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The use of combinatorial optimization algorithms has contributed substantially to the major progress 
that has occurred in recent years in the understanding of the physics of disordered systems, such as 
the random-field Ising model. While for this system exact ground states can be computed efficiently in 
polynomial time, the related random-field Potts model is NP hard computationally. Hence, exact ground 
states cannot be computed for large systems in this case, but approximation schemes based on graph cuts 
and related techniques can be used. Here we show how a combination of such methods with repeated 
runs allows for a systematic extrapolation of relevant system properties to the ground state. The method 
is benchmarked on a special class of disorder samples for which exact ground states are available.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Impurities are omnipresent in samples in the laboratory. Their 
theoretical description in terms of quenched random disorder in 
magnetic systems represented by spin models turns out to be an 
extremely challenging task that has attracted an extensive amount 
of research activity in past decades [1]. Disorder has profound 
effects on the type of ordering and the nature of the associ-
ated phase transitions. Much of the progress achieved to date 
towards an understanding of such systems has been due to large-
scale numerical simulation efforts. Standard approaches such as 
canonical Monte Carlo simulations are heavily affected by the 
complex free-energy landscapes characterized by a multitude of 
metastable states separated by barriers that are the signature of 
such systems [2]. More sophisticated techniques in the form of 
generalized-ensemble simulations such as parallel tempering [3,4], 
multicanonical simulations [5–7] or, most recently, population an-
nealing [8–12], lead to dramatically improved performance in such 
situations [13], but they are not able to fully remove the slow-
ing down of dynamics induced by the combination of disorder and 
frustration.

For the case of random-field systems, where the renormaliza-
tion group indicates that the fixed point relevant for the critical 
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behavior sits at zero temperature [14], an alternative approach of 
analysis is based on the study of the ground states of individ-
ual disorder samples. To arrive at such configurations one might 
employ generic optimization methods such as simulated anneal-
ing [15] or genetic algorithms [16–18] that provide capabilities to 
overcome the inherent energy barriers and/or explore different val-
leys independently, but such techniques do not constitute a magic 
bullet for handling the complexity of the energy landscape. As 
was noted early on [19], for the random-field problem with Ising 
symmetry (RFIM) things are somewhat easier in that the ground-
state computation can be mapped onto a maximum-flow problem 
for which efficient (polynomial-time) algorithms are available [20]. 
This has enabled high-precision analyses of the critical behavior of 
this model, see, e.g., Refs. [21–25].

For related, somewhat richer systems such as the random-field 
Potts model (RFPM), however, the situation is less fortunate as the 
ground-state problem for more than two spin states corresponds 
to optimizing a multi-terminal flow, a task that can be shown 
to be NP hard, even in two dimensions [26]. While it is hence 
not possible for this system to find exact ground states in poly-
nomial time, we have shown recently that good approximations 
can be computed with reasonable time investment employing suit-
able generalizations of the graph-cut (GC) methods used for the 
RFIM [27]. Algorithms for this purpose have previously been dis-
cussed in the context of computer vision [28]. In the following, we 
investigate how a randomization of this approach allows one to 
construct an extension that systematically converges to the exact 
ground state. By constructing a particular set of disorder samples 
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for which exact results are available from a different approach 
(TRW-S as proposed in Ref. [29]), we study how the minimum 
energies as well as state overlaps of the randomized method ap-
proach the exact result, thus developing a technique for systematic 
extrapolation of the approximate data.

The remainder of this paper is organized as follows. In Sec. 2
we define the random-field Potts model in the variant discussed 
here and describe the graph-cut technique for computing approx-
imate ground states. We then discuss how n repeated runs with 
different initial conditions are used for a systematic improvement 
of results. This leads to n-dependent estimates of the thermody-
namic quantities that are later used for extrapolation. In addition, 
we introduce the TRW-S method that allows us to generate a set of 
samples with the associated exact ground states. In Sec. 3 we com-
pare the TRW-S and graph-cut algorithms and report on our results 
for the extrapolation of approximate ground states. A detailed anal-
ysis of exact samples reveals that typical quantities approach their 
ground-state values in a double power-law fashion that is also 
shown to apply to the case of regular samples. This setup enables 
a reliable extrapolation of data for moderate values of n to the 
n → ∞ limit. Finally, Sec. 4 contains our conclusions.

