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We consider the effect of perturbing a single bond on ground-states of nearest-neighbor Ising
spin-glasses, with a Gaussian distribution of the coupling constants, across various two and three-
dimensional lattices and regular random graphs. Our results reveal that the ground-states are
strikingly fragile with respect to such changes. Altering the strength of only a single bond be-
yond a critical threshold value leads to a new ground-state that differs from the original one by
a droplet of flipped spins whose boundary and volume diverge with the system size — an effect
that is reminiscent of the more familiar phenomenon of disorder chaos. These elementary fractal-
boundary zero-energy droplets and their composites feature robust characteristics and provide the
lowest-energy macroscopic spin-glass excitations. Remarkably, within numerical accuracy, the size
of such droplets conforms to a universal power-law distribution with exponents dependent on the
spatial dimension of the system. Furthermore, the critical coupling strengths adhere to a stretched
exponential distribution that is predominantly determined by the local coordination number.

PACS numbers: 75.50.Lk, 75.60.Ch

Introduction. Complex systems harboring a plethora
of competing low-energy states lie at the forefront of in-
tense investigation across diverse fields in physics, com-
putation, biology, and network science (including long-
standing foundational quests associated with the basic
character of both real and artificial neural networks and
protein-folding) [1–5]. Spin-glasses are paradigmatic re-
alizations of the venerable challenges posed by these sys-
tems. Decades after their discovery, fundamental aspects
of spin-glasses [1, 2, 6, 7] remain ill-understood. Exclud-
ing the fully-connected Sherrington-Kirkpatrick mean-
field model [8] and other soluble theories, e.g., [9–11],
debates concerning the nature of real finite-dimensional
spin-glasses persist to this day. These systems are
commonly described by the nearest-neighbor Edwards-
Anderson (EA) model [12]. We will take the physically
pertinent (and subtle) continuous real number limit [13]
of the EA coupling constants prior to the thermody-
namic limit. [14]. With unit probability [15], up to a
trivial sign flip of all spins (a degeneracy henceforth im-
plicit), the system provably has a unique ground-state
[13]. While some consensus emerged regarding the ex-
istence and character of the spin-glass phase-transition
[16–18], at least in Ising systems, with a lower critical
dimension between 2 and 3 [19], important questions re-
main regarding the spin-glass phase itself: e.g., whether
there are asymptotically non-trivial overlap distributions
and hierarchical structures of metastable states. A cen-
tral engima is to what extent the alluring structure of the

replica-symmetry breaking (RSB) solution of the mean-
field model survives in systems of finite dimensions d.
Four descriptions received much attention: (1) the full
RSB framework extended to finite dimensions [20], (2)
the droplet scaling theory [21–23], (3) the trivial-non-
trivial (TNT) [24–26], and (4) the chaotic-pairs (CP)
pictures [27, 28]. The most distinctive features of these
pictures relate to the relevant low-energy excitations. In
the RSB phase, such excitations have, asymptotically,
an energy of order O(1), independent of system size, and
space-filling domain-walls appear between pure-state re-
gions. By contrast, conventional droplet scaling predicts
energies ∼ ℓθ for excitations on scale ℓ with a fractal
boundary of dimension df < d [21–23]. The TNT and CP
scenarios feature O(1), df < d (TNT) and high-energy
(θ > 0), df = d excitations (CP) [28], respectively. In nu-
merical studies, such excitations are injected via bound-
ary condition changes applied to systems of linear size L
[29]. The corresponding ground-state energy scales as Lθ

with θ negative in d = 2 and positive when d ≥ 3 [30–32].
However, since this setup requires a non-local change of
couplings, the resulting excitations might not be repre-
sentative of low-temperature behaviors. Several studies
investigated local excitations [24, 26, 33–35] but their be-
haviors for short-range continuous spin-glasses remained
somewhat inconclusive.

