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The population annealing algorithm is a population-based equilibrium version of simulated an-
nealing. It can sample thermodynamic systems with rough free-energy landscapes more efficiently
than standard Markov chain Monte Carlo alone. A number of parameters can be fine-tuned to
improve the performance of the PA algorithm. While there is some numerical and theoretical work
on most of these parameters, there appears to be a gap in the literature concerning the role of
resampling in population annealing which this work attempts to close.

The two-dimensional Ising model is used as a benchmarking system for this study. At first various
resampling methods are implemented and numerically compared. In a second part the exact solution
of the Ising model is utilized to create an artificial population annealing setting with effectively
infinite Monte Carlo updates at each temperature. This limit is first performed on finite population
sizes and in a second step extended to infinite populations. This allows us to look at resampling
isolated from other parameters. Many results are expected to generalize to other systems.

I. INTRODUCTION

Without doubt the enormous increase in computing
power over the past decades has paved the way to tackle
ever more challenging problems. In parallel to this explo-
sion in raw computing power, the design of efficient algo-
rithms and their further refinement have turned out to be
crucial for solving many hard computational tasks. One
class of such problems requires the simulation of complex
systems with rugged free-energy landscapes, such as spin
glasses, polymers and frustrated systems [1]. In the re-
cent past the population annealing (PA) framework has
been shown to be rather successful in treating the afore-
mentioned systems [2–5].

PA is a simulation framework in which a population
of R replicas, i.e., R configurations of the model under
study, is collectively cooled from an initial high tempera-
ture to a final low temperature. Replicas evolve indepen-
dently except at each temperature step where the pop-
ulation is reweighted and resampled (see Sec. II A for
details). Typically Markov chain Monte Carlo (MCMC)
is used to evolve replicas between temperature steps but
any update (including molecular dynamics) which is suit-
able for the studied model may be used [4, 5]. Each time
the temperature is lowered, replicas acquire an impor-
tance weight corresponding to the change in tempera-
ture. Resampling, the subject of this study, in essence
then is the “translation” of real-valued weights to inte-
ger numbers of copies to be made of each replica as the
temperature is lowered in order to again evenly distribute
the weight among all members of the population.

Over the last decade and a half the increase in com-
puting power no longer translates into an improvement
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in single core performance but rather a constant increase
of the number of computing cores available. PA is almost
trivially parallel and has no theoretical limitations on the
level of parallelism [6, 7] which means it is well suited
to run on modern computing hardware that is becom-
ing more and more parallel. Parallelizability is perhaps
the unique selling point for PA over related approaches
with otherwise similar performance [8]. For instance, a
somewhat similar algorithm is parallel tempering [9] for
which, however, the potential degree of parallelism is lim-
ited [10].

Note that without weights and resampling PA essen-
tially reduces to performing R independent simulated an-
nealing (SA) runs [11]. Keeping track of the weights
is necessary if correctly weighted thermal averages are
to be taken over the population (which is normally not
the focus of attention in simulated annealing) [12]. On
the other hand, if weights are never rebalanced down
to low temperatures, few replicas will carry most of the
weight, such that most computational resources are spent
on replicas that do not contribute to measurements [13].
Thus, resampling contributes towards the ongoing task
of equilibration of the system.

Although it is well understood that resampling is a cru-
cial part in the PA framework [12] and despite the fact
that numerous different resampling schemes have been
used in PA in the past [2, 3, 14], to the best of our
knowledge, the effect of the chosen resampling method
on the quality of the data obtained in PA has not yet
been studied systematically. In the present work we at-
tempt to fill this gap. Besides providing guidance regard-
ing the question which method is preferable, we quantify
the noise that enters simulations through resampling and
thus identify scenarios in which the chosen resampling
method matters most, thus revealing a tight connection
between resampling and the temperature schedule.

The rest of this paper is organized as follows. In Sec. II
we describe the PA algorithm as well as the different re-
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sampling methods we consider. Section III contains an
outline of the simulation details, in particular the quanti-
ties we use to compare the different methods. Our results
are split into two parts, presented in Secs. IV and V. In
the former we present numerical results from PA simu-
lations using various resampling methods and otherwise
constant parameters, while in the latter we study the ef-
fect of the chosen resampling method in well-equilibrated
systems using the perfectly equilibrated Ising model as an
artificial example. Finally, Sec. VI contains our conclu-
sions.

II. ALGORITHM

A. Population annealing

As already mentioned above, PA is an algorithmic
framework in which a population of replicas is sequen-
tially cooled. Each temperature step is followed by a
population control move. Finally, in order to additionally
equilibrate the system, one also performs a number of in-
dependent MCMC moves at each temperature. Through
the temperature steps each replica k = 1, . . . , Ri at tem-

perature step i acquires a weight W
(i)
k , and these weights

get rebalanced through resampling. The algorithm can
be summarized as follows:

1. Initialize the population of R replicas at the start-
ing inverse temperature β0 = 0. In some cases a
non-zero inverse temperature has to be chosen [5].
Set iteration counter i ← 0. Set all weights

W
(i)
k ← 1.

2. Make an inverse temperature step βi → βi+1 unless
the stopping inverse temperature βs is reached, i.e.,
βi ≥ βs :

(a) Calculate the modification of the (unnormal-

ized) Boltzmann weights W
(i)
k for each replica

k with energy Ek through the temperature
change, i.e.,

W
(i+1)
k = W

(i)
k e−∆βEk , (1)

where ∆β := βi+1 − βi is the inverse temper-
ature step.

(b) Resample the population according to the

computed weights W
(i+1)
k , that is make on av-

erage

τk = RW
(i+1)
k

/
Ri∑
j=1

W
(i+1)
j (2)

copies of replica k, where Ri is the population

size at βi. Set all weights W
(i+1)
k ← 1.

(c) Increment the iteration counter, i← i+ 1.

(d) Perform θ MCMC sweeps on each replica.

(e) Calculate estimates for observables through
population averages, i.e.,

Ô(i) =

Ri∑
k=1

O(i)
k W

(i)
k /

Ri∑
k=1

W
(i)
k . (3)

The three major parameters that can be adjusted to
optimize PA performance are the (target) population
size R, the number of updates in the equilibration rou-
tine θ and the inverse temperature step ∆β. Some guide-
lines for their choice have previously been discussed by
some of us [12]. In essence, one should choose θ large
enough to ascertain a sufficient degree of equilibration if
an efficient MCMC algorithm is available and put the re-
maining computing resources into choosing a population
size as large as easily feasible, typically of the order of
at least a few thousand replicas. The annealing schedule
{βi} is recommended to be chosen adaptively [12, 14, 15].

Note, that when the weights W
(i)
k are reset in every

iteration (as is the case here), then they can be absorbed
into the expression for τk, i.e.,

τk = Re−∆βEk

/
Ri∑
j=1

e−∆βEj . (4)

In this case, population averages can simply be cal-

culated as Ô(i) =
∑Ri

k=1O
(i)
k /Ri. More generally, in-

stead of resetting weights to unity, one can resample
such that weights after the resampling are set follow-
ing a rule Wk ← g(Wk) for some g(x), e.g., g(x) =

√
x

(see ch. 11.3.1 in Ref. [16]). Such choices amounting to
a trade-off between importance sampling and increased
correlations in the population will not be considered fur-
ther in the present paper, however.

B. Resampling methods

We now turn specifically to the resampling procedure
of step 2 (b) in the algorithm. It is a random process
that is geared towards removing the imbalance among
the replica weights computed in step 2 (a) that are a
consequence of the variation in configurational energy.
Equation (4) only determines the expected number of

copies, i.e., if r
(i)
k is the number of copies made of replica

k at temperature step i we demand that

⟨r(i)k ⟩ = τ
(i)
k . (5)

One hence has a wide freedom in choosing the distribu-

tion of r
(i)
1 , . . . , r

(i)
Ri

as only its first moment is fixed. In
total, the Ri configurations are resampled into Ri+1 =∑Ri

k=1 r
(i)
k replicas [17] such that on average each replica k

is copied τk many times and where Ri+1 itself may differ
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from the target population size R. In fact, we will distin-
guish between methods that preserve a constant popula-
tion size throughout and those which have a fluctuating
population size. On distributed architectures the former
may be desirable as they allow to guarantee that every
compute node has the same number of replicas. The (re-
sampled) Ri+1 configurations then carry equal weights

W
(i+1)
k = 1. In the following we will first discuss the

methods with fixed and then the ones with fluctuating
population size.

For fixed population size the distribution

P (r
(i)
1 , . . . , r

(i)
Ri
) does not factorize and hence the

set {rk} has to be drawn at once. For a full math-
ematical description of such methods we refer to ch.
4.3.1 of Ref. [16] as well as Ref. [18], and we will here
only provide an algorithmic explanation of the following
approaches,

(a) multinomial resampling,

(b) systematic resampling,

(c) stratified resampling, and

(d) residual resampling.

To the best of our knowledge, this is the first time that
population-size preserving methods other than multino-
mial resampling are studied in the context of PA. Previ-
ous work [2, 5, 19] always relied on multinomial resam-
pling when requiring a constant population size.

The methods can best be explained through the geo-
metric picture provided in Fig. 1. The desired number
of copies τk for each replica k is visualized by horizontal
stacked bar charts. By design the τk’s add up to R, as can
be seen by the double-arrow line of length R and the grid
of unit squares. Each method can then be explained by
a protocol of placing R (with residual resampling being
an exception) arrows at random on the interval [0, R].
The number of arrows falling onto a colored box with
length τk then determines the number of copies made,
rk. Finally, he bottom bar shows the population after
resampling.