2. Model and methodology

2.1. The random-field Potts model and graph cuts

The q-state RFPM considered here is governed by the Hamilto-
nian [30]

H = − J
∑
〈i j〉

δsi ,s j −
∑

i

q−1∑
α=0

hα
i δsi ,α, (1)

where δx,y is the Kronecker delta function. According to the Potts 
symmetry, the spins si take values from the set {0, 1, ...., q − 1}. 
The variables {hα

i } are the quenched random fields at site i, act-
ing on state α, and each is drawn independently from a normal 
distribution,

P (hα
i ) = 1√

2π�
exp

[
− (hα

i )2

2�2

]
. (2)

The standard deviation � determines the strength of disorder. Dif-
ferent ways of exposing the Potts spins to random fields have 
also been considered [31,32], especially for the case of discrete 
random-field distributions. While we did not consider such vari-
ations explicitly, we expect the general results discussed in the 
present study to carry over to such generalized disorder distribu-
tions.

For q = 2, it can be easily seen that the RFPM Hamiltonian in 
Eq. (1) corresponds to the RFIM. In this case, H can be written as 
[27],

H = − J

2

∑
〈i j〉

[σiσ j + 1]

− 1

2

∑
i

[(h+
i − h−

i )σi + (h+
i + h−

i )],
(3)

where h+
i and h−

i represent the two field components with α = ±
according to Eq. (1), and σi = ±1 are Ising spins. The problem 
hence corresponds to the RFIM at coupling J/2 and field strength 
�/

√
2. In this case, the task of finding ground states is equiva-

lent to finding a minimum (s, t) cut that partitions the graph into 
two disjoint sets of nodes: one that has spins down (including 
s) and one with spins up (including t) [19,33]. Here, s and t are 
ghost vertices relating to positive and negative random magnetic 
2

fields, respectively. Such minimum cuts can be found in a time 
polynomial in the number of sites based on the min-cut/max-flow 
correspondence [34], by using algorithms such as Ford-Fulkerson 
or push-relabel for the flow problem [28].

For q > 2, on the other hand, the problem of finding ground 
states is NP hard [26]. Nevertheless, a graph-cut approach for fast 
approximate minimization of such energy functions, occurring in 
computer vision problems, was proposed by Boykov et al. [26], 
and later on developed into an approximate ground-state algo-
rithm for the RFPM in Ref. [27]. The basic idea amounts to the 
embedding of an Ising symmetry into the Potts model, such that 
exact algorithms can be used to solve a partial problem. Two vari-
ants of this idea were proposed in Ref. [26], dubbed α-β-swap 
and α-expansion. For the α-β-swap, two spin orientations or la-
bels α �= β ∈ {0, 1, ...., q − 1} are picked and all labels apart from 
α and β are frozen; the update consists of a swap of the labels 
between regions. In contrast, for α-expansion one picks a label α
and attempts to expand it while freezing all the remaining labels, 
cycling through the labels in turn in q iterations. The structure of 
this algorithm can be described as follows:

1: procedure GraphCutMethodExpansion({si})
2: initialize {si} at random
3: set success= True
4: while success== True do
5: success= False
6: for each α ∈ {0, 1, . . . , q − 1} do
7: find {ŝi} = arg minH({s′

i}) among {s′
i}

within one α-expansion of {si}
8: if H({ŝi}) <H({si}), set {si} = {s′

i}
and success= True

9: end for
10: end while
11: return {si}
12: end procedure

While for the α-β swap, one has:

1: procedure GraphCutMethodSwap({si})
2: initialize {si} at random
3: set success= True
4: while success== True do
5: success= False
6: for each pair (α, β) ⊂ {0, 1, . . . , q − 1} do
7: find {ŝi} = arg minH({s′

i}) among {s′
i}

within one α-β swap of {si}
8: if H({ŝi}) <H({si}), set {si} = {s′

i}
and success= True

9: end for
10: end while
11: return {si}
12: end procedure

Both methods correspond to downhill optimization techniques, but 
with a highly non-local move set, such that many (but not all) 
metastable states are avoided. In practice, we focus on the α-
expansion move as this is found to be somewhat more efficient for 
our problem. For a more detailed discussion of these minimization 
techniques see Refs. [26–28].

