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Limited resources motivate decomposing large-scale problems into smaller, “local” subsystems
and stitching together the so-found solutions. We explore the physics underlying this approach
and discuss the concept of “local hardness”, i.e., complexity from the local solver perspective, in
determining the ground states of both P- and NP-hard spin-glasses and related systems. Depend-
ing on the model considered, we observe varying scaling behaviors in how errors associated with
local predictions decay as a function of the size of the solved subsystem. These errors stem from
global critical threshold instabilities, characterized by gapless, avalanche-like excitations that follow
scale-invariant size distributions. Away from criticality, local solvers quickly achieve high accuracy,
aligning closely with the results of the more computationally intensive global minimization. These
findings shed light on how Nature may operate solely through local actions at her disposal.

A prevalent approach to analyzing large-scale problems
involves segmenting them into smaller, “local” compo-
nents which are then solved, followed by assembling the
obtained local optimal solutions in a manner akin to a
jigsaw puzzle, thereby yielding meaningful results for the
original large-scale problem. This modus operandi is nat-
ural when constrained by limited time and computational
resources. It is especially common when one assumes —
as often happens in problems with an underlying geo-
metric structure (e.g., images of physical systems [1] or
proteins [2]) — that these local solutions provide correct
and useful information about the larger system. Such lo-
cal few-body solvers may accurately capture key features
of general many-body systems governed by local Hamil-
tonians, a result known in certain contexts as nearsight-
edness [3–7]. Here, we explore physical aspects of this
approach for determining global ground states (GSs) of
both short- and long-range classical spin-glass systems,
a known difficult problem [8, 9] using simple local algo-
rithms.

Similar to other complex systems [10–14], the challenge
posed by spin-glasses results from the combination of dis-
order and frustration leading to a complex free-energy
landscape [15]. According to recent results these systems
generically have very low-lying excited states that are
radically different from each other and from the GSs [16–
18]. This phenomenon of system-spanning lowest-energy
excitations means that optimal (i.e., GS) subsystem solu-
tions might not necessarily match the optimal full system
solution. The occurrence of such states is independent of
the classification of the corresponding GS problem in the
P or NP classes [19]. Indeed, spin-glasses with GSs ob-
tained with polynomial (P) complexity may also exhibit
system-spanning lowest-energy excitations [18]. For in-

stance, this is the case for GSs of two-dimensional (2D)
Ising spin-glasses on planar graphs, which can be found
in polynomial time [20].
Here, we investigate to which extent local (i.e., sub-

system) spin-glass solvers approximate global spin-glass
GSs. Understanding such features will help uncover the
principles that underlie the effectiveness of local solvers.
Our numerical analysis (based on exact GS algorithms)
concentrates on Ising spin-glasses with Hamiltonian

H = −
∑

⟨ij⟩
Jijσiσj , σi = ±1, (1)

with couplings Jij drawn from a Gaussian distribution of
mean J and unit variance. Unless stated otherwise, we
set J = 0. Here, the N spins are placed on 2D or 3D
lattices with open boundaries and nearest-neighbor in-
teractions (Edwards-Anderson (EA) model [21]) or form
a Sherrington-Kirkpatrick (SK) [22] model harboring all-
to-all interactions (following a rescaling of Jij by 1/

√
N

to guarantee a meaningful thermodynamic limit).
Previous related studies attempted to combine mul-

tiple local solvers to address global optimization prob-
lems [23], fuse local GSs for the construction of global
spin-glass instances with planted solutions for bench-
marking [24], and develop local spin-glass solvers using
gauge-transformation-based deep reinforcement learning
[25, 26]. Here, we take on a different perspective and di-
rectly investigate to which extent one can predict (parts
of) the global GSs based on optimization of local sub-
systems. To reduce this problem to its bare essentials
and minimize boundary effects, we study pairs of neigh-
boring spins (bonds) of the model and introduce a “local
single bond solver” (LSBS) that examines these neigh-
boring spins within a local subsystem. We first focus on
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FIG. 1: Computational setup for determining the relative
spin orientation σi0σj0 across the central bond (shown in
red). We set the lattice constant to unity. The correct
value of σi0σj0 is that within the GS of the entire sys-
tem (comprised of black, light blue, and red bonds). The
LSBS computes σi0σj0 within the GS of the local subsys-
tem (light blue and red bonds).

the GS products σi0σj0 for bonds ⟨i0j0⟩ which, in the
simplest case, are located at the center of the system, cf.
Fig. 1.

We are interested to see whether the value of this spin
product in the global GS matches that obtained by the
LSBS for a subsystem centered on this single bond. Re-
cent studies [27] examined correlations between adjacent
spins at the system center after resampling its “shell.”
By contrast, here we examine whether this product as
determined by (i) GS computations for small subsystems
containing this bond and using open boundaries agrees
with that in (ii) the global system GS. As we shall see,
system-spanning correlated changes to spin-glass GSs ap-
pear only at special critical interaction strengths [18].
When the spin-glass couplings are far removed from their
critical threshold values, at which global avalanche-like
changes occur, the GSs are robust to small variations
of the coupling constants. This robustness enables the
LSBS to become accurate whenever coupling constants
are far from their critical values. We find that for large
lattice systems, the LSBS error rate becomes indepen-
dent of the global system size and exhibits a power-law
decay with subsystem size. More generally, several other
distance-dependent quantities also show power-law be-
haviors (see also Ref.[28], S7). By contrast, the depen-
dence of the LSBS error rate on the deviations of the
coupling from its critical value assumes a stretched ex-
ponential form.

To systematically study the relation of local and global
solutions in spin systems, we rely on exact (combina-
torial) GS algorithms, using a minimum-weight perfect
matching (MWPM) method [29] based on Blossom V [30]
for the polynomial 2D problem and the general-purpose
Gurobi software [31] for 3D systems and the SK model.

(a)

(b)

(c)

FIG. 2: The disorder-averaged LSBS error rate Eij as a
function of the subsystem size Lsub (resp. Nsub) for (a)
the square-lattice (2D) EA model, (b) the cubic lattice
(3D) EA model, and (c) the SK model. For each plot,
the results for varying system sizes L (N) are shown. For
(a), both cases J = 0 and J = 1.2 are shown, whereas
in (b) and (c) J = 0. Note the nearly perfect collapse
of different system-size data indicating that the error of
the LSBS becomes asymptotically independent of system
size. For the lattice systems in (a)–(b) and J = 0, the
error rate is fit by Eq. (2), cf. the straight dashed lines.
Unlike these lattice systems, the all-to-all SK model of
(c) is devoid of geometric locality. Here, Nsub spins were
randomly chosen to comprise the subsystem.

Figure 1 schematically depicts the setup: we computed
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d ℓE κ kJ α

2D 0.20(1) 0.685(8) 10.9(5) 1.35(5)
3D 0.0006(10) 0.18(3) 0.47(3) 1.4(1)

d β ℓc ac

2D 0.198(8) 1.01(3) 1.26(1)
3D 1 1.40(9) 1.3(1)

TABLE I: Parameters of the fits of the functional forms
of Eqs. (2), (3), and (4) to our data. In 2D, χ2/d.o.f is
found to be 0.821, 0.477, and 1.067 for Eqs. (2), (3), (4),
respectively. In 3D, these values are 1.265, 0.794, 0.656.
Note that for the fit of the form (3) in 3D, we fixed β = 1.
For the 2D systems, the form (2) was fitted with a cutoff
Lsub ≥ 16 in order to minimize finite-size effects.

GSs for the entire (N -spin) systems as well as for sub-
systems with Nsub lattice sites centered on the consid-
ered bond ⟨i, j⟩ (corresponding to the LSBS), comparing
the predicted values of the product σi0σj0 (open bound-
ary conditions are applied in both cases). If the results
agree, the bond product was predicted correctly (with
zero error). For L × L square lattices of sizes L = 256,
512, 1024, we examined Lsub × Lsub subsystems with
4 ≤ Lsub ≤ 512, using ∼ 60, 000 disorder realizations.
For cubic lattices of side lengths L = 10 and 12, the
Lsub×Lsub×Lsub subsystems were of size 4 ≤ Lsub ≤ 10,
and we used ∼ 2, 000 realizations. From these calcula-
tions we estimate the LSBS error rate E . Figure 2 shows
the dependence of E on the subsystem size for several
cases. For the J = 0 lattice systems we find that, al-
though the 2D and 3D spin-glass GS problems belong to
different complexity classes (P and NP, respectively), in
both cases the error rate is well described by a power-law
decay in the subsystem size [32] [33], viz.

