
The frustrated Ising model on the honeycomb lattice: Metastability and universality

Denis Gessert,1, 2 Martin Weigel,3 and Wolfhard Janke2

1Centre for Fluid and Complex Systems, Coventry University, Coventry, CV1 5FB, United Kingdom
2Institut für Theoretische Physik, Universität Leipzig, IPF 231101, 04081 Leipzig, Germany

3Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
(Dated: September 4, 2025)

We study the Ising model with competing ferromagnetic nearest- and antiferromagnetic next-
nearest-neighbor interactions of strengths J1 > 0 and J2 < 0, respectively, on the honeycomb
lattice. For J2 > −J1/4 it has a ferromagnetic ground state, and previous work has shown that
at least for J2 ≳ −0.2J1 the transition is in the Ising universality class. For even lower J2 some
indicators pointing towards a first-order transition were reported. By utilizing population annealing
Monte Carlo simulations together with a rejection-free and adaptive update, we can equilibrate
systems with J2 as low as −0.23J1. By means of a finite-size scaling analysis we show that the
system undergoes a second-order phase transition within the Ising universality class at least down
to J2 = −0.23J1 and, most likely, for all J2 > −J1/4. As we show here, there exist very long-
lived metastable states in this system explaining the first-order like behavior seen in only partially
equilibrated systems.

I. INTRODUCTION

Frustrated systems [1] often exhibit rather rich critical
behavior such as reentrant phases [2] or a large ground-
state degeneracy [3], as well as complex dynamical behav-
ior including, e.g., slow relaxation and aging [4]. Frus-
tration itself may be a key ingredient for the occurrence
of self-organized complexity in biological systems [5–7].
Thus, understanding the physics of frustrated systems is
of fundamental interest. One of the simplest models of
such behavior is the classical spin-1/2 Ising model with
competing ferromagnetic nearest-neighbor (nn) interac-
tions of strength J1 > 0 and anti-ferromagnetic next-
nearest-neighbor (nnn) interactions of strength J2 < 0.
This model has been studied extensively [8–14] for the
case of the square lattice, and it is overall well under-
stood, although the debate on some questions remains
ongoing [15–17].

More recently, the same model on the honeycomb lat-
tice has attracted some attention [18–24]. Unlike in non-
frustrated spin systems, the lattice geometry plays a vital
role for the level of frustration present, and therefore af-
fects the macroscopic behavior of the system. This is
illustrated by the textbook example of the antiferromag-
netic nn Ising model on square and triangular lattices,
respectively. The former maps to the ferromagnetic Ising
model by a simple transformation, whereas the latter re-
mains disordered at all temperatures and has a nonzero
ground-state entropy per spin [25]. In fact, precisely this
example illustrates the reason why the behavior of the
J1-J2 Ising model is expected to be different on the hon-
eycomb lattice: On the square lattice, the nnn bonds
form square lattices, whereas on a honeycomb lattice they
form two triangular lattices. Thus, different phenomena
may be anticipated for this case, particularly for strong
antiferromagnetic nnn interactions.

The structure of the ground states in the honeycomb
system depends on the relative strength of J1 and J2 [26].
For J2 > −|J1|/4, depending on the sign of J1, the system

either has a ferromagnetically ordered or a Néel-ordered
ground state, whereas for J2 < −|J1|/4 the ground-state
manifold is highly degenerate. As is the case on the
square lattice, a simple transformation maps negative J1
to positive ones (and vice-versa). Only quite recently
the model was first studied for non-zero temperatures by
Bobák et al. [18]. For J2 > −|J1|/4, using an effective-
field theory (EFT) of clusters of different sizes they
find evidence of a tricritical point separating a region of
second-order transitions for −0.1 ≲ J2/|J1| ≤ 0 from one
with first-order transitions for −0.25 < J2/|J1| ≲ −0.1.
One of the authors of Ref. [18] subsequently carried out
a Monte Carlo (MC) simulation study [20] in which no
tricritical point was observed. Instead it showed that
the transition remains of second order and within the
Ising universality class at least for J2/|J1| ≥ −0.2. For
even lower values of J2 simulations showed hysteresis
upon cooling and heating owed to a dramatic increase
of the autocorrelation times. This increased range of
the second-order regime as compared to that of Ref. [18]
is supported by a cluster mean-field study [21] which
finds only second-order signals for the entire range of
−0.25 < J2/|J1| ≤ 0. We recently presented some Monte
Carlo results of the scaling of the partition function ze-
ros [24], which indicated that the system remains in the
Ising universality class at least for J2/|J1| ≥ −0.22. For
J2/|J1| < −1/4, on the other hand, it appears unclear
whether there is a phase transition at all. Specific-heat
peaks are suggestive of some sort of transition [27], and
due to the extremely slow relaxation it has been ar-
gued that the system shows signs of spin-glass-like or-
dering [19]. Results of machine learning studies [22, 23]
were interpreted as suggestive of two distinct phases seen
for small system sizes, hence indicative of the existence
of a phase transition.

In the present work, however, we focus on the range
in J2 with long-range order at T = 0, i.e., J2/|J1| ∈
(−1/4, 0]. As one approaches J2 ↘ −0.25|J1|, stan-
dard Monte Carlo techniques such as the Metropolis al-
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gorithm are found to be increasingly inefficient due to
two effects: First, the introduction of the antiferromag-
netic nnn interaction gives rise to local energy minima
that simulations tend to get trapped in. Second, as J2
is lowered the transition temperature decreases, which
translates into low acceptance rates that are further re-
ducing the efficacy of the Metropolis algorithm. For the
present study we use the population annealing [28] frame-
work which is well-suited for systems with rough free-
energy landscapes [29], and which has excellent parallel
efficiency [30]. To avoid the problem of low acceptance
rates, we resort to using the rejection-free n-fold way al-
gorithm as local update [31]. With this computational
setup we manage to equilibrate systems with J2 as low
as −0.23|J1| for a range of system sizes which are way
out of reach of simple Metropolis simulations. Employing
a finite-size scaling (FSS) analysis we determine critical
temperatures and exponents, which for all the considered
values of J2 are compatible with the Onsager exponents
of the regular two-dimensional Ising model.

The rest of the paper is organized as follows. The
model, simulation details and measured observables are
summarized in Sec. II. In Sec. III we introduce the PA
algorithm, as well as the adaptations proposed here, and
we provide the used simulation parameters. Our results
are presented in Sec. IV, and a conclusion is provided in
Sec. V.