Zero-energy droplets. We consider the Gaussian EA
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Ising model [12] with N spins σi = ±1 and Hamiltonian

HJ = −
∑
⟨ij⟩

Jijσiσj , (1)

where ⟨ij⟩ denotes nearest neighbors. The couplings
J = {Jij} are drawn from a Gaussian PJ(Jij) =
(1/

√
2π) exp(−J2

ij/2). Starting from a ground-state of a
given sample, we vary a single coupling constant Ji0j0 of
a bond (i0, j0) at, e.g., the system center, from its initial
strength J0 until it reaches a critical value Jc at which a
new ground-state appears (see Fig. 1). Some properties
of such droplets involving single bond changes in the hy-
percubic EA Ising model [33] were studied analytically
in Ref. [28] yet specific results for the physically relevant
cases in d = 2 and d = 3 were not provided. On tuning
Ji0,j0 , ground-states become degenerate at Ji0j0 = Jc,
differing by a domain of flipped spins whose boundary is
a contour of zero-energy. Previous work referred to the
so-formed zero-energy droplet (ZED) as a critical droplet
[36]. Generally, spins flipped in any domain D (not nec-
essarily a ZED) relative to those in the ground-state are
associated with a boundary (∂D) energy [37],

∆E = −2
∑

⟨ij⟩∈∂D

Jijσiσj ≥ 0, ∂D = {⟨ij⟩|i /∈ D, j ∈ D}.

(2)
The following properties can be proven [38, 39] (i) If
∆E = 0 (a ZED), the set of flipped spins will contain
exactly one of the two endpoints of the central bond
[28]. (ii) As Ji0j0 is continuously varied from −∞ (where
the central bond connects two oppositely oriented Ising
spins) to ∞ (when the two spins are parallel), there will
only be a single ground-state transition at the critical
coupling Ji0j0 = Jc. Thus, if perturbing Ji0j0 to a new
value generates a new ground-state C′ then this state
must differ from the original ground-state C by the very
same spins in the ZED appearing when Ji0j0 = Jc [28].
Furthermore, (iii) the energy associated with a ground-
state change (even if the number of flipped spins diverges)
incurred by altering a local exchange constant is asymp-
totically independent of system size if the distribution of
the associated critical couplings at which a transition oc-
curs is well defined in the thermodynamic limit. If the
distribution of Jc values does not scale with system size
(as we indeed verify) then neither will the energy changes.

Multi-droplet excitations. We may vary couplings Jij
on general (non-central) bonds and examine their respec-
tive ZEDs to study multi-droplet excitations for arbitrary
J . From (2), for general couplings, ∆E vanishes at “crit-
icality” for non-trivial domains when degeneracy appears
and is linear in deviations of the coupling constants from
their critical values. In the thermodynamic limit, for a
continuous distribution PJ , one can find any finite num-
ber of disjoint bonds that are arbitrarily close to their
critical values. Thus, in that limit, the critical bound-
ary excitations that we examine and composites of a few

Jc

D
FIG. 1: (Color online.) Illustration of our numerical ex-
periments. Gray and white squares represent frustrated
and unfrustrated plaquettes, respectively. Red and black
segments represent unsatisfied (Jijsisj < 0) and satisfied
(Jijsisj > 0) bonds. The critical value Jc of the coupling
of the central bond (i0, j0) (highlighted in green) sepa-
rates two different ground-states that differ by a domain
D of flipped spins (shaded region). The boundary links
in ∂D are the bisected orthogonal (blue) edges.

such excitations may be of the lowest possible energy. A
related result holds for arbitrary energy excitations [38].
Numerical calculations. We studied ZEDs by com-

puting ground-states of the EA Ising model on (free
boundary condition) square, triangular, and honeycomb
lattices of linear size 16 ≤ L ≤ 1024, cubic lattices
with 5 ≤ L ≤ 12, the body-centered cubic system with
L = 5, 7, and z-regular random graphs (RRGs) of coor-
dination number z = 3, 4 and 6 with N = 128 nodes. For
each specific lattice or graph, we used between 103 and
105 bond configurations (disorder samples) for averaging
[38]. For planar spin-glasses, we used the polynomial-
time minimum-weight perfect matching method [40, 41]
with Blossom V [42] to determine exact ground-states.
For non-planar systems, an exact branch-and-cut ap-
proach (implemented with Gurobi [43]) executes a brute
force tree search of all possible spin configurations. The
code used for this work is publicly available [44].