Eij ≡
1−

[
σiσjσ

sub
i σsub

j

]

2
∼ (ℓE/Lsub)

κ. (2)

Here,
[
σiσjσ

sub
i σsub

j

]
denotes the pair-overlap correlation

function, where [...] represents the disorder average, and
ℓE is an effective length scale. Importantly, this algebraic
decay is independent of the linear system size L, cf. the
data collapse in Figs. 2(a) and (b). Comparing the re-
spective exponents κ that are collected in Table I, we see
that errors in the 2D systems drop more rapidly than
in the (harder) 3D systems. When expressed in terms
of the total volume Nsub = Ld

sub, where d is the lattice
dimension, this sharp change in the algebraic decays of
errors between the 2D and 3D cases becomes yet more
acute.

While the precise power-law decay differs between 2D
and 3D, this variability is much less dramatic than maybe
expected from the P vs. NP contrast in computational
complexity between these cases. This observation sug-
gests a “local hardness” computational complexity de-

scriptor beyond the P-NP classification [19] (and related
categories [34]) shedding further light on the intrinsic dif-
ficulty of spin-glass GS computations. By local hardness,
we allude to how large the subsystem on which computa-
tions are done must be so that, when averaged over many
instances, the local solver provides a correct answer up
to a fixed error rate. Arguably, the local complexity is a
relevant descriptor for physical local measurements (the
microscopic state of the full many-body system cannot,
in general, be probed).

For the case of non-zero average coupling J , we find the
same power-law decay as long as we remain in the (zero-
temperature) spin-glass phase, thus suggesting some de-
gree of universality in the behavior of local hardness.
As soon as one enters the ferromagnetic phase, however,
there is a much faster, exponential decay of the error rate,
cf. the data for J = 1.2 in Fig. 2(a), Fig. 7 (End Matter)
and further details in Ref. [28], Sec. S5. Similarly, we find
identical 2D-type scaling and exponents for planar anti-
ferromagnets having faint random perturbations of their
couplings from an otherwise constant value (Ref. [28],
Sec. S6). For the all-to-all SK model, on the other hand,
the data in Fig. 2(c) reveal that the local hardness does
depend on the total system size N and not only on the
Nsub randomly chosen spins forming the “local” subsys-
tem, thus indicating a higher degree of local hardness of
the SK model. This is consistent with the fact that there
is no local geometry in the SK system, and that it con-
sequently features a more complex free-energy landscape
with infinitely many thermodynamic states [35]. As a re-
sult, one needs to scale Nsub proportional to N to achieve
low error rate for the LSBS in the SK model.

We next turn to our central endeavor — that of un-
derstanding the physics underlying local solvers. Our ap-
proach relies on the concept of “critical thresholds” Jc,ij
[18, 36], defined as follows. Across any bond, the spin
product σiσj is either +1 or −1. Consider now continu-
ously varying Jij from −∞ to +∞ leaving the strengths
of all other bonds unchanged. As we have shown else-
where [18], there is a unique value Jij = Jc,ij where the
relative orientation of σi and σj changes from σi = −σj

(Jij < Jc,ij) to σi = σj (Jij > Jc,ij) and, hence, two
GSs become degenerate. A similar definition applies for
the subsystem — changing the coupling Jij beyond J sub

c,ij

leads to a change of the subsystem GS. For the LSBS
we have the following important observation: If J sub

c,ij and
Jc,ij are either (i) both smaller or (ii) both larger than
Jij , then the LSBS (determining the value of σiσj as cal-
culated within the smaller subsystem GS) will yield the
correct σiσj value (i.e., that computed within the global
system GS). The opposite case of Jij being sandwiched
between Jc,ij and J sub

c,ij , leading to a failure of LSBS, is
more likely to occur if Jij is close to the critical thresh-
olds, cf. Fig. 3. Thus, the separation |J sub

c,ij − Jij | can
serve as a predictor of LSBS reliability [37]. When J sub

c,ij
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FIG. 3: LSBS solutions for general nearest-neighbor
bonds ⟨ij⟩ in an L = 128 system. An Lsub = 40 subsys-
tem is chosen to be centered about any such bond ⟨ij⟩;
near the boundaries, the subsystem becomes correspond-
ingly smaller. J sub

c,ij denotes the critical threshold of bond
⟨ij⟩. × denotes an error wherein the local solver does
not match the global solution, while ✓ refers to correct
LSBS predictions. Errors arise more readily for smaller
|J sub

c,ij − Jij |.

and Jij are far apart, then J sub
c,ij and Jc,ij may indeed eas-

ily be both larger or both smaller than Jij . Conversely,
when J sub

c,ij and Jij are close, slight miscalculations can

lead to J sub
c,ij and Jc,ij to appear on opposite sides of Jij ,

thus causing the LSBS to yield incorrect σiσj values.
At the critical threshold Jc, the GS responds sensi-

tively to infinitesimal single-bond changes. Similar to
avalanches in the random-field Ising model [38], neural
networks [39], systems featuring Highly Optimized Tol-
erance [40], and other problems [41], the GS spins that
are flipped as a result of such changes form fractal bound-
ary Zero Energy Droplets (ZEDs) of sizes conforming to
power-law distributions [18]. These distributions may
be tied to complex critical spatial correlations (Ref. [28],
Sec. S11). Configurations associated with general exci-
tations may be constructed as composites of the (single
bond) ZEDs [18]. These excitations are, by construction,
of vanishing energy. Right at the thresholds, owing to
the sudden sensitivity of the global fundamentally dis-
crete (i.e., Ising) spin-glass GS problem to infinitesimal
local changes in the continuous bond couplings, the LSBS
achieves low accuracy. However, when the coupling con-
stants are sufficiently removed from these (measure zero)
critical thresholds, the local solver becomes progressively
more accurate.

Figure 3 illustrates the sensitivity |J sub
c,ij − Jij | of each

bond of a given L = 128 square-lattice sample, and how
it relates to the error rate of the LSBS. As is seen here
(and in Fig. 4, End Matter), the LSBS error rate decays
with increasing |J sub

c,ij − Jij |. We find this decay to be
described well by a stretched-exponential form

Eij ∼ kJ e−α|Jsub
c,ij−Jij |β . (3)

The parameters for L = 1024, Lsub = 8 square and L =

12, Lsub = 4 cubic lattice systems appear in Table I.
The modulus |J sub

c,ij − Jij | is equal to twice the excitation
energy ∆E, cf. Eq. (S1) in Ref. [28], Sec. S1. Thus the
accuracy of the LSBS for a certain bond is determined
by the respective excitation energy of the bond in this
subsystem.
We further tuned the central bonds of L = 128 square

and L = 12 cubic lattices to their critical values and
then computed the respective critical threshold changes
(∆Jc,ij) of all other bonds. We find that the average
difference |∆Jc,ij | decays algebraically with distance from
the modified central bond (see Fig. 5, End Matter),

[|∆Jc,ij |] ∼ (ℓc/r)
ac . (4)