In multinomial resampling the position Ui of each of
the R arrows is chosen uniformly at random from the
interval [0, R], see Fig. 1(a). Hence, the Ui’s appear to
be out of order as compared to systematic and strati-
fied resampling. Formally, this corresponds to drawing
from a multinomial distribution with R trials, R mutu-
ally exclusive events and event probabilities p1, . . . , pR
equal to τ1/R, . . . , τR/R as in Eq. (4). In systematic re-
sampling [see Fig. 1(b)] the position of the first arrow
U1 is drawn uniformly at random from the interval [0, 1]

(first square). The positions Ũ2, . . . , ŨR of the remaining

R− 1 arrows are given by Ũk = U1 + k− 1. Remarkably,
this method only uses one random number for the resam-
pling of the population, as is illustrated by the use of Ũk

instead of Uk and the dashed arrows as well as the lighter
color in Fig. 1(b). Similarly, in stratified resampling [see

Fig. 1(c)] only one arrow is placed per square. How-
ever, here the arrows are not spaced equidistantly but
rather placed with uniform probability on each square,
i.e., Ui ∼ U([i− 1, i]). Lastly, in residual resampling [see
Fig. 1(d)] at first each replica is copied ⌊τk⌋ times, where
⌊x⌋ denotes the largest integer smaller than or equal to
x, i.e., rounding down. The population is brought to its
original size by multinomially drawing from the residuals,
that is by performing multinomial resampling where τk
is replaced by τk − ⌊τk⌋. Note that the sum of the resid-
uals is a random variable and can take any non-negative
integer value up to R − 1. Hence, residual resampling
uses less random numbers than multinomial and strat-
ified and the actual number is a random variable. In
fact, instead of multinomially sampling the residuals one
may choose to use the systematic or stratified resam-
pling method instead. This is then commonly referred
to as systematic residual resp. stratified residual resam-
pling. Here, we only discuss (multinomial) residual re-
sampling but extensions to different resampling methods
are straightforward.
Clearly, all methods shown in Fig. 1 distribute R ar-

rows and thus the resampled population is guaranteed
to have the target size. Additionally, in all methods the
expected numbers of arrows in each colored box (i.e., per
replica) is proportional to its size, i.e., τk, and hence the
original constraint of ⟨rk⟩ = τk is also satisfied.
When allowing a fluctuating population size one can

use factorized distributions for P (r
(i)
1 , . . . , r

(i)
Ri
), in which

the number of copies rk of one replica k is chosen only
based on τk of the same replica k, i.e.,

P (r
(i)
1 , . . . , r

(i)
Ri
) =

Ri∏
k=1

P
τ
(i)
k

(r
(i)
k ) . (6)

In this case, resampling can easily be implemented in
parallel [14] as the resampling method is completely de-
scribed by a univariate distribution Pτk(rk = j). As a
consequence, the new population size Ri+1 (i.e., the sum
of all rk’s) itself becomes a random variable. Hence, the
population size fluctuates with time. In this group we
consider

(e) nearest-integer resampling [20] and

(f) Poisson resampling [3]

given by

Pτk(rk = j) =


τk − ⌊τk⌋ if j = ⌊τk⌋+ 1

1− (τk − ⌊τk⌋) if j = ⌊τk⌋
0 else

(7)

for nearest integer and

Pτk(rk = j) =
τ jk
j!

e−τk (8)

for Poisson, respectively.
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R = 10

U1 U2U3U4 U5 U6U7U8U9 U10

(a) multinomial

R = 10

U1 Ũ2 Ũ3 Ũ4 Ũ5 Ũ6 Ũ7 Ũ8 Ũ9 Ũ10

(b) systematic

R = 10

U1 U2 U3 U4 U5 U6 U7 U8 U9 U10

(c) stratified

R = 10

U1 U2U3 U4U5

(d) residual

FIG. 1. Visualization of various population-size preserving resampling methods. Colored boxes correspond to different replicas
k and their lengths are proportional to τk. The number of copies of replica i is determined by the number of arrows in (colored)
box k. The (new) resampled population is shown at the bottom for each method. The algorithms for each method are explained
in the main text.

Besides the question of whether a method preserves
population size, the most notable difference among the
above approaches is by how much rk can differ from τk
or, more quantitatively, what the variance of rk is. As
is shown in Appendix C, it is possible (under mild as-
sumptions) to exactly calculate this variance as a func-
tion of τk. This quantity will play a crucial role in Sec. V.
Apart from the distributions (a)–(f) above, any proba-
bility distribution with non-negative integer support and
adjustable mean (see for example Ref. [21]), such as the
geometric or the Pascal distribution, would also result in
a valid resampling method, but these lead to even larger
sampling variances and hence are of no practical rele-
vance.

III. MODEL, SIMULATION DETAILS, AND
OBSERVABLES

A. Ising model

In this work we consider the Ising model in the ab-
sence of an external magnetic field, corresponding to the

Hamiltonian

H = −J
∑
⟨ij⟩

σiσj , (9)

where σi ∈ {−1, 1} are the spin variables and the sum is
over nearest-neighbor interactions only. We choose J = 1
and kB = 1 to fix units and use a L × L square lattice
with periodic boundary conditions.

Owing to the availability of exact results [22–24], this
model has become a standard benchmark system for
PA [12, 14, 25] and many other algorithms. In particu-
lar, this allows for an easy way to differentiate systematic
from statistical errors. An additional advantage of the
two-dimensional Ising model is the availability of exact
results for finite systems [23, 24], particularly the exact
energy density of states [24] which allows to separate the
effect of resampling from MCMC as we will explain in
Sec. V.
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B. Simulation details

We use the publicly available code from Ref. [14] to
obtain the numerical data presented in Sec. IV. This im-
plementation runs on a single GPU and is highly paral-
lel. All calculations of weights, resampling [26] and mea-
suring observables are done in parallel, with one thread
per replica. Spin-flip updates, on which typically most
wall-clock time is spent, are further parallelized to a
sub-replica level by employing a checkerboard domain-
decomposition. When global summation is needed, such
as for the normalization of weights, this is done efficiently
by first calculating partial sums of each thread block on
subsets of the total population and then summing over
the partial sums by using atomic operations provided by
the CUDA toolkit. Necessary extensions of the scheme
described in Ref. [14], such as the calculations required
for the realization of the different resampling techniques
discussed in Sec. II B, were implemented in the same
spirit.

The question we set out to answer is which resampling
method has the best PA performance. In principle, one
may expect this question to be decided in a trade-off be-
tween run time and accuracy. In most practical scenarios,
however, run time in PA is vastly dominated by Monte
Carlo (MC) moves such that even for the Ising model
where spin updates are quick, resampling often takes less
than 1% of the overall run time (cf. the inset of Fig. 19 in
Ref. [12]). Thus, we focus on observables which measure
the quality of the data obtained through PA and will not
compare run times.

C. Observables

The most immediately suitable quantities for judging
the performance of PA are the systematic and statisti-
cal errors. We looked at various moments of the energy
and magnetization distributions and present here the er-
rors in estimating the specific heat, since the exact solu-
tion [23] allows us to readily evaluate the systematic error
and since this is where we found the strongest differences
among the resampling methods we studied.

Another useful quantity to compare different resam-
pling methods is the average quadratic deviation be-
tween the expected and the actually generated number
of copies, namely the sampling variance [27], i.e.,

SV =
1

Ri

Ri∑
k=1

(rk − τk)
2 . (10)

This quantity is of particular interest as it is a direct
measure of how much additional noise enters the PA sim-
ulation through the resampling step.

As a consequence of the resampling step replicas de-
scending from the same replica at a previous temperature
will in general be correlated. This is illustrated by the
notion of families [20]: Two replicas a and b are said

to belong to the same family if they both are descen-
dants of the same initial replica k (at β0). In contrast,
two replicas from different families are guaranteed to be
uncorrelated.
The authors of Ref. [20] quantify the family distribu-

tion by the replica-averaged family size ρt,

ρt = R

R∑
k=1

n2k , (11)

the entropic family size,

ρs = R exp

(
R∑

k=1

nk ln nk

)
, (12)

and the number of families,

f =
∑
k=1

min{1, Rnk} , (13)

where nk is the fraction of replicas descending from the
initial replica k. Note that while k runs from 1 to R, most
nk are zero. As is shown in Ref. [20], these quantities
are closely related to each other. For reasons outlined
in App. A we use a different name for ρt than previous
authors.
Since, by construction, replicas from different families

are uncorrelated, the above family quantities provide an
upper bound for the population’s correlation and thus an
upper bound for error bars. This, of course, neglects the
decorrelating effect of MCMC updates and hence largely
overestimates the actual correlation [12]. Most notably
we can see this in the artificial PA setting described
in Sec. V, as there by design all replicas are uncorre-
lated and yet the family quantities at the end of each
simulation would suggest strong correlation, i.e., ρt, ρs,
R/f ≫ 1.
Recently, Weigel et al. [12] addressed this issue and de-

veloped a method to quantify PA correlations that takes
into account the effect of MCMC updates. They ob-
served that correlations in a PA population are similar
in nature to the ones in MCMC time series, provided
that copies of one replica are placed adjacently in the re-
sampled population. This is demonstrated by the over-
lap correlation C(i, j) of two replicas i and j. They show
that C(i, j) in a large population only depends on the dis-
tance |i−j|, and it decays exponentially for large enough
|i − j|, i.e., C(i, j) = C(|i − j|) ∝ exp(−|i − j|/τexp)
— analogous to the well-known two-time correlation
C(t1, t2) ∝ exp(−|t1 − t2|/τ̃exp) in MCMC.
The authors of Ref. [12] further use a binning analy-

sis of observables such as energy and magnetization in
replica space to obtain error bars and show that they
are compatible with error bars calculated from indepen-
dent PA simulations. From this, a measure of effective
population size Reff is defined through

Reff(O) =
σ2(O)
σ2
R(Ō)

, (14)
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FIG. 2. Relative systematic (upper panel) and statistical
(lower panel) error of the specific heat measured after the
resampling step for various resampling methods. The data
are extracted from PA simulations with R = 20 000, θ = 5,
and βi = i/300. Upper panel: Systematic errors hardly differ
between different resampling schemes. Lower panel: Statisti-
cal errors; colors coincide with the top panel. The inset shows
the statistical error relative to the error using nearest-integer
resampling. Away from criticality, the curves differ signifi-
cantly whereas around βc ≈ 0.44 the choice of the resampling
method appears to have little effect on the statistical error.

where σ2(O) is the variance of the observable O and
σ2
R(Ō) is the variance of its mean. The first is straightfor-

ward to calculate and the latter can be obtained through
(jackknife) binning [28], i.e.,

σ̂2
R(Ō) =

1

n(n− 1)

n∑
i=1

(
O(n)

i − Ō
)2

, (15)

where n blocks are chosen large enough that bins can

be assumed to be uncorrelated and O(n)
i is the mean of

the i-th bin. We will use Reff(E) and Reff(M) as further
means to benchmark different resampling methods.

IV. NUMERICAL OBSERVATIONS

In the following, we present numerical results for the
benchmarking quantities introduced above. All data in
this section were obtained through PA simulations using
a target population size R = 20 000, the annealing sched-
ule βi = i/300 with i ∈ {0, . . . , 300}, θ = 5 MCS at each

0

0.5
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1.5
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2.5

−7000 −6500 −6000 −5500 −5000 −4500 −4000

×10−3

−0.3
−0.2
−0.1

0
0.1
0.2
0.3

0.4 0.44 0.48

ρ
β
(E

)

E

β = 0.435
β = 0.44
β = 0.445

β

skewness

FIG. 3. Exact energy distribution close to the inverse critical
temperature βc ≈ 0.44 for the 642 Ising model. Above (below)
βc the histogram is skewed towards higher (lower) energies
whereas very close to βc the distribution is symmetric. The
skewness of the distribution as a function of β is depicted in
the inset which clearly shows a change in sign around βc.

