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We study the percolation properties of geometrical clusters defined in the overlap space of two
statistically independent replicas of a square-lattice Ising model that are simulated at the same
temperature. In particular, we consider two distinct types of clusters in the overlap, which we dub
soft- and hard-constraint clusters, and which are subsets of the regions of constant spin overlap.
By means of Monte Carlo simulations and a finite-size scaling analysis we estimate the transition
temperature as well as the set of critical exponents characterizing the percolation transitions un-
dergone by these two cluster types. The results suggest that both soft- and hard-constraint clusters
percolate at the critical temperature of the Ising model and their critical behavior is governed by the
correlation-length exponent ν = 1 found by Onsager. At the same time, they exhibit non-standard
and distinct sets of exponents for the average cluster size and percolation strength.

I. INTRODUCTION

In simple ferromagnets the definition of an order pa-
rameter is straightforward, and in the vast majority of
cases one simply considers the magnetization [1]. For
more intricate problems such as some frustrated systems
with quenched disorder and certain quantum-spin mod-
els (easily measurable) order parameters are harder to
come by [2–5]. In spin glasses the free-energy landscape
has many minima that are occupied at low temperatures,
but which are not related to each other by simple sym-
metry transformations (such as, e.g., spin-flip symme-
try) [6]. For such systems it was proposed to consider
self-consistent definitions of ordering by constructing or-
der parameters that capture the tendency of such systems
to occupy the same set of metastable configurations. As
Parisi showed [7], such overlap definitions allow one to
describe the spontaneous symmetry breaking to a short-
range ordered spin-glass phase [8]. Different order param-
eters in general might also lead to different scaling and
associated critical exponents, however. One of the sim-
plest examples of this type is the ordering in the overlap
space of the square-lattice Ising model which is studied
here. The overlap is a more general and conceptually ro-
bust order parameter also for this ferromagnetic system,
and so it is worthwhile studying its behavior. In addition,
such setups might have some more general relevance, for
example for the description of layered Ising models with
(asymptotically) vanishing coupling as present, for ex-
ample, in multiplex networks [9], where ordering might
occur independently in the different levels of the graphs.

The study of ordering transitions of spin systems from
a geometrical perspective has greatly enhanced our un-
derstanding of phase transitions. Such approaches nat-
urally fall into the realm of percolation theory [10], in
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which spin systems can be described by appropriately de-
fined clusters, capable to encode the critical behavior of
the system. Fortuin and Kasteleyn (FK) [11] showed that
the q-state Potts model is equivalent to a site-bond cor-
related percolation problem, where clusters are defined
as neighboring parallel spins, and bonds between them
are deleted with a certain temperature-dependent proba-
bility. Such clusters percolate at the transition tempera-
ture and, even more importantly, they encode the critical
behavior of the system, as suitably defined cluster expo-
nents are found to be identical to the thermal ones (such
clusters were independently also analyzed by Coniglio
and Klein [12]). Apart from the conceptual importance
of these results, they also allowed for the construction
of powerful Monte Carlo algorithms by Swendsen and
Wang [13] and Wolff [14], where whole FK clusters are
flipped in contrast to local update schemes, such as the
Metropolis algorithm [15]. It is well established that the
main advantage of this approach is the reduction of au-
tocorrelation times in the vicinity of the critical point as
compared to local update schemes.

While FK clusters encode the critical behavior of the
system, this is generally not the case for the geometri-
cal or spin clusters [16]. Instead, such clusters undergo
a percolation transition that is normally distinct from
the thermal one, with the related critical exponents also
being different from the thermal ones (see Refs. [17, 18]
for a review). In two dimensions, however, the geometri-
cal clusters percolate at the thermal transition point [19]
and it has been shown that they encode the tricritical
behavior of the site-diluted q = 1 Potts model [20]. In
fact, analogous interrelations have been reported for the
more general q-state Potts model and its diluted version
for 0 ≤ q ≤ 4 in both analytical and numerical terms; see
Refs. [20–24] and references therein. It is hence a natu-
ral question to investigate how such geometrical clusters
defined in the overlap of the Ising model behave, and
whether they percolate at the critical temperature of the
ordering transition.