In 2D and 3D systems, both the length ℓc and the expo-
nent ac are of order unity, the fit parameters are provided
in Table I. For sufficiently large r, the central bond cou-
pling negligibly impacts the Jc,ij of distant bonds. In
other words, the critical coupling of a given bond is al-
most completely determined only by the couplings on
bonds that are close to it. This exemplifies the “locality
of the critical threshold Jc,ij .” Since the ZED volume dis-
tribution decays algebraically [18], for sufficiently large
distances r between the tuned and observed bond, the
probability of ZED excitations connecting these bonds
becomes small. When resampling the system boundary,
[|∆Jc,ij |] decays similar to Eq. (4), see Ref. [28], Sec.
S7. Thus, generating a subsystem by removing periph-
eral bonds is of limited impact on the critical coupling
of the central bond thus explaining the proximity of J sub

c,ij

and Jc,ij .
In summary, using exact GS algorithms, we study

the effectiveness of local subsystem solvers and relate
it to critical threshold ZED physics [18] of system-
spanning avalanche-like vanishing-energy excitations. In
short-range spin-glasses, away from these special critical
thresholds, the response of the system to local perturba-
tions to the GS problem decays rapidly. The difference
between local minimization and its full global counter-
part becomes significant primarily near the critical cou-
pling threshold values. Away from critical threshold val-
ues, local GS solvers achieve increased accuracy. Impor-
tantly, the associated error rate of the local solvers be-
comes independent of the system size [see Fig. 2 (a)] for
large systems and decreases rapidly with the subsystem
size. Local solvers can thus become increasingly effective
for large L where a local solution of a subsystem that
is a very small fraction (Lsub/L)

d of the large system
may correctly predict local properties of the large sys-
tem with negligible error. Simple functions link the av-
erage error rate of local solvers to their (subsystem) size
as well as to deviations of the coupling constants from
their critical threshold value, and changes of the critical
coupling of one bond as a result of tuning another dis-
tant bond to its critical threshold value. Our analysis
reveals that various length-dependent quantities appear
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to display algebraic scaling just like the scale-free dis-
tributions of avalanche size [18], while for ferromagnetic
phases we observe an exponential decay of errors with
subsystem size (see also End Matter and [28], Sec. S5).
These behaviors may rationalize the success of more so-
phisticated local solvers in spin-glasses [24–26] and other
systems [1, 2], and might be broadly applicable in sys-
tems not constrained by the “Overlap Gap Property”
[42]. For the all-to-all SK model, on the other hand, the
error rates always depend on the size of the full system.
These differences lead us to conjecture a classification of
possible levels of local hardness (Ref. [28], Sec. S4). Local
solvers are found to be efficient for the considered lattices
irrespective of whether the global problems are of P (2D)
or NP (3D) complexity. The occurrence of rare events in
the form of bonds attaining their critical couplings ex-
plains why local solvers cannot in general guarantee to
find exact GSs for the full systems.

We briefly speculate on broad implications and exten-
sions of our results regarding the effectiveness of local
optimization. Efficient and often highly accurate local
minimization is of immense utility in replacing more tax-
ing global (“batch”) gradient descent methods by inher-
ently fast sequential local stochastic gradient descent-
type approaches across numerous problems including
high-dimensional/large-data machine learning type tasks
in many-body physics, materials science, community de-
tection, and other domains [43–48]. Local plastic vari-
ants of the backpropagation algorithm used in machine
learning might emulate efficient biological neural com-
puting [49, 50]. Other notable aspects of local mini-
mization and optimized structure in artificial and real
neural networks have been further investigated [51, 52].
Locality is of paramount importance in numerous prob-
lems in many-body physics [3–7] where the degrees of
freedom may also be continuous. Replacing Eq. (1) by
H = −∑

ij Jijsisj + u
∑

i(s
2
i − 1)2 with u ≫ 1 (Eq. (1)

corresponds to u → ∞) for continuous si ∈ R suggests
that the phenomena that we found might extend to con-
tinuous spin systems of sufficiently large quartic interac-
tion strength u. In a specific continuous spin variant, that
of the spherical model [53, 54], the locality that we de-
scribed here is altered (Ref. [28], Sec. S9). In future work,
we will also further explore viable relations to previously
unreported criticality (Ref. [28], Sec. S11). Ultimately,
the physics of local optimization may underlie Nature’s
enigmatic efficiency, shaping computation across diverse
realms.
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END MATTER

Here, we provide numerical evidence for Eqs. (3) and
(4), the existence of a transition in the LSBS accuracy
as the distribution of couplings is shifted (so as make
the system more ferromagnetic and easier to solve), and
we discuss beyond nearest-neighbor correlations found by
the LSBS.

Error rates for deviations from the critical threshold

Illustrating the applicability of the analysis in the main
text, Fig. 4 demonstrates that the LSBS error indeed de-
cays with increasing |J sub

c,ij −Jij | in a manner that adheres
to the stretched exponential drop of Eq. (3).

Distance dependence of critical threshold values

As discussed in the main text, the critical threshold of
a given bond is largely determined only by the couplings
of other bonds that are very close to it. When we tuned
the central bonds of L = 128 square and L = 12 cu-
bic lattices to their critical values, the respective critical
threshold changes (∆Jc,ij) of all other bonds at a dis-

8.71%

25.95%

41.91%
56.31% 68.29%(a)

24.17%

64.88%

87.30%
(b)

FIG. 4: Error rate Eij as a function of |J sub
c,ij−Jij | for (a) a

2D (square lattice), L = 1024 system with Lsub = 8, 16,
32, 64 and (b) a 3D (cubic) system of L = 12 with Lsub =
4, 10. Point percentages denote cumulative probabilities
(i.e., fraction of instances) for values of |J sub

c,ij −Jij | lower
than their abscissa.

tance r away conformed to Eq. (4) with ℓJ of the order
of the lattice constant, see Table I (with the fit of Eq. (4)
becoming an upper bound for the largest distances in
the 2D system). This is illustrated in Fig. 5. In Fig. 6,
we further provide a calculated real-space visualization
of such a typical rapid drop of the change in the criti-

(a)

(b)

FIG. 5: Average change of critical threshold values
([|∆Jc|]) of bonds a distance of r along a Cartesian di-
rection from −∞ to +∞ in (a) 2D (L = 128) and (b) 3D
(L = 12) systems. Dashed: Eq. (4) with parameters in
Table I. As is more evident in 2D, when r = O(L), the
average [|∆Jc|] is bounded from above by these ultra-
local forms with the fitted ℓc being of the order of the
lattice constant.

FIG. 6: Typical real space realization of the data in Fig.
5. On an L = 28 square lattice, altering the central
bond coupling Ji0j0 from −∞ to +∞ generally induces
the change of critical thresholds Jc,ij ’s of all other bonds
in the system. The surface color map visualizes the am-
plitude of Jc,ij ’s change for a typical realization of the
system. The green contour represents the flipped bonds
between the GSs before and after Jij crosses its own Jc,ij
as it is monotonically varied.
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FIG. 7: For an asymmetric bond distribution, as J in-
creases the system transitions from a spin-glass phase to
a disordered ferromagnetic phase [55]. We observe how
the fitting coefficient κ changes as we adjust J . A larger
value of κ implies that the error rate of the subsystem
solver decays faster, with a crossover to an exponential
decay beyond the threshold 1/J = 0.96, where the sys-
tems enters the ferromagnetic phase [55].

cal coupling away from the origin. We further observe a
smaller effect on distant bonds for smaller ZEDs.

Shifted Gaussian Distribution of Couplings

With the exception of Fig. 2 (a), in the main text, we
largely focused on a symmetric Gaussian distribution of
coupling constants (one centered about J = 0). As J
becomes larger, the system becomes less frustrated; in
the trivial large J limit, the GS becomes ferromagnetic.
Naturally, everything else being kept fixed, for large J ,
the error Eij of Eq. (2) must decay to zero more quickly.
In Fig. 7, we illustrate how such a transition is manifest
when J is of order unity with the exponent κ in Eq. (2)
increasing rapidly (Ref. [28], Sec. S5).

(a)

(b)

FIG. 8: LSBS error rate for GS bond products σiσj when
sites i, j are a distance rij apart along a Cartesian axis.
Results for (a) 2D and (b) 3D systems. The abscissa
is normalized by the subsystem size, rij/Lsub. As Lsub

increases, Eij gradually collapses onto a single curve (as
for the rij = 1 case of the main text).

Extension of the LSBS to distant spins

In the main text, we examined the accuracy of lo-
cal solvers in determining nearest-neighbor spin products
(or correlations) within the GS. In Fig. 8, we illustrate
the result of our approach when the spins σi and σj are
no longer nearest neighbors but are rather a distance rij
away from each other along the Cartesian axes. Again,
we compute the spin product within the GS of a local
subsystem that contains these two spins. As may be ex-
pected, as the distance rij becomes larger relative to the
subsystem size the error rate of the local solver increases.
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S1. COMPUTATION OF CRITICAL
THRESHOLD COUPLING

To determine the critical threshold Jc,ij , we first com-
pute the GS of the system and extract σiσj , the value
of this nearest-neighbor spin product in the GS with the
original coupling on the link ⟨ij⟩ which we here explicitly
denote by Jij . Then, we modify the coupling Jij so that

it has a sign opposite to that of σiσj with |Jij | sufficiently
large so as to force the product of spins associated with
this bond (σiσj) to change its sign in the new resulting
GS. Next, this GS for the now modified coupling is de-
termined; this new state constitutes an excited state (of
energy ∆E > 0) for the original system (in which Jij is
not changed). Once the energy ∆E is numerically com-
puted the critical coupling may then be determined via
the equality

Jc,ij = Jij − σiσj∆E/2. (S1)

On general lattices and graphs, the probability density
of critical couplings depends mainly on the (inherently
local) coordination number [1]. This suggests that, on
average, general functions f depending on Jc,ij may be
local (this includes the Heaviside function f = Θ(Jij −
Jc,ij) which provides the aforementioned sign of the bond
⟨ij⟩ (i.e., the product σiσj) that the LSBS aims to find).
Applied to any subsystem containing the link ⟨ij⟩, we
may similarly compute the subsystem critical coupling
J sub
c,ij .