(inverse) temperature (except at β0 = 0) and linear sys-
tem size L = 64. For each resampling method indepen-
dent simulations were run and repeated for 5 000 different
random number seeds. Throughout this section, we vi-
sualize data sets by lines connecting all points in the set.
Additionally, a small subset of the data points is shown
by points (with error bars when available). Some prelim-
inary results from these runs were presented in Ref. [29].

Figure 2 shows systematic and statistical errors of the
specific heat. Contrary to common practice, we measure
before the equilibration routine (i.e., immediately after
resampling) as this is where the resampling-method de-
pendent signal should be strongest. The use of this pro-
tocol is motivated by the fact that in target problems of
PA such as models with complex free-energy landscapes
MCMC equilibration routines are not as efficient, such
that the effects of the choice of resampling scheme will
be more prominent there. If we were to measure after the
equilibration routine (as is usually done) all errors would
be indistinguishable except at the critical temperature
due to the short autocorrelation time of the off-critical
Ising model (not shown). We use the available exact solu-
tion [23] to estimate systematic errors, and the standard
deviation of independent runs for the statistical error.
The most prominent feature in both types of error are
two spikes around criticality, cf. Fig. 2. It is seen that
all methods produce roughly comparable systematic and
statistical errors, although multinomial and Poisson re-
sampling have slightly stronger bias in the vicinity of the
critical temperature and a substantially higher statisti-
cal error throughout. The inset in the lower panel shows
all (statistical) errors relative to those for the nearest-
integer method. It can be clearly seen that apart from
systematic resampling all methods produce consistently
larger errors than nearest-integer resampling.

The double peak of the statistical error and particu-
larly the S-shape of the systematic error (which was pre-
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FIG. 4. Sampling variance as a function of temperature
for different resampling methods. Poisson and multinomial
(resp. nearest-integer and systematic) resampling have iden-
tical sampling variance. The parameters are as stated in the
caption of Fig. 2.

viously reported by two of us, see Fig. 3 in Ref. [25]) is
readily understood through a change in sign of the skew-
ness of the (exact) energy distribution (see Fig. 3): Below
(above) the critical temperature the energy histogram is
skewed towards higher (lower) energies. Consequentially,
as low energies tend to be undersampled and high en-
ergies oversampled, the actual spread of the energy his-
togram and thus the specific heat is overestimated (un-
derestimated).

As a measure of how much noise enters the setup
through resampling, we consider the sampling vari-
ance SV (see Fig. 4) which depends directly on the re-
sampling method of choice and thus shows the strongest
difference for the methods. Within the measurement ac-
curacy multinomial and Poisson resampling have equal
sampling variance. In fact, in both cases we measure a
value of 1.0 irrespective of temperature (for reasons that
will become apparent in Sec. VB). By value they have
the highest SV followed by residual, stratified, systematic
and nearest-integer resampling in that order. Systematic
and nearest-integer resampling also coincide within the
given accuracy. Note that this order of methods is the
same as that observed in the inset in the lower panel of
Fig. 2. The jumps in the SV of residual resampling can
be explained by a discontinuity of the second moment
of the probability distribution of rk for that particular
method at τk = 1 (for further detail see Appendix C).

Our measurements for the family quantities introduced
by Wang et al. [20], ρt, ρs and R/f , are shown in Fig. 5.
All quantities are monotonously increasing, with a rapid
increase in the vicinity of the critical temperature. Larger
families typically lead to a higher degree of correlation
within the population and thus indicate worse statis-
tics. Again multinomial and Poisson resampling perform
worst, followed by residual resampling and then the re-
maining methods which produce similar results, particu-
larly regarding the replica-averaged family size ρt.

Figure 6 shows the effective population sizes Reff(E)
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FIG. 5. The family quantities ρt, ρs and f as a function
of inverse temperature β for the resampling methods studied
(R = 20000, θ = 5,∆β = 1/300). Top panel: the replica-
averaged family size ρt. Middle panel: the entropic family
size ρs. Bottom panel: the plain average family size R/f .

and Reff(M), where E is the (extensive) internal energy
of each configuration {σj} [as given by Eq. (9)] and M is
the magnetizationM =

∑
j σj . Both quantities are equal

to the population size R at β = 0 and show a dip at the
inverse critical temperature. Thanks to the decorrelat-
ing nature of the MCMC updates Reff(E) reaches the
size of the population within the ordered phase, whereas
Reff(M) remains low due to dynamic ergodicity break-
ing [12]. In each panel the inset shows the effective popu-
lation sizes compared to nearest-integer resampling. This
again demonstrates that multinomial and Poisson resam-
pling perform equally within the accuracy of our data
and poorly as compared to the other methods. Nearest-
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FIG. 6. Effective population sizes Reff(E) (upper panel) and
Reff(M) (lower panel) in units of R. The insets show the same
quantities relative to the value observed with nearest-integer
resampling (R = 20000, θ = 5,∆β = 1/300).

integer and systematic resampling again show similarly
good performance followed by stratified and residual re-
sampling in that order.

Note that Reff(M) for multinomial and Poisson resam-
pling do not reach the same value in the low-temperature
regime as the other methods do, as can be seen in the
inset of the lower panel. This shows that a poor re-
sampling method can amplify the correlation due to er-
godicity breaking. In fact, with increasing β the ra-
tio of Reff(M) for multinomial and Poisson resampling
with Reff(M) for the nearest-integer method decreases
which suggests that for deep anneals well below a tran-
sition temperature these two methods are unfavorable.
Similarly, the Reff(M) ratio for the residual resampling
method also shows a decline in the ordered phase. We
expect this observation to be of significance as ergodic-
ity breaking is a common phenomenon in glassy systems.
Hence, when studying such problems the multinomial,
Poisson and residual resampling methods should best be
avoided.

V. ASYMPTOTIC ANALYSIS

We now turn to an analysis of the asymptotic behavior
of resampling methods for PA simulations of the Ising
model, in particular considering the limits of θ →∞ and

R→∞.

A. Exact sampling simulations

From this point onwards, we replace the Metropolis
sampling of state space by an exact sampling of energies.
This is only possible as the energetic density of states,
g(E), of the square-lattice Ising model can be calculcated
exactly for small to moderate system sizes [24]. We use
the code provided in Ref. [24] to once calculate g(E) for
lattice sizes up to L = 128, and stored ln g(E) in double
precision for further use. From ln g(E), the probability
of an energy E at a given inverse temperature β is easily
obtained by computing

Pβ(E) =
exp (−βE + ln g(E))∑
E′ exp (−βE′ + ln g(E′))

. (16)

The sum over all energies contains O(L2) terms and thus
can be calculated very quickly. Clearly, combining exact
sampling with population annealing is of no practical use
as the availability of independent, uncorrelated samples
makes advanced sampling techniques like PA redundant.
However, for us this artificial combination of PA and ex-
act sampling is of theoretical interest as it isolates the
effect of the choice of resampling method from the influ-
ence of imperfect MCMC equilibration. In this setting we
can study the family quantities as well as the sampling
variance whereas effective population sizes Reff(E) and
Reff(M), as well as the statistical and systematic errors
of observables become trivial.
Having eliminated the effect of imperfect equilibration,

two key parameters besides the resampling method re-
main that also affect the PA simulation: the (target) pop-
ulation size R and the chosen annealing schedule {βi}.
These are investigated in the present section. Below in
Sec. VC we introduce the notion of resampling cost that
allows us to compare the various resampling methods in-
dependent of the particular choice for R and {βi}.
The effect of the (target) population size on the fam-

ily quantities ρt, ρs, and R/f is illustrated in Fig. 7 for
multinomial resampling. It can be seen that whenever
R is much larger than ρt, ρs and R/f , respectively, the
curves for different population sizes R collapse. Hence,
as long as the population size is large enough, it does
not affect the family quantities; intuitively this is clear
as then each family does not “feel” the finite (popula-
tion) size and behaves as it would in the limit R → ∞.
Conversely, for small R the asymptotic values of ρt, ρs,
and R/f are underestimated. For small β the data for all
population sizes studied agree and in order of ascending
population size the individual data sets start deviating
from the R→∞ case.
Note that compared to the results discussed in Sec. IV

(see for example Fig. 5) values obtained for the family
quantities here are significantly smaller. For such small θ,
insufficient equilibration (which clearly is the case for θ =
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FIG. 7. Family quantities ρt (top), ρs (middle) and R/f
(bottom) as a function of inverse temperature β using inverse
temperature step ∆β = 0.01 and multinomial resampling.
Lines connect all data points, but to improve readability only
a small subset of the data points are shown explicitly.

5 at least close to the critical inverse temperature βc)
becomes the main driver of family growth resulting in
much larger values for ρt, ρs and R/f in Fig. 5. The effect
of θ is demonstrated in Fig. 8 which shows measurements
of ρt for various choices of θ. For β < βc almost all values
for ρt coincide and at βc all values for ρt exhibit a strong
increase: The smaller θ the stronger the increase in ρt is.

Turning now to the annealing schedule, Fig. 9 shows
the family quantities for a fixed population size R = 105

for various inverse temperature steps and again using
multinomial resampling. The choice of R = 105 is such
that the effect of the population size being finite is negli-
gible. At first glance, one might guess that smaller tem-
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FIG. 8. Family quantity ρt for various choices of θ. The
population size was fixed to 10 000, ∆β was chosen as 0.01
and multinomial resampling was used. Lines connect all data
points, but only some are shown with explicit symbols.

perature steps would result in less family growth. How-
ever, Fig. 9 shows a very different picture: While indeed
(too) large temperature steps lead to a big increase in
family size, also (too) small steps result in larger families
than at intermediate temperature step sizes. This shows
that too small temperature steps can in fact harm PA
statistics instead of improving them. In Sec. VC this is
made more explicit through the introduction of the no-
tion of the resampling cost.