An additional motivation relates to the rather less clear
connection between clusters and thermal phase transi-
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tions in spin-glass systems [25]. For such models the
FK representation does not properly describe the phase
transition, and the constructed clusters percolate at a
temperature way above the spin-glass transition [26, 27].
Several types of clusters in the overlap of two copies,
including geometric clusters, have been considered as
potential candidates for the construction of cluster up-
dates [26, 28, 29]. It is found there that the spin-glass
transition is connected to the onset of a density difference
of the two largest clusters of a suitable type, while perco-
lation of such clusters occurs already above the spin-glass
transition point [26, 30]. As we shall see below, the clus-
ters considered for the Ising model in the present work
are related to some of the cluster types discussed in the
context of the spin-glass transition, cf. Ref. [30].

The rest of this paper is organized as follows: In Sec. II
we introduce the replicated Ising model and the associ-
ated concept of soft- and hard-constraint clusters. We
further outline the cluster-update Monte Carlo scheme
used in the following to study the problem numerically.
In Sec. III we elaborate on the relevant observables
whose percolation properties are investigated in detail.
In Sec. IV we report on a finite-size scaling analysis of
the simulation data leading to estimates of the percola-
tion temperature Tp and the critical exponents ν, β/ν,
and γ/ν characterizing the transition for the two cluster
types. We also comment on the influence of corrections to
scaling in the estimation of the exponent ratios β/ν and
γ/ν when different definitions are used for the involved
observables. Finally, in Sec. V we provide a summary of
our work and an outlook.

II. MODEL AND SIMULATION DETAILS

We study the nearest-neighbor, zero-field Ising model
with Hamiltonian

H = −J
∑
⟨i,j⟩

sisj , (1)

where J > 0 indicates ferromagnetic interactions, si =
±1 denotes the spin on lattice site i, and ⟨. . .⟩ refers to
summation over nearest neighbors only.

We now consider two identical copies of the system,
each being described by the Hamiltonian (1), resulting
in two spin configurations, s(1)i and s

(2)
i . Both systems

are at the same temperature and do not interact with
each other, thus being statistically independent. We then
consider overlap variables qi at each site, i.e.,

qi = s
(1)
i s

(2)
i . (2)

The behavior of this overlap parameter has been dis-
cussed in depth for the case of spin-glass systems (see,
e.g., Ref. [8]). Since qi = ±1, the overlap configura-
tion has the same configuration space {±1}N as the spin
lattices themselves (here, N denotes the total number

(a) Replica 1. (b) Replica 2.

(c) Soft-constraint clusters. (d) Hard-constraint clusters.

FIG. 1: Spin configurations as well as soft- and hard-
constraint geometrical clusters of the two-dimensional
Ising model at the Ising critical temperature Tc. (a) Spin
configuration of the first replica. (b) Spin configuration
of the second replica. (c) The resulting soft-constraint
clusters. (d) The resulting hard-constraint clusters. In
(c) and (d) all clusters, apart from the largest percolat-
ing one, are assigned colours at random. For the largest
percolating cluster of both the soft- and hard-constraint
definitions, the same colour (black) is assigned.

of lattice sites). As a consequence, all derived observ-
ables usually considered for {si} can also be defined for
{qi}. While for spin glasses this approach leads to the
spin-glass susceptibility and related quantities such as
the spin-glass correlation length, and exploitation of the
available gauge symmetry of the couplings results in a
possible approach towards understanding the spin-glass
phase [31], the behavior of the overlap has hardly been
studied for the case of ferromagnets.

In overlap space we may then define geometrical clus-
ters, i.e., sets of neighboring lattice sites with the same
values of the overlap, that can be formed in two particu-
lar ways:

(1) Soft-constraint clusters are created by joining spins
on neighboring sites (i, j) with qi = qj .

(2) Hard-constraint clusters are formed by joining neigh-
boring spins with s

(1)
i = s

(1)
j and s

(2)
i = s

(2)
j .

From the above it is obvious that the hard-constraint
clusters trivially satisfy qi = qj and they are a subset of
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the soft-constraint clusters. The construction of these
clusters is illustrated through the snapshots shown in
Fig. 1, where configurations of the two replicas are shown
(top row) along with the soft- and hard-constraint clus-
ters (bottom row) for a system of linear size L = 128 at
the critical temperature of the square-lattice Ising model.
It is apparent that the typical clusters in the overlap
are smaller than those in the two replicas, and that the
hard constraint leads to smaller clusters than the soft
constraint. We note that in the spin-glass setup, the
prescription for soft-constrained clusters leads to what is
there known as Houdayer clusters [28], while the hard
constraint corresponds to a geometric-cluster version of
the Chayes-Machta-Redner construction [30, 32].