S2. CRITICAL AVALANCHES AT
TRANSITIONS BETWEEN GLOBAL GSS

Ref. [1] examined, in disparate lattices, the transitions
between different global solutions when a single nearest
neighbor coupling traversed its critical value Jc,ij to uni-
versally find scale invariant power law distributions for
ZED volume and area [1]. In all studied 2D and 3D
lattices, critical system spanning avalanches appear at
Jc,ij in which a divergent number of spins change their
values. These avalanches are characterized by nontrivial

exponents that (within obtainable numerical accuracy)
are largely determined only by the spatial dimensional-
ity and insensitive to specific lattice details. As explained
in the main text, the rarity of these transitions — the fact
that they only occur at special Jc,ij values — underlies
the accuracy of the local optimization problem solved by
LSBS (as compared to the exact full system GS). In Fig.
S1, we provide an example of a typical critical avalanche
that occurs at Jc,ij . Various details of these avalanches
(which constitute zero energy droplet (ZED) excitations
at Jc,ij) are given in Ref. [1].

S3. MORE ON A CORE CONCEPT
UNDERLYING THE LSBS

As discussed in the main text (and illustrated in Fig.
3), a central theme lying at the heart of the LSBS con-
cerns the proximity of the critical threshold value of the
same bond (ij) in subsystem and in the full system. If
the full system (Jc) and subsystem (J sub

c ) critical values
for the bond (ij) are close to each other then the local
solver may still remain accurate for couplings Jij that
are not far the critical threshold value in the subsystem
J sub
c . Specifically, if the coupling Jij > max(J sub

c , Jc) or
Jij < min(J sub

c , Jc) then the LSBS will provide the ex-
act answer. The only “dangerous” situation in which the
LSBS will provide the incorrect result is when the cou-
pling for the bond (ij) will lie between its global critical
Jc,ij value and its subsystem critical threshold value J sub

c .
If the latter threshold values are very close to each other
then the probability this “dangerous” situation will oc-
cur can become exceedingly low. The graphic of Fig. S2
further depicts this key notion. As illustrated in Fig. 3 of
the main text, as the coupling Jij becomes far removed
from the local critical coupling J sub

c for the bond (ij),
the LSBS indeed achieves higher accuracy.

S4. LEVELS OF LOCAL HARDNESS

Before proceeding with the enumeration of viable for-
mal levels of local hardness, we must underscore that the
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FIG. S1: A computed critical avalanche associated with
a transition (see text) between optimal global solutions-
different GSs of the EA model. When the local spin-glass
solution provided by the LSBS (Fig. 1) for the central
bond σi0σj0 (blue sphere) differs from the global one, the
flipped spins form bubbles (above “cloud” surrounding
the central bond) that occur at all scales (governed by
critical power law distributions) [1]. Shown here is a
typical critical avalanche for an L = 12 cubic lattice.

conventional P/NP classification relates to exact solu-
tions of the full global problem (a vanishing error rate)-
not that for a finite error rate as discussed in the current
work which may naturally arise when only solving for a
local fragment of the problem.

We next couch our spin-glass GS problem in a far
broader context and ask how hard it generally may be
for local solvers to solve global optimization problems.
When examining systems (problems) composed of a large
number of spins (or elements) N ≫ 1, different levels of
local hardness are conceivable:

I. There exists an N∗ that is independent of the entire
system size (total number of spins) N , such that as
long as the size of the subsystem is larger than N∗,
the error rate of the subsystem GS solver is strictly
always 0.

II. For any maximally tolerable error rate ϵ, there ex-
ists a subsystem size N∗(ϵ) < N that does not de-
pend on the entire system size N , such that solving
for the GSs in subsystems Nsub ≥ N∗(ϵ) yields an
error rate that is ≤ ϵ.

√

×

FIG. S2: A schematic of the relative sizes of the (i) the
bond coupling constant Jij of a bond ⟨ij⟩ (green), (ii)
the exact critical threshold Jc,ij (navy blue) of this bond
within the entire system and (iii) the critical threshold
J sub
c,ij (light blue) of this bond as computed within a local

patch or subsystem that includes this bond at its center.
The exact GS spin product σiσj = ±1 when, respec-
tively, the coupling Jij ≷ Jc,ij . The value of σiσj as
determined by the approximate local (subsystem) bond
solver coincides with the exact full system GS answer
when both (J sub

c,ij − Jij) and (Jc,ij − Jij) are of the same

sign (✓ at top panel). When the signs of (J sub
c,ij − Jij)

and (Jc,ij−Jij) are opposite, the local bond solver yields
an incorrect prediction (× at bottom panel). As we will
later detail (Eq. (S3) and Fig. S8), we indeed find that
with increasing subsystem size, the deviation between the
global and subsystem critical threshold value decreases,
thus further consistently explaining the increasing accu-
racy of the LSBS with subsystem size.

III. For any maximally tolerable error rate ϵ, there ex-
ists a subsystem size N∗(ϵ,N) < N that depends
on the entire system size N (and may diverge as
N → ∞), such that solving this subsystem can
yield an error rate ≤ ϵ.

IV. Even if the subsystem size is made arbitrarily large
so long as it smaller than that of the full system
(i.e., Nsub < N), it is impossible to guarantee that
the error obtained when comparing the exact GS
of the subsystem with that of the full system can
be made lower than a finite error rate ϵ∗).

The diametrically opposite extremes of Type I and
Type IV hardness are known from numerous simple con-
texts. For instance,
• Most conventional textbook type systems (e.g., the

classical ferromagnet or antiferromagnet) correspond to
type I systems. (In the classical ferromagnet and anti-
ferromagnet, small finite patch subsystem (respectively,
uniform or staggered magnetization) GSs capture the ex-
act GSs of the full system.)
• Type IV hardness may, e.g., appear for problems

exhibiting the Overlap Gap Property [2] as well as bona
fide random systems. Indeed, if we were to guess the
product of N randomly sampled numbers ±1 that are
chosen with equal probability, the estimates on products
of numbers in smaller subsystems of any size Nsub < N
would always have a 50% error rate.
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(a) (b)

(c) (d)

(e) (f)

FIG. S3: (a)-(f): The performance of the LSBS on 2D spin-glasses having a shifted Gaussian distribution of their
couplings (mean J ̸= 0). In panels (a)-(f), the respective values are J = 1.0, 1.05, 1.10, 1.20, 1.50, and 2.0. The setting
is similar to that of Fig. 2 of the main text. As J is elevated for the shown values, the error rate quickly tends to
zero with increasing subsystem length Lsub.

The intermediate levels of hardness that we find sug-
gest an underlying richer fine structure of the local com-
plexity. Inasmuch as finite-size numerical results can be
extrapolated to the thermodynamic limit, our calcula-
tions indicate that spin-glasses (and thus other general
complex problems) straddle and are connected (when
control parameters are further varied) to the above ex-
treme limits of I and IV. In particular,

• Our computations (see Fig. 2) suggest that the local

hardness of computing both 2D and 3D spin-glass GSs is
that of level II.

• The 2D spin glass having its couplings sampled from
a ‘shifted’ univariate Gaussian distribution for the cou-
pling constants having a mean of J = 1.2 has level I
hardness (see Sec. S5 for the other shift values). Inter-
estingly, in the latter case, we found a hardness transi-
tion point J ≃ 1.1, which is marginally consistent with
1/rc = 1.04(1), as the ferromagnet-to-spin-glass transi-
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tion value of J reported in the literature [3].