II. MODEL AND OBSERVABLES

A. Model

In this work we study the two-dimensional J1-J2 Ising
model on the honeycomb lattice (see Fig. 1), employ-
ing periodic boundary conditions. In the absence of an
external magnetic field this model is described by the
Hamiltonian

H = −J1
∑
⟨ij⟩

σiσj − J2
∑
[ik]

σiσk, (1)

where σi ∈ {−1, 1} are the spin variables. The first sum
is over the nearest-neighbor pairs ⟨ij⟩ and the second
sum relates to next-nearest neighbors [ik]. We choose
J1 = 1 > 0 and kB = 1 to fix units and consider various
0 > J2 ∈ (−1/4, 0].

The ferromagnetic nn and antiferromagnetic nnn in-
teractions compete with each other, and hence induce
frustration, i.e., not all interactions can be satisfied si-
multaneously. For J2 > −1/4 the ground state consists of
all spins aligned with energy per spin eFM = − 3

2 (1+2J2).
For stronger antiferromagnetic nnn interactions J2 <
−1/4 the model exhibits a peculiar striped ground state
with eS = − 1

2 (1 − 2J2). This state satisfies two out of
three nn and four out of six nnn interactions [18]. In
such states certain lines of spins can be flipped at no en-
ergetic cost, giving rise to a largely degenerate ground

FIG. 1. Ising model on a honeycomb lattice. Black circles
represent spin sites, solid (resp. dashed) lines nearest-neighbor
(resp. next-nearest-neighbor) interactions.

state [19, 27]. Specifically, these states can be mapped to
one-dimensional random walks and their degeneracy on
a system of edge length L is at least 2L [32].

B. Observables

To study the critical behavior of the system, we con-
sider various thermodynamic observables. Specifically,
from the purely energetic quantities we measure the
energy per spin, e = ⟨H⟩/N , and the specific heat,
CV =

(
⟨H2⟩ − ⟨H⟩2

)
/NT 2. Here, T denotes the temper-

ature and N = 2L2 is the number of spins. The purely
magnetic quantities considered are the magnetization per

spin, m = ⟨|M |⟩/N = ⟨
∣∣∣∑N

l=1 σl

∣∣∣⟩/N , and the magnetic

susceptibility. Here, we use both the (connected) mag-
netic susceptibility χ = (⟨M2⟩ − ⟨|M |⟩2)/NT , and the
high-temperature (disconnected) magnetic susceptibility
χ′ = ⟨M2⟩/NT . Additionally, we consider the mixed
quantities,

d|m| ≡ ∂

∂β
⟨|m|⟩ = ⟨|m|⟩⟨H⟩ − ⟨|m|H⟩, (2)

and

dln |m| ≡ ∂

∂β
ln⟨|m|⟩ = ⟨H⟩ − ⟨|m|H⟩

⟨|m|⟩
, (3)

with β = 1/T being the inverse temperature.

For these quantities we expect the following finite-size
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scaling (FSS) behavior [33]:

Cmax
V = c0 + c1 lnL, (4a)

χmax ∝ Lγ/ν , (4b)

χ′(βc) ∝ Lγ/ν , (4c)

d ln |m|max ∝ L1/ν , (4d)

d|m|max ∝ L(1−β)/ν , (4e)

m(β(dln |m|)
max ) ∝ L−β/ν , (4f)

m(βc) ∝ L−β/ν , (4g)

where the subscript “max” denotes the peak height of

the corresponding quantity and βc and β
(O)
max are the

infinite-volume inverse critical temperature and the pseu-
docritical inverse temperature of the thermodynamic ob-
servable O, respectively. To find βc we use the fitting
ansatz [34]

β(O)
max(L) = βc − aL−1/ν − bL−2/ν +O(L−ω−1/ν) (5)

for different observablesO. Note that the correction term
with the confluent correction exponent ω is subleading
for any ω > 1/ν. Hence, since ν is expected to be close
to one, and ω to be larger than one, we drop this term.
Subsequently, we obtain the critical exponents β, γ, and
ν. Equation (4a) represents a logarithmic divergence of
the specific heat in the critical regime. Note that this
corresponds to the case of the 2D Ising universality class,
where α = 0.

III. ALGORITHM AND SIMULATION DETAILS

A. Population annealing

Population annealing (PA) is an algorithmic frame-
work in which a population of replicas is sequentially
cooled while using independent Markov chain Monte
Carlo (MCMC) moves at each temperature followed by
a population control step [28, 30, 35, 36]. The algorithm
can be summarized as follows:

1. Initialize a population of R0 = R replicas at the
initial inverse temperature β0 = 0. In some cases a
non-zero inverse temperature has to be chosen [37].
Set iteration counter i← 0.

2. Repeat the following steps until the final inverse
temperature is reached, i.e., until βi ≥ βf :

(a) Calculate the (normalized) Boltzmann
weights for each replica k with energy Ek, i.e.,

wi+1(Ek) = e−∆βEk/
∑Ri

j=1 e
−∆βEj , where

∆β := βi+1 − βi is the inverse temperature
step and Ri the population size at βi.

(b) Resample the population according to these
weights wi+1(Ek), that is, create on average
τi+1(Ek) = R0wi+1(Ek) copies of replica k.

(c) Increment the iteration counter, i← i+ 1.

(d) Perform θ MCMC sweeps (MCS) (or alterna-
tive updates, e.g., for molecular dynamics, see
Ref. [37]) on each replica.

(e) Calculate estimates for thermal expectation
values of observables O through population
averages, i.e.,

⟨O⟩ ≈ O =
1

Ri

Ri∑
k=1

Ok, (6)

where ⟨. . . ⟩ denotes an expectation value at
βi. Note that observable O has to be a con-
figurational quantity [38] that can be calcu-
lated for a single configuration such as mo-
ments of the energy or magnetization. Esti-
mators for quantities such as CV and χ can
be constructed from combinations of configu-
rational estimators.

We choose a population size of R = 20 000 through-
out. The resampling step 2(b) is realized by the nearest-
integer resampling method given by

Pτk(rk = j) =


τk − ⌊τk⌋ if j = ⌊τk⌋+ 1

1− (τk − ⌊τk⌋) if j = ⌊τk⌋
0 else

, (7)

where the floor function ⌊x⌋ denotes the largest inte-
ger smaller than or equal to x. As we have shown re-
cently [39], this algorithm is the preferred resampling
method for PA when allowing the population size to fluc-
tuate around its target size. As for the annealing sched-
ule, we choose the temperatures adaptively by aiming for
constant energy-histogram overlap between two consec-
utive inverse temperatures βi and βi+1 = βi + ∆β as
suggested by Barash et al. [30]. The histogram overlap
is estimated as

α(∆β) =
1

Ri

Ri∑
k=1

min

(
1,

R0

Ri

exp(−∆βEk)∑Ri

j=1 e
−∆βEj

)
. (8)

By means of numerical root finding, we choose ∆β such
that α(∆β) ≈ α∗ with α∗ = 0.8. As for the choice of θ,
the general advice [36] is to choose it large enough such
that a sufficient degree of equilibration is attained. In the
past, θ was usually chosen constant throughout the sim-
ulation or temperature-dependent, but fixed prior to the
simulation (see for example in Ref. [40]). Recently, two
of us [36] proposed to also choose θ adaptively, similarly
to how temperature steps are chosen adaptively. We here
implement this adaptive equilibration, see Sec. IIID.

