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Abstract. Population Monte Carlo simulations in the form commonly
referred to as population annealing can serve as a useful meta-algorithm
for simulating systems with complex free-energy landscapes. In the present
paper we provide an easily accessible introduction to the approach, fo-
cusing on spin systems as simple example problems. While the method
is very general and powerful, it also comes with a number of tunable
parameters. Here, we discuss the question of an optimal choice of resam-
pling protocol, that is shown to have significant influence on the quality
of results. While population annealing is an excellent fit to the paradigm
of massively parallel simulations, limitations in the availability of parallel
resources and especially memory can provide a bottleneck to its efficacy.
As we demonstrate for results of the Ising ferromagnetic and spin-glass
models, weighted averages of smaller-scale runs can be easily combined
to reduce both systematic and statistical errors in order to avoid such
bottlenecks.

1 Introduction

Population annealing was first introduced by Hukushima and Iba in Ref. [1]
based on some earlier more general proposals [2]. In statistical physics, how-
ever, it received little attention before a later rediscovery by Machta [3]. In this
framework, an equilibrated population of system copies is considered at a fixed
temperature. The temperature is then lowered in small steps, such that the pop-
ulation undergoes annealing towards a target temperature. In each step, each
copy (replica) experiences a weight modification that depends on its own like-
lihood in the ensemble at the lower temperature [4]. Population control is then
used to ensure that only sufficiently important configuration are further followed
through the cooling process.

In this way, population annealing combines several strategies to work to-
wards good sampling of systems with metastability and energetic or entropic
barriers: through the presence of a (large) population, metastable minima can
be occupied according to their relative free-energy weight without ever having to
cross any intervening barriers; population control accelerates equilibration and

* Email: martin.weigel@physik.tu-chemnitz.de

ar
X

iv
:2

40
1.

07
96

5v
1 

 [
co

nd
-m

at
.s

ta
t-

m
ec

h]
  1

5 
Ja

n 
20

24



2 P. L. Ebert et al.

β0

β1

β2

β3

Fig. 1. Illustration of the population in PA, propagated from the initial inverse temper-
ature β0 to a higher inverse temperature β3. At each temperature step, the resampling
replicates some configurations while eliminating others. Members of the same family
(descendants from the same configuration in the initial population at β0) are shown in
the same color.

ensures importance sampling of different valleys; finally, a free choice of algo-
rithms for regular update steps taken at fixed temperature allows to efficiently
keep the population equilibrated through the anneal [4]. This last possibility to
combine the scheme with many different “driver algorithms”, including cluster
updates or even molecular dynamics simulations [5], as well as the freedom of
choice regarding the annealing parameters and probability weights [6–8], turns
the framework into a rather versatile meta-algorithm for computer simulations.

The main strength of the approach over related schemes such as parallel
tempering or replica exchange simulations [9–11] might lie in its outstanding
parallel performance, however. For practical applications, population sizes of
103 − 106 replicas are usually required, providing very direct opportunities to
use a number of processing units that is of the same order of magnitude [12].
Parallel tempering, on the other hand, is usually not very efficient for more than
100 replicas. This renders population annealing the tool of choice for computer
simulations in the era of massively parallel computing [13].

2 The algorithm

In its original formulation, population annealing (PA) starts with an ensemble of
equilibrium samples at inverse temperature β0 that is then sequentially cooled
until it reaches the final temperature βf . The target distribution here corre-
sponds to the Gibbs-Boltzmann form πβ = Z−1

β exp(−βE), where Zβ denotes
the partition function and E is the internal energy of the system. In the process,



Optimized population Monte Carlo 3

a combination of single-replica update steps — usually realized through Markov
chain Monte Carlo (MCMC) — and resampling of the population is employed to
ensure that the population remains well equilibrated. The process is illustrated
in Fig. 1. The individual steps of the approach can be summarized as follows:

1. Initialize R0 = R replicas with configurations drawn from πβ0 . For β0 =
0, this is usually possible via exact sampling, otherwise an approximation
(equilibration) is required, for example using MCMC.