• The local hardness associated with computing the
GSs for the fully connected SK model [4] is (at least)
that of level III.

S5. LSBS EXAMPLES FOR SHIFTED
GAUSSIAN DISTRIBUTIONS

In the End Matter (Fig. 7), we illustrated the existence
of a transition in the error rate as the mean of the Gaus-
sian distribution of couplings was shifted by an amount
J . Here, we provide schematics for the results obtained
for different J . Fig. S3 shows sample plots of the as-
sociated rapid drop of the error rate in subsystem size
with increasing J from which such values of κ are de-
duced. In the taxonomy that we introduced above when
discussing the levels of local hardness, as the Gaussian
distribution of the coupling constants Jij is progressively
biased towards larger J values, the performance of the
LSBS improves. These changes (see also Fig. 7) are sug-
gestive of a transition from level II to level I hardness at
J ≈ 1.

(a) (b)

(c)

FIG. S4: Specific nearest-neighbor coupling realizations
in our studied fully-frustrated square (a), honeycomb (b),
and triangular (c) lattice spin systems. The red and black
lines respectively denote equal strength bonds with ferro-
magnetic and antiferromagnetic couplings. The product
of the coupling constants around any minimal (respec-
tively, square, hexagonal, or triangular) plaquette is neg-
ative. As described in the text, these bonds were weakly
perturbed to lift an otherwise exponential GS degeneracy
which would render the problem determining the sign of
the central bond in the GS meaningless.

S6. LSBS ON 2D FULLY-FRUSTRATED
SYSTEMS

A natural question concerns the extension of local solv-
ability that we studied in the main text for spin-glass
systems to several fully-frustrated systems. Specifically,
towards that end, we apply the LSBS to fully-frustrated
2D spin systems on the (i) square, (ii) triangular, and
(ii) honeycomb lattices. In these fully-frustrated systems,
within every minimal (respectively, single square, trian-
gular and hexagonal) plaquette, at least one bond can-
not be satisfied. In Fig. S4, we provide an illustration
of these systems. The specific setup of these systems
is as follows: as seen in the figure, some bonds in the
system are set to be ferromagnetic, while others are an-
tiferromagnetic with the product of all bonds around a
plaquette being negative. In the absence of disorder, such
systems may have an exponentially large GS degeneracy
(in the full system size N) in which local bonds are not
uniquely determined (as in, e.g., Wannier classical result
[5] for the triangular lattice Ising antiferromagnet and
Villain’s demonstration of the exponential degeneracy of
the fully frustrated Ising square lattice model [6] invoking
Fisher’s asymptotic result for dimer coverings [7]). This
renders a comparison between the LSBS to the global
GSs ill-posed since both single bond (σiσj) values are
possible in a global GS. To overcome this vexing issue and
lift the exponential degeneracy, we added weak Gaussian
perturbations of standard deviation of σp = 0.05 to the
otherwise uniform unit (absolute value) strength nearest
neighbor couplings.

In Fig. S5, we present the results of the LSBS on
these perturbed fully-frustrated systems. The fully-
frustrated square and honeycomb lattice spin systems
exhibit characteristics similar to those of the spin glass,
where the error rate approximately follows a power law
with respect to Lsub. The right and left panels of
Fig. S5 provide, respectively, a side by side compari-
son of the perturbed fully frustrated spin systems with
their spin-glass counterparts. The found exponents κ in
the power law form for the error rate of Eq. (2) are
κsquare = 0.685(8), κsquare,FF = 0.73(1), κhoneycomb =
0.67(3), κhoneycomb,FF = 0.66(2) are nearly matching
for the honeycomb and square lattices. For the low-
est perturbation strength shown (σp = 0.05), the fully-
frustrated triangular lattice spin system does not exhibit
a power law decay of the average LSBS error in Lsub while
its spin-glass counterpart obeys Eq. (2) with κtriangle =
0.55(1). In Fig. S6, we show the different performance of
LSBS for the perturbed (σp = 0.05, 0.20, 0.40) fully frus-
trated triangular lattice spin system. As σp increases, the
difficulty encountered by the LSBS decreases accordingly.
We speculate that this may be because the original (un-
perturbed uniform) system’s ‘degeneracy’ is further split
as σp grows in size. For the strongest perturbation σp =
0.40 investigated, we found κtriangle,FF = 0.79(4) while
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(a) (b)

(c) (d)

(e) (f)

FIG. S5: A side by side comparison of the performance of LSBS on 2D spin-glass systems (left) and their weakly
perturbed (σp = 0.05) fully-frustrated counterparts (right). Shown are the results for square lattice spin-glasses and
the perturbed fully frustrated square lattice systems (panels (a) and (b) respectively), honeycomb (c,d), and triangular
lattice (e,f) systems. For this weak perturbation σp, except for the fully-frustrated triangular lattice systems, the error
rate decays as a power of Lsub. (Results for stronger perturbations of the fully-frustrated triangular lattice system are
given in Fig. S6.) κsquare = 0.685(8), κsquare,FF = 0.73(1), κhoneycomb = 0.67(3), κhoneycomb,FF = 0.66(2), κtriangle =
0.648(9), κtriangle,FF = 0.79(4).

for the triangular lattice spin-glass κtriangle = 0.648(9)
(Fig. S5). Note that all fittings were performed for
Lsub ≥ 16 to minimize the finite size effect. We note that
for different lattices, a fixed value of Lsub corresponds to
a different number of spins Nsub the subsystem solver ex-
amines. The χ2/d.o.f values for the fittings in Fig. S5

(a)-(f) are, respectively, 0.821, 0.770, 0.960, 0.836, 0.558,
and 1.282.
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(a) (b)

(c)

FIG. S6: Fully frustrated triangular lattice systems with increasing perturbation strength σp of their coupling con-
stants. In panels (a,b,c), we respectively show the results for perturbations of strength σp = 0.05, 0.20, 0.40 (in units
of the uniform absolute value of the unperturbed coupling constants of the fully frustrated system). The dashed lines
correspond to the fit of Eq. (2) for triangular spin-glass systems (see bottom two panels of Fig. S5). The found
exponents κ for these fittings are 0.79(4), 0.75(2), 0.76(3), with χ2/d.o.f = 1.282, 0.590, 2.003.

S7. SCALING OF THE SUBSYSTEM CRITICAL
THRESHOLD

A. Boundary Conditions

In the main text, we considered how changing the value
of one bond induces a change for the critical thresholds
∆Jc,ij of other bonds a distance r away. Here, we ex-
amine another question: If we change the boundary con-
dition, instead of solely tuning one bond to its critical
value, what will the change of the critical threshold of
the central bond look like?

Towards this end, we studied 4 ≤ L ≤ 128 square and
4 ≤ L ≤ 11 cubic lattice systems. We first calculated
the critical threshold Jc,ij of the original system. Sub-
sequently, we let all the spins σi on the boundaries to
assume random values of ±1 and then calculate the Jc,ij
of the central bond in this new system. The disorder av-
eraged magnitude of change [|∆Jc|] of the central bond
is displayed in Fig. S7. Somewhat similar to the change
of critical couplings when only a single bond is changed

that was discussed in the main text (Eq. (4)) and End
Matter (Fig. 5)), we found a power-law decay

[|∆Jc,ij |] = (L/ℓL)
−aL , (S2)

with ℓL,2D = 1.73(2), aL,2D = 0.697(4) (χ2/d.o.f =
0.544) and ℓL,3D = 4.7(1), aL,3D = 0.36(2) (χ2/d.o.f =
0.080) for the square and cubic systems respectively (see
Fig. S7.) The 2D exponent is close to that found
(0.7 ± 0.02) for the dependence of the error rate of a
patch solver on its size [8]).

B. Subsystem Size

In Fig. S8, we show the deviation of the critical thresh-
old coupling of the central bond in the subsystem relative
to the true (global) critical threshold value of this bond
in the full system as a function of the subsystem size.
Here, too, we find an algebraic decay,

[
|Jc − J sub

c |
]
∼ (ℓJ/Lsub)

κJ . (S3)
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The rapid drop of this deviation with subsystem size fur-
ther rationalizes our observed decreasing error rate with
increasing subsystem size of Eq. 2 (see also cartoon of
Fig. S2 explaining how such a small deviation favors
accurate LSBS outcomes). Since the LSBS errors are in-
curred by a shift in the value of the subsystem J sub

c rela-
tive to its true value of Jc,ij , it is natural to expect that
the error rate E ∝ |Jc − J sub

c | for small |Jc − J sub
c |. In-

deed, within our numerical error, the exponents κJ found
via the fit of Eq. (S3) conform with those for the error
rates (Eq. (2)) on different lattices,

κJ = κ. (S4)

Specifically, for the 2D (square lattice) case, κJ =
0.684(7) (Fig. S2) while κ = 0.685(8) (Table I). Simi-
larly, in 3D (cubic lattice) systems, κJ = 0.17(2) while
κ = 0.18(3).