B. Family quantities, correlation, and population
annealing performance

Throughout the anneal, the PA performance is mon-
itored by tracking the families of replicas, and related
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quantities [29]. At βi, a family refers to a group of
replicas that descend from the same replica at β0. As
replicas may be culled during resampling, the number of
non-empty families f is a monotonously decreasing func-
tion of β, and the typical size of such a family increases
with β. By construction, replicas from different fami-
lies are uncorrelated. Thus, the family size indicates the
maximal correlation within the population. One way to
quantify the size of families is via the replica-averaged
family size [29, 39]

ρt(i) =
1

Ri

R0∑
k=1

N2
i,k, (9)

where Ni,k is the number of replicas descending from the
initial replica k in the i-th annealing step at β = βi.
When a PA simulation fails to equilibrate, ρt typically
increases rapidly. Particularly, when ρt reaches the size
of the population, that is when all replicas have the same
ancestor and there is only one family left, PA results most
likely are no longer reliable.

An alternative way to monitor PA performance is
through the effective population size Reff(O). For a (con-
figurational) observable O [38] the effective population
size Reff(O) is defined as follows [36],

Reff(O) =
σ2(O)
σ2
Ri
(O)

, (10)

where σ2(O) is the variance of the observable O and
σ2
Ri
(O) is the variance of its mean. The first is easily

calculated, and the latter can be obtained through bin-
ning [41], i.e.,

σ̂2
Ri
(O) = 1

n(n− 1)

n∑
k=1

(
O(n)

k −O
)2

, (11)

where the n blocks are chosen sufficiently large to be ef-

fectively uncorrelated, and O(n)
k is the mean of the k-th

block. A decrease in Reff(O) may indicate that a PA
simulation is falling out of equilibrium. As will be dis-
cussed in Sec. IIID, we useReff(E) for our adaptive sweep
protocol, making sure that this quantity remains almost
constant when using this approach.

C. Rejection-free PA

Next, we replace the most natural choice of the equi-
libration routine [step 2(d) in the PA algorithm intro-
duced in Sec. III A], i.e., the Metropolis algorithm, by
the rejection-free n-fold way update [31]. For the present
model one has n = (3+ 1)× (6+ 1)× 2 = 56 spin classes
(3 nn, 6 nnn, and 2 local spin values). In a first attempt
one might be tempted to perform nf rejection-free up-
dates per site for each replica, implying that each copy
ends at a different Metropolis time. As is easily seen,
however, this introduces systematic errors particularly at

low temperatures [42]. In contrast, when averaging at a
fixed Monte Carlo time (as would be the case when using
the Metropolis method) the time step ∆t is accounted for
and the obtained estimates are unbiased. In practice, at
first nf spin flips per site are carried out, such that each
replica k arrives at a Metropolis time tk. We then deter-
mine t̂ = maxk tk and run each replica until it reaches t̂.
This removes the bias, but comes at the cost of reduc-
ing the effective level of parallelism as compared to the
Metropolis method, as in the worst case all replicas will
need to wait for a single replica to reach t̂.
To summarize, in rejection-free PA one execution of

the equilibration routine consists of the steps:

1. Perform nf n-fold way spin updates per site.

2. Calculate t̂ = maxk tk.

3. Perform n-fold way spin updates until every replica
has reached time t̂.

After completing this update, observables are measured
as ensemble averages as in the original algorithm. At high
temperatures this corresponds to of the order of nf MCS
whereas at low temperatures it is equivalent to orders of
magnitudes more MCS (see Fig. 6 below).

D. Adaptive sweep schedule

Ideally, the number of performed sweeps should just
be large enough to equilibrate and decorrelate the pop-
ulation at each temperature. Too small θ will cause the
simulation to pick up systematic errors and too large θ
will increase the required computational resources with-
out improving the obtained statistics. While it could be
somewhat difficult to measure the level of equilibration,
we can quite conveniently measure the level of correla-
tion in the population through the effective population
size Reff(O) defined in Eq. (10).
Under the assumption that a high degree of decorre-

lation is linked to good equilibration, we can define a
minimal effective population size Rmin

eff that the popula-
tion should have before proceeding to the next tempera-
ture. In practice, we repeat the equilibration routine un-
til Reff(O) is at least Rmin

eff (βi) = γ∗Ri where γ∗ (similar
to α∗) is a constant smaller than one, which we here se-
lected to be 0.9. If the observable O was chosen to be the
magnetization M , then Reff(M) would (using Metropo-
lis or n-fold way updates) almost surely not reach the
target effective population size below the critical tem-
perature due to dynamic ergodicity breaking [36]. We
hence choose the energy E as the relevant observable O.
Note, that in the above description the number of

sweeps necessary is unbounded and thus if the decorre-
lating effect of the equilibration routine fails to meet the
target criterion, the entire simulation will fail to proceed.
In a more general setting one should therefore define a
cut-off criterion (such as a maximal number of updates
or wall-clock time). However, in our case thanks to the
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combination with rejection-free updates, we did not run
into a situation where the adaptive approach spent more
time at a temperature than we were willing to allow.
Also note that for systems with broken ergodicity this ap-
proach is unlikely to be useful, and that for such cases an
alternative adaptive sweep protocol using the “restricted
autocorrelation time” has been proposed [43].

E. Simulation details

Rejection-free PA – We implemented rejection-free PA
by means of parallel CPU code using the OpenMP inter-
face running on single compute nodes. Our implemen-
tation of the PA framework is based on the open source
code provided by the authors of Ref. [44]. As the n-fold
way update algorithm is inherently difficult to parallelize,
we employ one thread per replica. We use R = 20 000 as
population size, and an adaptive cooling protocol with
a target histogram overlap α∗ = 0.8. When the num-
ber of sweeps is chosen adaptively, we target an effective
population size Reff(E)/Ri = γ∗ = 0.9. Otherwise, nf is
chosen constant throughout one simulation and as large
as necessary or as large as feasible (whichever is lower).
We use the nearest-integer resampling method [39] in
step 2(b) of the PA algorithm.