2. Resample the population from the current inverse temperature βi−1 to βi >
βi−1, replicating configurations according to their relative weight at βi,

τi(Ej) = exp[−(βi − βi−1)Ej ]/Qi,

where βi − βi−1 = ∆βi and

Qi ≡ Q(βi−1, βi) =
1

Ri−1

Ri−1∑

j=1

exp[−(βi − βi−1)Ej ]. (1)

3. To improve equilibration at βi, subject each replica to θi rounds of single-
replica updates (e.g., MCMC).

4. Take measurements of any observableO as a population average,
∑Ri

j=1 Oj/Ri,
where Ri is the population size at the ith temperature step.

5. Return to step 2 unless the target temperature βf has been reached.

For systems without hard constraints, equilibrium configurations at β0 = 0 can
easily be generated using simple sampling. For β0 positive but small, equilibra-
tion with MCMC is easily possible. In the presence of constraints, it can be useful
to choose a set of independent coordinates. The stepwise cooling of the popula-
tion that lends PA its name results in the replicas acquiring individual weights
that depend on the internal energy Ej . In particular, at each step βi−1 → βi

each replica acquires an incremental importance weight

γj
i =

Zβi−1

Zβi

e−(βi−βi−1)E
i−1
j ,

such that at the ith step the total weight becomes W j
i = W j

i−1γ
j
i . In the version

of the algorithm outlined above, however, the resampling procedure at each
temperature step results in a replication of each configuration proportional to
γj
i . As a consequence, the weights W j

i do not need to be considered and the
observable estimates in step 4 can be computed as plain, unweighted averages.
Different suitable realizations of the resampling process and their properties are
discussed in Sec. 3.

After resampling, the weight of each surviving copy needs to be modified by
a factor of 1/τi(Ej), resulting in a renormalized weight of

W̃ j
i = W̃ j

i−1

γj
i

τi(Ej)
= W̃ j

i−1

Zβi−1

Zβi

Qi

= W j
0

Z0

Zβ1

· · · Zβi−1

Zβi

i∏

k=1

Qk =
1

Zβi

i∏

k=1

Qk.

(2)
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R = 10

U1 U2U3U4 U5 U6U7U8U9 U10

(a) multinomial

R = 10

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

(b) systematic

Fig. 2. Two resampling methods for constant population size: (a) multinomial resam-
pling and (b) systematic resampling. The colored boxes represent the size of the re-
sampling factors τ j

i and members of the resampled population are chosen according to
the color at the position of the labels U1, . . . , UR.

Clearly, these weights are independent of j, but they depend on the normaliza-
tion factors Qk that are random variables with respect to different population
annealing simulations using the same parameters R, θ,∆β etc. As a consequence,
if such simulations are repeated to improve results, their combination requires
weighted averaging in order to reduce both, systematic and statistical errors.
This aspect is discussed below in Sec. 4.

In total, the uni-directional stepping through successive temperatures sets
the approach apart from the MCMC paradigm and it is, in fact, a sequential
Monte Carlo algorithm [14]. In combination with the MCMC component that
is usually used as the equilibrating subroutine in step 3, the properties of PA
combine elements of MCMC and sequential MC which somewhat complicates its
systematic analysis. A comprehensive discussion of its properties in this respect
was given in Refs. [4, 15].

3 Resampling methods

The resampling step in PA comes with considerable freedoms. While it is crucial
for ensuring that the most important areas of configuration space are sampled
instead of wasting substantial effort on configurations contributing negligible
weight to the final averages, it is not strictly necessary to resample in every
temperature step. In some cases it might be sufficient to execute population
control once the variance of importance weights becomes too large [16]. More
fundamentally, the goal of achieving equal weight of all resulting population
members only requires that the expected number of copies follows the weights,
i.e., if rji copies are made of replica j in temperature step i, then we require that

⟨rji ⟩ = τ ji .

The actual probability distribution of rji is not constrained by the algorithm and
hence a tunable dimension. A fundamental distinction arises between approaches
where the population size remains constant in each step, i.e., Ri = Ri−1 = R,
and schemes with fluctuating population size.