In the present work, we studied these clusters for
the case of the Ising model on the square lattice. In
particular, we simulated the Ising model by consider-
ing two replicas on the square lattice with periodic
boundary conditions for a range of temperatures in-
cluding the exact Ising critical temperature, i.e., Tc =
2/

(
1 +

√
2
)
≈ 2.269185. Configurations were generated

via the Swendsen-Wang algorithm [13] applied to sys-
tems of linear sizes in the range 8 ≤ L ≤ 2048. For
all system sizes and on each replica the total number of
simulation steps was 1.1× τint, E × 105 sweeps, of which
τint, E × 104 sweeps were discarded during equilibration.
Here, τint, E denotes the integrated autocorrelation time
of the energy [33]. After every τint, E sweeps a measure-
ment was taken, resulting in 105 measurements per run.
The estimates of τint, E, rounded up to the next largest
integer, varied from 5 sweeps for L = 8 to 15 sweeps
for L = 2048. Note that in order to identify wrapping
clusters we employed the method of Machta et al. [34].
Finally, for all curve fitting performed throughout this
paper we restricted ourselves to data with L ≥ Lmin,
adopting the standard χ2 test for goodness of the fit.
Specifically, we considered a fit as being acceptable only
if Q > 0.01, where Q is the quality-of-fit parameter [35].

III. OBSERVABLES

To investigate the percolation transition of geometrical
overlap clusters, the main relevant quantities are the per-
colation strength P∞, the average cluster size S, and the
wrapping probability R [10]. The latter is defined as the
probability that, given a spin configuration, at least one
cluster wraps around the periodic boundaries of a finite
lattice and is connected back to itself. In the thermo-
dynamic limit, one expects that R = 1 for temperatures
below the percolation transition at Tp, and R = 0 at tem-
peratures above Tp. The wrapping of a cluster can occur
in various ways, and here we consider the following cases,
in analogy to Ref. [36]:

(1) Rx or y is the probability that a cluster wraps around
the lattice in horizontal or vertical (or both) direc-
tion(s).

(2) Rx and y is the probability that a cluster wraps in
horizontal and in vertical direction.

(3) Rx is the probability that a cluster wraps in hor-
izontal direction. Obviously, on the square lattice
the probability that a cluster wraps in vertical di-
rection Ry ≡ Rx.

(4) Rx and y is the probability that a cluster wraps
around one but not the other direction. Here
we choose the probability that a cluster wraps
around the horizontal and not the vertical direction.
The symmetry of the square lattice indicates that
Rx and y ≡ Ry and x.

The wrapping probability R is a dimensionless quantity,
and so one expects finite-size scaling of the form [10, 37]

R = R̃
[
(T − Tp)L

1/ν
]
. (3)

Hence, the R curves for systems of different sizes are ex-
pected to cross, up to finite-size corrections, at the same
point, marking the transition temperature Tp. In addi-
tion, since the scaling function R̃ is expected to be univer-
sal, so is the value of R = R̃(0) at the crossing point [10].
This behavior is nicely verified in Figs. 2 and 3, where
the various wrapping probabilities are plotted as a func-
tion of temperature T for the larger system sizes studied
and for both soft- and hard-constraint clusters. Except
for Rx and y, all wrapping probabilities increase with de-
creasing temperature, indicative of the onset of the per-
colating phase. The crossing of data sets for different
system sizes is found to occur very close to the critical
temperature Tc of the Ising model shown in Figs. 2 and
3 as a dashed vertical line. This latter observation also
holds for Rx and y with the essential difference that this
observable exhibits a maximum, the position of which is
expected to shift to its asymptotic value as L → ∞ [36].
In numerical studies of ordinary percolation, however, it
was shown that Rx and y exhibits both crossing points and
maxima only in three dimensions [38], whereas in two di-
mensions the crossing region is absent [36, 38]. Thus, the
existence of both maxima and crossing points in Rx and y
in two dimensions marks an interesting feature of the per-
colation signature of geometrical clusters in the overlap
of the Ising model.