Metropolis PA – As a baseline comparison for the pro-
posed adaptive n-fold way PA algorithm we employ a
graphics processing unit (GPU) implementation of the
PA framework based on the code provided in Ref. [30].
In addition to the parallelism on the replica-level also
present in rejection-free PA, the Metropolis algorithm is
parallelized by means of a domain decomposition into
4 sublattices (see Appendix B). This highly parallel set-
ting is particularly well-suited for the execution on GPUs.
Also here, we use a population size of R = 20 000 and the
same adaptive temperature protocol. Again, we use the
nearest-integer resampling method in step 2(b).

IV. RESULTS

A. Overview

Figure 2 shows the phase diagram of the system (1)
with J1 = 1 in the J2−T plane for J2 ≥ −1/4, for which
the system undergoes a transition from paramagnetically
disordered (P) at high temperatures to ferromagnetically
ordered (FM) at low temperatures. In the absence of
nnn interactions, i.e., J2 = 0, clearly the transition is
that of the nn Ising model on the honeycomb lattice in
the Ising universality class, and its critical temperature
is exactly known, viz. Tc = 2/ ln(2+

√
3) [45]. By adding

the antiferromagnetic nnn interaction and increasing its
strength, the transition temperature is lowered and van-
ishes as J2 ↘ −0.25. At least for J2 ≥ −0.2, previous
results [20] are consistent with the transition remaining
within the Ising universality class.

0.0

0.5

1.0

1.5

2.0

2.5

-0.25 -0.20 -0.15 -0.10 -0.05 0.00

P

FM

T

J2

pseudo-Tc (this work)
Ref. [24]
Tc (exact)
EFT (n = 1), Ref. [18]
EFT (n = 2), Ref. [18]
EFT (n = 6), Ref. [18]
exact enum., L = 4
Ref. [20]

FIG. 2. Phase diagram in the J2 −T plane. The square sym-
bols correspond to the pseudocritical temperature obtained
from the peak locations of the specific heat for L = 48 sys-
tems. Triangles denote the exactly known values for J2 = 0
and J2 = −1/4. The solid colored lines show effective-field
theory (EFT) approximations for various cluster sizes n from
Ref. [18], with the endpoints indicating the predicted tricriti-
cal locations. The black solid line shows exact pseudocritical
points for an L = 4 system obtained by exact enumeration.
Blue circles show previous MC results from Ref. [20]. Green
diamonds denote FSS extrapolations for Tc from our previous
work in Ref. [24] using MC data. The dashed line is merely
a guide to the eye. Note that the EFT lines for n > 1 do not
exist below a certain value of J2, where they (erroneously)
predict a tricritical point.

Both our estimates (squares) and those from Ref. [20]
(circles) are obtained through the locations of the
specific-heat peaks for L = 48. For J2 = −0.1, −0.2,
−0.21, and −0.22 we also show the estimates for Tc of
our recent work based on the analysis of partition func-
tion zeros as reported in Ref. [24], which are only slightly
lower than these pseudocritical temperatures. Our re-
sults of the present work (obtained from rejection-free PA
simulations with adaptive sweep schedules) are in very
good agreement with previous data. The simulations of
Ref. [20] failed to equilibrate for J2 < −0.2 due to very
long relaxation times. In Ref. [24], we employed PA with
the same adaptive sweep protocol as in the present study,
however, using the Metropolis update. This approach
was already for J2 = −0.22 quite costly, and failed for
even lower values. Here, we can equilibrate J2 ≥ −0.23
thanks to the rejection-free Monte Carlo updates [31] (see
Sec. III C). By means of FSS (see Sec. IVC) we show
that also for −0.23 ≤ J2 < −0.2 the critical exponents
are consistent with the Ising ones.

For comparison, the estimates of the critical temper-
ature from an EFT study [18] with varying cluster sizes
n are also included. Only when single-spin clusters are
used, the method predicts a second-order transition on
the full range of J2 > −0.25, and otherwise lines end in a
tricritical point (indicated by a point), which appears to
move towards lower J2 as n increases. Thus, using larger
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FIG. 3. Equilibrium snapshots at the inverse temperature β = 0.6βc for L = 64, and (a) J2 = 0, (b) J2 = −0.1, (c) J2 = −0.2,
and (d) J2 = −0.23. In (c) and (d), for J2 close to −1/4, the structures appear much more stable, consistent with the observed
metastability and slow relaxation at these values of J2.

clusters might yield a picture consistent with a much
larger region with a second-order transition [20, 21, 24].
In fact, this behavior is somewhat different from the anal-
ogous model on the square lattice: there, even for single-
spin clusters an EFT approximation predicts a tricritical
point on either side of the special point J∗

2 = −0.5 [46, 47]
which, however, also comes closer to J∗

2 as the cluster size
is increased [48, 49].

For even smaller values of J2, also our rejection-free
approach fails. Therefore, exact enumeration for a very
small system of 4 × 4 hexagons (corresponding to a 32
spin system) was carried out, and the specific-heat peak
locations were determined (black solid line). For this
small system the peak location smoothly approaches zero
temperature as J2 ↘ −0.25, which may indicate that this
is also the case in the thermodynamic limit.

One reason for the slow relaxation of the Metropolis
dynamics for lower values of J2 is that the transition takes
place at a low temperature: assuming typical ∆E’s to be
of the same order as for other J2, this results in small
acceptance rates, and therefore unavoidably in slower dy-
namics. This effect is reduced by using the rejection-free
update (see Sec. III C). A slightly more subtle effect also
contributing to this slow relaxation is that paramagnetic
structures formed at the same value of β/βc are more sta-
ble for lower values of J2; see Fig. 3 showing configuration
snapshots for J2 = 0,−0.1,−0.2, and −0.23 for β = 0.6βc.
While the configurations in (a) and (b) are very noisy,
(c) and (d) show a clear domain picture with smooth
boundaries. Using single spin-flip dynamics, overturning
such domains is only possible by passing through con-
figurations of much higher energy, rendering these states
rather stable (albeit only metastable below the critical
temperature). The reason why also the rejection-free ap-
proach fails to overturn these domains for low enough
values of J2, is that it “flickers” between various excited
states, that is, one effectively stays in the same subset
of spin configurations for a long time. This is illustrated
using the example of a single overturned hexagon later
in Sec. IVD.

