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The chapter starts with a historical summary of first attempts to optimize the spin
glass Hamiltonian, comparing it to recent results on searching largest cliques in ran-
dom graphs. Exact algorithms to find ground states in generic spin glass models are
then explored in Sec. 1.2, while Sec. 1.3 is dedicated to the bidimensional case where
polynomial algorithms exist and allow for the study of much larger systems. Finally
Sec. 1.4 presents a summary of results for the assignment problem where the finite-size
corrections for the ground state can be studied in great detail.

1.1. Introduction

A theme which unites this chapter is the study by simulation of finite random systems in

order to test the predictions and insights that arose as new kinds of order were defined

and realized in spin glasses. The tools of this chapter have found use in many applied

contexts. In physics, phase spaces of physical systems have typically been considered.

In applied mathematics, problems, either idealized or based on real-world data, are

solved to optimize target functions or to satisfy constraints. Over the years, it has been

gradually accepted in the mathematics and physics communities that these two realms

are very similar to each other.

Replicas, when introduced by Brout [1], were large patches of a perfectly ordered

lattice. Edwards and Anderson (EA) [2] looked for order in the similarity of behavior

across multiple identical copies of random spins and their interactions. In the Brout

and EA work, the free energy was extracted as the linear term in an expansion of the

partition function in powers of n, the number of replicas. EA defined order as a self-

correlation of spin orientation in different replicas, since this could represent correlation

over long times. Sherrington and Kirkpatrick (SK) [3], after simplifying the problem

to an infinite ranged Ising system with i.i.d. random Gaussian interactions of strength
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1/
√
N in hopes of making it soluble, explicitly used the identity,

lnZ = lim
n→0

Zn − 1

n
, (1.1)

despite the obvious fact that the meaning of Zn anywhere except at integer values

of n was unclear. A careful treatment of the extrapolation of the resulting equations

for the free energy, F , showed an entropy at zero temperature which was negative,

an impossibility in a discrete model, while other features such as a susceptibility cusp

seemed plausible. The predicted ground state energy, E0 = (2/π)1/2 = −0.798..., could

be tested in simulation.

Fortunately, computers in 1975 had almost reached the point where they might be

able to address questions about asymptotic values of quantities such as E0. Power-

ful generally available computers such as IBM’s 370-168 and later 3033 could hold as

much as 10 MB of data in random access memory, and process instructions at a few

MIPS. (The first supercomputer, the Cray-1, in 1975 also had no more than about

10 MB of RAM, but ran its instructions 4–6 times faster.) This amount of RAM per-

mitted simulating a small number of samples with 500–1000 spins, so with a floating

point coprocessor attached to their IBM mainframe to provide more Cray-like process-

ing speeds, Kirkpatrick and Sherrington (KS) [4] in 1978 could report that E0 was in

fact between −0.75 and −0.77, excluding the replica symmetric result. Improvements

on that estimate have continued for the next 30+ years. The most recent estimate

of the asymptotic result, using Parisi’s full RSB formulas and Padé approximants to

extrapolate both upper and lower bounds to E0, yields the currently accepted value of

−0.76321... [5]. The improvements in theory that have made this the accepted result

required several decades, and are discussed elsewhere. Improving the experiments to

test it also required some years for computing speeds to increase so that better statistics

could emerge from simulations. Graphs with N up to 2000 sites have been studied [6],

but understanding the size dependence of E0 remains a subject of research. Simulations

agree with theory, and have grown more accurate as the bounds on the theoretical re-

sult have also grown tighter. New methods of finding the ground state energies in the

simulated model were required, intially and as the models got larger and the accuracy

required grew narrower. These methods, such as simulated annealing, have taken on

a life of their own, with many applications in complex systems outside of the simple

models of statistical mechanics.

Simulated annealing [7] is an obvious idea if you are statistical physicists, like KS

when first studying their spin glass model, and also V. Černỳ [8] and K. Wilson [9].

Kirkpatrick and Černỳ studied the Travelling Salesman as an easily described example.

Wilson used annealing to optimize packing of parallel processor code generated in a

compiler he wrote for his quantum chromodynamics simulations. All of these authors

realized that allowing a Markov chain of states to evolve at a series of decreasing finite

temperatures (annealing) would tend to reach larger and deeper minima than simple

gradient descent for a complex function space with many local minima.

At the time the preferred methods used gradient descent with many random restarts

and tricks to jump to new starting points, applied only when a search gets stuck. The

large number of possible local minima, mostly at higher energies, makes this ineffective.
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In addition, study of properties such as susceptibilities and specific heat (obtained from

the fluctuations of a Boltzmann system) could guide the development of effective an-

nealing schedules. Ranges of temperature at which large fluctuations were seen, possibly

signalling a phase boundary, give a signal to slow the annealing process to allow large

changes to occur.

Kirkpatrick and IBM colleagues [7] were also at the time studying the problems

presented by design automation tools used to place and route transistors and small VLSI

circuits in IBM’s next-generation computers, and included simplified examples of both

practical problems in their paper. These tools were successfully used and incorporated

into IBM’s internal product development tool sets, and adopted in other industries.

The IBM group learned important lessons from exposure to the engineering environ-

ment. First, expressing complex constraints as energetic costs in a Hamiltonian frame-

work provided valuable flexibility, and the annealing framework met the constraints

simultaneously or in order of importance rather than one at a time. Second, they soon

realized that finding the exact optimum in a problem like circuit design was not really

the objective of an engineering team, who simply needed to find solutions that were

good enough, soon enough, to ship as products. For that sort of objective, robustness

of a methodology and the ability to incorporate many esoteric constraints was at least

as important as its efficiency. Optimality of the solution obtained, if possible, was a

bonus, but not the only objective.