Optimized population Monte Carlo 5

For fixed population size, the physics literature has so far focused on the
multinomial distribution [1], and only recently have other approaches been con-
sidered [17, 18]. One particularly simple alternative is systematic resampling.
These two techniques are illustrated in Fig. 2, where the replication weights τ ji
are represented by adjacent colored boxes, whose total width adds up to R. Re-
sampling with fixed population size then amounts to drawing R new replicas
with probabilities proportional to τ ji . For the multinomial approach shown in
Fig. 2(a), R random numbers Ui are uniformly drawn from the interval [0, R],
each creating a replica corresponding to the color at the marked location. In con-
trast, in systematic resampling, only a single uniform random number U1 ∈ [0, 1]
is drawn while the remaining labels are placed at Uk = Uk−1 + 1, k = 2, . . . , R,
cf. Fig. 2(b).

For variable population size, on the other hand, popular techniques include
Poisson resampling [3] as well as the nearest-integer method, where ⌊τ ji ⌋ copies5
are made for each replica of the original population and an additional copy with
probability τ ji −⌊τ ji ⌋ [15]. In order to suppress the occurrence of large fluctuations
in the resulting population sizes Ri, rescaled resampling factors

τ̂ ji = (R/Ri−1)τ
j
i (3)

are usually used for methods with fluctuating population size. In order to sim-
plify notation, we refer to all such factors as τ ji where it is understood that

for fluctuating population size τ̂ ji should be used. The resulting fluctuations in

Ri are of the order of
√
R and hence very moderate for practically used target

population sizes.
In a test performing population annealing simulations for the Ising model on

a L× L square lattice with Hamiltonian

H = −J
∑

⟨ij⟩
σiσj , (4)

one finds moderate differences in the overall bias and statistical error between
the different resampling schemes, cf. Fig. 3 [17,18]. These are most pronounced in
the vicinity of the ordering transition at βc ≈ 0.44068, with nearest-integer and
systematic resampling resulting in the smallest and Poisson and multinomial
resampling in the largest errors. These observations can be understood when
considering the sampling variance,

SV =
1

Ri

Ri∑

j=1

(rji − τ ji )
2, (5)

which captures the additional noise introduced through the resampling process.
As is seen from the estimates of SV shown in Fig. 4(a), better resampling meth-
ods have smaller sampling variance.

5 Here, ⌊·⌋ denotes the largest integer smaller than the argument, i.e., rounding down.
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Fig. 3. Relative systematic (a) and statistical (b) error of the specific heat of the 2D
Ising model for an L = 64 system in PA simulations employing different resampling
methods. The simulation parameters were R = 20 000, θ = 5, and βi = i/300.

For the specific case of the 2D Ising model, it is possible through the avail-
ability of exact results for the density of states to extrapolate these findings
to perfectly equilibrated simulations with θ → ∞ and infinite population sizes,
R → ∞ [18], and the general trends of Figs. 3 and 4(a) remain unchanged in
these limits. The interaction of resampling scheme and temperature protocol is
more intricate: it is well known that too large steps result in extreme fluctua-
tions [4], but we find that also too small steps lead to a systematic injection of
additional noise for resampling schemes with larger sampling variances. This is
illustrated in Fig. 4(b), which shows the resampling cost, i.e., the increase in the
replica-averaged family size

ρt = R

R∑

k=1

n2k , (6)
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Fig. 4. (a) Sampling variance according to Eq. (5) for PA simulations of a 64 × 64
2D Ising model using different resampling schemes shown as a function of inverse
temperature β (simulations with R = 20 000, θ = 5, βi = i/300). (b) Resampling cost
∆ρt/∆β as a function of inverse temperature step ∆β for PA simulations of the 2D
Ising model and nearest-integer/systematic resampling as compared to multinomial
resampling (L = 64, θ = ∞, R = ∞).

per inverse temperature step, ∆ρt/∆β. Here, nk denotes the fraction of the pop-
ulation that descends from replica k of the initial population. The quantity ρt is
a measure for the degree of correlation introduced into the population through
resampling [15] (see Ref. [4] for the alternative quantity Reff). It ranges from
ρt = 1 for an uncorrelated population to ρt = R for the case of only a single sur-
viving family. While for multinomial resampling (as well as for other techniques
discussed in Ref. [18]), the resampling cost increases without bound for (too)
small temperature steps, it becomes independent of (sufficiently small) step size
for nearest-integer and systematic resampling, cf. Fig. 4(b). This suggests that
for these methods the choice of temperature step is less crucial, such that they
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not only provide the least systematic and statistical error, but they are also more
robust than alternative approaches.