Droplet energies and critical couplings. When the cen-
tral coupling Ji0j0 varies from an initial strength of J0
across Jc to a new value, the corresponding ground-state
of (1) transitions from C to C′. From the perspective of
the original system with the initial coupling Ji0j0 = J0,
the configuration C′ constitutes an excitation of energy
[45] ∆E = 2|J0 − Jc| [38, 39] above that of the ground-
state C. Using the latter relation for ∆E, we inferred Jc
by comparing the ground-states found for Ji0j0 ≪ 0 and
Ji0j0 ≫ 0 respectively. In Fig. 2(a), we present excitation
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TABLE I: Parameters of the stretched exponential (3),
as well as values of the scaling exponents κv of Eq. (4) for
the droplet volume and κs of (5) for the droplet bound-
ary, for the different lattices considered.

Lattice ac βc κv κs

honeycomb 2.76(1) 1.58(1) 0.215(2) 0.342(3)
square 1.187(8) 1.71(1) 0.224(2) 0.346(2)

triangular 0.523(7) 1.80(1) 0.216(3) 0.336(3)
simple cubic 0.69(4) 1.55(5) 0.131(6) 0.159(5)

bcc 0.21(1) 1.79(5) 0.116(5) 0.147(7)

energies ∆E for the d = 2 and d = 3 lattices as well as
the RRGs. The distributions are unimodal peaking close
to ∆E = 0, with the energy changes increasing with the
lattice (or graph) coordination number z. As the inset
shows for the example of the square lattice, the distribu-
tions are almost perfectly independent of the lattice or
graph size. Hence there is no scaling of the excitation
energies with system size. To better understand these
distributions, we examined the behavior of the critical
couplings Jc. As their probability density is even [38], in
Fig. 2(b) we show the distribution of the modulus |Jc|.
These distributions are well described by a stretched ex-
ponential (or stretched Gaussian) [38]

P (|Jc|) = kc exp(−ac|Jc|βc), (3)

with 1 < βc < 2. The lines in Fig. 2(b) show fits of
this form with the parameters collected in Table I. The
typical values for Jc are mostly determined by the lat-
tice/graph coordination number z; the distributions al-
most collapse if plotted as a function of |Jc|/z, cf. the
inset of Fig. 2(b). For instance, data for the (z = 6)
cubic lattice nearly collapse onto those of the (z = 6)
triangular lattice. Similarly, the P (|Jc|) distributions for
RRGs of fixed coordination z = 3, 4, 6 but otherwise
random structure match with their counterparts of the
honeycomb, square, and triangular lattices respectively.
Deviations are most pronounced for small z. This is par-
ticularly apparent for a z = 2 graph (a chain) for which
P (|Jc|) = δ(|Jc|) (since any sign change of Ji0j0 gener-
ates a new ground-state in which all spins on one side
of this bond are flipped with degenerate ground-states
at Ji0j0 = 0). Asymptotically, P (|Jc|) is independent
of boundary conditions, although finite-size corrections
might be strong [38]. We observed that the probability
that the ground-state does not change when the initial
central coupling is flipped (Ji0j0 → −Ji0j0) increases with
the density of closed loops [38].