(a)

(b)

FIG. S7: After randomly resampling all spins on the
boundaries, we calculated the average change of the crit-
ical threshold [|∆Jc|] of the central bond as a func-
tion of system size L. This change is well-fitted by
the power-law of Eq. (S2), where for (a) 2D systems-
ℓL,2D = 1.73(2) and aL,2D = 0.697(4), and in (b) 3D
systems- ℓL,3D = 4.7(1) and aL,3D = 0.36(2).

S8. SOME DETAILS OF THE NUMERICAL
EXPERIMENTS

When we refer to simulations performed on a system
with linear size L, it should be clarified that the sys-
tem is not strictly square in shape. For instance, a two-
dimensional system with L = 1024 actually corresponds

(a)

(b)

(c)

FIG. S8: For (a) the square and (b) cubic lattice EA
model, the relation between

[
|Jc − J sub

c |
]
and Lsub also

follows a power law and has a very similar fitting coeffi-
cient compared to Eij , Eq. (S3). In Eq. (S3), for 2D sys-
tems ℓJ = 0.98(4) and κJ = 0.684(7); for 3D, ℓJ = 0.4(1)
and κJ = 0.17(2). The χ2/d.o.f values for (a) and (b) are
11.698 and 1.823 respectively. (c) The SK model. For the
2D case, although we have adopted a cutoff Lsub ≥ 16,
we still obtained a relatively large χ2/d.o.f value. When
increasing the Lsub cutoff to 32 and 64, the correspond-
ing χ2/d.o.f value decreases to 4.276 and 2.650, with
ℓJ = 1.12(4), 1.20(5) and κJ = 0.703(6), 0.713(6).
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to a lattice of 1025× 1026 spins, just as in Ref. [1]. This
tiny adjustment is made in order to ensure that the spe-
cific central bond is placed precisely at the center of the
system.

Next, we discuss the strategy for subsystem sampling.
A standard procedure, which we refer to as parallel sam-
pling, proceeds as follows: one first randomly samples an
entire system of size L = 1024, and then selects a subsys-
tem of size Lsub = 512 for analysis. This process yields
one data point. To obtain a data point at a smaller sub-
system size, e.g., Lsub = 256, one would ideally resample
the entire system and then extract the smaller subsys-
tem. However, this approach can be computationally
expensive, particularly when data across multiple Lsub

values are needed.
To mitigate computational costs while still acquiring

a sufficient number of data points for statistically reli-
able results (e.g., LSBS error rate), we adopt an alter-
native procedure, referred to as sequential sampling. In
this approach, a single L = 1024 system is sampled, and
multiple nested subsystems, such as Lsub = 512, 256,
and 128, are subsequently extracted and analyzed from
the same entire system. Although the measurements ob-
tained from these subsystems are theoretically correlated,
this correlation should have minimal impact on our final
results. For example, as shown in Fig. S9, we compare
the fits to Eq. (2) obtained for L = 1024 and Lsub = 512,
and the results are in close agreement—both visually and
in terms of the fitted parameters: ℓE,parallel = 0.18(3),
κparallel = 0.67(2), ℓE,sequential = 0.20(1), κsequential =
0.685(8).

FIG. S9: Comparison of the fit to Eq. (2) for subsystem
data extracted using the sequential and parallel sampling
strategy respectively. Both curves correspond to systems
with total size L = 1024 and subsystem size Lsub = 512.
SS and PS are short for Sequential Sampling and Parallel
Sampling respectively.

S9. EXACTLY SOLVABLE LIMITS

In what follows, we discuss two limits in which an exact
analysis is possible: (1) 1D systems and (2) large n (or
spherical model) realizations. These simply exactly solv-
able models will yield results notably different from those
that we found for the 2D and 3D Ising EA spin-glasses.

A. 1D Ising spin-glass

One-dimensional spin-glass systems are rather special
in many regards (including their exceptionally trivial ex-
act solvability). Here, the critical thresholds exhibit dis-
tinct behaviors for periodic boundary conditions (PBC)
and free (or open) boundary conditions (FBC). For the
free boundary condition, all critical thresholds Jc,ij = 0,
ensuring the locality of Jc,ij . For the periodic bound-
ary condition, we define Jc,ij ≡ ζ|Jc,ij |, with ζ = ±1
indicating the sign of Jc,ij . The value of ζ is chosen
such that the system is frustrated, i.e., contains an odd
number of antiferromagnetic Jij < 0 bonds. In the
frustrated system, the GS is determined by having the
smallest absolute bond being unsatisfied. Consequently,
|Jc,ij | = min

(i,j)̸=(i0,j0)
|Jij |. Obviously, both the sign and

the magnitude of Jc,ij are determined non-locally. In
summary, we found that the locality holds for the FBC
case, but not for the PBC case.

B. Spherical Model Spin-Glasses

Another analytically solvable limit is that of the spher-
ical [9] (or large n) soft spin-glass model [10] counter-
part of the Ising spin-glass Hamiltonian of Eq. (1). This
model is defined by the following Hamiltonian and global
constraint,

H = −
∑

⟨ij⟩
Jijsisj ,

∑

i

s2i = N. (S5)

Unlike the N Ising spins {σi}Ni=1 of Eq. (1), the N spins
{si}Ni=1 are now arbitrary real numbers subjected only
to the single global normalization constraint in Eq. (S5)
concerning the sum of their squares. That is, only the
mean (over the entire N spin system) value of s2i is con-
strained to be unity unlike the Ising system where N
constraints of the type σ2

i = 1 appear for each of the N
spins σi. We find that this global constraint removes the
otherwise inherent locality of the critical thresholds. The
Hamiltonian of Eq. (S5) is a bilinear in the real variables
si and thus the GS can be found by diagonalizing the real
symmetric N × N matrix whose elements are the cou-
plings Jij . Following the below theorem, we may readily
establish that for any bond ⟨ij⟩ in the system (keeping
all other bonds fixed), the product sisj may vanish in
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a single interval of Jij values (including possibly only a
single coupling).

Theorem. Given a real symmetric matrix Am×m,
consider the perturbation A → A′ ≡ A + ϵP , with
P12 = P21 = +1, Pij = 0 otherwise, and ϵ > 0. The
normalized principle eigenvectors v ≡ (v1, v2, · · · , vm)T

of A and v′ of A′ (with respective eigenvalues λ and λ′)
satisfy v1v2 ≤ v′1v

′
2.

Proof. Note that v1v2 = vTPv/2, therefore we only
need to prove vTPv ≤ v′TPv′. By the definition of the
vector v as the (normalized) principle eigenvector of A,

vTAv ≥ v′TAv′ (S6)

vT (A+ ϵP )v ≤ v′T (A+ ϵP )v′ (S7)

Plugging Eq. (S6) into Eq. (S7), vTPv ≤ v′TPv′.

This theorem formally establishes (the intuitively ex-
pected behavior) that the two-spin product sisj is mono-
tonically non-decreasing in the coupling Jij between
them. (In the respective asymptotic Jij → ±∞ lim-
its, the monotonic behavior saturates and the product
sisj = ±N

2 .) The demonstrated monotonicity ensures

that we can define a single interval [J
(L)
c , J

(H)
c ] (that

may possibly be a point of zero measure) for which
the nearest-neighbor product sisj vanishes in the GS

of Eq. (S5). Here, J
(L)
c ≡ sup{Jij |sisj < 0} and

J
(H)
c ≡ inf{Jij |sisj > 0}. In the following, we will use

the shorthand Jc,ij to denote the interval [J
(L)
c , J

(H)
c ].

Unlike the Ising variant studied in the main paper text
that had a single point value of the critical coupling, a

general interval [J
(L)
c , J

(H)
c ] will not be of vanishing mea-

sure.