B. Effect of the update and sweep schedule on
equilibration

In the following, we present data of PA simulations for
systems with L = 48 using i) the Metropolis algorithm
with a fixed number of sweeps, ii) the n-fold way update
using a fixed number of spin flips before time synchro-
nization, and iii) the n-fold way update with an adaptive
number of sweeps. In the first case we encountered severe
difficulties in equilibrating simulations. This problem is
significantly reduced by using the rejection-free update
instead. Finally, the level of equilibration is further im-
proved by deploying the adaptive sweep protocol.
Starting with data from PA simulations using the

Metropolis update, Fig. 4 shows the magnetization and
replica-averaged family size obtained from PA simula-
tions with θ = 2000 sweeps per replica at each temper-
ature for all J2 (except for J2 = 0, where θ = 500 is
quite sufficient). As physically expected, the magneti-
zation per spin (shown in the top panel) is close to one
(zero) below (above) the transition temperature, which
decreases as J2 ↘ −0.25. This is seen for all shown
J2 with the exception of J2 = −0.23. In this case the
simulation does not reach a fully magnetized state at low
temperatures, which indicates that it failed to equilibrate
there.
A useful way to detect a failed PA simulation is by

considering the replica-averaged family size ρt. Here, for
J2 = −0.23 the value of ρt at the lowest temperature is
equal to the population size R = 20 000, which is indica-
tive of a PA simulation which failed to equilibrate. The
same is observed for J2 = −0.22, despite still reaching
the ferromagnetic ground state (hence this is a marginal
case). A closer look (and in particular a comparison with
the better equilibrated n-fold way data in Fig. 5 below),
however, indeed reveals that for magnetizations larger
than m ≈ 0.5 − 0.6 the Metropolis data for J2 = −0.22
are not reliable. Also for J2 ∈ {−0.2,−0.21} a sharp
increase in ρt is seen near criticality. In these cases, how-
ever, the final value of ρt is still well below the population
size. For the remaining J2, ρt monotonously increases
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FIG. 4. Results from PA simulations using Metropolis up-
dates with θ = 2000 (resp. θ = 500 for J2 = 0) and L = 48.
Top panel: Magnetization per spin m for various coupling
strengths. For J2 ≳ −0.2 we obtain good agreement with the
rejection-free data (not shown here). For J2 < −0.22 the sim-
ulations fail to reach the fully ordered state at low temper-
atures. Bottom panel: Replica-averaged family size ρt. As
expected [29] ρt is monotonously increasing during the an-
nealing process with decreasing temperature. The failure to
equilibrate for J2 < −0.2 is reflected in a sharp increase in ρt
near the corresponding critical temperatures Tc for J2 ≤ −0.2.

with decreasing temperature and no sharp increase at Tc

is visible, as would be expected when θ is larger than the
autocorrelation time [39].

In contrast, when using rejection-free PA, the ferro-
magnetic ground state is reached for all J2 considered
above (see Fig. 5). In this case, we do not use the adap-
tive sweep schedule yet, but fix nf = 500, that is for
each replica 500 spin flips per site were carried out before
running further updates to synchronize the Metropolis
times of all replicas (see Sec. III C). Jumps in the energy
curve [20], or kinks in the specific heat and magnetic
susceptibility which we observed in less well equilibrated
simulations are absent here.

The reason why the rejection-free approach improves
equilibration is readily understood by considering the
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FIG. 5. Overview over the thermodynamic quanti-
ties measured as functions of temperature for J2 ∈
{−0.2,−0.21,−0.22,−0.23} for a system of linear size L = 48
from PA simulations using n-fold way updates. Top left: En-
ergy per spin (dashed lines correspond to the ground-state
energy), Top right: Magnetization per spin. Bottom left:
Specific heat. Bottom right: Magnetic susceptibility.

Metropolis acceptance rates pacc as a function of inverse
temperature β, which across the critical regime decrease
at least exponentially in β before reaching the asymptotic
behavior pacc = exp(−(6+12J2)β) for large β (top panel
in Fig. 6). The colored, shaded areas indicate the criti-
cal regimes for the different J2. Whereas for J2 = −0.21
still 1 in 100 spin flip attempts is accepted, it is only 1 in
5000 for J2 = −0.23, rendering the 2000 sweeps per tem-
perature from the Metropolis PA simulations discussed
above much too few to decorrelate spin configurations
between temperature steps. In fact, 1/pacc is directly
proportional to the computational speed-up achieved by
using the rejection-free approach as opposed to normal
Metropolis. Note that the shown acceptance rates were
obtained already using the adaptive sweep schedule (see
Sec. IIID). (Since the acceptance probability is a ther-
modynamic observable, it is agnostic to the choice of the
sweep schedule.)

The bottom panel of Fig. 6 shows for J2 = −0.23 the
number of n-fold way flips carried out per site and tem-
perature, as well as the equivalent number of spin-flip
attempts in the Metropolis scheme using the same simu-
lation data as in the top panel. Specifically, the adap-
tive sweep criterion of Reff(E) > 0.9Ri was imposed.
As one can see, for small β only very few flips are re-
quired to decorrelate the replicas (25 was chosen as a
lower bound), whereas for β ≈ 5 and higher many more
flips are required. The adaptive sweep criterion has two
benefits: On the one hand, the simulation quickly passes
through the easily-to-equilibrate high temperatures, and
on the other hand, most time is spent in the much harder-
to-equilibrate critical regime and at lower temperatures.
Note also that the adaptively chosen temperatures (us-
ing α∗ = 0.8) are denser in the critical region (indicated
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FIG. 6. Demonstration of efficacy of rejection-free PA with an
adaptive number of sweeps at each temperature using L = 48.
Top panel: Inverse of the Metropolis acceptance probability
(which is proportional to the speedup achieved by the n-fold
way update) as a function of inverse temperature. 1/pacc
grows rapidly in β throughout with a marked increase around
criticality (colored, shaded regions). Bottom panel: Equiva-
lent number of Metropolis attempts and number of flips made
at each inverse temperature using the adaptive sweep proto-
col for J2 = −0.23. For β > 5 one notes a significant increase
in the number of flips. In this range, the inverse temperatures
used in the PA run are indicated as x-ticks at the top of the
plot.

by the x-ticks at the top of the plot for β > 5). Within
this region, in total 5× 108 Metropolis MCS are carried
out per replica, which corresponds to only 105 rejection-
free spin flips per site and replica (making up 55% of the
overall number of spin flips of this PA run). In principle,
one can use adaptive sweeps also with regular Metropo-
lis, which in fact is more efficient than without an adap-
tive schedule. However, with such low acceptance rates
it takes a very long time to equilibrate at low temper-
atures (see equivalent Metropolis attempts in Fig. 6).
Our previous simulations of Ref. [24] were carried out
using regular Metropolis PA combined with the adaptive
sweep protocol. In this study equilibrating systems with
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FIG. 7. Family growth quantified by ρt using respectively not
using the adaptive sweep protocol in rejection-free PA. For
small β both protocols result in similar values for ρt. When
not using the adaptive protocol, around criticality ρt exhibits
a severe jump which is absent when applying the adaptive
protocol.