Droplet volumes and boundary areas. We next study
the ZED geometries. In Fig. 3(a), we show the tail dis-
tribution of the number of sites |D| (or volume) of these
droplets for square lattices of sizes 32 ≤ L ≤ 1024. All
tails follow a power-law successively extending to larger
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FIG. 2: (Color online.) The legend is split between both
panels, each of which shows all data sets. (a) Probability
densities for the excitation energies ∆E for different lat-
tices and graphs. The inset shows the distributions for
square lattices of sizes L = 16, 64, 256 and 1024 (darker
shades for larger systems), illustrating that they are al-
most perfectly independent of system size. (b) Proba-
bility densities of the modulus of the critical coupling,
|Jc|, together with fits of the stretched exponential form
(3) to the data. Curves for lattices/graphs of the same
coordination number z are nearly indistinguishable. The
inset shows the distributions as a function of |Jc|/z.

droplet volumes,

P (|D| ≥ V) = 1− F (V) = 1

Vκv
0

Ω

(
V
V0

)
∼ kvV−κv , (4)

where F is the cumulative distribution and Ω a scaling
function. Once the ZEDs become too large, V ≳ V0(L),
the finite size of the system becomes manifest and the
probability plummets far more rapidly with the ZED size.
As is illustrated in Fig. 3(b), we find similar power-laws
for all considered d = 2 and d = 3 lattices. The expo-
nent κv appears to only depend on the lattice dimension.
Thus, we find the compatible κv ≈ 0.22 for the square,
triangular, and honeycomb lattices, and κv ≈ 0.125 for
the simple cubic, and bcc lattices, respectively. The in-
dividual fit values appear in Table I. By comparison to
their planar counterparts, the more notable differences
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FIG. 3: (Color online.) ZED volume V and surface area A distributions. (a) Distribution of ZED volumes for square
lattices of sizes L = 32–1024 (darker shades correspond to larger systems). The inset shows the scaling function Ω
of Eq. (4) assuming V0 ∼ Ldv with dv = 1.991(75) (see below). (b) Volume distributions for the different lattice
types with fits of the power-law form (4). (c) The ZED surface areas for simple-cubic lattices of sizes L = 5–12. The
inset shows Σ of Eq. (5) assuming A0 ∼ Lds with ds = 2.76(2) (see below). (d) Surface area distribution for different
lattices with fits (5). For the surface area distribution for the square lattices and the volume distribution for the
simple cubic lattices, see Fig. S1 in the Supplemental Material.

between the simple cubic and bcc lattices are likely a
consequence of the smaller linear sizes in d = 3.
The ZED surface areas |∂D| exhibit a similar power-

law distribution

P (|∂D| ≥ A) = 1− F (A) =
1

Aκs
0

Σ

(
A
A0

)
∼ ksA−κs .

(5)
As seen in Fig. 3(c), deviations from the power-law be-
havior occur for A ≳ A0(L) with A0(L) monotonically
increasing in L [46]. As Fig. 3(d) illustrates, the ex-
ponents κs are again universal, depending only on the
lattice dimension, cf. the fit parameters in Table I. For
RRGs with sparse closed loops, P (|∂D| ≤ A) becomes
very sharp. For tree-like graphs (no closed loops), an
entire branch of spins attached to the central bond flips
when Ji0j0 changes sign. Here, the boundary separating
the ground-states for positive and negative Ji0j0 is com-
prised of only one (|∂D| = 1) bond and P (|∂D| ≤ A)
increases sharply (a step function). Similarly, a higher
exponent κs (sharper P (|∂D| ≤ A)) appears for lattices

of lower spatial dimension d having fewer closed loops
(see Table I).

Fractal dimension. Analyzing, for the square lattice,
the scaling of the ZED volume and surface areas with
their linear extent ℓ [38], we deduce a volume fractal di-
mension dv = 1.97(3) and a surface fractal dimension
ds = 1.27(1) [38]. An alternative analysis using scaling
collapses according to Eqs. (4) and (5) yields the com-
patible estimates dv = 1.991(75) and ds = 1.275(30) [38].
ZEDs are hence compact (i.e., dv ≈ d = 2) with fractal
surfaces of Hausdorff dimension compatible with that of
domain-walls induced by changes of the boundary condi-
tions, ds,DW = 1.2732(5) [47]. This similarity of fractal
dimensions is intuitive as the flipping of boundary cou-
plings involved in transitioning from periodic to antiperi-
odic boundary conditions is akin to a sequence of ZED
flips [48]. Indeed, the injection of a domain-wall can be
viewed as sequentially flipping the bonds, one after the
other, along a system boundary [28, 38]. For the cu-
bic lattice, a similar analysis yields dv = 3.08(5)[20] and
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ds = 2.76(2)[15], where the numbers in square brack-
ets indicate the estimated systematic corrections from
finite size [38]. Since dv ≤ d = 3, this suggests that
dv ≈ d = 3. Again, ds is comparable to previous esti-
mates ds ≈ 2.6 [25].
Given the cumulative power-law tail distributions of