Of central importance in percolation theory is the clus-
ter number ns, denoting the expected number of clusters
of s sites per lattice site [10]. Thus the average cluster
size can be expressed as

S =

∑
s′ s

2ns∑
s′ sns

, (4)

where sns corresponds to the probability of a randomly
picked site to belong to a cluster of size s. The nota-
tion s′ indicates that the sums are restricted to certain
subsets of clusters. Denoting the set of clusters in a con-
figuration as C and letting P be a subset of C containing
the percolating clusters, we can introduce the following
definitions for S:
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FIG. 2: Wrapping probabilities R(s) of the soft-constraint
clusters as a function of temperature T for (a) R(s)

x or y, (b)
R

(s)
x and y, (c) R

(s)
x , and (d) R

(s)
x and y. Only results for the

larger system sizes are shown (L ≥ 320). Here and in
the following, the dashed vertical lines mark the critical
temperature Tc of the Ising model.
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FIG. 3: Wrapping probabilities R(h) of the hard-
constraint clusters as a function of temperature T , anal-
ogous to the data for soft-constraint clusters shown in
Fig. 2.
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FIG. 4: Average cluster size S according to the defini-
tion C \ max C as a function of temperature on a semi-
logarithmic scale. Results for both (a) soft-constraint
and (b) hard-constraint clusters are presented for the
larger system sizes studied (L ≥ 320).

(1) All clusters are included: C.
(2) Exclude the largest cluster in each measurement:

C \ max C.
(3) Exclude all percolating clusters: C \ P .
(4) Exclude all clusters percolating in horizontal and in

vertical direction: C \ Px and y.
(5) Exclude all clusters percolating in one specific direc-

tion, e.g., horizontal: C \ Px.
(6) Exclude all clusters percolating in one but not the

other direction, e.g., horizontal and not vertical:
C \ Px and y.

In most numerical studies of percolation the employed
definition of the average cluster size excludes the largest
cluster in each measurement, corresponding to our case
(2) [10]. With this convention, S has a maximum around
the percolation point, since in the non-percolating phase
the size of many contributing clusters increases, while in
the percolating regime most spins belong to the largest

cluster which is not counted towards the sum. This esti-
mate is shown in Fig. 4 where S is plotted as a function
of T for the larger system sizes and for both soft- and
hard-constraint clusters. In the vicinity of the percola-
tion point, the average cluster size is expected to follow
a scaling form according to [10]

S (L, T ) = Lγ/ν S̃
[
(T − Tp)L

1/ν
]
, (5)

which can be used for determining the critical exponent
ratio γ/ν conventionally associated to the scaling of the
magnetic susceptibility.

The percolation strength P∞ corresponds to the frac-
tion of sites belonging to the infinite cluster in the ther-
modynamic limit. For finite-size systems it is usually esti-
mated from the fraction of sites belonging to the largest
cluster. In Fig. 5, P∞ is plotted against T for the full
range of system sizes studied and for both soft- and hard-
constraint clusters. Note that (i) as the temperature de-
creases P∞ increases, indicating the appearance of a per-
colating cluster, and (ii) for T = 0 we have P∞ = 1 as all
spins belong to the percolating cluster. We remind that
when studying the FK clusters in magnetic systems, the
percolation strength corresponds to the magnetization of
the system [11]. Finite-size scaling theory suggests a scal-
ing form

P∞ (L, T ) = L−β/ν P̃∞

[
(T − Tp)L

1/ν
]
, (6)

where β/ν denotes the corresponding critical exponent
ratio.

Analogous to the treatment of R and S, it is natural
to also consider modified percolation strengths P∞ by
studying the fractions of sites occupied by the following
subsets:

(1) Largest cluster: max C.
(2) Largest percolating cluster: max P .
(3) Largest cluster that percolates in horizontal and in

vertical direction: max Px and y.
(4) Largest cluster that percolates in one specific direc-

tion, e.g., horizontal: max Px.
(5) Largest cluster that percolates in one but not the

other direction, e.g., horizontal and not vertical:
max Px and y.