2.2. Ground-state extrapolation

For a fixed disorder sample {hα
i }, applying q iterations of α-

expansion provides a metastable minimum or candidate ground 
state. By nature of the approach, this state also depends on the 
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Fig. 1. Plots of the disorder-averaged approximate ground-state energies, [Emin]/N , 
of the q = 3 RFPM as a function of run-time tr for TRW-S and GC on 2D square 
lattices (coordination number z = 4). Panel (a) is for system size N = 162 whereas 
panel (b) is for N = 962. The data are averaged over 1000 random-field realizations.

initial configuration of spins {sI
i }. Hence a strategy for further im-

proving the minimization results consists of performing repeated 
runs for several initial configurations and picking the run resulting 
in the lowest energy. If the probability of finding the exact ground 
state in one run is P0({hα

i }), the success probability for n runs in-
creases exponentially [18,27],

P s({hα
i }) = 1 − [1 − P0({hα

i })]n, (4)

such that the method becomes exact in the limit n → ∞. This is 
also evident from the following observation: if one tries all possi-
ble qN initial conditions in this way (where N is the total number 
of spins), the monotonous nature of α-expansion guarantees that 
(at least) the run starting with the ground-state {s0

i } as an initial 
condition will also end in the ground state. It is hence justified to 
extrapolate the relevant disorder averages in n to probe the true 
ground-state behavior. As we will see below, however, our nu-
merical calculations are not in the asymptotic regime where the 
exponential convergence of Eq. (4) is visible, and instead we find 
the power-law form of Eq. (10) to correctly describe the data.

As a consequence of such a procedure, we consider n-dependent 
averages of the relevant observables, focusing on the following 
quantities: the magnetic order parameter [35]

m(n) = qρ − 1

q − 1
, (5)

where

ρ(n) = 1

N
max

α

(∑
i

δsi ,α

)
(6)

is the fraction of spins in the preferred orientation; the bond en-
ergy
3

Fig. 2. The same as Fig. 1 but for systems on three-dimensional lattices. Panel (a) is 
for the 163 RFPM system on a simple cubic lattice (z = 6) whereas panel (b) is for 
the same system but on a face-centered cubic lattice (z = 12).

e J (n) = − 1

N

∑
〈i j〉

δsi ,s j , (7)

as well as the relative deviation from the ground-state energy E0,

ε(n) = E0 − E

E0
, (8)

where E = H({si}), which we call the accuracy of the approxima-
tion; and, finally, the ground-state overlap,

o(n) = 1

N

∑
i

δsi ,s
0
i
, (9)

where {s0
i } denotes the ground-state spin configuration.