B. Asymptotic estimator for the replica-averaged
family size

The standard method for calculating ρt is

ρt = R

R∑
k=1

n2k =
1

R

R∑
k=1

N2
k , (17)

where nk (resp. Nk) is the fraction (resp. the number) of
replicas descending from replica k at β0 = 0. As we show
in App. B, when all rk’s are i.i.d., then

ρ
(i)
t ≈ ρ

(i−1)
t + σ2

(
r
(i)
k

)
. (18)

This relation is noteworthy as it means that ρt is expected

to increase by ∆ρt ≡ σ2(r
(i)
k ) irrespective of the previ-

ous value of ρt. Note that the estimator resulting from
Eq. (18) is only correct if all the rk’s are i.i.d. Generally,
this is not the case as replicas may be strongly corre-
lated within their families. However, in the limit θ →∞
this assumption becomes true for most of the methods
discussed here and approximate for all. See App. B for
more detail.

Using the law of total variance, σ2
(
r
(i)
k

)
can be ex-

pressed as

∆ρt = σ2
(
r
(i)
k

)
= σ2

(
τ
(i)
k

)
+ SV(β,∆β) , (19)
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FIG. 9. Family quantities ρt (left), ρs (middle), and R/f (right) for population size R = 105 at inverse temperature steps of
∆β = 0.003, 0.005 and 0.01 and using multinomial resampling.

with τ
(i)
k being the expected number of copies of a

replica and SV(β,∆β) the expected sampling variance
when resampling from inverse temperature β = βi−1 to
β +∆β = βi. Again, see App. B for a derivation of this
relation.

Note that this is not the first time ρt has been studied
in the MCMC-equilibrated regime. Reference [4] found
that the increase in ρt is approximately equal to 2ϵ (cf.
Eq. (42) in Ref. [4]), where ϵ is the proportion of the pop-
ulation deleted during resampling, the so called culling
fraction. This agrees with numerical results at high tem-
peratures. Their calculation uses nearest-integer resam-
pling and approximates the number of resampling steps
k to be a continuous “time” variable, thus assuming

σ2(τ
(i)
k ) = 0. In the limit of zero weight variance, and

using nearest-integer resampling, it is easy to show that
our derived formula agrees with Ref. [4]. Equation (19)
here generalizes to other resampling methods and non-

zero σ2(τ
(i)
k ).

The first term on the r.h.s. of Eq. (19), the variance
of the Boltzmann weights (which we will refer to as
the weight variance), is independent of the resampling
method whereas the second term, the sampling variance,
is strongly resampling-method specific. Roughly, these
two terms can be understood as the two driving forces
in the evolution of population quantities in the well-
equilibrated regime. In the limit of very small ∆β the
population is noise-driven (sampling variance dominates
weight variance) and in the limit of large ∆β it is weight-
driven. This explains three observations in Fig. 9: (i) In
the case of large ∆β, ρt shows a strong increase near crit-
icality due to a large weight variance. (ii) At small ∆β,
ρt follows nearly a straight line as the weight variance
is negligible compared to the constant sampling variance
(dependent on the resampling method, see below) [30].
(iii) Lastly, this is the reason why ρt is minimal for an
intermediate step size. The inverse temperature step that
achieves minimal average family size will in general de-

pend both on the sampling variance and on the weight
distribution.
The variance of r

(i)
k is straightforward to measure and

thus ρt can be estimated. The upper panel of Fig. 10
shows the estimates for ρt for various population sizes us-
ing the standard estimator (17) as well as the asymptotic
one (18). It can be seen that both are in good agreement
as long as the population size is much larger than ρt. The
lower panel shows ρt for various choices of ∆β (see also
the left panel in Fig. 9), once using the standard estima-
tor and R = 105 and once using the asymptotic estimator
and R =∞ (details see below). As the population size is
chosen large enough here, the agreement of the standard
and the asymptotic estimator is very good.
The reason we use the asymptotic estimator, is that

limR→∞ σ2(r
(i)
k ) can be calculated [using Eq. (19)] and

thus ρt can be evaluated [using Eq. (18)] in the limit R→
∞ which otherwise is not possible. When resampling a
population from inverse temperature β to β +∆β, τ for
a replica with energy E is given by

τ(β,∆β,E) = e−∆βE Z(β)

Z(β +∆β)
. (20)

As above equation is a one-to-one mapping from E to τ
for fixed β and ∆β and since the energy distribution in
the d = 2 Ising model is exactly known, the distribution
of the τ ’s can easily be obtained. This allows for straight-
forward computation of the weight variance, σ2(τ).
As for the calculation of the second term in Eq. (19),

the sampling variance SV(β,∆β), this will in principle
depend on the full set of {τk} for the entire population
of Ri replicas. For example when using the systematic
or stratified resampling method, the sampling variance
of replica m specifically depends on the sum all τk’s for
k ∈ {0, . . . ,m−1} as well as τm itself. In the following we
denote svm = ⟨τm−rm⟩{τk} as the sampling variance of a
specific replica m which in principle also depends on the
full set of {τk} and is related to the previously defined SV



11

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1

multinomial
resampling

ρ
t

β

R = 105, std. est.
R = 105, asymp. est.
R = 103, std. est.
R = 103, asymp. est.
R = 102, std. est.
R = 102, asymp. est.

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1

multinomial
resampling

ρ
t

β

R = 105,∆β = 0.003, std. est.
R = 105,∆β = 0.005, std. est.
R = 105,∆β = 0.010, std. est.
R = ∞,∆β = 0.003, asymp. est.
R = ∞,∆β = 0.005, asymp. est.
R = ∞,∆β = 0.010, asymp. est.

FIG. 10. Comparison of ρt measured with the standard esti-
mator (17) and with the asymptotic one (18).

through Eq. (22) given below. We can approximate svm
as a function of a single τm for the various methods as
follows (and as in this approximation svm only depends
on its own τm we omit the index m):

For multinomial and Poisson one obtains

svmult(τ) = svPoi(τ) = τ , (21a)

which in the case of multinomial resampling is only
strictly true in the limit R→∞). Note that τ on average
is always one and thus the averaged sampling variance for
the two methods is temperature-independent (as could be
seen in Fig. 4 above). For residual resampling we find

svres(τ) = τ − ⌊τ⌋ ≡ ϵ , (21b)

where ϵ refers to the fractional part of τ . The sampling
variance for stratified resampling is given by

svstrat(τ) =

{
1
3 , τ ≥ 1(
τ2

3 − τ + 1
)
τ , τ < 1

, (21c)

and for systematic as well as nearest-integer resampling
by

svni = svsys(τ) = ϵ(1− ϵ) . (21d)

For the derivations of these relations we refer to App. C.
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FIG. 11. Sampling variance SV according to Eq. (22)
as function of the inverse temperature for nearest-
integer/systematic, stratified and multinomial/Poisson re-
sampling. ∆β = 1/300. Dashed lines show the simulation
data from Fig. 4.

From these, the averaged sampling variance for a given
β and ∆β can be calculated by summation over all pos-
sible energies, i.e.,

SV(β,∆β) =
∑
E

pβi
(E) svm (τ (β,∆β,E)) , (22)

where the superscript m ∈ {mult,Poi,res,strat,ni,sys}
refers to the chosen resampling method. As can be
seen in Fig. 11, the SV calculated in this way is in very
good agreement with values previously obtained through
MCMC simulations. Here, the inverse temperature step
was chosen as ∆β = 1/300 to allow for comparison with
the simulation data from Fig. 4.
Adding both terms in Eq. (19) gives rise to an esti-

mate for ρt in the limit of R → ∞ and for a given an-
nealing schedule. The lower panel of Fig. 10 shows quasi-
exact [31] results from exact sampling PA compared to
the calculation of ρt in the limit R → ∞ from the ex-
act τ -distribution which are very compatible. Note that
this calculation can be performed in time O(L2) and in
terms of wall-clock time the calculation of the quanti-
ties of interest in the double limit θ and R → ∞ is near
instantaneous.

C. Notion of resampling cost

The goal of the considerations so far was to isolate
the effect of the resampling method from that of other
parameters, namely the number of MCMC sweeps θ, the
population size R and the annealing schedule {βi}. The
θ-dependence was overcome by taking the limit θ → ∞
and similarly, the R-dependence was removed by taking
the limit R → ∞. The remaining dependence on the
annealing schedule cannot be removed by a simple limit
as ρt at βi does not only depend on βi but on the entire
schedule up to βi.
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FIG. 12. Increase of ρt per step size ∆β (resampling cost)
for various inverse temperatures obtained using different re-
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driven behavior depends predominately on the sampling vari-
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Middle panel: stratified resampling. Bottom panel: residual
resampling.

Instead, we note that in Eq. (18) the increase in ρt,
namely ∆ρt = ρt(βi)− ρt(βi−1) only depends on the two
temperatures βi−1 and βi. This allows us to consider ρt
as a function of ∆β for various β. Clearly, ∆ρt (for any
resampling method) will be the smallest when ∆β → 0.
However, as we have pointed out above (see, e.g., Fig. 10)
this will not result in the smallest possible final ρt at
the inverse stopping temperature βs. It is thus natural
to define the resampling cost ∆ρt/∆β which is shown
as a function of ∆β for various β in Fig. 12. The re-

sampling cost can be understood as the cost per inverse-
temperature step-width attributed to making a certain
temperature step with a certain resampling method.
Studying this quantity reveals a very tight connec-

tion between resampling and the chosen temperature
step. The two most interesting observations from the
data shown in Fig. 12 can be made in the limit of
very small and very large inverse temperature steps. In
the limit of small (large) steps the first (second) term
in Eq. (19) dominates and ∆ρt is noise-driven (weight-
driven). Hence, on the one hand, for large steps the re-
sampling cost becomes independent of the chosen resam-
pling method, which is illustrated through the collapse
onto the dashed data set from multinomial resampling
included in each panel. On the other hand, for very small
temperature steps the resampling cost becomes indepen-
dent of temperature and diverges as 1/∆β for all methods
except nearest-integer and systematic resampling, where
the resampling cost approaches a constant temperature-
dependent value.
At very small ∆β the weight variance approaches zero

and becomes negligible. When the weight variance is
zero, all τk’s are equal to one. In this case the sampling
variance approaches a constant value which for

• multinomial/Poisson resampling is one,

• for residual resampling is 1
2 ,

• for stratified resampling is 1
3 , and

• for nearest-integer and systematic resampling
equals zero.