In the following, we will use the scaling forms (3), (5)
and (6) with the universal scaling functions R̃, P̃∞, and
S̃ in order to determine the correlation-length critical
exponent ν as well as the exponent ratios γ/ν and β/ν
of the average cluster size and the percolation strength,
respectively, as well as the percolation temperature Tp.
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FIG. 5: Percolation strength P∞ as a function of temper-
ature for both (a) soft-constraint and (b) hard-constraint
clusters. For clarity, only the legends of the smallest and
largest system sizes are highlighted.

IV. MAIN RESULTS

A. Correlation-length exponent

In Monte Carlo studies of phase transitions the
temperature-derivative of the Binder cumulant [39] pro-
vides a reliable estimate for the critical exponent ν [40].
In random percolation, a similar behavior is expected for
the derivative of the wrapping probability with respect
to the bond occupation probability [38]. For the present
problem of clusters in a thermal problem it is natural,
in contrast, to consider the temperature-derivative of the
wrapping probabilities. As the latter are monotonic func-
tions of the temperature — except for Rx and y — one
expects that the maximum of the absolute value of its
first derivative should scale as∣∣∣∣dRdT

∣∣∣∣
max

∼ L1/ν . (7)

As shown in Sec. III, the exception to this rule is Rx and y
which is a non-monotonic function of T , showing both a
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FIG. 6: Maximum slope of the wrapping probability,
|dR/dT |max, as a function of system size L on a double
logarithmic scale for all variants of the wrapping proba-
bilities and for (a) soft-constraint and (b) hard-constraint
clusters.

maximum and a crossing region. Nevertheless, if we re-
strict ourselves to the vicinity of the crossing regime, this
observable is also expected to follow the scaling behaviour
of Eq. (7). Importantly, Eq. (7) allows one to obtain es-
timates of ν without prior knowledge of the percolation
temperature Tp. To determine the maximum of |dR/dT |,
both the first and second derivatives are computed using
the symmetric-finite-difference definition, and the root is
located using the bisection method [35]. The required
estimates at nearby temperatures are extracted from the
simulation data by means of single-histogram reweight-
ing [41], using a step size ∆T = 10−7.

In Fig. 6, |dR/dT |max is shown as a function of L for
the different wrapping probabilities of the soft- and hard-
constraint clusters. Fits of the form (7) were performed
for system sizes on intervals Lmin ≤ L ≤ Lmax by system-
atically increasing the lower cut-off Lmin, while keeping
the upper cut-off fixed at Lmax = 2048. The resulting ef-
fective values of ν are shown in Fig. 7. The final estimates
we quote for both the soft- and hard-constraint clusters
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FIG. 7: Effective values of the exponent ν vs. the inverse
lower cutoff size 1/Lmin on a semi-logarithmic scale. The
estimates were obtained from fits of the form (7) to the
data of Fig. 6.

using the R
(s)
x and y and R

(h)
x and y definitions, respectively,

are

ν(s) = 1.005(5) (Lmin = 256), (8a)

ν(h) = 1.00(3) (Lmin = 800). (8b)

These results suggest that the critical exponent of the
correlation length is the same for both cluster types and
consistent with that of the Ising model, i.e., ν = 1.

B. Percolation temperature

For the estimation of the percolation temperature Tp
we considered the intersection of the wrapping proba-
bilities of pairs of system sizes (L,L′) as a function of
T , following the original prescription by Binder for the
magnetization cumulant [39, 40]. The points where these
wrapping probabilities cross scale as [39]

Tcross (L, b) = Tp + aL−(1/ν+ω)

(
b−ω − 1

b1/ν − 1

)
, (9)
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FIG. 8: Estimates of crossing temperatures for (a) soft-
constraint and (b) hard-constraint clusters on a semi-
logarithmic scale. The dashed horizontal line marks the
transition temperature of the Ising model.

where a is a non-universal scaling parameter, ω is the
corrections-to-scaling exponent, and b = L′/L is the quo-
tients ratio, fixed hereafter to b = 2. Crossings were de-
termined using the bisection method [35] alongside the
single-histogram reweighting technique [41].