In order to evaluate ε and o and, more generally, to judge the 
quality of approximation, it is crucial to have access to a set of 
samples for which ground states are known. Such samples are, in 
general, hard to come by for any non-trivial system size. Here, we 
make use of an alternative minimization algorithm, the sequen-
tial tree-reweighted message passing (TRW-S) method proposed by 
Kolmogorov [29,36] which, formally, amounts to solving the dual of 
the linear program defined by Eq. (1), such that in addition to the 
proposed spin configuration of decreasing minimal energy it also 
provides an increasing lower bound on the ground-state energy. 
While the bound is normally distinct from the energy of the pro-
posed configuration, the proposed state must be the exact ground 
state in case the two energies coincide. (Note that this is a suffi-
cient, but not a necessary condition for TRW-S to have found the 
ground state.) We ran TRW-S on many samples to select a sub-
set for which this condition was met and we hence can be sure of 
having found the exact ground state; in the following, we refer to 
these as exact samples. They were then used for benchmarking the 
technique of multiple runs with α-relaxation outlined above. Be-
low, we also present numerical results for regular samples for which 
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Fig. 3. Disorder-averaged estimates of (a) the magnetization [m], (b) the bond energy [e J ], (c) the accuracy [ε], and (d) the residual overlap 1 − [o] of approximate ground 
states found from α-expansion on “exact” disorder samples of the q = 3 RFPM with N = 163 spins as a function of the number n of initial conditions used. The red lines 
correspond to joint fits of the non-linear form of Eq. (10) to the data for all four observables.
the exact solutions are not known. As we shall see, the statistical 
properties of exact samples are distinct from but still sufficiently 
similar to those of the regular ensemble; a detailed discussion of 
this aspect appears in Sec. 3.2.2.

3. Numerical results

3.1. Graph cuts and tree-reweighted message passing

Let us begin by comparing the two approximation algorithms: 
TRW-S and the α-expansion GC. Unlike GC, the TRW-S method 
does not take into account the initial spin labeling. Instead, TRW-
S is a probabilistic message passing algorithm where an iteration 
corresponds to the passing of a message for each bond. As such, it 
converges much more slowly to a solution than the graph-cut ap-
proach for a single initial spin configuration (and it might require 
damping to even converge at all [29]), but the resulting individual 
minima are in some cases lower than those found by graph cuts 
for a single initial labeling. The power of graph cuts results from 
the possibility of iterating over different initial labellings according 
to Eq. (4). For the TRW-S method, we hence obtain approximate 
ground states of improving quality on increasing the number of it-
erations i, while for GC results improve with increasing numbers n
of initial labellings. In order to compare their performance, we ran 
both techniques for the same set of 1000 distinct disorder samples, 
and determined the energies Emin of the lowest-state in i itera-
tions of TRW-S or n labellings of GC, where n and i were chosen 
to result in the same CPU time tr (in seconds).

Fig. 1 shows plots of disorder-averaged minimal energies Emin
per spin, i.e. [Emin]/N , as a function of run-time tr for samples 
of the two-dimensional q = 3 RFPM on square lattices of sizes 
N = 162 (panel a) and N = 962 (panel b), respectively. The dis-
order samples are drawn at � = 1, which corresponds to quite 
strong disorder in two dimensions [27]. It is clear from both panels 
that initially GC finds states of lower energy than TRW-S, but with 
increasing run-time there is a crossover and eventually TRW-S per-
forms better than GC. Another observation is that in contrast to 
TRW-S, GC quickly produces better approximate solutions, which 
then improve only slowly with the run-time. These findings are 
4

consistent with the study of Kolmogorov [29], who compared these 
techniques for a stereo matching problem.

Next, in Fig. 2, we compare these techniques for the case of 
three-dimensional lattices. Panel (a) shows the comparison for a 
163 q = 3 RFPM on a simple-cubic (SC) lattice for which the coor-
dination number z = 6, whereas panel (b) shows the comparison 
for the same system size on a face-centered cubic (FCC) lattice, 
where each spin is linked to 12 nearest neighbors via the coupling 
strength J (i.e., z = 12). The disorder strength � is chosen in both 
cases to be in the strong-disorder regime. In particular, we use 
� = 1.8 for SC and � = 4.0 for FCC. As is clearly seen from Fig. 2, 
GC performs better than TRW-S in both of these cases. This ob-
servation is in line with previous work by Kolmogorov and Rother 
[37] who compared such techniques on vision problems for highly 
connected graphs. Specifically, they tested the energy minimization 
algorithms for stereo problems with occlusions and found that the 
speed of convergence of TRW-S becomes slower as the connectiv-
ity increases, and for graphs with z > 4 GC outperforms TRW-S. In 
the following, we hence focus on the use of the GC approach for 
our target problem of the RFPM in three dimensions.