Simulated annealing has been accepted as another tool for at least approximately

solving messy but useful and important problems. Probably its greater impact has

been to stimulate the incorporation of statistical physics frameworks as an active part

of applied mathematics. One recent review by a respected practitioner of constraint

satisfaction [10] considers the 1990s to be the era of phase transitions, with the 2000s

introducing more refined techniques such as survey propagation [11] and cavity con-

structions [12]. Phase diagrams with pictures of changes in the shapes of possible sets

of solutions and different degrees of ergodicity in the phase space of a problem’s solu-

tions [13, 14] now shape the discussions of the fundamental differences between different

complexity classes of combinatorial and computational problems [15].

The simplest problems in combinatorial optimization are proving explicitly some

property of a random graph, or proving that the property does not hold in that graph.

An example would be testing if a clique, or completely connected cluster of sites, of

size K exists in an Erdős–Rényi graph G(N, p = 0.5) of size N , with half of the bonds

selected at random, the rest absent. This is a stylization of a common question data

scientists might ask of the social networks tracking interaction on today’s internet, where

such graphs may describe populations of billions, and the bonds might be demonstrated

common interests or communication. We know what is possible by just calculating

expectations. The largest cliques, of size Kmax, that form naturally in this model will

not exceed 2 log2N in size, with finite-size corrections making the actual limiting size

of such a MaxClique much less. Simple linear algorithms, with costs proportional to the

number of bonds, thus N2, fail to find solutions with clique size K more than a few sites

bigger than log2N . A staircase of steps at which increasingly larger maximum cliques

are found thus bounds a hard phase in which large numbers of cliques with sizes greater
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Fig. 1.1. Hidden clique sizes KHC of interest in G(N, p = 0.5) lie between the Kmax staircase and the

proven or experimentally observed lower limits that can be found with spectral methods (dashed red

line) or message-passing techniques (solid red line). Sizes of the smallest hidden cliques identified by a
simple greedy search from all initial sites, stopping as soon as evidence for the hidden clique is found,

are shown with blue dots and lie well below both limits.

than log2N must exist, but cannot be found without introducing some more expensive

nonlinear search, such as backtracking.

A popular extension of this problem is to add a hidden clique to the random graph

which is larger than those which occur at random. Since this clique is unique, it should

be easier to find, but the best methods proven to work with quasi-linear cost (but large

prefactors) can only find hidden cliques of size greater than
√
N/e. So an easy region

for this related problem exists when the hidden clique is bigger than this line. The

resulting phase diagram is shown in Fig. 1.1 [16].

Some recent work has returned to the original intuition of EA that correlations of

activity between identical replicas of random, symmetry-less systems were an indica-

tion of ordering that might serve in place of a traditional order parameter. Consider

simulating the evolution of multiple copies of a random system at steadily lowered tem-

peratures, or at a number of different temperatures, and passing information about

improved solutions between the different replicas, a methodology called parallel tem-

pering in physics [17]. This has proved capable of finding hidden cliques in very large

graphs when the hidden clique barely exceeds the size of naturally occurring cliques [18],

as well as to find maximum independent sets very efficiently [19]. Annealing multiple

replicas in this way has the disadvantage that it cannot be proven to have only polyno-

mial cost (in the size of the problem) asymptotically, although experience and empirical
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knowledge of the problem may allow tuning the method for affordable costs on large

practical problems. It may also provide a path to overcoming the confusion that impedes

the search for optimal configurations in combinatorial problems where many subopti-

mal configurations overlap and confuse any local search, such as coloring or maximum

clique [16].

The extra search power that parallel tempering seems to provide suggests that there

may be other ways to exploit the original insight of Edwards and Anderson, that or-

dering in random systems might show up as a correlation between behavior observed

in multiple copies or regions of a complex system. Replica symmetry breaking implies

ordering which may take on a range of values, and study of the correlations seen in

multiple replicas at low temperatures may add physical insight into such ordering. A

further step could be to model systems which are basically similar but subject to weak

local environmental corrections with a set of replicas, each slightly different. The ob-

jective would be to identify from the differences between solutions in each replica a

functional variation of the response of ordering to the different local influences. Such

local variations are typical of much of the vast amounts of social data available for

study in today’s highly instrumented world. This is just one more possible, but as yet

unrealized, impact of spin glasses on applied mathematics and statistics.

The original SK Ising model with Gaussian-distributed interactions is only one of

the situations which has stimulated further exploration to tease out the lowest energy

ground states. Different ways of combining different tools of optimization have proved

valuable in this and different lessons emerge, as covered in the further sections of this

chapter.

1.2. Focusing on Ground States

Consider the spin-glass (SG) model in zero field with Hamiltonian [2]

H = −
∑
〈i,j〉

Jijsisj . (1.2)

We focus on Ising spins si = ±1 placed on the vertices of a graph, but other symmetries

of the order parameter have been considered. The Ising symmetry has the advantage

that the related statistical physics problems are combinatorial. The sum 〈i, j〉 runs over

all edges of the graph. For the Edwards–Anderson (EA) model the graph is a hyper-

cubic lattice in d dimensions, but also other graph structures like the fully connected

Sherrington–Kirkpatrick model corresponding to the d → ∞ limit of (1.2) have been

studied. As discussed in section 1.1, the physics of this mean-field problem is well

understood, in many aspects since the 1980s. The situation in low dimensions is less

clear and so much of the work in recent decades has focused on studying the problem

in 2, 3 and 4 dimensions with numerical methods.