J2 = −0.22 was difficult but still possible (also note the
smaller system sizes there). For J2 = −0.23, on the other
hand, the adaptive sweep protocol using the Metropolis
update fails to reach temperatures below the critical one
within a reasonable time even for small systems. Note
that the visible jumps in the lower panel are artifacts of
the discretization used in the sweep protocol.
Lastly, the replica-averaged family size ρt (Fig. 7) is

studied for two rejection-free runs, one with adaptive
sweep schedule and one without. First, the adaptive one
was run, and then the average number of flips per tem-
perature was calculated, to ascertain that both runs use
approximately the same CPU time. For small β both
curves have similar values, indicating that at high tem-
perature indeed very few spin flips are required for equi-
libration. Close to criticality ρt of the run without an
adaptive sweep schedule then increases rapidly, whereas
it continues without a steep increase otherwise. Thus, at
the same computational cost much better equilibration
is to be expected from the adaptive run.

C. Finite-size scaling analysis

We now turn to studying the critical behavior of the
ferromagnetic ordering by means of a finite-size scaling
(FSS) analysis [33] for J2 = −0.21, −0.22, and −0.23. All
simulations for L = 12, 16, 24, 32, 48, 64, 88, and 128
were carried out using rejection-free PA with the adaptive
sweep schedule.
Figure 8 shows for J2 = −0.21 and J2 = −0.23 the

peak heights of χ, d ln |m|, and d|m|, as well as m eval-
uated at the inverse temperature of the dln |m| peak;
the values were determined through (single) histogram
reweighting [50] of the PA data [51]. The finite-size scal-
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FIG. 8. Finite-size scaling fits using Eq. (4b) and Eqs. (4d)-
(4f) for J2 = −0.21 and −0.23 for system sizes up to L = 128.
Solid lines correspond to the fit ranges used to obtain the ex-
ponents displayed in Table I. Dotted lines are extrapolations
of the fits to values of L outside the fitting range.

ing relations (4a)-(4g) only hold asymptotically, and in
principle one expects (unknown) correction terms that
vanish as L → ∞. To take these into account, system
sizes less than L = 32 were discarded in the fits, such
that all fits have a quality of fit Q > 0.1. While we will
elaborate on the fitting results in more detail below in the
discussion of Table I, note that the obtained values for
1/ν of 0.96(1) for J2 = −0.21, and 0.98(1) for J2 = −0.23
are consistent with the expected Onsager value of 1, al-
beit not fully within error bars.

To estimate the inverse critical temperature βc(J2), the
ansatz (5) is used for each observable independently on
the full range of system sizes, i.e., on L ∈ [12, 128]. Fig-
ure 9 shows the location of the pseudocritical points, as
well as the fits of Eq. (5) for J2 = −0.21 and J2 = −0.23,
and fixing ν = 1. (We fixed ν = 1 since the numerical
data of the values of d ln |m| at the maxima are consis-
tent with that value, and since it also is the expected
value of the Ising universality class.) In both cases the
obtained values of βc are compatible within error bars
for different observables (see Table I). From the visible
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FIG. 9. Finite-size scaling fits of the peak locations for J2 =
−0.21 and −0.23 for system sizes up to L = 128. Solid lines
correspond to the fit ranges used to obtain the βc estimates
quoted in Table I.

curvature of the curves in Fig. 9 one notes that clearly a
correction term such as the one in Eq. (5) is necessary to

describe β
(O)
max(L) — the exception being dln |m| whose

pseudocritical points almost fall on a straight line.
The obtained critical exponents and inverse critical

temperatures are summarized in Table I. Almost all ob-
tained exponents are within one or two standard devi-
ations of the expected Onsager exponents listed in the
right column. This suggests that the model remains in
the Ising universality class even rather close to the spe-
cial point J2 = −1/4. One exception are the γ/ν ex-
ponents from the fit for the peaks of the magnetic sus-
ceptibility with subtraction. It is well known that using
the magnetic susceptibility with subtraction (especially
of the finite-size type ⟨|m|⟩) is subject to strong correc-
tions (see, e.g., Refs. [52–55]). The disconnected form χ′

for β ≤ βc evaluated at β = βc commonly shows better
scaling, as is also the case here. Nonetheless, even the
γ/ν values from χ′

L(βc) are about two to three standard
deviations away from 1.75. For J2 = −0.21 and −0.22 we
use our βc estimates of Ref. [24], i.e., βc = 3.2572(5) and
4.2702(6). For J2 = −0.23 we use 6.346(3) from the scal-
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TABLE I. Critical exponents and corresponding estimates for the inverse critical temperature βc determined through FSS fits
for J2 = −0.21, J2 = −0.22, and J2 = −0.23. (Fits for J2 = −0.21, and J2 = −0.23 are shown in Figs. 8 and 9.)

Exponent Eq./ J2 = −0.21 J2 = −0.22 J2 = −0.23 Onsager
Ref. Exponent βc from Eq. (5) Exponent βc from Eq. (5) Exponent βc from Eq. (5)

γ/ν Eq. (4b) 1.728(7) 3.2542(6) 1.722(7) 4.2693(8) 1.720(7) 6.3436(11) 1.75

Eq. (4c) 1.769(6)† 1.759(6)† 1.734(13)†

Ref. [24] 1.764(9)†,‡ 1.756(4)†,‡ —
1/ν Eq. (4d) 0.96(1) 3.2561(13) 0.98(1) 4.2703(18) 0.98(1) 6.346(3) 1.0

Ref. [24] 0.961(6)‡ 3.2572(5) 0.970(5)‡ 4.2702(6) — —
1−β
ν Eq. (4e) 0.869(9) 3.2570(8) 0.879(9) 4.2712(10) 0.862(9) 6.3455(14) 0.875
α Eq. (4a) = 0 3.2591(13) = 0 4.2729(14) = 0 6.349(3) 0.0

β/ν Eq. (4f) 0.117(13) 0.115(12) 0.115(13) 0.125

Eq. (4g) 0.114(4)† 0.119(4)† 0.135(9)†

† denotes results from fits at βc. Otherwise, fits are at pseudocritical points. For J2 = −0.21 and −0.22 our estimates for βc of Ref. [24] are used,

and for J2 = −0.23 the estimate from the scaling of β(d ln |m|)
max is used.