Figure 8 showcases the scaling of the crossing points of
the various wrapping probabilities for both the soft- and
hard-constrained clusters, which appear to be consistent
with the critical temperature of the Ising model, up to
surprisingly small finite-size effects. In order to obtain
more accurate estimates of Tp we performed fits using
Eq. (9). Due to the smallness of the corrections, how-
ever, the accuracy of our data did not allow us to resolve
their detailed form, resulting in fits of poor quality and
consequently in unreliable estimates of the involved pa-
rameters. As an alternative, we fixed ν to the expected
value ν = 1, so that Eq. (9) (ignoring scaling corrections)
simplifies to

Tcross = Tp + a/L. (10)

Estimates of the percolation temperature resulting
from the linear fits of Eq. (10) are shown in Fig. 9 for
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FIG. 9: Estimates of the percolation temperature Tp vs.
1/Lmin on a semi-logarithmic scale. Results obtained
from fits of the form (10) on the data of Fig. 8. The
dashed horizontal line marks here as well the transition
temperature of the Ising model.

both soft- and hard-constraint clusters; they are found to
be consistent with the critical temperature of the Ising
ferromagnet, i.e., Tc = 2.269185 . . .. We note that the
results for Rx or y have slightly elevated statistical errors
as compared to the other definitions, a feature that can
be traced back to the fact that Rx or y is very close to
one at Tc such that the curves cross at a smaller angle,
cf. Figs. 2(a) and 3(a). In addition, the parameter a
of Eq. 10 for all fits is consistent with zero within error
bars, indicating that the data can also be described by
a constant Tcross(L) = Tp = Tc, independent of L. At
this point we may safely conclude that soft- and hard-
constraint clusters undergo a percolation transition at
the critical temperature Tc of the Ising model.

C. Scaling at criticality

We proceed with the computation of critical expo-
nents related to the percolation strength, P∞, and the
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FIG. 10: Percolation strength P∞ vs. L at the critical
temperature of the Ising model on a double logarithmic
scale for (a) soft-constraint and (b) hard-constraint clus-
ters.

average cluster size, S, for the two types of clusters
at criticality. Since we found convincing evidence of
the identity of the percolation and critical exponents,
Tp = Tc = 2.269185 . . . in the previous section, we con-
sidered the scaling of P∞ and S at the fixed tempera-
ture T = Tc; the result is shown for the soft- and hard-
constraint clusters in Figs. 10 and 11, respectively. For
both observables, all data appear to follow straight par-
allel lines, suggesting minor corrections to scaling and
universal exponents, independent of the definition used.

At the percolation point, according to Eqs. (5) and (6)
the scaling functions become constant, thus allowing for
the estimation of the involved exponents from finite-size
scaling. In the following, we present the results of system-
atically fitting those functional forms to the data for P∞
and S for all sets of definitions, following the established
protocol of varying Lmin as described above, allowing us
to monitor the influence of corrections to scaling.

Figure 12 shows our estimates of the effective expo-
nent ratios (β/ν)

(s) and (β/ν)
(h) while varying the cut-

off Lmin. Besides the max Px and y data, it is evident
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FIG. 11: Average cluster size S vs. L at the critical tem-
perature of the Ising model on a double logarithmic scale
for (a) soft-constraint and (b) hard-constraint clusters.

that the exponents converge relatively quickly to the val-
ues (β/ν)

(s) ≈ 0.095 and (β/ν)
(h) ≈ 0.12 for the soft-

and hard-constraint clusters, respectively. The fact that
the numerical data for the max Px and y definition pro-
vide unreliable estimates of the involved exponent can be
readily understood: clusters percolating in one but not
the other direction are sparse, leading to poor statistics in
the estimation of the percolation strength and the associ-
ated exponent. This observation has also been reported
in Ref. [42] for the Ising model.

As there is no systematic trend visible in our data that
could possible reveal the existence of corrections to scal-
ing for (β/ν)(s) and (β/ν)

(h), we did not attempt to per-
form fits including correction terms. Instead, as a trade-
off between unavoidable corrections to scaling and rea-
sonable values of χ2, we choose sufficiently large Lmin for
our final estimates of (β/ν)(s) and (β/ν)

(h),

(
β

ν

)(s)

= 0.0950(7) (Lmin = 320), (11a)

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

10−3 10−2 10−1

(β
/ν

)(
s)

1/Lmin

max C(s)

max P
(s)
x or y

max P
(s)
x

max P
(s)
x and y

max P
(s)
x and y(a)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

10−3 10−2 10−1

(β
/ν

)(
h)

1/Lmin

max C(h)

max P
(h)
x or y

max P
(h)
x

max P
(h)
x and y

max P
(h)
x and y(b)

FIG. 12: Effective exponent ratios β/ν extracted from
fits of the functional forms (5) and (6) as a function of the
inverse lower size cut-off 1/Lmin for (a) soft-constraint
and (b) hard-constraint clusters.