4 Weighted averages

While population annealing is particularly well suited for highly parallel simula-
tions [12,13], in some cases the desired population size might be hard to achieve
due to limitations in the available memory. In other cases, one might be inter-
ested in reducing bias and statistical error of simulation results by performing
additional PA runs. To achieve this, some averaging or data-pooling procedure
is required. According to the discussion in Sec. 2 above, the necessary weights
are related to the normalizing factors Qk of Eq. (1). As can be readily shown,
these encode a free-energy estimate according to [3]

−βiF̂i = lnZβ0
+

i∑

k=1

lnQk. (7)

Hence the weights of Eq. (2) become

W̃ j
i =

1

Zβi

i∏

k=1

Qk =
1

Z0Zβi

exp(−βiF̂i). (8)

Consequently, the individual estimates Ô(m)
i ≡ Ô(m)(βi), m = 1, . . . ,M , from

M different PA simulations at constant population size should be combined in
a weighted fashion as

W[Ôi] =

M∑

m=1

ω
(m)
i Ô(m)

i , (9)

with

ω
(m)
i =

R
(m)
i exp(−βiF̂

(m)
i )

∑
m R

(m)
i exp(−βiF̂

(m)
i )

. (10)

For fluctuating population size the expressions become a bit more complicated,
but the numerical differences are small [4, 19].

While this prescription applies to plain averages of single-replica observables
or configurational estimators, different strategies are required for more general
quantities. One common class of such observables are central moments and, in
particular, variances such as the specific heat and susceptibility. In such cases,
one must apply the weighting to the (non-central) moments, resulting in the
expressions [19]

Wvar

[
ĉ
]
:= β2N

[
W

[
ê2
]
−
(
W

[
ê
])2

]
(11)

for the specific heat and

Wvar

[
χ̂
]
:= βN

[
W

[
m̂2

]
−

(
W

[
m̂
])2

]
(12)
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Fig. 5. Biases observed in weighted averages for the specific heat c per spin and the
magnetic susceptibility per spin χ for M PA simulations of the 2D Ising model with
L = 64, θ = 10 and R = 20 000 as a function of inverse temperature β. The location
of the critical temperature is marked by the vertical lines. The results from the naive
weighting scheme shown in the left column exhibit a merely moderate bias reduction,
while for the corrected scheme of Eqs. (11) and (12) the bias quickly decays to zero as
M is increased.

for the susceptibility, where ê and ê2 as well as m̂ and m̂2 are the standard
estimators (averages) of the first and second moments of the energy and magne-
tization, respectively. More general cases can be treated along similar lines [19].

Using these modified expressions, one finds that the biases of the weighted
estimators of quantities such as the specific heat and susceptibility also system-
atically decrease as the number M of PA runs is increased. This is illustrated
in Fig. 5 which shows the results of the naive weighting scheme on the left and
those of the correct approach according to Eqs. (11) and (12) on the right. As
is clearly visible, only the corrected scheme leads to a systematic bias reduc-
tion with increasing M . As is discussed in Ref. [19], this reduction in general
follows a power law M−b with 0 ≤ b ≤ 1 and b approaching 1 when the individ-
ual runs to be averaged over are very well equilibrated. More fundamentally, it
can also be shown rigorously, that the empirical distribution represented by the
weighted combination of individual runs converges to the equilibrium distribu-
tion as M → ∞ [19].
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Fig. 6. Bias in the estimate P̂ (q) of the overlap distribution of the 2D bimodal Edwards-
Anderson spin-glass model on the 32×32 square lattice with periodic boundaries using
50 disorder samples. The PA runs used θ = 25 and R = 5 × 106 with 100 inverse
temperature steps between β0 = 0 and βf = 3. Here, the hardness of samples was
judged according to the observed values of ρt at βf .