These values can be found by taking the limτ→1 sv(τ) in
Eqs. (21a) to (21d) [32]. The non-zero limits for all but
the nearest-integer and systematic resampling methods
then lead to the divergent behavior observed in Fig. 12.
The constant resampling cost for nearest-integer and

systematic resampling can be understood by Taylor ex-
panding τβ(∆β,E′) = e−∆βE′

Z(β)/Z(β +∆β) for small
∆β which up to first order in ∆β is

τ(β,∆β,E′) = 1 + (⟨E⟩β − E′)∆β +O(∆β2) , (23)

where ⟨E⟩β is the canonical average of the energy at in-
verse temperature β. Observing that for nearest-integer
and systematic resampling the sampling variance [see
Eq. (21d)] in the limit τ → 1 approaches |1 − τ |, one
obtains

SV(β,∆β) = ⟨|E − ⟨E⟩β |⟩β∆β +O(∆β2) . (24)

Here, ⟨|E − ⟨E⟩β |⟩β is the mean absolute devia-
tion (MAD) of the energy distribution, which is the
temperature-dependent constant observed in the top
panel of Fig. 12. Figure 13 shows that for very small
∆β indeed the values for ∆ρt/∆β and the MAD fall on
top of each other.
Furthermore, the crossover point between the

noise-driven and weight-driven regimes is strongly



13

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

nearest-integer /
systematic

∆
ρ
t
/
∆
β

β

〈|E − 〈E〉β |〉β
∆β = 3× 10−6

∆β = 3× 10−7

FIG. 13. Resampling cost as a function of inverse temperature
β for the nearest-integer resampling method for very small
temperature steps. In the limit of ∆β → 0, the resampling
cost approaches the mean absolute deviation of the energy
distribution, i.e., ⟨|E − ⟨E⟩β |⟩β .

temperature-dependent as can be best seen by looking
at the position of the minimum of the resampling cost
for the remaining methods. Close to the critical tempera-
ture the weight-driven regime begins at much smaller ∆β
whereas away from criticality even considerably large ∆β
are within the noise-driven regime. Thus, if we fix ∆β,
we expect a strong dependence on the resampling method
away from criticality and almost no dependence around
βc which is in very good agreement with our experimen-
tal observations in Sec. IV (see for example Fig. 2, in
particular the inset in the lower panel).

D. Optimal inverse temperature steps

For all resampling methods the resampling cost be-
comes rather large when the chosen temperature step is
(too) large. Further, for all methods but the nearest-
integer and systematic ones the resampling cost also is
quite large for (too) small inverse temperature steps.
This naturally raises the question which temperature step
to choose. In the following, we will demonstrate for the
example of multinomial resampling how ρt can be re-
duced by using an adaptive annealing schedule [33].

First, we attempt to find an optimal annealing schedule
with a constant ∆β. As is seen in the top panel of Fig. 14,
the order of the lines changes with temperature, which
suggests that the step should be chosen adaptively to
minimize ρt. For example, ∆β = 6.5× 10−3 leads to the
highest ρt around β = 0.5 and has one of the lowest ρt’s
for β ≳ 0.9.

In order to minimize ρt we can find the temperature
step that results in a minimum increase in ρt as a func-
tion of inverse temperature (see middle panel in Fig. 14).
This is done by using the golden-section search method
to find the ∆β at which the resampling cost is mini-
mal. The optimal inverse temperature step ∆β∗ obtained
in this way varies over almost two orders of magnitude
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FIG. 14. Optimization of the annealing schedule to minimize
ρt for the case of multinomial resampling. Top panel: ρt for
various linear schedules. Middle panel: Inverse temperature
step ∆β∗ at which the resampling cost is minimal. The inset
shows the histogram overlap α(β, β+∆β) [14] for the respec-
tive annealing schedule as well as α∗ = 1− erf(1/4). Bottom
panel: ρt measured using different annealing schedules and
resampling methods. The key encodes annealing schedule,
population size, number of sweeps at each temperature and
the resampling method as a four-tuple.

which is explains that any linear annealing schedule gives
sub-optimal results. ∆β∗ is small (resp. large) at (resp.
away from) the critical temperature suggesting temper-
ature steps should be chosen smaller around the critical
temperature than away from it.

Starting at β0 = 0, we choose the annealing sched-
ule through a simple greedy strategy, i.e., βi = βi−1 +
∆β∗(βi−1). The resulting measurement for ρt corre-
sponds to the datasets (∗,∞,∞,m) and (∗, 105,∞,m)
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in the bottom panel of Fig. 14. These are significantly
lower in value than any ρt obtained through schedules
with constant ∆β (see top panel). The four entries of
the tuples (B, R, θ,R) describe the simulation protocol
used, where B stands for the annealing schedule and R
represents the resampling method.

Choosing temperature steps adaptively has been pre-
viously suggested in Refs. [4, 14]. In Ref. [14] the next
temperature is chosen such that the estimated overlap of
the Boltzmann distribution of the old and the new tem-
perature is within a target interval. We have measured
the histogram overlap with our annealing schedule and
found (for the two-dimensional Ising model and using
multinomial resampling) that it is close to 0.7 (except at
very low temperatures) but clearly not constant, see the
inset in the middle panel of Fig. 14. Note that this result
strongly depends on the chosen resampling method. For
a method with lower sampling variance such as stratified
resampling we expect this value to be higher. One can
show that when all target distributions are Gaussian with
the same variance, then the ∆β∗ that minimizes ∆ρt will
give rise to the overlap

α∗ = 1− erf(1/4) ≈ 0.72367 . . . , (25)

where erf is the error function. As is shown in the inset,
for small β the measured overlap coincides with α∗.
Further, this consideration does not apply to nearest-

integer and systematic resampling as the resampling cost
in these cases approaches a constant value as ∆β → 0.
For these methods, a linear schedule with small enough

∆β will give a final ρt close to
∫ βs

βi
⟨|E−⟨E⟩β |⟩β dβ, which

corresponds to the (0,∞,∞,ni) dataset in the bottom
panel of Fig. 14 and which is well below ρt obtained
with multinomial resampling. As too small temperature
steps might still result in higher computational cost [14],
it should nonetheless be beneficial to use adaptive tem-
perature steps when using nearest-integer or systematic
resampling. The datasets (αx,∞,∞,ni) show the result-
ing ρt(β) when using nearest integer or systematic re-
sampling with a target overlap-parameter equal to x. As
can be seen, when using the nearest-integer resampling
method an overlap as low as 0.6 still outperforms multi-
nomial resampling. Increasing x further reduces ρt. Note
that in case one chooses an overlap of 0.9 for this setup
one achieves a value of ρt that is only slightly above the
minimal ρt observed.

E. System size dependence

As outlined at the end of Sec. VC, we expect the re-
sampling cost for nearest-integer resampling to be close
to the MAD of the energy, independently of the model
and system size considered. If we assume the energy
distribution Pβ(E) to be Gaussian, the MAD can be ex-
pressed in terms of the standard deviation [34] and thus
in terms of the specific heat CV , i.e.,
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FIG. 15. Resampling cost divided by linear system size L
as a function of inverse temperature step size scaled by the
linear system size for nearest-integer and systematic resam-
pling for different system sizes and temperatures. Line style
(resp. color) encodes system size (resp. temperature). For
small enough ∆β the resampling cost approaches the energy
MAD which for the two-dimensional Ising model scales with
L. The maximal temperature step at which the resampling
cost is close to the MAD scales approximately with 1/L. See
text for further detail.

MAD = ⟨|E − ⟨E⟩β |⟩β ≃
√√√√ 2

π
σ2(E)︸ ︷︷ ︸

CV Ld/β2

=

√
2

π
C

1/2
V Ld/2β−1 .

(26)

It can be shown (see Appendix D) that the integral over

C
1/2
V /β does not scale with system size and has a system-

size independent lower bound. Thus, we expect ρt for
nearest-integer resampling and with small enough tem-
perature steps to behave as

ρt ∝ Ld/2 . (27)

As we expect PA to perform poorly when ρt is of the
order of magnitude of the population size R, we require
ρt/R not to grow as the system size increases. Thus,
this relation is noteworthy as it motivates choosing the
target population size proportional to Ld/2 when using
the PA algorithm for multiple system sizes (without any
further assumptions on the underlying model). In the
case of the two-dimensional Ising model, ρt hence scales
proportional to L. In Fig. 15 we show the the resam-
pling cost divided by L. The collapse of the curves for
small ∆β demonstrates that ∆ρt scales with L for each
temperature and thus agrees with ρt ∝ Ld/2.
In order to follow the scaling of the histogram over-

lap [1], Ref. [12] suggested to choose ∆β ∝ 1/L. By
choosing ∆βL as abscissa in Fig. 15 it can be seen that
the inverse temperature at which the resampling cost
starts deviating from the MAD also scales with 1/L, thus
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FIG. 16. Adaptive temperature steps for different system
sizes and multinomial resampling. Top panel: Resampling
cost rescaled by the system size shows that the optimal tem-
perature step ∆β∗ behaves as L−1. Bottom panel: ρt as a
function of β using the optimized temperature steps scales
proportional to L.

confirming ∆β ∝ 1/L to be a good choice. Furthermore,
in the figure it is highlighted where the histogram overlap
α takes values 0.8 and 0.9 for 1 000 inverse temperature
points between β = 0 and 1 for the three system sizes.

Similar scaling is observed for other resampling meth-
ods as can be seen for the example of the multino-
mial resampling technique (see Fig. 16). ∆ρt also scales
with L and the position of the optimum ∆β∗ with 1/L
(top panel). It is highlighted where α takes the value
α∗ ≈ 0.72 . . . which shows that indeed this value for α
is close to the minimum of the resampling cost for the
considered inverse temperatures and system sizes. In the
bottom panel ρt(β)/L for adaptive temperature steps is
shown. From there one clearly sees that ρt does scale as
L. So, doubling the system size means that the number
of temperature steps and the population size should be
doubled as well (in d = 2).

F. Comparison to MCMC simulations

In this last part, we once again return to more real-
istic population annealing simulations in order to probe
how applicable our theoretical findings are to (close-to-
equilibrium) MC simulations. Clearly, unlike the artifi-
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FIG. 17. Resampling cost measurements on realistic stan-
dard PA simulations compared to the R, θ → ∞ limit. Up-
per panel: Multinomial resampling and nearest-integer resam-
pling for two different temperatures. Lower panel: Nearest-
integer and systematic resampling. At very small ∆β mea-
surements deviate from the prediction, more strongly for
nearest-integer resampling where population size fluctuations
lead to a ∝ 1/∆β divergence (see main text).

cial simulations, they are not in perfect equilibrium and
thus results will differ. Further, we expect this differ-
ence to be weak (resp. strong) when close to (resp. far
from) equilibrium. As a consequence, the previously in-
troduced resampling cost for small ∆β should not vary
much in either setting whereas for large ∆β we anticipate
strong differences.
Experimentally, it is not immediately clear how to

measure ∆ρt/∆β at a given β. As the asymptotic es-
timator (18) for ρt is only correct in the limit θ → ∞,
we have to fall back to the standard estimator which
explicitly depends on the population at β, raising the
question of how to initialize the population at β prior to
the ∆ρt/∆β measurement. A number of options come to
mind:

1. For each ∆β, run a PA simulation with this tem-
perature step from β0 = 0 to βi = β.

2. Create an uncorrelated population sample by
quenching each replica (either from a hot or a cold
start) for a very long time.