‡ denotes results from Ref. [24] obtained from the scaling of the partition function zeros. γ/ν is calculated from the fitting result of the Lee-Yang
zeros, and 1/ν from the Fisher zeros. In both cases the fitting range 24− 88 was selected such that the degrees of freedom are identical to the fits
here.
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FIG. 10. Effective exponents as a function of L for J2 ∈
{−0.21,−0.22,−0.23}. Particularly, for the exponents γ/ν
and 1/ν a variation with system size is seen, which is indica-
tive of the presence of corrections-to-scaling. The dashed lines
denote the asymptotically expected Onsager exponents.

ing of the location of d ln |m|, i.e., β(dln |m|)
max . Similarly,

evaluating the magnetization at β
(dln |m|)
max and at βc gives

different estimates for the exponent ratio β/ν. Table I
also lists the results from the partition function zeros
studied in Ref. [24] for J2 = −0.21 and −0.22, which
give results compatible within error bars for γ/ν, 1/ν,
and βc.

These mixed fitting results appear to be due to strong
corrections to scaling. One way to examine such scaling
corrections is through the effectively varying power-law
exponent (corresponding to the local slope in Fig. 8),
which can be quantified by

[x]eff =
d lnO
d lnL

, (12)

with x and O being placeholders for a quantity O with
the (asymptotic) FSS relation O ∝ Lx. Figure 10 shows

the estimated slopes using the three-point midpoint ap-
proximation [56] for Eq. (12). Despite the large statistical
fluctuation of the numerical derivative, a clear variation
of the effective exponents with L can be seen for γ/ν
and 1/ν. For the largest L the slopes are always consis-
tent with the expected asymptotic exponent. Note that
the error bars of the effective exponents [−β/ν]eff and
[(1− β)/ν]eff are too large to precisely evaluate the rele-
vance of scaling corrections.

D. Energy barriers

Finally, we consider the frustration-induced energy
barriers present in this model, which form the build-
ing blocks of the rough free-energy landscape, and which
turn out to provide a rather intuitive explanation of
why our rejection-free approach outperforms the stan-
dard Metropolis algorithm for low J2, and also why the
approach fails for even lower J2. The metastable states
reported in Ref. [20] consist of multiple ferromagnetic do-
mains with extremely long lifetimes. As J2 is reduced the
energetic barrier to overturn domains increases, and so
does their lifetime. At the same time the energy differ-
ence between the ground state and a state with an over-
turned domain becomes smaller, rendering it less likely
for the excited states to be filtered out during the resam-
pling step in PA.

The simplest such domain on the honeycomb lattice
corresponds to flipping a single hexagon. In fact, study-
ing snapshots of low-temperature simulations reveals that
indeed single hexagonal excitations happen frequently,
and that they have a long lifetime; see the bottom panel
of Fig. 11. For the following discussion we consider the
difference in energy ∆E when overturning k consecutive
spins on the hexagons (see the top panel of Fig. 11).
Higher excitations, e.g., branching or overturning non-
consecutive spins on the hexagon are ignored, resulting
in a very simple one-dimensional representation of the
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FIG. 11. Top: Difference in energy between the excited states
and the ferromagnetic ground state for various J2. k denotes
the number of overturned spins from the ground state. k = 6
corresponds to one overturned hexagon (see illustration in
the top right). For the calculation of ∆E we refer to the
Appendix A and Table II therein. Bottom: Partial snapshot
of an L = 64 system for J2 = −0.23 and β ≈ 1.2 βc.

energy landscape.

Starting from the k = 6 state (cf. the top panel of
Fig. 11), the n-fold way update brings the system very
efficiently to the k = 5 state, as other available moves are
typically even more expensive. Using regular Metropolis,
the 6 → 5 move depending on the temperature (which
generally is lower the smaller J2) might be rejected many
times before eventually being accepted.

From the k = 5 state, both ∆E(5 → 6) and ∆E(5 →
4) are negative and thus are always accepted when using
Metropolis. As 5 → 4 can be realized by flipping a spin
on either end of the chain, it is twice as likely to be
proposed as 5 → 6. Hence, ignoring any other possible
excitations, both with Metropolis and the rejection-free
algorithm, the system immediately moves from the state
k = 5 to the k = 4 state with 2/3 probability, and back
to the k = 6 state with 1/3 probability.

Next, from the k = 4 state, for all J2 > −0.25, there
is no energetic barrier between k = 4 and k = 2. Thus,
either method most likely immediately carries out 4→ 3
and 3→ 2. What follows depends on J2. For J2 > −1/6,

there are no energy barriers between k = 2 and the
ground state (k = 0), and both methods likely will go
from k = 4 to k = 0 in four steps. For J2 < −1/6, the
move 2→ 1 increases the energy, making the k = 2 state
a local minimum. As a result, Metropolis simulations
may become stuck at k = 2 for some time, whereas when
using n-fold way updates one proceeds immediately ei-
ther to the k = 1 or the k = 3 state. In fact, J2 = −1/6
also experimentally marks the point up to which we easily
obtained good simulation data with standard Metropolis.
Once in the k = 1 state, for J2 < −1/6 both ∆E(1→ 0)
and ∆E(1 → 2) are negative and are always accepted.
As there are three possible ways to go from k = 1 to
k = 2 and only one to go to k = 0, 1 → 0 happens with
probability 1/4 and 1→ 2 with probability 3/4.

For J2 < −1/5 the energy difference ∆E(2 → 1) is
larger than the one to go from k = 2 to k = 3, making
the latter more likely to occur for the n-fold way update
as well as for Metropolis. What happens is that the sim-
ulation oscillates between k = 2 and k = 3 for some time
before reaching k = 1. The further J2 is reduced, the
larger ∆E(2→ 1), and the smaller ∆E(2→ 3) becomes.
Hence, as J2 is reduced, reaching k = 1 takes increas-
ingly long. For example, at Tc for J2 = −0.23 going from
k = 2 to k = 3 is about 45 times more likely than going to
k = 1. Once reaching k = 1 the chance of selecting k = 0
next is 1/4 [57]. Thus, the system on average jumps be-
tween k = 1, 2, and 3 almost 200 times before reaching
the ground state. This is why the n-fold way can still
equilibrate the system for J2 = −0.23, but not as easily
as for higher J2. In contrast, for J2 = −0.24 assuming
Tc ≈ 0.1 [58] we find that the k = 2 to k = 3 transition
is at least 3000 times more likely than 2→ 1. Thus, ulti-
mately, n-fold way PA cannot equilibrate J2 = −0.24 in
any reasonable time. By deriving the transition matrix of
this simplified model with seven states and considering
its discrete phase-type distribution [59], one finds that
it would take on average 500 spin flips (2.3 × 108 MCS)
to go from k = 6 to k = 0 at Tc for J2 = −0.23. For
J2 = −0.24 at T = 0.1, on the other hand, going from
k = 6 to k = 0 would require 35 000 spin flips (1.6× 1013

MCS).
In addition, it is clear that the closer the energy of

the configuration with the fully overturned hexagon (cf.
k = 6 in Fig. 11) is to that of the ground state, the
less likely it becomes that the resampling step in the PA
algorithm filters these configurations out.