Next to Monte Carlo simulations used to study the vicinity of the spin-glass tran-

sition and the behavior in the ordered phase (see Chapter 5), much work has been

invested in studying ground states and low-lying excitations above them in order to

gauge the low-temperature behavior. Alternative theories for the nature of the spin-

glass phase make contrasting predictions about the energetic and geometric properties
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6 Sergio Caracciolo, Alexander Hartmann, Scott Kirkpatrick and Martin Weigel

of such excitations. Based on generalizations of Peierls’ argument for the stability of the

ferromagnetic phase, researchers have argued that excitations with energies diverging

with length will lead to spin-glass phases that are stable against thermal fluctuations,

such that one of the prime goals of studying ground states for spin-glass systems is to

understand the nature of the prevalent low-energy excitations and how their sizes and

energies are related.

The search for ground states for spin glasses with discrete symmetry amounts to

a combinatorial optimization problem as there is a countable number of candidate so-

lutions [20]. Such problems can hence be solved by a brute-force enumeration of all

configurations, with an effort that grows exponentially with the number of spins. As

discussed in Sec. 1.3, a clever organization of this enumeration can lead to massive

gains in efficiency of this process, but will not alter the overall exponential scaling of

the algorithm. This corresponds to the fact that the problem in d ≥ 3 is known to be

NP hard [21]. In some special cases, however, the ground-state problem can be mapped

onto auxiliary optimization problems that permit solutions in polynomial time. This

will be explained in Sec. 1.4. Beyond the ground states of spin glasses, many optimiza-

tion problems have caught the attention of physicists [22, 23]. An example for a recently

studied model is the assignment problem, which is discussed in Sec. 1.5.

1.3. Exact Algorithms for Hard Problems

Here, exact and general algorithms for finding ground states (GSs) for Ising SGs are con-

sidered, although the presented methods are very general. As an extension of Eq. (1.2),

here also an interaction with local fields hi is included. For most studied systems no

local field is present, but for some of the algorithms presented below, such a term might

arise for sub-problems to be solved. In this case, the energy of a SG is given by the

Hamiltonian

H(s) = −
∑
i<j

Jijsisj −
∑
i

hisi , (1.3)

where s = (s1, . . . , sN ) is a configuration and the bonds Jij , corresponding to the edges

of the graph, are quenched random variables. The sum runs here, in the most general

case, over all pairs of spins. Thus, if all bonds are nonzero, the system is of mean-

field type. For finite-dimensional lattices, most bonds are zero, suitably selected. The

nonzero bonds are typically drawn from a Gaussian or a bimodal Jij = ±1 distribution.

Here, three types of algorithms are presented, which have frequently been used to

calculate exact GSs for three-dimensional SGs. First, the branch-and-bound method is

explained, which is based on enumerating many states in a sophisticated way. Next, the

linear programming approach is outlined, which is based on rewriting the Hamiltonian

as a linear function, relaxing the condition si = ±1, plus adding additional constraints,

called cutting planes or cuts. Finally, the combination of both approaches, the branch-

and-cut algorithm is presented, which yields the currently fastest exact method to obtain

spin-glass ground states.
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1.3.1. Branch-and-bound

The basic idea of the branch-and-bound approach [24] to find the minima of Eq. (1.3) is

to represent all spin configurations as a binary tree, where at each node the configuration

space is, for a node-dependent selected spin i0, subdivided into the configurations with

si0 = +1 and those with si0 = −1, respectively. The spin configurations are given by

the 2N leafs of this tree. The simplest approach to the GS problem would be to obtain

all configurations by enumeration, and simply pick those with the minimum energy,

yielding an O(2N ) running time.

This running time can be improved, although still being exponential in the worst

case, by omitting parts of this tree via considering bounds on the achievable energies

in sub-trees [25]. Here we present the refined algorithm described in Ref. [26]. The

branching is performed always on the last spin of the sub-problem, i.e., it starts with

spin N . The energies for the sub problems with sN = +1 and sN = −1 can be written

using Eq. (1.3) for s = (s1, . . . , sN−1) as follows:

H+(s) = −
∑
i<j

′
Jijsisj −

∑
i

′
hisi −

∑
i

′
JiNsi − hN, (1.4)

H−(s) = −
∑
i<j

′
Jijsisj −

∑
i

′
hisi +

∑
i

′
JiNsi + hN, (1.5)

where the sums
∑′

run from 1 to N − 1. If one defines

H∗N−1 = min
s1,...,sN−1

−
∑
i<j

′
Jijsisj , (1.6)

one obtains, using the relation mins(f1(s)+f2(s)) ≥ mins f1(s)+mins f2(s), the bounds

H+(s) ≥ H∗N−1 + min
s1,...,sN−1

∑
i

′
(−hi − JiN )si − hN , (1.7)

H−(s) ≥ H∗N−1 + min
s1,...,sN−1

−
∑
i

′
(−hi + JiN )si + hN . (1.8)

These bounds are available because the minima H∗N−1, H∗N−2, . . . can be obtained recur-

sively while the branching tree is built. Furthermore, the minimum of a linear function∑
s

∑
i aisi, here ai = −hi − JiN or ai = −hi + JiN , respectively, is simply given by

−
∑
i |ai|. Thus, as a first way to restrict the size of the branching tree, if one or two

of the branches exhibit bounds above a known threshold, the corresponding branches

can be omitted. Such thresholds may come from low lying configurations found already

in other branches or by heuristic algorithms, or simply given as part of the problem in

case an enumeration of a specified range of low-lying configurations is sought.