3. Pick a temperature step ∆̃β and initialize the pop-
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ulation by running a simulation with ∆̃β up until
β.

Best results are most likely obtained through option 1
but we have rejected this option as it is computation-
ally prohibitively expensive, particularly for small ∆β.
Option 2 may work well but also produces uncorrelated
replicas, which is rather unrealistic for PA simulations.
Option 3 is straightforward to implement and produces
realistic populations at inverse temperature β although

care must be taken of how to choose ∆̃β which we set to

∆̃β = 1/300. This value we know from previous studies
to work well on the considered model. An overview of
the resampling cost for realistic simulations is presented
in Fig. 17, where for each data set (each line) we ran 400
individual PA simulations.

The upper panel of Fig. 17 shows MC results obtained
with multinomial and nearest-integer resampling which
are very compatible with the theoretical data up until
∆β ≃ 10−2 even when β is close to the critical temper-
ature. At very small ∆β we observe an unexpected di-
vergence (see lower panel) in ∆ρt/∆β for nearest-integer
resampling, which is strongly population-size dependent
and which is absent when repeating the same measure-
ment for systematic resampling. This is not in contra-
diction to our original expectation but rather an artifact
of the way the population was initialized: Following the
procedure described above, the 400 initialized popula-
tions will vary in population size (dictated by the choice

of ∆̃β). The non-zero population-size fluctuation results
in a non-zero increase of ∆ρt as ∆β → 0, which leads to
the divergent behavior for ∆ρt/∆β observed in Fig. 17.
The fluctuation of the population size is of the order of√
R which explains the strong dependence on R in the

plot. Without this fluctuation (albeit when using sys-
tematic resampling) this effect is absent.

As has become clear before, in a poorly equilibrated
population ρt is much larger than in the θ → ∞ limit,
cf. Fig. 8. Thus, there ought to be a contribution not
taken into account in the calculation of ∆ρt in the θ →∞
limit, that leads to a sharp increase of ρt at the inverse
critical temperature βc ≈ 0.44. The crucial assumption
that lead to the expressions in the θ → ∞ limit was
that the weights of replicas are distributed independently,
i.e., that the covariance of weights of replicas i and j
(with i ̸= j) is zero. This however, is not the case when
θ is finite. In this case the covariance can roughly be
estimated through the effective population size Reff(τ)
giving rise to an extra contribution δ to ∆ρt that is

δ ∼
(

R

Reff(τ)
− 1

)
. (28)

Note that when Reff(τ) = R this contribution is zero
(perfect equilibration), whereas it becomes large when
the population is very correlated, i.e., when Reff(τ)≪ R.
As ∆β and θ were chosen constant for each simulation in
Fig. 8, the population is well-equilibrated even for small θ
except around criticality. Hence, Eq. (28) explains the

jump at βc and away from criticality the lines are almost
parallel.

VI. CONCLUSIONS

Combining data from numerical simulations as well
as theoretical considerations we provide strong evidence
that the chosen resampling method in PA can have more
than a subtle effect on the quality of the obtained data.
Out of all the methods we have considered, we find strong
evidence that suggests that using multinomial or Poisson
resampling (which both have been used extensively in
practise before) should be avoided. Both lead to higher
systematic and statistical errors as well as worse values
in all other considered benchmark quantities. Instead,
nearest-integer and systematic resampling consistently
outperform all other methods in almost all considered
metrics and work equally well in the remaining compar-
isons.
Besides simply answering the question of which resam-

pling method to choose, we further aimed to improve our
understanding of the genuine effects of resampling on the
simulation results. Replacing MCMC sweeps with exact
sampling (corresponding to θ → ∞) allowed us to sys-
tematically scan the parameter space of PA at very little
computational cost. What is more, however, it isolated
the potential negative effects of resampling from the sys-
tematic error caused by imperfect equilibration due to
finitely many MCMC sweeps.
In this setting we varied the population size R while

keeping all other parameters constant and found that
when R grows large, the family quantities smoothly con-
verge in R, which is in agreement with previous re-
ports [12, 20]. This further motivated us to consider
PA in the double limit of perfect equilibration (θ → ∞)
and infinite population sizes (R→∞), where we indeed
see that ρt for large R behaves in the same way as for
R→∞.
We evaluated the replica-averaged family size ρt in

this (double) limit by expressing it as the sum of the
accumulated weight variances and sample variances [see
Eq. (18)]. Computationally this limit is even less de-
manding than the previous simple sampling approach as
every setting can be evaluated by a single summation
over O(L2) terms which allowed us to thoroughly inves-
tigate the interplay between resampling and the chosen
annealing schedule.
This interplay between annealing schedule and resam-

pling can best be observed by considering the increase
in ρt per inverse temperature step ∆β at a given tem-
perature, which we dubbed the resampling cost. For all
methods but nearest-integer and systematic resampling
the resampling cost exhibits a minimum at an interme-
diate temperature step and diverges as ∆β → 0. This
divergence is the reason why we observe worse statis-
tics with very small temperature steps for most methods,
which at first might have seemed counter-intuitive.
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Furthermore, we show that by choosing temperature
steps that minimize the resampling cost, even with multi-
nomial and Poisson resampling acceptable results can be
achieved, although nearest-integer and systematic resam-
pling still yield smaller family growth. Comparing our
adaptive schedule with the adaptive schedule resulting
from fixing the histogram overlap [12], we observe that for
multinomial resampling the target overlap should not be
chosen much larger than ≈ 0.72 as then ρt will take sub-
optimal values. As the resampling cost for systematic
and nearest-integer resampling does not diverge in the
small step limit, adaptive steps minimizing the resam-
pling cost are not applicable to these two methods. Thus,
a linear annealing schedule with small enough steps yields
close-to-minimal family growth with these two methods.
As for these two methods, we find that with a target
overlap parameter of α ≈ 0.8 . . . 0.9 the replica-averaged
family size ρt takes close-to-minimal values, that is the
value it would for α→ 1.
As a last test in this artificial setting, we repeated the

experiment for different linear system sizes L. In agree-
ment with Ref. [12] we find that for the two-dimensional
Ising model the temperature step should be proportional
to 1/L, that is the position of the minimum (resp. the
length of the plateau for nearest-integer and systematic
resampling) of the resampling cost scales as 1/L. Most
strikingly, we find that under mild assumptions ρt should
scale as Ld/2 independent of the underlying model which
gives rise to the simple rule of how to choose the popu-
lation size R when studying multiple system sizes of the
same model.

Finally, we repeat some of these experiments with
MCMC simulations in order to confirm that indeed close-
to-equilibrium simulations behave similar to the ideal-
ized case. The agreement is surprisingly good although
one should stress that the two-dimensional Ising model
is easy to equilibrate as compared to spin glasses, which
are notoriously hard to equilibrate and form one of the
main applications of PA [2, 20]. We find that in out-of-
equilibrium PA simulations there is an extra contribution
to the family growth that can be linked to the correlation
within the population. Thus, we expect that by introduc-
ing a target effective population size Reff family growth
may be well-controlled.

Although we set out to understand one aspect of PA,
namely resampling, we can extract a few guiding prin-
ciples from these studies regarding the question of how
to choose R, θ and βi (for further rules of thumb of how
to successfully implement a PA simulation we refer to
Sec. X in Ref. [12]):

• Use nearest-integer resampling. If a constant pop-
ulation size is required, use systematic resampling
and particularly avoid the use of multinomial or
Poisson resampling.

• Small enough temperature steps generally will give
very good results when using one of the two pre-
ferred resampling methods. However, very small

∆β still come at a high computational cost and
adaptive temperature steps will be more resource-
efficient [12]. Unless adaptive steps are used, ∆β
should be scaled accordingly when studying multi-
ple system sizes.

• When studying multiple system sizes N of the same
model, the population size should be scaled with√
N as this is the expected behavior for ρt.

• Section V shows what to expect from well-
equilibrated PA simulations. If you suspect poor
equilibration, increase θ if possible.

While we have discussed resampling in PA in rather
general terms, not all possible adaptations are contained
in this work. This includes resampling only at some of the
temperature steps (as originally suggested by Hukushima
and Iba [2]) or not resetting all weights after resam-
pling [16], which could also be explored. Another in-
teresting direction is to temporarily increase the popu-
lation size before resampling by selecting multiple con-
figurations per replica and then resample to the original
population size as was recently proposed by Amey and
Machta [11]. Lastly, when using PA on distributed paral-
lel architectures resampling is directly linked to commu-
nication overhead. Thus, one potential area of focus is
optimizing resampling for maximal parallel performance
on these setups.
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Appendix A: Replica-averaged family size

To elaborate on how the term “mean square family
size” for ρt is misleading, consider a population of R

replicas and replica-averaged family size ρ
(R)
t . Now, if

we were to copy every replica exactly twice, thus obtain-

ing a new population of size 2R with ρ
(2R)
t , we would

expect the mean square family size to quadruple. How-

ever, ρ
(2R)
t = 2ρ

(R)
t .

We motivate the term “replica-averaged family size”
as follows. Let oj be the index of the replica at β0 from
which replica j originates. Then j will be part of a fam-
ily with nojR members. If we pick a replica uniformly
at random (out of the entire population), we expect its

family size to be 1
R

∑R
j=1 noj

R. Clearly, for each family
of descendants from the original replica k there are Rnk
contributions in this sum and thus we can rewrite it as
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1

R

R∑
j=1

noj
R =

1

R

R∑
k=1

nkR nkR = R

R∑
k=1

n2k ≡ ρt , (A1)

which coincides with the previous definition of ρt.

Appendix B: Proof of Equation (18)

We set out to prove Eq. (18), i.e., ρ
(i)
t ≈ ρ

(i−1)
t +

σ2
(
r
(i)
k

)
, under the assumption that all r

(i)
k are i.i.d.

We denote by (∗) when the assumption is used. In the

limit of θ →∞, τ
(i)
k are i.i.d. by design. When r

(i)
k (for a

single k) is a univariate random variable only dependent

on τ
(i)
k (as is the case for all methods with variable pop-

ulation size considered here), the i.i.d. property of r
(i)
k

follows immediately. Special attention is required for the
population-size preserving methods, see below.