1. Symbiosis and Competition

Unlike the discrete Ising model of Eq. (1), within the
spherical model, the influence of one bond on another
bond’s critical threshold Jc,ij is rather trivial. As we
illustrate in Fig. S10, even if two bonds share the same
Euclidean distance to a modified bond, other facts are at
play. To highlight this difference, the following extremal
analysis would be very useful. In a 3D, L = 10 system,
setting the blue bond to be J0 = +100.0 as a ‘strong’
bond and we tune the value of the green bond and the
red bond respectively, from −2J0 to 2J0, we see quite
different behaviors of sisj , see the top side of Fig. S11.
Now, we present two models to explain this behavior.

We neglect most of the sites and interactions and then
we write down the model of “symbiosis” (green-blue)
and “competition” (green-red): H ≃ HS = −J13s1s3 −
J12s1s3 and H ≃ HC = −J3′4s3′s4−J12s1s2. Here we la-
bel the blue, green, and red bonds as {1, 2}, {1, 3}, {3′, 4},
for the convenience of the matrix representations. Obvi-
ously, these bilinear forms appearing in the Hamiltonian

3  1 

3'  4 

2 

5

6

FIG. S10: A sketch of symbiotic (green-blue) and the
competitive (green-red) bonds in the spherical model
spin-glass, see text. We underscore that irrespective of
how far away they are, all bonds (e.g., bond (5, 6)) that
do not share a common spin with the central (green)
bond exhibit an identical competitive relation with it.

can be expressed as HS|C = − 1
2J0s

T (AS|C)s,

AS =



0 1 α
1 0 0
α 0 0


 , AC =




0 1 0 0
1 0 0 0
0 0 0 α
0 0 α 0


 . (S8)

Here, the subscript S|C denotes symbiosis or competi-
tion. In the context of the symbiosis captured by HS,
the vector sT = (s1, s2, s3) while for the competition
HC, the vector sT = (s1, s2, s3′ , s4). The constant α
is the ratio of the Jij values for blue/red bonds to the
green bonds, Jij/J0. For AS, the principal eigenvector
is ( 1√

2
, 1√

2α2+2
, α√

2α2+2
)T . For AC, the principle eigen-

state is ( 1√
2
, 1√

2
, 0, 0)T for −1 < α < 1, ( 12 ,

1
2 ,

1
2 ,

1
2 )

T for

α = ±1, (0, 0, 1√
2
,− 1√

2
)T for α < −1, and (0, 0, 1√

2
, 1√

2
)T

for α > 1. These eigenstates can provide a fairly good
explanation for the behavior of the spin product s1s3 or
s3′s4 (see the upper part of Fig. S11).

Note that for any bond that does not share a spin
with the bond (1, 2) in Fig. S10, for example, the bond
(5, 6), no matter how far away they are, it will exhibit
an identical competitive relationship as the bond (3′, 4),
with the bond (1, 2). This can be verified by, for example,
setting J12 = +100.0 and all other bonds Jij = +50.0
and observing sisj , see Fig. S12. It can also be verified

by showing the distribution of |∆J
(H)
c | as Ji0j0 changes

from 0 to +100, see Fig. S13.

Now, let us go back and consider the impact of the
strong green bond on Jc,ij of the other bonds. For the
blue bond, according to the symbiosis model, there is a
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(a)

(b)

FIG. S11: (a) Computations for the spherical spin-glass
model on an L = 10 cubic lattice. We calculate nearest-
neighbor spin products, namely s1s3 of the blue bond,
and s3′s4 of the red bond, as a function of their re-
spective couplings Jij , while fixing the coupling of the
green bond to be J0 = +100.0. Blue and red scatter-
ing crosses represent the actual results from numerical
simulation. Blue and red continuous curves show the
predictions from the symbiosis and competition models
given in Eq. (S8). The inset shows more data points
within a smaller range of Jij around zero. (b) On the
same system, numerically we show the opposites of the
first (solid) and second (dashed) largest eigenvalues −λ
of the system in symbiosis (blue, −λ1(2),S) and compe-
tition (red, −λ1(2),C) model respectively. Degeneracy is
absent in the symbiosis model. In the competition model,
a pair of degenerate points emerge when |Jij | of the red
bond (Fig. S10) is similar to |Jij | of the blue bond. Just
like the top side, the theoretical curve and the numerical
curve (points) almost completely overlap, so to prevent
clutter here, we only plotted the numerical curve.

nonzero slope at the origin for s1s3. Therefore, when we
consider the influence of other bonds as noise on it, these
influences do not significantly move its zero point. On the
other hand, for the red bonds, s3′s4 will remain approx-
imately 0 over a considerable range. As a result, other
bonds can easily disturb its zero point, causing s3′s4’s

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

FIG. S12: A spherical spin glass mode having the cen-
tral black bond coupling Ji0j0 = +100 with all other
couplings Jij being +50. The values of the computed GS
spin products sisj are then color coded (see legend at
right).
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FIG. S13: Calculated change of the critical threshold

(|∆J
(H)
c |) when tuning the central bond strength Ji0j0

from 0 to 100. Each bond in a small 5× 6 square lattice
system with initial bond strengths is drawn from the sym-
metric Gaussian distribution (i.e., that centered about a
mean of J = 0). We find that for the continuous spins
in the spherical model (unlike the discrete spins in the
Ising spin-glass model in which there is a single critical
coupling), there is, generally, a range of critical thresh-

old coupling constant values. The displayed |∆J
(H)
c | are

associated with minima of the gap between the principle
eigenvalue and the second largest eigenvalue (see text).
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zero point to potentially move far away from zero. This
implies that despite the same Euclidean distance, the im-
pact of the blue bonds on the Jc,ij of the green and red
bonds differs considerably.

We can also consider an alternative definition for Jc,ij ,
which is to set Jij = Jc,ij (which could be a point, a pair
of points, or an interval) in such a way that the difference
between the principal eigenvalue and the second principal
eigenvalue is minimized. It is worth noting that in the
limiting case illustrated in the top and bottom sides of
Fig. S11, these two definitions actually yield the same
value(s) of Jc,ij . In fact, according to the models in Eq.
(S8), we could easily get −λ1,S = −

√
α2 + 1,−λ2,S = 0;

and −λ1,C = min(±α,−1),−λ1,C = max(±α,−1). Of
course, to get similar curves on the bottom side of Fig.
S11, one should replace α here with Jij/J0 and multiply
the eigenvalues by J0.

What needs to be added is that this competition model
is not limited to the red bond shown in Fig. S10 In fact,
all bonds that are not directly connected to the green
bond are in competition with the green bond. To be
specific, similar behaviors can be seen in Fig. S11 for all
these competitive bonds. Note that this conclusion holds
for both definitions of Jc,ij . When the strength Jij of the
modified bond (green bond) increases in absolute value,
see Fig. S14:

• For bonds having a symbiotic relationship, Jc,ij will
be more like a single point tending zero, that is,

J
(L)
c → 0, J

(H)
c → 0.

• For bonds with a competition relationship, Jc,ij will

be more like an interval and asymptotically J
(L)
c →

−J0, J
(H)
c → J0.

Overall, in the spherical model, the locality of the crit-
ical threshold does not exist like that in the Ising spin
model. Specifically, although modifying the Jij of a bond
will usually affect other bonds’ critical thresholds glob-
ally, the effects are not all the same. Symbiotic bonds and
competitive bonds can be distinguished by whether they
have the minimum topological distance to the modified
bond, and they exhibit completely different behaviors re-
garding Jc,ij .

