CUDA 10.

Important tools:
CUDA compiler, nvcc
CUDA visual profiler
NVIDIA Nsight
CUDA gdb
OpenACC

Additional libraries:
cuRAND
cuFFT
nvGRAPH, ...

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 34 / 36

The CUDA distribution

CUDA distributrion

Programming Guide
Best Practices Guide
Compatibility and Tuning Guides for different microarchitectures (Tesla to Turing)

CUDA compiler invocation:

Simplest case

nvcc -o test test.cu

Some options

nvcc -arch= sm_35 -rdc=true -I./ Random123 / include / --ptxas - options =-v ising2D .
cu -o ising2D

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 35 / 36

The CUDA distribution

Summary and outlook
This lecture
This lecture has given a basic introduction into GPGPU and, in particular, the
CUDA framework of GPU programming. Some basic examples hopefully provided a
feel for how to go about in using these devices for scientific computing.

Next lecture
In lecture 2, we will start using GPUs for simulating spin models with local
algorithms. In terms of GPU programming, a number of additional concepts such
as thread synchronization, memory coalescence, and atomic operations will be
introduced.

Reading
Zillions of internet resources, e.g., N. Matloff, “Programming on Parallel Machines”,
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

D. B. Kirk, W.-m. W. Hwu, “Programming Massively Parallel Processors”, 3rd edition
(Morgan Kaufmann, Amsterdam, 2016).
J. Sanders, E. Kandrot: “CUDA by example — An Introduction to General-Purpose GPU
Programming”, (Addison Wesley, Upper Saddle River, 2011).

M. Weigel (Coventry/Mainz) GPU basics 08/10/2018 36 / 36

https://developer.nvidia.com/cuda-zone
http://heather.cs.ucdavis.edu/~matloff/158/PLN/ParProcBook.pdf

	Latency vs. throughput
	GPU architecture
	Execution model
	CUDA Programming
	Memory hierarchy
	The CUDA distribution