The replica-averaged family size [see Eq. (11)] reads as
ρt = R

∑
k n

2
k. When expressed in terms of the family

size Nk = Rnk it becomes

ρt =
1

R

∑
k

N2
k = N2

k ∼ ⟨N
2
k⟩ . (B1)

Above equality shows that ρt is the population average
of N2

k and thus estimates ⟨N2
k⟩ which is closely related to

the variance of the size of a family, Nk, i.e.,

Var (Nk) = ⟨N2
k⟩ − ⟨Nk⟩2 = ⟨N2

k⟩ − 1 , (B2)

where ⟨Nk⟩ = 1 because otherwise the (expected) popu-
lation size would change throughout the anneal.
In the following a time subscript (i) is added to all

time-dependent quantities, where time corresponds to
the number of resampling steps already carried out. Fur-

ther, let F (i)
k be the set of replica indices belonging to

the family k at time i. By design, this set contains N
(i)
k

elements, i.e., N
(i)
k = |F (i)

k |. Lastly, r
(i)
k is the number of

copies created of replica k at the i-th resampling step.

From the setup of the algorithm (see Sec. II A), the size of family k at time i+ 1 is given by

N
(i+1)
k =

∑
j∈F(i)

k

r
(i)
j . (B3)

Carefully note that all terms in above equation are random variables. Fixing one initial replica k and the corresponding

set of family indices F (i)
k gives rise to the conditional variance

Var
(
N

(i+1)
k |F (i)

k

)
= Var

 ∑
j∈F(i)

k

r
(i+1)
j

∣∣∣∣F (i)
k

 (∗)
= |F (i)

k |︸ ︷︷ ︸
N

(i)
k

Var
(
r
(i+1)
j

)
,

⇒
(
N

(i+1)
k |N(i)

k

)
= N

(i)
k Var

(
r
(i+1)
j

)
. (B4)

Using the law of total variance Var
(
N

(i+1)
k

)
can be expressed as

Var
(
N

(i+1)
k

)
= E

Var
(
N

(i+1)
k |N(i)

k

)
︸ ︷︷ ︸
(B4)
= N

(i)
k Var

(
r
(i+1)
j

)

+ Var

E (N(i+1)
k |N(i)

k

)
︸ ︷︷ ︸

=N
(i)
k

 . (B5)

This further simplifies to

Var
(
N

(i+1)
k

)
= E

[
N

(i)
k

]
︸ ︷︷ ︸

=1

Var
(
r
(i+1)
j

)
+ Var

[
N

(i)
k

]
. (B6)

Plugging in Eq. (B2) for Var
(
N

(i)
k

)
and Var

(
N

(i+1)
k

)
gives rise to〈(

N
(i+1)
k

)2〉
= Var

(
r
(i+1)
j

)
+

〈(
N

(i)
k

)2〉
. (B7)
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Substituting ρ
(i)
t and ρ

(i+1)
t for ⟨(N(i)

k )2⟩ and ⟨(N(i+1)
k )2⟩ [using Eq. (B1)] completes the proof and gives rise to Eq. (18).

Regarding, population-size preserving methods, if all rj were i.i.d., their sum would have to be a random variable, too.
Thus, for these methods the rj cannot be i.i.d. In the case of multinomial, and thus residual resampling, this in the
limit R→∞ the correlation between any two ri and rj vanishes and thus the rj can be assumed to be approximately
i.i.d. Only for stratified and systematic resampling this is not the case and makes Eq. (18) only approximately true
due to non-vanishing spatial correlations (in replica space). The correlation in those two methods causes Eq. (18) to
slightly overestimate ρt as compared to the standard definition.

Lastly, Eq. (19) is found by using the law of total variance: Var(r
(i)
j ) can be expressed as

Var
(
r
(i)
j

)
= E

[
Var

(
r
(i)
j |τ

(i)
j

)]
︸ ︷︷ ︸
SV(βi−1,βi−1−βi)

+Var

E(r(i)j |τ
(i)
j

)
︸ ︷︷ ︸

=τ
(i)
j

 , (B8)

which yields Eq. (19).

Appendix C: Sampling variance calculations

For all following calculations τ denotes the expecta-
tion value of the number of descendants r of an arbitrary
population member at time of resampling. More pre-
cisely τ and r should carry a replica index k. Unless
strictly necessary, however, k will be omitted for better
readability. Further, ϵ denotes the fractional part of τ ,
i.e., ϵ = τ − ⌊τ⌋.

Nearest-integer resampling

r is ⌊τ⌋+1 with probability ϵ and ⌊τ⌋ with probability
1 − ϵ. Thus, it is easy to see that r − τ is 1 − ϵ with
probability ϵ, and −ϵ with probability 1 − ϵ. Hence the
sampling variance is

sv = E
[
(r − τ)

2
]
= ϵ (1− ϵ)

2
+ (1− ϵ) ϵ2 = ϵ(1− ϵ) .

Systematic resampling

Systematic resampling uses the following protocol to
find ri, provided τi:

ri =

∣∣∣∣∣
{
Uj :

j−1∑
i=1

τi ≤ Uj ≤
j∑

i=1

τi

}∣∣∣∣∣ with Uj = (j−1)+u1 ,

(C1)
where u1 ∈ [0, 1] is a random number. Intuitively, one
might convince oneself that systematic resampling also
chooses r as ⌊τ⌋ + 1 with probability ϵ and ⌊τ⌋ with
probability 1−ϵ and thus should have the same sampling
variance as nearest-integer resampling, i.e., sv = ϵ(1− ϵ).

In the following this is shown in a rather detailed cal-
culation which then can be used analogously in stratified
resampling. Figure 18 shows the most important quan-
tities used in the calculation.

Case I τ > 1

τ

R

. . . . . .

ϵl ϵr
︸ ︷︷ ︸

x ∈ N ∪ {0}

Uj Uj+1 . . . . . . Uj+x+1 . . .

Case II τ ≤ 1, a) τ + y > 1

. . . . . .

. . . Uj−1 Uj Uj+1 Uj+2 . . .

τ = ϵ < 1

y

Case II τ ≤ 1, b) τ + y ≤ 1

. . . . . .

. . . Uj−1 Uj Uj+1 Uj+2 . . .

τ = ϵ < 1

y

FIG. 18. Visualization of systematic resampling

The integer x is equal to ⌊τ⌋ if ϵl + ϵr < 1 and ⌊τ⌋ − 1
otherwise. In the first case ϵl+ ϵr = ϵ, in the second case
ϵl + ϵr = 1 + ϵ.

Case I: τ > 1

Let a, b ∈ {0, 1} such that a (resp. b) are equal 1 iff.
Uj (resp. Uj+x+1) is within the highlighted region of ϵl
(resp. ϵr), i.e.,
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a =

{
1 , u1 ≥ 1− ϵl
0 , else

; b =

{
1 , u1 ≤ ϵr
0 , else

. (C2)

Then the number of replicas made is r = x+ a+ b with
some probability Pτ (r = k). Plugging in the minimal
and maximal values of x, a and b gives lower and upper
bounds for r, namely ⌊τ⌋−1 and ⌊τ⌋+2. From Eq. (C2)
it can be concluded that

a+ b =


2 , 1− ϵl ≤ u1 ≤ er
1 , (1− ϵl ≤ u1 and ϵr > u1)

or (1− ϵl > u1 and u1 ≤ ϵr)

0 , 1− ϵl > u1 > er

. (C3)

Using the condition that u1 is uniformly distributed on
the interval [0, 1], one obtains the probabilities for the
possible outcomes of a+ b:

P (a+ b = 2) = max(0, ϵl + ϵr − 1)

P (a+ b = 1) = min(1− ϵl, ϵr) + min(1− ϵr, ϵl)

P (a+ b = 0) = max(0, 1− ϵl − ϵr)

(C4)

These can be reformulated conveniently as

P (a+ b = 2) =

{
0 , ϵl + ϵr < 1

ϵl + ϵr − 1 = ϵ , ϵl + ϵr ≥ 1
,

P (a+ b = 1) =

{
ϵl + ϵr = ϵ , ϵl + ϵr < 1

2− ϵl − ϵr = 1− ϵ , ϵl + ϵr ≥ 1
,

P (a+ b = 0) =

{
1− ϵl − ϵr = 1− ϵ , ϵl + ϵr < 1

0 , ϵl + ϵr ≥ 1
.

(C5)

Next, using τ = x+ϵl+ϵr, the probability distribution

Pτ (r = k) can be obtained

Pτ (r > ⌊τ⌋+ 2) = 0 ,

Pτ (r = ⌊τ⌋+ 2)

=

{
P (a+ b = 2|ϵl + ϵr < 1) = 0 , ϵl + ϵr < 1

0 , ϵl + ϵr ≥ 1

= 0 ,

Pτ (r = ⌊τ⌋+ 1)

=

{
P (a+ b = 1|ϵl + ϵr < 1) = ϵ , ϵl + ϵr < 1

P (a+ b = 2|ϵl + ϵr ≥ 1) = ϵ , ϵl + ϵr ≥ 1

= ϵ ,

Pτ (r = ⌊τ⌋)

=

{
P (a+ b = 0|ϵl + ϵr < 1) = 1− ϵ , ϵl + ϵr < 1

P (a+ b = 1|ϵl + ϵr ≥ 1) = 1− ϵ , ϵl + ϵr ≥ 1

= 1− ϵ ,

Pτ (r = ⌊τ⌋ − 1)

=

{
0 , ϵl + ϵr < 1

P (a+ b = 0|ϵl + ϵr ≥ 1) = 0 , ϵl + ϵr ≥ 1

= 0 ,

Pτ (r < ⌊τ⌋ − 1) = 0 ,

(C6)

which is identical to the distribution from nearest-integer
resampling.

Case II τ ≤ 1

In the special case that τ < 1 and that it does not
overlap an integer boundary, the above calculation does
not work, as ϵl and ϵr are not well defined (case II b).
Even in the case that it does overlap an integer boundary
(case II a), the calculation above does not apply as the
case ϵl + ϵr > 1 is impossible. Instead, a new parameter
y ∈ [0, 1] is introduced (see Fig. 18) which, assuming
uniform distribution of y, can be averaged over y in order
to obtain the probability distribution Pτ (r = k) for τ ≤
1. Fortunately, Eq. (C6) is only a function of ϵ without
any assumptions on ϵl or ϵr such that it applies as long
as ϵl and ϵr are defined. Thus, in case II a) the sampling
variance is equal to the one in nearest-integer resampling.