V. SUMMARY AND OUTLOOK

We have studied the frustrated J1-J2 Ising model on
the honeycomb lattice by utilizing population anneal-
ing Monte Carlo simulations. We have carried out a
finite-size scaling analysis for J2 = −0.21, −0.22, and
−0.23, which in all cases yielded numerical values for the
critical exponents consistent with the Ising universality
class. Our results are in good agreement with recent



12

studies [20, 24] that carried out FSS for larger values of
J2. Thus, we conclude that the model remains in the
Ising universality class at least for J2 ≥ −0.23, and very
likely also for values below −0.23 where our simulations
failed to equilibrate. For values of J2 between −0.23 and
−0.25 simulations fail because of energy barriers between
the ground state and states with energies slightly above
the ground-state energy, but we have not seen anything
to signal a change in the type of transition.

In order to equilibrate our simulations we have re-
placed the standard Metropolis algorithm in the pop-
ulation annealing algorithm by the rejection-free n-fold
way update [31] which allowed us to equilibrate lower J2
than in previous work [20] where low acceptance rates
led to quasi-frozen states. This shows, on the one hand,
that the n-fold way update is not just a useful tool in
non-equilibrium settings at low temperature but also well
suited in equilibrium when no efficient cluster update is
available. On the other hand, it highlights that popula-
tion annealing is agnostic to the used update mechanism
which previously was already realized in the context of
molecular dynamics simulations [37]. This approach is
further enhanced by introducing an adaptive number of
sweeps into the population annealing framework, which
works particularly well for the model at hand: Energy
barriers cause simulations to be trapped in local energy
minima at low temperatures. By using the adaptive
sweep protocol, the population is quickly cooled at high
temperatures when equilibration is easy and computing
cost is focused on the temperature range where simula-
tions tend to be trapped in these minima.

Our method still fails to equilibrate at even smaller
values for J2, viz. J2 ∈ (−0.25,−0.23). We attribute
this to the fact that on the one hand the energies of
configurations containing overturned domains are close to
the ground-state energy, while on the other hand these
configurations are separated from the ground state by
large energetic barriers. This, on the one hand, makes it
difficult for PA’s resampling to filter out configurations
containing such domains, and, on the other, results in
those domains having very long lifetimes. J2 even closer
to (but larger than) −0.25 could possibly be simulated
by taking into account these excitations, for example by
proposing to flip two neighboring sites (thus eliminating
the 2↔ 3 oscillation in Fig. 11) or to flip entire hexagons.
(An adaptation of the n-fold way algorithm to include
updates of multiple spins simultaneously was proposed
in Ref. [60].)

Both, using the rejection-free update and the adap-
tive sweep schedule, as well as the combination thereof
may be useful for studying other systems in which rugged
free-energy landscapes and low acceptance rates render
numerical simulations difficult. However, for our method
to be suitable as a general-purpose approach, two issues
require addressing. First, advancing all replicas to the
maximum of the observed Metropolis times among them
can deteriorate parallel efficiency when all replicas have
to wait on one or a few other replicas. As the maxi-

mum is used, this problem becomes worse the larger the
population size is. While this issue did affect our simu-
lations to some extent, the extreme-value distribution of
the Metropolis times in our case still allowed for efficient
computation for the chosen population size. Second, the
adaptive sweep protocol suggested here assumes that it
is possible to decorrelate replicas through Monte Carlo
updates. Clearly, when ergodicity is effectively broken,
as is typically the case in glassy systems below the glass-
transition temperature, the decorrelation criterion may
not be satisfied within a reasonable time, and the simu-
lation likely would fail to proceed [61]. In such cases the
recently proposed adaptive sweep schedule [43] using the
“restricted autocorrelation time” may be more suitable.
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Appendix A: Energies for six states leading to the
hexagonal excitation

The energies discussed in Sec. IVD can be calculated
in a straightforward manner by counting the number of
broken nearest- and the number of satisfied next-nearest-
neighbor bonds for the six states k = 1, . . . , 6. These
numbers are compiled in Table II.

TABLE II. Number of broken FM nearest-neighbor bonds
and satisfied AF next-nearest-neighbor bonds for the states
leading to the hexagonal excitation. The difference in energy
of the state k and the ferromagnetic ground state is given by
∆E(k) = 2 × [N1(k)J1 + N2(k)J2].

k N1 = #J1 bonds broken N2 = #J2 bonds satisfied
0 0 0
1 3 6
2 4 12
3 5 16
4 6 20
5 7 22
6 6 24
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(a) (b)

FIG. 12. Domain decomposition into four subsets of non-interacting spin sites for the J1-J2 Ising model on the honeycomb
lattice of linear system size L = 4 containing N = 2L2 = 32 sites. Each color refers to a different subset. (a) Representation
in “real” coordinates, and (b) in “memory” coordinates, showing how spins are arranged in a two-dimensional array structure.

Appendix B: GPU domain decomposition

Since the sites are arranged regularly in the considered
honeycomb model, and since each spin only interacts with
a small number of spins within its vicinity, a domain de-
composition in the spirit of the well-known checkerboard
decomposition [62] of the square lattice with even side
lengths L is possible. Due to the nn and nnn interactions,
it is not possible to decompose the lattice into two sub-

lattices of non-interacting sites. Instead, four colors are
required, but otherwise the procedure is analogous to the
one of the checkerboard decomposition; see Fig. 12(a). In
memory, the spins are represented in a two-dimensional
array: In Fig. 12(b) the same decomposition is displayed
in “memory” coordinates. Using this decomposition, one
sweep consists of updating i) all blue sites, ii) all red sites,
iii) all olive sites, and iv) all black sites (or any other or-
der thereof), where in each step N/4 spins are updated
in parallel.
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