(
β

ν

)(h)

= 0.1184(11) (Lmin = 512). (11b)

Estimates for the effective exponent ratios (γ/ν)
(s)

and (γ/ν)
(h) are shown in Fig. 13. For the C and

C \ Px and y definitions, the exponent ratio converges
relatively quickly to the value (γ/ν)

(s) ≈ 1.81 and
(γ/ν)

(h) ≈ 1.77 for the soft- and hard-constraint clusters
respectively, indicating that corrections to scaling are not
substantial. On the other hand, for the rest of the defi-
nitions, corrections to scaling become important and the
convergence to an asymptotic value is rather slow. The
fact that C and C \ Px and y give similar results is to be
expected, as the latter definition excludes clusters that
rarely appear, thus not altering significantly the sums in
Eq. (4). Note that the reduction of scaling corrections for
the average cluster size through the choice of the C defi-
nition was also reported in Ref. [24] for the Ising model,
while a systematic study of the behavior for the Ising
model from all of the above definitions was presented in
Ref. [42].
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FIG. 13: Effective exponent ratios γ/ν vs. 1/Lmin for (a)
soft-constraint and (b) hard-constraint clusters.

More reliable estimates for the exponent ratio γ/ν can
be retrieved by taking into account corrections to scaling
for both soft- and hard-constraint clusters. To arrive at
somewhat stable estimates for the correction-to-scaling
exponent, we performed joint fits to the data for the dif-
ferent definitions of S including one correction term using
the Ansatz

S = aLγ/ν
(
1 + bL−ω

)
, (12)

where a and b are the non-common fitting parameters
and γ/ν, and ω the shared parameters. Since data from
different definitions are not statistically independent, as
they result from the same Monte Carlo series, a naive
implementation of the above fitting procedure will re-
sult in erroneous error estimation of the fit parameters.
Thus, in order to provide reliable estimates for the errors
of the involved parameters, we employed the jackknife
method [43]. For all values of Lmin, estimates of γ/ν
agree within error bars as is shown in Fig. 14. Addition-
ally, in Fig. 15 the exponent ω is plotted as a function of
Lmin. The fact that the error bars in the estimates of γ/ν
and ω are increasing with Lmin is of course a consequence
of the decreasing number of degrees of freedom. However,
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FIG. 14: Exponent ratio γ/ν resulting from the joint
fit of all definitions as a function of 1/Lmin for (a) soft-
constraint and (b) hard-constraint clusters.

the errors in ω increase rapidly, and for Lmin ≥ 320 they
are comparable with their absolute values for both clus-
ter types. Our final estimates of the involved exponent
ratio γ/ν of the soft- and hard-constraint clusters are:

(γ
ν

)(s)
= 1.814(5) (Lmin = 200), (13a)

(γ
ν

)(h)
= 1.765(4) (Lmin = 200). (13b)

We note that the estimated value of ω ≈ 0.2 for both
soft- and hard-constraint clusters represents a rather slow
decay of corrections, consistent with the slow convergence
of γ/ν for most definitions of S that is clearly visible in
Fig. 13. We are not aware of any theoretical estimates
relating to the value of ω.

D. Fractal dimension and hyperscaling

At the percolation point the incipient spanning cluster
is a fractal object and its mass M (i.e., the number of
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FIG. 15: Corrections-to-scaling exponent ω resulting
from the joint fit of all definitions as a function of 1/Lmin
for (a) soft-constraint and (b) hard-constraint clusters.

spins that belong to the spanning cluster) scales with
the system size as M ∼ LD. Here, D denotes the fractal
dimension of the incipient spanning cluster. Since from
the discussion in Sec. III the percolation strength P∞
corresponds to the fraction of spins in the percolating
cluster, it follows that D = d− β/ν. From the estimates
of β/ν for the soft- and hard-constraint clusters provided
in Eqs. (11a) and (11b) we hence obtain

D(s) = 1.9050(7); D(h) = 1.8816(11), (14)

suggesting that the fractal dimension is different for the
two cluster types. Also, the fact that D(s) > D(h) high-
lights that the soft-constraint clusters are denser than
the hard-constraint ones, a reasonable expectation as
the hard-constraint clusters are a subset of the soft-
constraint ones. Additionally, let us point out that the
fractal dimensions for both cluster types are smaller than
D = 187/96 ≈ 1.9479, the fractal dimension of geometri-
cal clusters in the Ising model [20].