3.2. Extrapolation to the quasi-exact limit

In the following, we study the three-dimensional RFPM for 
q = 3 and q = 4, respectively, at first focusing on ground-state ex-
trapolation for simple cubic systems of size N = 163 that are large 
enough to provide a non-trivial benchmark of the ground states for 
the α-expansion GC approach [27].

3.2.1. Exact samples
In order to generate a sample set for benchmarking, we first 

ran TRW-S for 104 iterations per random-field configuration and 
searched for exact samples for which the minimum energy Emin
of the spin configuration becomes equal to the lower bound Eb
on the ground-states. For q = 3, out of 2 × 105 disorder samples 
at � = 1.8 we found 1368 samples with exact ground states. For 
q = 4 at � = 1.7, on the other hand, 1530 out of 2 × 106 disorder 
samples had a tight lower bound. Note that these values of the 
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Fig. 4. Plots of Emin/N versus n for two different samples at � = 1.8. The con-
tinuous dashed curves are fits of the form Emin = a0n−a1 + E0 to the data. The 
values of fit parameters in panel (a) are a1 = 0.633, E0 = −3.18306, and in panel 
(b) a1 = 0.0321, E0 = −3.1686.

random-field strength are in the disordered phase slightly above 
the transition.

We then ran the α-expansion algorithm for these exact sam-
ples, using up to nmax = 10 000 different initial conditions for each 
random-field configuration. From the state of lowest energy among 
n runs, we determined the observables defined in Eqs. (5)–(9). For 
all n ≤ nmax, these quantities were then averaged over the total 
number of (exact) disorder samples Nsamp = 1368 for q = 3 and 
Nsamp = 1530 for q = 4, respectively. Error bars on all estimates 
were determined from the sample-to-sample fluctuations.

Fig. 3 shows the disorder averaged quantities [m], [e J ], [ε], and 
1 −[o] of Eqs. (5)–(9) as a function of n for the q = 3 case. We find 
that the convergence of all averages is well described by the same 
power-law form,

O(n) = an−b(1 + cn−d) +O∗, (10)

where O∗ is the asymptotic value of the quantity denoted as O. 
Besides the leading power law n−b , we observe a power-law cor-
rection with exponent d. In the following, we present some of the 
evidence that justifies and explains the scaling form of Eq. (10).

We analyzed the convergence of Emin with respect to n of 
α-expansion for 200 individual disorder samples and found two 
kinds of behavior: one in which Emin decays markedly with n and 
then converges, say, to E0 for n → ∞, and the other where it con-
verges very slowly in n. The first behavior appears due to those 
Table 1
Extrapolated (O∗) and exact (Oex) results for the observable va
and q = 4, � = 1.7. The numbers in parentheses are the error e
calculated from fits with the exponents of Eq. (10) fixed to thei

q [m]∗ [m]ex [e J ]∗ [e J ]ex

3 0.793(14) 0.780(3) −2.63(2) −2.615(3)

4 0.86(2) 0.866(2) −2.653(27) −2.673(2)

5

Fig. 5. Histogram of 200 values of the power-law exponent a1 according to the 
functional form Emin = a0n−a1 + E0 used for fitting Emin(n) of individual samples 
according to Fig. 4.

samples for which the approximate solutions found initially are far 
from the exact solutions, and hence such estimates improve con-
siderably for lower n before saturating to the exact solutions (E0) 
or until they arrive in the proximity of E0, after which they start 
converging slowly with increasing n, whereas the other behavior 
would be due to those samples for which the initial approxima-
tions are near to the exact solutions and hence they show overall 
a slow convergence in n. In Fig. 4, we show a typical plot of such 
convergences for two different kinds of samples. Notice the behav-
ior of Emin/N with varying n, shown by the solid lines. In panel 
(a), Emin is decaying considerably already for smaller n as com-
pared to panel (b). The smooth dashed curves are fits of the form 
Emin = a0n−a1 + E0 to the data. The value of the exponent a1 in 
panel (a) is 0.633 and in panel (b) it is 0.032. In Fig. 5 we show a 
histogram of 200 values of a1. In this figure, the histogram clearly 
peaks in two different regimes; one in which the value of a1 is 
small (� 0.05) and the other regime corresponds to larger value of 
a1. Combining the two different power-law regimes containing a 
smaller and a larger value of a1 justifies our full functional form 
of convergence in Eq. (10), in which the exponent b corresponds 
to the asymptotic exponent for slow convergence in n whereas the 
exponent d is responsible for the fast decay of observable estimates 
for smaller values of n.