A second type of bound [26] works as follows. Using d(s) = −2
∑
i
′
JiNsi − 2hN one

can rewrite Eqs. (1.4) and (1.5) as H+(s) = H−(s) + 2d(s). Therefore, we obtain the

implications

max
s1,...,sN−1

d(s) = 2
∑
i

|JiN | − 2hN ≤ 0 =⇒ H+(s) ≥ H−(s),

min
s1,...,sN−1

d(s) = −2
∑
i

|JiN | − 2hN ≥ 0 =⇒ H+(s) ≤ H−(s).
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8 Sergio Caracciolo, Alexander Hartmann, Scott Kirkpatrick and Martin Weigel

These bounds are easy to calculate and allow sometimes for omitting one of the two

branches, before any branch has to be evaluated.

Such branch-and-bound algorithms have been used, e.g., to analyze the low-

temperature landscape [27–30] of SGs. More broadly, in the field of statistical mechanics

of optimization problems [22, 23], the branch-and-bound approach has been applied to

other problems like the satisfiability problem [31] or the vertex-cover problem [32]. For

the latter, a branch-and-bound approach was used, where the variable to branch on

was not selected in a given order but determined by a local heuristic for further re-

duction of the branching tree. For simple variants of these algorithms, it has also been

possible to calculate analytically the typical running time for ensembles of random prob-

lems, which exhibit transitions between typically polynomial and typically exponential

behavior [33, 34].

1.3.2. Linear programming and cutting planes

A different approach works by translating the quadratic Hamiltonian into a linear prob-

lem. For convenience, here we consider the form of Eq. (1.2). Note that the field term

present in Eq. (1.3) can be written as a quadratic term by introducing a “ghost spin”

s0 = 1 matching the given equation.

We describe the system by a graph G = (V,E) where V denotes the set of sites

where the spins are located and E the set of edges {i, j} between the interacting sites.

For any set V ′ ⊂ V in G the cut δ(V ′) ⊂ E denotes the set of edges where one endpoint

is in V ′ and the other is not, i.e., those connecting the two sets V ′ and V \ V ′. For

each configuration, the spins can be partitioned into two sets V + = {i|si = +1} of “up”

spins and V + = {i|si = −1} = V \ V + of “down” spins. If two spins si and sj are

oriented identically, they contribute the energy −Jij = +0− Jij , while they contribute

the energy Jij = 2Jij − Jij if they are oriented differently. Thus, using the cut, we can

write

H(s) = 2
∑

{i,j}∈δ(V +)

Jij −
∑
ij

Jij . (1.9)

By introducing cij = −Jij , S =
∑
ij Jij and variables xij = 1 if {i, j} ∈ δ(V +) and

xij = 0 else, this reads

H(x) = −2
∑
i,j

cijxij − S, (1.10)

where
∑
i,j cijxij is called the weight of the cut represented by x. Therefore, since S

is only a constant, finding the minimum energy of Eq. (1.2) corresponds to finding the

maximum cut in a graph with edge weights cij . Note that Eq. (1.10) is a linear function

with integer variables, which means we have transformed the quadratic optimization

problem into a linear one, but with additional constraints since x must describe a cut.

This problem is called integer linear program.

To include the constraints describing the cut, we note that for any cycle in the graph

G the cut must be crossed an even number of times. This can be conveniently described

by linear inequalities [35] for the variables x as follows: For any cycle C ⊂ E, i.e., a path
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Simulated Annealing, Optimization, Searching for Ground States 9

that (?) starts and ends at the same vertex, and any odd cardinality subset Q ⊂ C,∑
{i,j}∈Q

xij −
∑

{i,j}∈C\Q

xij ≤ |Q| − 1 (1.11)

must hold, which defines a cut comprehensively.

The basic idea of the cutting-plane approach is now to relax the variables xij = 0, 1

to 0 ≤ xij ≤ 1 and look for a maximum of Eq. (1.10) given the linear inequalities

Eq. (1.11). The name cutting plane comes from the fact that all inequalities describe

hyper-planes which cut off one part from the space of possible solutions. The resulting

problem is called a linear program (LP). The good news is that LPs, i.e., with the relaxed

variables, can be solved [36] in worst-case polynomial time in the problem size using the

ellipsoid method. Still, in a practical context methods like the simplex approach [37] or

the dual simplex approach, which exhibit no polynomial bound, perform much faster.

Still, the bad news is that the number of inequalities is in principle exponentially large,

which would yield an exponential running time right-on. Therefore, instead of adding all

constraints immediately to the LP, one starts with no or few constraints and calculates

a first solution. Since fewer constraints than necessary are contained in the relaxed

problem, typically the obtained cut weight will be higher, i.e., an upper bound of the

true maximum cut for the integer LP. Hence, the solution obtained will typically not

correspond to a cut and not be pure integer-valued. Thus, there may be some of

the exponentially many inequalities which are violated. The second basic idea of the

cutting plane approach is to look specifically for violated inequalities, without searching

all possible ones, and add the violated ones to a growing set of inequalities included in

the LP. An exact polynomial algorithm to find violated inequalities is based on solving

a series of shortest-path problems [35], which can be done in O(N3). This is polynomial

but rather slow. Fortunately, there exist, in particular for physical lattice structures,

several heuristics which run in linear O(N) time [38] and are most of the time sufficient

to generate additional inequalities for violated conditions. If at some point no further

violated inequalities are found and the solution is fully integer-valued, a true optimum

has been found, and the algorithm stops. But if on the contrary some variables are still

non-integer, one can resort to branching as explained in the next subsection.

Nevertheless, for some combinatorial problems it has been observed that a cutting

plane approach alone may lead to a valid optimum solution of the integer problem.