The strength and limitations of the approach can be more accurately judged
for problems such as spin glasses, where systematic errors due to incomplete
equilibration are commonplace. In Fig. 6 we show the bias in the estimate of the
overlap distribution P̂ (q) of the 2D Edwards-Anderson Ising spin-glass model
with bimodal couplings: while for the bulk of the disorder samples a weighted
average of the estimates from M = 50 runs is able to all but eliminate bias at the
level of the resolution of the simulation, for the hardest samples this reduction
is noticeably weaker.

In an ideal world, the weighted combination of M PA simulations with pop-
ulations of size R would be equivalent to a single simulation with population
size MR. In reality, this can only be the case if there are no fluctuations that
lead to correlations between more than ∼ R replicas, since these could not be
represented in the M simulations of size R each. As we illustrate in Fig. 7 with
the overlap distribution of the 2D Edwards-Anderson model, bias is practically
absent in the easiest disorder realization both in the weighted average of M sim-
ulations as well as in the big simulation of size MR. For the hardest instance
considered, on the other hand, the larger simulation is significantly better than
the weighted average of the smaller ones. Note that for the sake of illustration,
the simulation parameters (in particular, the population size R = 2× 104) were
deliberately chosen such that the individual simulations are often not able to
equilibrate some of the disorder samples.



Optimized population Monte Carlo 11

−5

0

5

×10−4

P̂J ,MR(q)

W
[
P̂J ,R(q)

]

hardest instance

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1
−2

−1

0

1

2 ×10−5

q

sp
in

ov
er
la
p
b
ia
s

easiest instance

0

1
×10−2

0

5

×10−3

overlap
distribution

Fig. 7. Bias in estimating the overlap distribution of the 2D Ising spin glass for L = 32,
comparing the weighted average of M = 50 simulations with R = 20 000 to a single
run of size MR = 106. For the easiest instance (according to ρt at βf = 3), there is no
visible difference between these two strategies (bottom panel), while for the hardest
instance the large simulation is significantly more efficient in reducing systematic error
(top panel). The insets show the actual overlap distribution functions for the samples
in question, illustrating the richer structure for the harder sample.

While the above considerations have focused on systematic errors, it is clear
that weighted averaging also has an effect on statistical errors. In the case of

very even simulation weights ω
(m)
i , statistical errors are reduced by a factor

∼ 1/
√
M . In the opposite extreme, a single simulation dominates in weight and

hence a weighted average offers no reduction of statistical errors at all compared
to a single run. Reductions of systematic and statistical errors are thus to a
certain degree competing targets, and it is consequently of interest to consider
a combined accuracy measure such as the root-mean-square deviation (RMSD),
i.e.,

RMSD :=
√
bias2 + variance. (13)

The behavior of the RMSD for weighted averages in PA simulations of the 2D
Ising model is illustrated in Fig. 8, showing results for the internal energy and
specific heat. Here, we deliberately choose a (too) small θ = 2 for the L = 64
system in order to generate an appreciable systematic error. For the internal
energy shown in the upper panel, plain averaging over up to M = 50 simulations
essentially has no effect on the RMSD in the critical regime, since there it is
dominated by bias. In contrast, weighted averaging leads to a systematic decay
of the deviation. For the specific heat, on the other hand, some decrease of the
RMSD near the peak is visible also for plain averaging as the statistical error is
more important there. Note, however, that due to the incremental nature of the
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ê , M = 3
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Fig. 8. Root-mean-squared deviation (RMSD) of estimates of the internal energy
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(quasi)exact reference data. The estimates are computed from M repeated PA sim-
ulations with L = 64, θ = 2 and R = 20 000 using plain and weighted averages,
respectively. The insets show the same data on a logarithmic scale.

free-energy estimators F̂i of Eq. (7) that enter the weights (10), uneven weights
between runs triggered by systematic deviations near the critical point are also
retained in the ordered phase, such that the weighted averages do not result in
a significant reduction of statistical errors there.