Coming back to Fig. 3, we show the result of a joint fit of 
this form to the data for all four observables, where the expo-
nents b and d are constrained to share the same value among all 
observables, while the amplitudes a and c are allowed to differ 
for different O. The quality of fit is Q ≈ 1. (Note that the data 
for different n are for the same random-field samples and hence 
statistically correlated, but see below for the behavior for uncorre-
lated samples.) The resulting fits are shown together with the data 
in Fig. 3, and it is seen that they model the data extremely well. 
The extrapolated values of all quantities, corresponding to O∗ in 
Eq. (10), together with the exact values Oex are summarized in 
Table 1. Clearly the extrapolated and exact results are consistent. 
The power-law exponents are found to be b � 0.03 for the lead-
ing, and d � 0.56 for the correction exponent. We point out that 
the occurrence of two types of convergence behaviors for differ-
ent samples as illustrated in Fig. 5 is an empirical observation that 
justifies our scaling form (10), but to understand its fundamental 
lues of Eqs. (5)–(9) for the exact samples for q = 3, � = 1.8
stimates on the last significant figures. These error bars are 
r values found from the unconstrained fit.

[ε]∗ [ε]ex 1 − [o]∗ 1 − [o]ex

0.000065(72) 0 0.012(13) 0
0.00013(15) 0 0.005(9) 0
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Fig. 6. Residuals of the observables of Eqs. (5), (8), and (9) for the q = 3 RFPM as 
a function of the number of initial conditions n relative to (a) the exact results 
Oex, and (b) the extrapolated results O∗ . The solid lines correspond to joint fits 
of the form (10) to the data for the different observables, taking a, b, c and d as 
parameters.

origin would require a detailed model of the spacing and multi-
plicity of metastable states in the problem which is unfortunately 
not available. We also tried an alternative scaling form describing 
a logarithmic convergence to the ground state. Although this also 
led to acceptable fits to the data, the resulting values of O ∗ were 
not consistent with the values O ex for the exact samples, thus in-
validating this approach.

In Fig. 6, we plot the residuals of all quantities as a function of 
n. Panel (a) show the residuals with respect to the exact results, 
i.e., O(n) − Oex, in a log-log scale. For large n, these decay with 
n in a power-law fashion ∼ an−b . However, the data for small n
clearly deviate from the power-law behavior, indicating the pres-
ence of scaling corrections. This again justifies the functional form 
of Eq. (10) for describing the data, where for the values shown 
in Fig. 6(b) the limiting value O∗ is taken as a constant derived 
from the fits shown in Fig. 3 and not a fit parameter. Perform-
ing a joint fit to the four observables including all n as shown by 
the solid curves in Fig. 6, we arrive at the exponent values b =
0.013 ± 0.005, and d = 0.47 ± 0.07 for panel (a). Panel (b) shows 
residuals using the extrapolated results O∗ , determined in Fig. 3. 
Clearly the data fit very well to the form an−b(1 + cn−d), as shown 
by the solid curves. The exponents b � 0.03 and d = 0.56 ± 0.12
from the extrapolated fit agree with those of the fit using the ex-
act results as shown in (a).