On the other hand, if hyperscaling is valid, the fractal
dimension can also be estimated from D = β/ν+γ/ν [10].
Combining our estimates from Eqs. (11a) and (11b) with

TABLE I: Critical exponents of the soft- and hard-
constraint clusters in comparison to the exact values of
the geometrical clusters of the square-latice Ising model
model.

overlap Ising

Exponent

Constraint
soft hard −

ν 1.005(5) 1.00(3) 1

β/ν 0.0950(7) 0.1184(11) 5/96 ≈ 0.052

γ/ν 1.814(5) 1.765(4) 91/48 ≈ 1.895

D = γ/ν + β/ν 1.909(5) 1.883(4) 187/96 ≈ 1.947

D = d− β/ν 1.9050(7) 1.8816(11) 187/96

(13a) and (13b), we arrive at

D(s) = 1.909(5); D(h) = 1.883(4), (15)

which is consistent with the estimates of Eq. (14), thus
illustrating that hyperscaling is valid for both cluster
types.

V. DISCUSSION

We have studied the percolation properties of clusters
defined in the overlap space of two statistically indepen-
dent systems of the square-lattice Ising model. To this
end, two distinct cluster types were introduced which we
dubbed soft- and hard-constraint clusters. After a short
exposition of the behavior of the main observables, i.e.,
the wrapping probabilities, average cluster sizes, and per-
colation strengths, the critical behavior of the system was
investigated. Our results indicate that both cluster types
are described by the same correlation length exponent
which is found to be in agreement with the value ν = 1
of the Ising ferromagnet. Additionally, both cluster types
percolate at a temperature that is indistinguishable from
the transition point of the two-dimensional Ising model
for the lattice sizes up to L = 2048 that we considered in
our study. In marked contrast with the exponent ν, our
analysis for the exponent ratios β/ν and γ/ν manifests
the following: (i) the exponent values are clearly different
from those that characterize the geometrical clusters of
the Ising model, and (ii) there is a small but seemingly
systematic difference in the exponents estimated for the
soft-constraint and the hard-constraint clusters, cf. the
overview of exponent estimates provided in Table I.

Under the assumption that Tp = Tc that is so well cor-
roborated by our numerical results, the scaling exponents
for the overlap clusters can be deduced from the following
argument: according to the expected scaling of P∞, at
Tc the probability of a randomly picked site to be in the
percolating cluster of replica one scales as ∼ L−(β/ν)IG ,
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where (β/ν)IG = 5/96 corresponds to the exponent of
the geometrical clusters in the Ising model. As the same
holds for replica two and the two replicas are uncorre-
lated, the probability of the site being in the percolating
cluster of both replicas decays as ∼ L−2(β/ν)IG , such that
β/ν = 2(β/ν)IG = 10/96 ≈ 0.1042. As a consequence,
one expects γ/ν = 2 − 4(β/ν)IG = 43/24 ≈ 1.792 and
D = 2 − 2(β/ν)IG = 91/48 ≈ 1.8958. As a glance at
Table I shows, these values are quite compatible with
our findings in particular for the hard-constraint clus-
ters to which this type of argument applies. The small
deviations observed might be a consequence of the slow
decay of scaling corrections expressed in the small value
ω ≈ 0.2 of the Wegner exponent. The clusters in the
soft-constraint problem are, by construction, larger than
those of the hard-constraint variant, but their scaling
does not directly follow from the above argument, so it
is possible that they show asymptotically different expo-
nents.

At the same time, the density of the percolating cluster

in the overlap is below that of the percolating spin cluster
in a single Ising model, while the clusters of the former
are also found to be more compact than those in the lat-
ter. This is a natural consequence of the superimposition
of the two fractal structures such that the objects inves-
tigated here correspond to their intersection. It would
be most intriguing to study how clusters in the mutual
overlap of more than two copies of the system behave —
a task which is left for future work, however.
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