For example for vertex-cover problems on Erdős–Rényi random graphs a different kind

of cycle inequalities has been considered [39]. When varying the average number c of

neighbor nodes in the graphs, a phase transition has been observed. In the thermody-

namic limit N → ∞, for small values c < c∗ = e ≈ 2.71, typically all instances can be

solved completely in a polynomial running time, while for larger values of c this is not

possible. Interestingly, this easy-hard transition coincides with the critical connectivity

where replica-symmetry breaking of the vertex-cover problem occurs [32]. At this point

a complex structure of the solution space has been observed [40], where the so-called

leaf-removal core [41] starts to percolate.

Finally, note that there is a set of cutting planes, so-called Gomory cuts [42], which

can be constructed generally for all relaxed linear problems. They are based on iden-

tifying violated inequalities directly from a given non-integer solution, actually in the
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10 Sergio Caracciolo, Alexander Hartmann, Scott Kirkpatrick and Martin Weigel

so-called tableau [36] used by the simplex algorithm to solve the LP. It is proven that

this, possibly exponentially large, set of inequalities is complete, i.e., any integer pro-

gramming problem can be solved in principle by generating just these cutting planes.

Still, in practice, any finite numerical accuracy leads to convergence problems, such

that this and many other cutting-plane approaches turned out to be actually efficient

in combination with branching, as explained next.

1.3.3. Branch-and-cut

If for a relaxed linear system describing maximum cuts the solution is still non-integer,

one considers for some variable xij 6= 0, 1 both possibilities xij = 0 and xij = 1 and

solves the corresponding sub-problems recursively. This means one branches. The

combination of these approaches is therefore called branch-and-cut [38, 43]. Note that

here several other bounds, in addition to those mentioned above, can be used. This

can be lower bounds obtained from the cut weight of any valid cut x∗ or upper bounds

obtained from suitable relaxations like the LP.

Currently, the branch-and-cut approach can be considered as the most powerful exact

algorithm to obtain GSs for hard SG instances. A publicly accessible implementation

of a branch-and-cut algorithm is the spin-glass server [44] hosted by the University of

Bonn. The server was originally implemented at the University of Cologne by several

members and collaborators of the research groups of F. Liers and M. Jünger. At the

server, you can submit SG instances as a file and, if the system is not too large, a

corresponding GS will be returned.

Branch-and-cut approaches have been applied to finite-dimensional SGs in several

occasions. To our knowledge the largest three-dimensional instances were N = 123 as

considered in a study of low-lying excitations [45].

The approach has also been applied for a mean-field random-bond Ising model,

which is a generalization of the standard SG with a variable fraction of negative bond

as controlled by a non-zero mean of the bond values. Here, a phase transition of the

typical branch-and-cut running time, as measured by the number of LPs solved, between

an easy and a hard phase has been observed near the transition between ferromagnetic

and SG behavior [46].

1.4. Ground States in Two Dimensions

We now turn to the case of ground-state problems permitting a polynomial-time solu-

tion. For the EA model of Eq. (1.2) this is the case in dimensions d < 3. Since the 1d

problem is rather trivial, the much more interesting case of this type is the EA model

in two dimensions.

A relevant mapping of the EA ground state to a minimum-weight perfect matching

(MWPM) problem on an auxiliary graph was first proposed in Ref. [47]. It is based on

the observation that frustrated plaquettes [48], i.e., elementary lattice faces including

an odd number of antiferromagntic couplings, must have an odd number of broken

bonds with Jijsisj < 0, while non-frustrated plaquettes have an even number of broken

bonds. Hence a spin configuration can be depicted as a configuration of defect lines of
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Simulated Annealing, Optimization, Searching for Ground States 11

broken bonds that start and end at frustrated plaquettes. A ground state configuration

is then a perfect pairing (matching) of frustrated plaquettes through defect lines of

minimum total weight. MWPM can be solved in polynomial time based on the blossom

algorithm [49] and its variants [50]. However, this approach is still not ideal as it

operates on the complete graph of the F frustrated plaquettes with F (F −1) edges, and

the edge weights need to be computed in a preparatory step using a suitable approach

such as Dijkstra’s algorithm [51] before attacking the matching problem. This approach

allows one to study systems of a typical maximum linear size of L ≈ 500 [52].

As was shown more recently [53, 54], an alternative mapping is significantly more

efficient as it operates on a sparse graph with similar connectivity as the original lattice.

It relies on an auxiliary graph that replaces each vertex of the dual lattice by a complete

graph K4 of four nodes, also known as Kasteleyn city. Edge weights are set to Jij for

the original edges and to zero for the internal K4 bonds. The solution of a matching

problem on this graph then corresponds to a set of closed loops on the original lattice,

separating domains of opposite spin orientations, cf. the illustration in Fig. 1.2. The

configuration of minimum weight corresponds to a ground state of the spin-glass sample.

Due to the sparsity of the auxiliary graph, significantly larger systems can be studied

with this method as compared to the one proposed in [47], and calculations for square

lattices up to L = 10,000 have been reported in Ref. [55].

A widely applied method for studying the excitations out of the ground states that

take a central role in the theory of the spin-glass phase, consists of systematic modifi-

cations of boundary conditions (BCs). It is argued that the defect energy connected to

a change from periodic to antiperiodic BCs in one direction,

Edef = |EP − EAP|, (1.12)

can act as a proxy for a typical low-energy excitation of the system [56]. Here, EP and

EAP refers to the ground-state energy for periodic and antiperiodic BCs, respectively.