To check for the robustness of our approach regarding a varia-
tion in the number of states q, in Fig. 7 we show the residuals for 
q = 4. Again we consider two types of residuals: (a) using the exact 
ground states, (b) using extrapolated results. Also in this case, we 
find that the data is consistent with the behavior an−b(1 + cn−d), 
as shown by the solid curves. The fit in panel (a) yields the ex-
ponent b = 0.009 ± 0.005 and d = 0.32 ± 0.07. The extrapolated 
fit in panel (b) yields the exponents b � 0.01 and d = 0.48 ± 0.16, 
6

Fig. 7. Analogous to Fig. 6, but for q = 4.

consistent with the fit enforcing convergence to the exact result 
shown in panel (a). The extrapolated estimates O∗ are summa-
rized in Table 1 and agree with the corresponding exact values.

3.2.2. Regular samples
Encouraged by the observed consistency in behavior for the 

ensemble of exact samples, we also considered the extrapolation 
behavior for the regular ensemble, for which exact solutions are 
not available. Here we naturally cannot consider the quantities ε
and o, and we hence focus on m and e J only. For consistency, 
we generated the same numbers Nsamp = 1368 (q = 3) and 1530
(q = 4) of regular disorder samples as we had previously consid-
ered for the exact samples. Also, in this case, we study various 
system sizes N = L3 in order to resolve a potential system-size de-
pendence of the scaling form (10). From this form, for a given N , 
if one plots nb[O(n) − O∗] as a function of n−d , the data should 
fall on a straight line of intercept a and slope ac. This is what we 
show in Fig. 8 for the q = 3 RFPM, where the functional form (10)
is used for joint fits of the data for [m] and [e J ] for each N , using 
common values of the exponents b and d, but allowing for dif-
ferent amplitudes a and c. Plotting the data in this way is useful 
to identify any deviations from the scaling form (10), especially in 
the asymptotic limit n → ∞. Such deviations are not visible in our 
data, however, and they fit very well both for [m] and [e J ], and 
for different system sizes, as shown by the straight lines. The fit 
quality Q ≈ 1 for all N . In Fig. 9, we next show the same behav-
ior for the q = 4 RFPM and for different system sizes. Here, we 
also do not see any deviations from the scaling form (10). These 
results hence illustrate the robustness of our approach of extrap-
olation in the q-state RFPM as well as its applicability to systems 
of different size. The extrapolated values of the observables [m]∗
and [e J ]∗ , together with the exponents b and d for both q = 3 and 
4, and for different system sizes N are collected in Table 2. If we 
compare the extrapolated estimates corresponding to N = 163 to 
those for the exact samples given in Table 1, the values clearly dif-
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Fig. 8. Plot of nb[O(n) − O∗] as a function of n−d according to the scaling form 
(10) for the data of magnetization m [panel(a)] and bond-energy e J [panel(b)] for 
regular disorder samples of the q = 3 RFPM for different sizes N = 163, 243, and 
323. The solid lines indicate the fits according to Eq. (10).

fer between the exact and regular ensembles, and one might hence 
wonder how representative the exact samples are for the regular 
case. To enable a better judgment of this aspect, we considered 
the approach of our algorithm to the lowest-lying states in both 
ensembles as quantified by the success probability.

This is computed as follows: for each disorder sample of the 
exact and regular ensembles we run our expansion algorithm for 
a maximum of nmax = 10 000 initial conditions and check if the 
lowest-energy state is ever found in n < nmax runs. The success 
probability P s(n) is then estimated as the fraction of samples for 
which this state is found within n initial conditions. (Note that the 
runs for each value of n use independent initial configurations.) In 
this process, the lowest-energy state is defined as the state of low-
est energy among all runs conducted for the sample. In Fig. 10, 
we show the plot of P s against n for exact and regular ensem-
bles of system size N = 163. It is clear from this figure that such 
lowest-energy states are found somewhat more easily for the exact 
than for the regular samples. However, with increasing n, there is 
a clear trend that P s for the regular case converges to the behavior 
for the exact ensemble, thus supporting our previous finding of a 
consistent approach of the graph-cut estimates in both ensembles 
to the ground state.