In the case of ϵl and ϵr not being well defined, meaning
that the highlighted region does not overlap an integer
boundary, the argument is as follows: Under the condi-
tion that u1 is equally distributed over [0, 1] the probabil-
ity of the arrow (see Fig. 18) to be within the highlighted
region is τ = ϵ. Hence, again the probability distribution
of systematic resampling is identical to the one in nearest-
integer resampling. As the sampling variance in all cases
I, II a) and II b) is equal to the nearest-integer sv, no
averaging is necessary, i.e.,

sv(τ) = sv(ϵ) = ϵ(1− ϵ) . (C7)
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Case I τ > 1

τ

R

. . . . . .

ϵl ϵr
︸ ︷︷ ︸

x ∈ N ∪ {0}

Uj Uj+1 . . . . . . Uj+x+1 . . .

Case II τ ≤ 1, a) τ + y > 1

. . . . . .

. . . Uj−1 Uj Uj+1 Uj+2 . . .

τ = ϵ < 1

y

Case II τ ≤ 1, b) τ + y ≤ 1

. . . . . .

. . . Uj−1 Uj Uj+1 Uj+2 . . .

τ = ϵ < 1

y

FIG. 19. Visualization of stratified resampling. The only
difference compared to Fig. 18 is the different location of the
arrows Uk.

Stratified resampling

Stratified resampling is quite similar to systematic re-
sampling, with the difference that instead of using one
random number u1 for the entire population, for each
integer strata an independent pseudo-random number
uj ∈ [0, 1] is drawn. The resampling protocol is given
by

ri =

∣∣∣∣∣
{
Uj :

j−1∑
i=1

τi ≤ Uj ≤
j∑

i=1

τi

}∣∣∣∣∣ with Uj = (j−1)+uj .

(C8)

The calculation for stratified resampling is analogous to
the one for systematic resampling just that instead of
using u1 for left and right boundary two independent
random numbers, ul and ur, are used. ul (resp. ur)
corresponds to uj (resp. uj+x+1) in Fig. 19.

Case I τ > 1. Quantities are defined very similarly:

τ = x+ ϵl + ϵr r = x+ a+ b

a =

{
1 , ul ≥ 1− ϵl
0 , ul < 1− ϵl

; b =

{
1 , ur ≤ ϵr
0 , ur > ϵr

(C9)

From this

a+ b =


2 , 1− ϵl ≤ ul and ur ≤ er
1 , (1− ϵl ≤ ul and ϵr < ur)

or (1− ϵl > ul and ϵr ≥ ur)

0 , 1− ϵl > ul and ur > er

(C10)

can be found and assuming uniform distributions of ul

and ur on [0, 1] gives

P (a+ b = 2) = ϵlϵr ,

P (a+ b = 1) = ϵl(1− ϵr) + (1− ϵl)ϵr = ϵl + ϵr − 2ϵlϵr ,

P (a+ b = 0) = (1− ϵl)(1− ϵr) .

(C11)

Next, using τ = x+ϵl+ϵr, the probability distribution
Pτ,ϵl,ϵr (r = k) can be obtained, i.e.,

Pτ,ϵl,ϵr (r > ⌊τ⌋+ 2) = 0 ,

Pτ,ϵl,ϵr (r = ⌊τ⌋+ 2) =

{
ϵlϵr , ϵl + ϵr < 1

0 , ϵl + ϵr ≥ 1
,

Pτ,ϵl,ϵr (r = ⌊τ⌋+ 1) =

{
ϵl + ϵr − 2ϵlϵr , ϵl + ϵr < 1

ϵlϵr , ϵl + ϵr ≥ 1
,

Pτ,ϵl,ϵr (r = ⌊τ⌋) =

{
(1− ϵl)(1− ϵr) , ϵl + ϵr < 1

ϵl + ϵr − 2ϵlϵr , ϵl + ϵr ≥ 1
,

Pτ,ϵl,ϵr (r = ⌊τ⌋ − 1) =

{
0 , ϵl + ϵr < 1

(1− ϵl)(1− ϵr) , ϵl + ϵr ≥ 1
,

Pτ,ϵl,ϵr (r < ⌊τ⌋ − 1) = 0 ,

(C12)

which is no longer independent of ϵl and ϵr. One can
regain independence of ϵl and ϵr by assuming that ϵl (or
equivalently ϵr) is uniformly distributed on [0, 1] and then
averaging over ϵl, i.e.,

Pτ (r = ⌊τ⌋+ k) =

∫ 1

0

dϵlPτ,ϵl,ϵr(ϵl)(r = ⌊τ⌋+ k) (C13)

with

ϵr(ϵl) =

{
ϵ− ϵl , ϵ ≥ ϵl
1 + ϵ− ϵl , ϵ < ϵl

. (C14)

As a consequence of the averaging procedure the pos-
sibility of ϵl+ ϵr > 1 is integrated into the term and thus
does not apply when ϵl+ϵr > 1 is impossible, i.e., in case
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II a). Next, this yields the probability distribution

Pτ (r > ⌊τ⌋+ 2) = 0 ,

Pτ (r = ⌊τ⌋+ 2) =
ϵ3

6
,

Pτ (r = ⌊τ⌋+ 1) =
(1 + ϵ)3

6
− 2

3
ϵ3 ,

Pτ (r = ⌊τ⌋) = ϵ3

2
− ϵ2 +

2

3
,

Pτ (r = ⌊τ⌋ − 1) =
(1− ϵ)3

6
,

Pτ (r < ⌊τ⌋ − 1) = 0 .

(C15)

Using the distribution the sampling variance can be cal-
culated (for case I) as

sv(τ) =

2∑
k=−1

(ϵ− k)2Pτ (r = ⌊τ⌋+ k) =
1

3
. (C16)

As complicated as the probability distribution may ap-
pear, under the assumption that ϵl is uniformly dis-
tributed the average sampling variance is constant at 1/3.
Case II τ ≤ 1. In this case, depending on y and τ ,
the highlighted region might partially occupy one or two
integer strata. This yields the probability distribution

Pτ,y(r > 2) = 0

Pτ,y(r = 2) =

{
0 , y + τ < 1

(1− y)(τ + y − 1) , y + τ ≥ 1
,

Pτ,y(r = 1) =

{
τ , y + τ < 1

(1− y)(2− τ − y) + y(τ + y − 1) , y + τ ≥ 1
,

Pτ,y(r = 0) =

{
1− τ , y + τ < 1

y(2− τ − y) , y + τ ≥ 1
.

(C17)

Assuming uniform distribution of y and integrating over
y, i.e.,

Pτ (r = k) =

∫ 1

0

dyPτ,y(r = k), (C18)

then gives

Pτ (r > 2) = 0 ,

Pτ (r = 2) =
τ3

6
,

Pτ (r = 1) =

(
1− τ2

3

)
τ ,

Pτ (r = 0) =
τ3

6
− τ + 1 ,

(C19)

and the sampling variance follows from

sv =
∑
r

(r − τ)2Pτ (r) =

(
τ2

3
− τ + 1

)
τ . (C20)

Putting both cases I and II together gives

sv(τ) =

{
1
3 , τ > 1(
τ2

3 − τ + 1
)
τ , τ ≤ 1

. (C21)

Poisson and Multinomial resampling

For both the Poisson and the multinomial distribution
the sampling variance is equal to ⟨τ⟩ = 1 independently
of temperature.
The input argument for the Poisson distribution is λ

where λ is the mean. In the case here λ is equal to τk.
The variance of the Poisson distribution is also λ. Hence,
sv(τ) is equal to τ which on average is one.
Similarly, for the multinomial distribution the input

parameters are n and pk (
∑

k pk = 1). n here corresponds
to the population size R and pk = τk/R. The variance
of rk is given by npk(1− pk) = τk(1− τk/R) which for R
large enough also gives

sv(τ) = τ . (C22)

Again, averaging over all individuals the average

⟨(rk−τk)2⟩ =
1

n

∑
k

npk(1−pk) =
∑
k

pk︸ ︷︷ ︸
=1

−
∑
k

p2k︸ ︷︷ ︸
≈0 for large n

≈ 1 .

Residual resampling

In residual resampling the resampling protocol is as
follows: Each replica is replicated ⌊τ⌋ times which tem-
porarily reduces the population size to R′. In a sec-
ond step the population is brought to its original size
R by drawing R − R′ times from a multinomial distri-
bution where each replica weight is proportional to its
ϵ = τ − ⌊τ⌋.
As multinomial resampling has a sampling variance

equal to the number of replicas created on average and
since this average is ϵ, the sampling variance for residual
resampling follows

sv(τ) = ϵ . (C23)

Clearly, this function (also sometimes referred to as the
sawtooth function) has a discontinuity for every integer
value τ where it jumps from one to zero. This discontinu-
ity in τ cascades to a discontinuity SV(β) when averaging
over all energies, as can be seen in Figs. 4 and 11.
This only becomes apparent at low temperatures when

due to the discreteness of the Ising model the energy
and thus also the τk take only few values. A jump in
the average sampling variance occurs at βi when some
energy Ej has τβi−1

(Ej) > 1 at βi−1 and τβi
(Ej) < 1 at
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βi. This can be observed for β ≳ 0.8 in Figs. 4 and 11.
As the number of occupied energy levels decreases with
increasing inverse temperature each jump is bigger than
the previous one.

In Fig. 12 the resampling cost ∆ρt/∆β diverges as
0.5/∆β in the limit ∆β → 0, where 0.5 is the sampling
variance residual resampling takes for small ∆β. This
value can be understood as follows: With all τ ’s close
to one and on average equal to one, half of the τ ’s are
less than one and the other half larger than and equal to
one. The expected sampling variance sv for τ ≲ 1 (resp.
τ ≳ 1) is one (resp. zero). Thus, the measured sv is the
average of zero and one, namely 0.5.

Appendix D: Specific-heat integral

We aim to show that∫ β2

β1

√
CV /β dβ ≤ D

for some constant D ∈ R.
Proof. Given CV /β

2 is square-integrable on [β1, β2], it
follows from the Cauchy-Schwartz inequality that∣∣∣∣∣

∫ β2

β1

√
CV /β dβ

∣∣∣∣∣
2

≤
∫ β2

β1

CV /β
2 dβ .

From the definition of CV and setting the Boltzmann
constant equal to one, we can express CV as

CV = − 1

V

∂E

∂β
β2 .

Thus,

∫ β2

β1

CV /β
2 dβ = − 1

V

∫ β2

β1

∂E

∂β
dβ

= − 1

V
[E (β2)− E(β1)]

= e(β1)− e(β2) ≡ D2 ,

where e(β) is the energy per spin. This proves the orig-

inal statement and D =
√
e(β1)− e(β2), which for the

Ising model is always less than
√
2d, J being equal to

unity.
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