S10. SCALING ARGUMENT FOR OBSERVED
EXPONENTS

Independent of any particular theory, as rigorously es-
tablished in [11], the Gaussian EA spin-glass system ex-
hibits a single GS pair that are related by a global spin in-
version (so long as the continuum limit of continuous cou-
pling is taken prior to the thermodynamic large system
limit). This implies that in the L → ∞ limit, the bond
product σiσj amongst nearest neighbor spins assumes a
unique value (of either +1 or −1) in either of its GSs —

(a)

(b)

FIG. S14: (a)-(b) The sign inverted largest and second-
largest eigenvalues −λ1,−λ2 when tuning the Jij value
of the symbiotic (blue) bond and the competitive (red)
bond, on a 3D,L = 10 system, with different Jij values
of the central (green) bond. Thicker curves correspond
to stronger central bonds.

the correct value in the global GS pair. Thus, with ⟨·⟩
denoting the GS average, the further disorder averaged
[|⟨σiσj⟩|] = 1. Our results indicate that the LSBS accu-
racy is independent of the system size L. This implies
that we may consider the LSBS in the L → ∞ limit, and
examine the dependence of [|⟨σiσj⟩|] with, some abuse of
notation, ⟨·⟩ now denoting the subsystem GS average on
Lsub with the external spin configurations averaged over.
The variation of this disorder averaged GS spin product
from unity arises solely due to the disorder average error
rate E ij of a finite subsystem LSBS (now further averaged
over external spin configurations that are consistent with
the GS of the subsystem) that also samples incorrect (i.e.,
opposite sign values) of the bond spin product as com-
pared to its value in the true original L → ∞ rendition.
That is,

[|⟨σiσj⟩|] = 1− E ij . (S9)

Interestingly, for the square lattice in [8] the dependence
of [|⟨σiσj⟩|] on a particular choice of the ratio between
the system size and the subsystem size (L/Lsub = 2) was
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examined when resampling the “shell” of the subsystem
(thus emulating E ij). Our square lattice value of κ in
Table I (0.685(8)) is close to the reported value (of 0.70±
0.02) in [8] for resampling subsystem shells. The two are
possibly related by the two considerations listed below.

• (i) The proven uniqueness of the GS pair [11]. We
underscore that this rigorous result concerning unique-
ness of the GSs does not hinge on any particular theory
or assumption. Rather, it always holds provided that the
continuum limit of the spin couplings is taken prior to the
thermodynamic limit.

and
• (ii) The independence of error rate Eij on L that we

establish in the current work (thus allowing us to consider
the thermodynamic L → ∞ limit).

In the current work, there are no external spins to the
subsystem when the GSs are computed on the open sub-
system while in [8] spin configurations external to the
subsystem are resampled and averaged over. The calcu-
lation in the current work was a direct one on a small
local subsystem with no regard to what the spin con-
figurations in the external system might be. However,
intuitively, the similarity between the two (that is, with
E ij of Eq. (S9) possibly being equal to the error rate Eij
(Eq. (2)) that we focus on in the current work) is sug-
gestive. The decay of the error rate with subsystem size
indeed points to the robustness of the subsystem GS con-
figurations to the inclusion of additional external spins.
In what briefly follows we discuss what will transpire if
we may consider the fraction of incorrect nearest neigh-
bor bonds (i.e., the error rate Eij) as the fraction of bonds
that lie on the boundary of a ZED of linear scale Lsub.
The latter is the number of bonds flipped between two
GSs and thus incorrect in the “original” GS relative to
all nearest neighbor bonds in the subsystem. In such a
situation then, extending the suggestions of [8], the value
of κ in Eq. (2) may scale as

κ = d− ds (S10)

with ds the surface fractal dimension of the ZED. Re-
verting to the argument of [8] and trivially extending
it to general dimensions, this is so since the number of
“wrong” bonds in a region of linear size Lsub scales as
Lds

sub whereas the total number of bonds in that region
∼ Ld leading to a fraction of wrong bonds (the error
rate) scaling as Lds−d

sub . Specifically, for our analyzed 2D
(square lattice) systems κ = 0.685(8) (Table I) that is
numerically close to (d− ds) = 0.72 given the fractal di-
mension of the ZED surface ds = 1.275(30) [1]. For the
cubic lattice system (for which our numerical errors may
be larger given the smaller system size that we are able
to examine), the ZED fractal dimension ds = 2.76 [1];
this suggests a value of κ = 0.24 as compared to our ob-
tained value of κ = 0.18 (Table I) for our examined cubic
lattice systems. The numerically observed Eq. (S4) sug-
gests that the exponent κJ in Eq. (S3) may, similarly, be

equal to (d−ds). Furthermore, given the rather universal
character of the ZED volume and area distributions [1]
and Eq. S10, near-universal (spatial dimension depen-
dent yet specific lattice type independent) values of the
error rate exponent κ may be anticipated for EA spin-
glass systems. This is consistent with the values of κ that
we found for different 2D lattices (square: 0.685(8), hon-
eycomb: 0.67(3), and triangular (for which the largest
deviation from our other investigated 2D lattice occurs):
0.648(9)).

S11. SPIN-GLASS CONSTRAINED
DISORDERED-AVERAGE CRITICALITY

We conclude by discussing the prospect of disorder-
averaged GS criticality at the critical threshold and
thus general transitions (since any transition between
GSs arises from varying couplings across their critical
threshold). By “criticality” we allude here to alge-
braic deviations of gauge invariant (i.e., invariance of
the Hamiltonian and associated distribution of coupling
constants Jij under the simultaneous transformations
σi → ηiσi, Jij → ηiJijηj with arbitrary local ηi = ±1)
correlation functions from their asymptotic long distance
limit.
In the following, ⟨·⟩ denote averages over the set of all

GSs for a fixed set of couplings when degeneracy arises-
when one GS pair (i.e., two states related by the global
inversion of all spins) of the system becomes degenerate
with another pair. We wish to compute the two-point
correlation function Gij ≡ ⟨σiσj⟩ at the transition be-
tween the degenerate states (in systems having an unbi-
ased probability distribution of Jij , the GS pair averages
⟨σi⟩ = 0). To consider gauge invariant quantities that do
not vanish identically, we examine the disorder average
Γi,j ≡ [G2

ij ] [12]. Here, the disorder average is that over
the set of all (gauge-invariant) couplings for which GS
degeneracy arises. Now, within each element of the set
of possible GS transitions across the critical threshold,
with the said disorder average over all couplings where
degeneracy arises following an internal average over all
GSs at those couplings, we have, longhand,

Γij = [(⟨σiσj⟩ − ⟨σi⟩⟨σj⟩)2] = [(⟨σiσj⟩)2] =
= [(χi∈ZED χj∈ZED + χi ̸∈ZED χj ̸∈ZED)

2]

= [(χi∈ZED χj∈ZED) + (χi ̸∈ZED χj ̸∈ZED)] (S11)

In Eq. (4), χi∈ZED = 1 if i lies in the ZED and χi∈ZED = 0
otherwise (with the opposite definition for χi̸∈ZED). In
Eq. (S11) we employed the trivial observation that if
both sites i and j lie in the ZED or both of these sites lie
outside the ZED, then the product of the spins at these
two sites (σiσj) assumes the same value (either “1” in
all of these states or “−1 ” in all of the four degenerate
states (two degenerate pairs of GSs); these uniform sign
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values add coherently in the GS average. Thus, regard-
less of its sign, the average ⟨σiσj⟩ over all GSs (the latter
four states) is of unit norm. The deviation of the GS and
disorder averaged Γij from unity is given by the prob-
ability that one of the sites i or j lies within the ZED
with the other site (j or i, respectively) being outside
the ZED. For a sequence of ZEDs connecting degener-
ate GSs (the general case), we consider the probability
distribution associated with the “last” ZED.

We now consider the specific (constrained) case in
which the degenerate GSs are such that i ∈ ZED and turn
to the asymptotic scaling of large distance r = |i− j| of
Γij . Since the (disorder averaged) cumulative ZED vol-
ume distribution function is a power law [1], Γij decays
as a power law in the distance r. We earlier found [1] that
the cumulative probability associated with ZED volume
|D| scaled as

P (|D| ≥ V) = 1− F (V) = 1

Vκv
0

Ω

( V
V0

)
∼ kvV−κv .

(S12)
Eq. (S12) implies that the probability density for the

volume decays algebraically with an exponent κv + 1.
Thus, denoting by P̃r the probability density for the ZED
to be of linear size r, we have that P̃r dr ∝ V−(κv+1)dV ∝
r−d(κv+1)rd−1dr = r−(dκv+1)dr. To find the probability
of a ZED of size ≥ r that includes site j we integrate∫∞
r

dr′P̃r′ . Thus [13],

Γr ∝ r−dκv . (S13)

Plugging in the exponents [1] κv, we find that for both
the cubic and square lattices the correlations decay with
an exponent dκd ∼ 0.4.

Away from couplings at which degeneracy of different
GS pairs arises, Γij = 1 for all i and j. The same also
holds true (sans the disorder average) for the GSs of the
Ising ferromagnet.
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