Jij

Fig. 1.2. Mapping of the Ising ground-state problem to a matching problem on an auxiliary graph with
Kasteleyn cities. Left: expansion of the Ising lattice, replacing each vertex by a complete graph K4.

Edge weights in the K4 subgraphs are set to 0, the remaining weights are Jij . Middle: A minimum-

weight perfect matching on the auxiliary graph. Right: Back-transformation from the decorated graph
to the original lattice. The matching then results in a set of closed loops separating up from down

spins.
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12 Sergio Caracciolo, Alexander Hartmann, Scott Kirkpatrick and Martin Weigel

One expects that Edef scales as [57, 58],

Edef ∼ Lθ (1.13)

with the spin-stiffness exponent θ, where θ > 0 should indicate the stability of the

spin-glass phase at non-zero temperatures, while for θ < 0 the transition temperature

TSG = 0 and θ = −1/ν governs the divergence of the spin-glass correlation length as

T → TSG [59]. For Gaussian exchange couplings Jij one finds a stiffness exponent

θ ≈ −0.3 [52], with the most accurate estimate being [55],

θ = −0.2793(3). (1.14)

This is illustrated in Fig. 1.3(a) showing the scaling of defect energies over a wide range

of system sizes. The change of boundary conditions induces a domain-wall defect that

spans the system; a typical configuration of the overlap between the ground states for

periodic and antiperiodic BCs is shown in the left panel of Fig. 1.4. The boundary of

the flipped domain is a fractal curve, and the domain-wall length is hence expected to

show fractal scaling of the form

〈`〉J = A`L
df . (1.15)

As is illustrated in Fig. 1.3(b), this is indeed borne out in the data to high accuracy,

and the fractal dimension is estimated as df = 1.27319(9).

For technical reasons the matching approach can only handle samples on planar

graphs, i.e., lattices with periodic boundary conditions in at most one direction [47].

More precisely, runs for systems with fully periodic boundaries yield the same result for

periodic and for antiperiodic BCs in each of the two directions, such that the configu-

ration returned is a ground state for one out of four possible BCs. As pointed out in

Ref. [53], the approach hence effectively optimizes over BCs as well as spin variables.

To circumvent this problem and allow treatment of systems with fully periodic BCs

with the resulting smaller scaling corrections, one may use a windowing technique as

10−1

100

101 102 103 104

(a)

Gauss

PFBC

θ = −0.2793(3)〈|∆
E
|〉 J

L

100

101

102

103

104

105

106

107

101 102 103 104

(b)

Gauss

PFBC

df = 1.273 19(9)

〈`
〉 J

L

Fig. 1.3. (a) Scaling of defect energies Edef for the Gaussian EA model on the square lattice with
periodic boundaries in x direction and free boundaries in y direction. The line shows a fit of the data to
the functional form Edef = AθL

θ +Cθ/L
2 [55]. (b) Scaling of the domain-wall length between periodic

and antiperiodic BCs. The line corresponds to a fit of the functional form (1.15) to the data.
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Simulated Annealing, Optimization, Searching for Ground States 13

L

L

Fig. 1.4. Left: The domain wall separating regions of equal and opposite ground-state configurations

for a specific disorder sample considered with periodic and with antiperiodic boundaries. Right: Setup

used for the windowing technique to compute ground states for samples with fully periodic boundary
conditions.

illustrated in the right panel of Fig. 1.4: since MWPM can be used to find exact ground

states for planar graphs, in order to treat a periodic L × L system one applies it to a

square subset of edge length L− 2 (“window”) while keeping the relative orientation of

the outside spins fixed. Randomly displacing the window location over the (periodic)

lattice, repeated applications of the window optimizations lead to a quick convergence of

the result. This prescription results in a stochastic algorithm, whose success probability

can be arbitrarily improved by using m independent runs,

Ps({Jij}) = 1− [1− Pn({Jij})]m. (1.16)

Numerically, one finds that the number of required repetitions for a given success prob-

ability is independent of system size, such that the computational complexity of the

algorithm remains the same as that of the MWPM approach for planar graphs, which

scales as Lκ with κ ≈ 2.2 [55] for the Blossom V algorithm [50].

The system with bimodal couplings can also be studied with matching techniques.

Here, one finds no asymptotic decay of Edef , but a convergence to a positive limiting

value as L → ∞ [52]. While this was initially taken as evidence for a lower-critical

dimension dl = 2, it was later on realized that it is rather a signature of an additional

zero-temperature renormalization-group fixed point that is not relevant for the physics

at non-zero temperatures [60] and, instead, there is evidence for dl = 2.5 [61, 62].

A signature of this system is the extensive degeneracy of the ground state, leading to

a finite ground-state entropy. This creates a difficulty for the matching approach as

it does not pick the individual ground states with equal probabilities. In its simplest

form, it is deterministic and will hence always return the same ground state. Some

simple randomizations through changing the order of considering bonds or adding some

noise onto the couplings improve on this, but still lead to biased sampling methods [55].

Unbiased sampling can be achieved via a suitably constructed Monte Carlo sampling
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14 Sergio Caracciolo, Alexander Hartmann, Scott Kirkpatrick and Martin Weigel

technique in the ground-state manifold, thus allowing for estimates of the domain-wall

fractal dimensions and related quantities [55].

Matching techniques can also be used to sample other excitations than the domain-

wall perturbations induced by a change of boundary conditions. Different types of

droplet-shaped excitations can be studied by fixing the relative orientation of spins

through “hard” bonds [63, 64]. Also, while matching is the most widely used technique

for this problem, an alternative approach based on a calculation of the partition function

through the use of Pfaffians allows to also study finite-temperature properties exactly

and in polynomial time [65–67]. Recently, such methods have been extended to also

enable the study of correlation functions and further related properties [68–70].