Overall, if applied correctly, weighted averaging yields a powerful tool for the
reduction of systematic errors while also, in most cases, reducing statistical errors
by increasing the amount of data included. In many cases of at most moderate
biases, such a weighted combination of repeated runs is even competitive with
the naturally superior benchmark of a single run with a correspondingly larger
population.

5 Conclusion and outlook

Population annealing is a promising and rather general meta-algorithm for com-
puter simulations especially of systems with complex free-energy landscapes [20]
that excels, in particular, through its near perfect fit to the massively parallel
architectures of the high-performance computing landscape of exascale capabili-
ties and beyond [12]. It can be combined with nearly arbitrary driver algorithms
and is also portable to different annealing parameters such as energies in mi-
crocanonical simulations [7] or transverse fields in a quantum version [21]. In
the present article we have given an introduction and overview for the approach
and discussed some of the various optimizations that are possible. Next to the
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adaptively optimized choice of temperature steps that is by now well estab-
lished [13, 22], it is also possible to choose the sweep protocol adaptively [23],
or use PA for density-of-states estimation [24]. Here we focused on the freedoms
involved in choosing a protocol for the resampling step as well as the possibili-
ties inherent in the combination of individual runs through weighted averaging.
For the former we find clear advantages for using nearest-integer resampling for
the case of simulations with fluctuating population size and systematic resam-
pling for fixed-size populations. Through providing minimal sampling variance,
they lead to the least introduction of additional noise and correlation into the
populations and hence result in smaller systematic and statistical errors as com-
pared to other methods. Weighted averages provide the unique opportunity to
reduce statistical and systematic errors through additional moderate-scale runs.
Weighted averages can be shown rigorously to converge to the target (equilib-
rium) distribution. These as well as further, yet to be discovered, extensions of
population annealing turn it into a possible candidate for a Swiss Army knife
of computer simulations that should be one of the first methods of choice for
practitioners in the field.
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13. Barash, L.Y., Weigel, M., Borovský, M., Janke, W., Shchur, L.N.: GPU accelerated
population annealing algorithm. Comput. Phys. Commun. 220, 341–350 (2017)

14. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in
Practice. Springer, New York (2001)

15. Wang, W., Machta, J., Katzgraber, H.G.: Population annealing: Theory and ap-
plication in spin glasses. Phys. Rev. E 92, 063307 (2015)

16. Moral, P.D., Doucet, A., Jasra, A.: On adaptive resampling strategies for sequential
Monte Carlo methods. Bernoulli 18, 252–278 (2012)

17. Gessert, D., Weigel, M., Janke, W.: Resampling schemes in population annealing
– numerical results. J. Phys.: Conf. Ser. 2207, 012012 (2022)

18. Gessert, D., Janke, W., Weigel, M.: Resampling schemes in population annealing
– numerical and theoretical results. Preprint arXiv:2305.19994 (2023)

19. Ebert, P.L., Gessert, D., Weigel, M.: Weighted averages in population annealing:
analysis and general framework. Phys. Rev. E 106, 045303 (2022)

20. Janke, W. (ed.): Rugged Free Energy Landscapes — Common Computational Ap-
proaches to Spin Glasses, Structural Glasses and Biological Macromolecules, Lect.
Notes Phys., vol. 736. Springer, Berlin (2007)

21. Albash, T., Barash, L.N., Hen, I., Weigel, M.: Population annealing quantum
Monte Carlo (2023). In preparation

22. Christiansen, H., Weigel, M., Janke, W.: Population annealing molecular dynamics
with adaptive temperature steps. J. Phys.: Conf. Ser. 1163, 012074 (2019)

23. Gessert, D., Janke, W., Weigel, M.: In preparation
24. Barash, L., Marshall, J., Weigel, M., Hen, I.: Estimating the density of states of

frustrated spin systems. New. J. Phys. 21, 073065 (2019)

http://arxiv.org/abs/2305.19994

	Optimized population Monte Carlo