So far the numerical results we presented are correlated in the 
sense that the same disorder samples are used for different values 
of n. Relaxing this assumption, in Fig. 11, we change the sam-
ples with varying n for a 163 RFPM, and consider the residuals 
O(n) − O∗ of [m] and [e J ] as a function of n for both q = 3 and 
4. This is shown for the case of regular samples as we only have a 
limited number of exact samples. The data of [m] and [e J ] is used 
for a joint fit of the extrapolating form (10) as shown by the solid 
curves. The best fit yields the parameters b � 0.023, d = 0.71 ±
0.15, [m]∗ = 0.45 ± 0.03, [e]∗ = −2.417 ± 0.017 with a quality of 
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Fig. 9. Analogous to Fig. 8, but for q = 4.

fit Q = 0.98 for q = 3, and b � 0.01, d = 0.311 ± 0.087, [m]∗ =
0.697 ±0.084, [e]∗ = −2.536 ±0.066 with a quality of fit Q = 0.56
for q = 4. Comparing these fit results with those corresponding to 
N = 163 in Table 2, where the same samples are used for differ-
ent n, we find that the exponents b and d slightly differ, but more 
importantly, the extrapolated observables [m]∗ and [e]∗ agree very 
well. This clearly manifests the robustness of our scaling form (10)
for the extrapolation also for uncorrelated samples.

4. Summary and discussion

We have studied the performance of approximate ground-state 
algorithms based on graph cuts for the three-dimensional random-
field Potts model. Combining the α-expansion approach developed 
in computer vision [26] with the use of repeated runs for differ-
ent initial spin configurations [18,27] allows us to systematically 
improve the quality of approximation and the results must ul-
timately converge to the exact ground states as the number of 

Fig. 10. Success probabilities Ps(n) for the exact and regular ensembles, i.e., the 
fraction of samples for which the lowest known state is found at least once in n
runs. Here, N = 163.
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Fig. 11. Residual of the magnetization m and bond-energy e J as a function of n for 
q = 3 [panel (a)] and for q = 4 [panel (b)] for regular disorder samples of the 163

RFPM, where samples are also changed in changing the value of n. The solid lines 
show joint fits of the form an−b(1 + cn−d) to the data.

initial conditions is increased. We provide the code for comput-
ing and analyzing RFPM ground states in this manner in a pub-
lic repository [38]. Using a collection of samples of size 163 for 
which exact ground states for q = 3 and q = 4 are available from 
the TRW-S primal-dual optimization algorithm proposed by Kol-
mogorov [29,36] allowed us to illustrate the convergence explicitly. 
Comparing TRW-S to graph cuts, we find that the former algorithm 
has some advantages for weakly connected graphs as exemplified 
by the square lattice, but graph cuts outperform TRW-S for higher 
connectivities such as for lattices in three dimensions. Studying 
the behavior of the magnetization and bond energy as well as 
the deviation from the ground-state configuration and energy, we 
found that these quantities approach their exact values in a power-
law fashion with an exponent that is common between different 
quantities. Using joint fits and incorporating a power-law scaling 
correction we found that our proposed scaling form fits the data 
very well, and the asymptotic values of all quantities in the limit of 
n → ∞ agree with the exact results both for q = 3 as well as q = 4, 
see Table 1. For the case of regular samples that are most relevant 
for the practical task of extrapolating results of the α-expansion 
approach for larger systems we find a scaling behavior similar to 
that for the exact samples, thereby providing confidence that the 
extrapolation procedure outlined here will lead to reliable results 
Table 2
Extrapolated [m]∗ and [e J ]∗ as well as the exponents b and d f
system sizes N . The numbers in parentheses are the error estim

N q = 3

[m]∗ [e J ]∗ b d

163 0.466(48) −2.418(26) 0.018 0.51(12)

243 0.265(45) −2.384(15) 0.026 0.55(8)

323 0.145(46) −2.369(12) 0.02 0.55(6)
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for studying the critical behavior of the random-field Potts model 
more generally [39].
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