1.5. The Assignment Problem

In this section we will discuss some new results for the assignment problem. In order to

define the question in its simplest version we have to consider a square matrix of size

n, W := {wij}ni,j=1, with real entries. For each permutation π in the symmetric group

Sn consider the matrix Π := {πij}ni,j=1 with entries zero or one, such that

πij = δj,π(i) =

{
1 if π(i) = j

0 elsewhere
(1.17)

and ask for a permutation of the columns of W in order to get a minimum of the trace,

that is of the Hamiltonian

H(Π,W ) := tr
(
WT ·Π

)
=

n∑
i,j=1

wijπij =

n∑
i,j=1

wijδj,π(i) =

n∑
i=1

wi,π(i). (1.18)

Without loss of generality we can take the entries of W to be nonnegative: wij ≥ 0.

Indeed, in combinatorial optimization they are usually referred to as costs. In different

words, this is the classical matching problem on the bipartite complete graph Kn,n. The

solution of the problem is a permutation π∗, with corresponding matrix Π∗(W ), that

realizes the minimum cost and brings to the determination of

H∗(W ) := min
π∈Sn

H(Π,W ) = H (Π∗(W ),W ) (1.19)

the optimal value of the total cost. The optimal solution can be seen as the ground state

of the Hamiltonian of a disordered system defined by the cost-matrix W , an analogy

which can be made useful, for example, by simulated annealing [7].

The introduction of a probability on the space of the possible costs allows the in-

vestigation of the properties of the typical solutions and the artillery from statistical

physics shows its whole power [22, 23, 71]. In their seminal works Mézard and Parisi

[72–74] (but see also [75]) could solve, by using the replica trick, the matching, the

assignment and the Travelling Salesman Problem in the case in which the entries wij
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Simulated Annealing, Optimization, Searching for Ground States 15

are independent random variables, equally distributed, with a probability distribution

density of the form

ρ(w) = wr
∞∑
k=0

ηkw
k (1.20)

with η0 6= 0. More precisely, in the asymptotic limit of an infinitely large size n, replica

symmetry is not broken, and the optimal solution is determined by the application

of the saddle-point method as the solution of an integral equation in which only the

parameter r enters. In particular

En := E [H∗(W )] ∼ n1− 1
r+1 , (1.21)

where the expectation value is taken on the possible weights and with ∼ we indicate

that both sides of the relation scale with large n in the same way so that their ratio

converges in the limit of an infinite number of points. For a recent work in which the

first finite-size corrections are reconsidered after Refs. [76, 77] and the extension to

non-integer value of the parameter r see Ref. [78].

A new class of problems arises when the vertices of the graph Kn,n are identified

with points in Ω ⊂ Rd seen as a subset of a Euclidean space. We thus have two sets of

points of cardinality n: we denote them as the red points R, respectively blue points

B, with positions xi ∈ Rd, respectively yi ∈ Rd, with i ∈ {1, . . . , n} = [n]. Then the

cost of the assignment of the i-th red point with the j-th blue point is assumed to be

a function of the Euclidean distance between the two points |xi − yj |. We shall restrict

to the cases

wij = f(|xi − yj |) = |xi − yj |p (1.22)

parametrized by the real number p ∈ R. Let us introduce the empirical probability

measures associated to the two sets of points

ρR(x) =
1

n

n∑
i=1

δ(x− xi); ρB(y) =
1

n

n∑
i=1

δ(y − yj) (1.23)

and look, for p ≥ 1, at the p-th Wasserstein (elsewhere associated to the names of Kan-

torovich and Rubinstein) distance of two probability measures, that is at the variational

problem

Wp(ρ1, ρ2) :=

(
inf

γ∈Γ(ρ1,ρ2)

∫
dx dy γ(x, y) |x− y|p

) 1
p

, (1.24)

where Γ(ρ1, ρ2) is the set of measures on Ω×Ω with marginals ρ1 and ρ2. This is nothing

but the optimal transport (or Monge–Kantorovich) problem of a unit mass distributed

according to ρ1 to a distribution ρ2 [79, 80]. A function γ(x, y) defines a transportation

plan, indeed, the marginality conditions∫
dx γ(x, y) = ρ2(y);

∫
dy γ(x, y) = ρ1(x) (1.25)

constraining the mass moved into the point y and from the point x are what is required.

In the case of the two empirical probability measures the possible transportation plans
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16 Sergio Caracciolo, Alexander Hartmann, Scott Kirkpatrick and Martin Weigel

reduce to the set of permutations and therefore their Wasserstein distance is simply

related to the optimal cost [81]

H∗(W ) = nW p
p (ρR, ρB). (1.26)

A random matrix, whose elements depend on the Euclidean distance between points

randomly distributed in space is called Euclidean. The spectra of Euclidean random

matrices have been studied in [82].

In order to fix the ideas, let us consider the case in which Ω = [0, 1]d, periodic

boundary conditions are chosen, so that we are really on a torus of unit volume and the

positions of red and blue points are taken at random with flat probability. A natural

length scale is therefore n−
1
d and one can simply assume that for each red point there

is at least a blue point to match in a ball of radius of order n−
1
d , so that we can guess

that

En ∼ n1− p
d . (1.27)

But it is well known [83] that this can be true only in d ≥ 2. It was proven that in d = 2

En ∼ n
(

log n

n

) p
2

, (1.28)

i.e., a logarithmic violation appears. A much more detailed analysis is possible in

d = 1 [84] where an intriguing relation with Brownian processes is explored [85]. It is

shown that, for a generic distribution probability ρ with cumulative Φ, the average total

cost is

En = n1− p
2

2p√
π

Γ

(
p+ 1

2

)∫ 1

0

dx
[Φ(x)(1− Φ(x))]

p
2

ρp−1(x)
+ o(n−

p
2 ) (1.29)

at least when the integral is convergent. Otherwise an anomalous scaling emerges [86].

In the case of open boundary conditions, with flat distribution, the average cost can be

evaluated even for finite size by means of Selberg integrals [87]

En = n
Γ
(
1 + p

2

)
p+ 1

Γ(n+ 1)

Γ
(
n+ 1 + p

2

). (1.30)

Also the case p 6 0 has been studied [88], where, instead, for flat distribution

lim
n→∞

En
n

=
1

2p
. (1.31)

When 0 < p < 1 the cost function becomes concave. In [89] it is argued that

En ∼


n1−p for 0 < p < 1

2 ,√
n log n for p = 1

2 ,√
n for 1

2 < p < 1,

(1.32)

so that a change in the phase diagram occurs at p = 1
2 .

An amusing exact result has been obtained for the flat distribution in d = 2 for the

particular value p = 2, in [90, 91], that is

lim
n→∞

En
log n

=
1

2π
. (1.33)
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This has been rigorously proven in Ref. [92] (see also Ref. [93] for improvements). Let us

follow the field theoretic approach introduced in Ref. [94] and let us introduce the vector

transport field µ(x) which joins the red point in x to the blue point in y = x+µ(x) and

consider the Lagrangian

L[µ, φ] :=
1

2

∫
µ2(x)ρR(dx) +

∫
[φ(x+ µ(x))ρR(dx)− φ(x)ρB(dx)] (1.34)

to be minimized, where the scalar field φ(x) is a Lagrangian multiplier which implements

a matching between blue and red points. In the limit of a large number of points n, when

the red and blue points are extracted with the same distribution ρ so that δρ := ρR−ρB
and the optimal µ goes to zero and we expect a good approximation by using the only

the quadratic terms in the Lagrangian, that is

L[µ, φ] :=

∫ [
1

2
µ2(x) + µ(x) · ∇φ(x)ρ(dx)

]
+

∫
φ(x)δρ(dx), (1.35)

which has Euler–Lagrangian equations

µ = −∇φ , ∇ · [ρµ] = δρ , (1.36)

revealing a strict analogy with an electrostatic problem where µ plays the role of the

electric field, φ is the scalar potential and indeed is the Lagrangian multiplier which

implements the Gauss law, red and blue points have opposite unit charge, being null

the total charge, while ρ is the dielectric function of a linear dielectric medium. As a

consequence

−∇ · [ρ∇φ] = ρ (1.37)

is solved by means of the classical Green’s function Gρ(x, y) of the operator −∇· [ρ∇•],
so that an explicit approximate solution at fixed disorder is given by

µ(x) =

∫
∇xGρ(x, y) δρ(dy). (1.38)

After averaging over disorder, in the simple case of a flat measure (see Ref. [95] for the

non-constant case) we get

lim
n→∞

En(Ω) = −2 tr ∆−1
Ω , (1.39)

where the Laplacian ∆Ω is defined on the domain Ω. This formula is correct in d = 1 but

it simply provides a divergence on both sides for d > 1. It is an ultraviolet divergence

which has been introduced by the linearization in the infinite number of modes, but the

approximation cannot be true at very short distances. In the exact non-linear theory

higher modes are cut off and we expect that

En(Ω) = 2

∫ ∞
0+

F
(
λ
n

)
λ

dNΩ(λ), (1.40)

where NΩ(λ) is number of the eigenvalue less than λ for the Laplace operator and the

unknown function F interpolates between 1 for λ . n and 0 for λ & n.
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By the Weyl law [96] on the asymptotics of the eigenvalue counting function for the

Laplace–Beltrami operator we know that, for a 2d manifold with unit volume (under

Neumann boundary conditions which are appropriate for our problem)

NΩ(λ) =
1

4π

(
λ+
√
λ |∂Ω|

)
+ o

(√
λ
)
. (1.41)

In d = 2 it is easy now to evaluate the leading logarithmic singularity in the number of

points and in agreement with Ref. [97] we expect that

En(Ω) =
1

2π
log n+ 2c∗(n) + 2cΩ + o(1), (1.42)

where c∗(n) = O(log n) is a universal function not depending on Ω. As a further

consequence,

lim
n→∞

[En(Ω)− En(Ω′)] = 2 lim
n→∞

∫ ∞
0+

F
(
λ
n

)
λ

[dNΩ(λ)− dNΩ′(λ)], (1.43)

but the r.h.s. is convergent even in the absence of regularization thus

lim
n→∞

[En(Ω)− En(Ω′)] = 2

∫ ∞
0+

dNΩ(λ)− dNΩ′(λ)

λ
, (1.44)

an expression that has been tested in Ref. [98] on various 2d manifolds, by using both

the Green’s function method as other classical tools as the Dedekind’s limit formulas,

thus confirming the predictions of the field theoretic approach.

For a similar method applied to a more general context see Refs. [99–101].

Once more this relatively simple combinatorial optimization problem is revealing

intriguing and fruitful connections with so many different research fields.
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[8] V. Černỳ, Journal of optimization theory and applications. 45(1), 41–51, (1985).
[9] K. G. Wilson. Personal communication to Scott Kirkpatrick, (1990).

[10] B. Selman. The next generation of automated reasoning methods, (2021). Slides of lecture
CS6700 at Cornell University.
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