(4) and (5), it is clear that the probability densities
of volumes and surface areas decay algebraically (with
exponents κv + 1 and κs + 1, respectively) implying
that the average volume ⟨V⟩ and surface area ⟨A⟩ di-
verge with L. Specifically, the power-law (∝ V−(κv+1))
regime of the ZED volume distribution implies that

⟨V⟩ >
∫ V0

0
dV V−κv/

∫ V0

0
dV V−(κv+1) ∝ V0. There are

additional V > V0 contributions not following the power-
law (4). The scaling collapse in the inset of Fig. 3(a)
illustrates that V0 ∼ Ldv such that the average volume
diverges with L. Likewise, ⟨A⟩ ∼ Lds . Hence critical
ZEDs are excitations of divergent length scales with frac-
tal boundaries.

Discussion. The ground-states of the Gaussian EA
Ising model are exceedingly fragile and respond with
(ZED) excitations of unbounded size to perturbations of
single couplings. We find universal exponents governing
the geometrical size of these excitations, the distribution
of (“critical”) single couplings, and energies. In the ther-
modynamic limit, many couplings are inevitably arbi-
trarily close to being critical so an infinitesimal amount
of energy may create macroscopic system-spanning ex-
citations. All excitations (domain-wall or other) may
be associated with ZEDs that appear as exchange con-
stants are sequentially tuned to values that they assume
when these excitations arise [38]. The energies of system-
spanning d = 2 domain-wall excitations of length ℓ van-
ish as ℓθ with θ = −0.2793(3) < 0 [47]. Thus, large
ℓ domain-walls in d = 2 asymptotically become ZEDs.
When keeping the couplings fixed, spin configurations
associated with (generally system-spanning) single bond
ZEDs constitute excitations of energies that do not scale
with L. In d = 3 or whenever θ > 0, domain-wall excita-
tion energies diverge with increasing L and are thus less
relevant for low-temperature physics. In d = 2 and d = 3
lattices, ZED volume and surface area distributions fol-
low universal power-laws with finite lattice cutoffs. ZEDs
have compact volumes with Hausdorff dimensions dv ≈ d
and fractal boundaries d − 1 < ds < d consistent with
domain-walls in d = 2. The ZED size monotonically in-
creases with external field [38].

Our setup for investigating ZEDs is complementary to
that for “disorder chaos” wherein randomness is intro-
duced globally by perturbing all couplings in the system
[39, 49–56]. This leads to an energy contribution pro-
portional to ℓds/2. According to droplet theory, the rele-
vant energy scale is ∆E ∝ ℓθ, suggesting disorder chaos
whenever ds/2 > θ. By their nature, ZED perturba-
tions (whose existence is guaranteed in the thermody-
namic limit) are always relevant low-energy excitations.

Since vanishing-energy and more general excitations
are composites of ZEDs [38], our findings carry important
consequences. The defining ZED characteristics impose
constraints on the properties of excitations in various pic-
tures. Although finite-size corrections can be strong for
spin-glasses, the power-law exponents in Table I clearly
indicate divergent droplet sizes in d = 2 and d = 3.
The ZEDs are compact with fractal, but not space-filling,
boundaries and O(1) energy, thus differing from conven-
tionally considered spin-glass excitations [38], and pro-
viding a test for comprehensive spin-glass theories.
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Supplementary Materials

In what follows, we expand on various aspects.

NUMERICAL SETTING

In Table S2 we provide the sizes and number of sam-
ples studied for each kind of lattice/graph investigated.
In Table S3 we provide the lower and upper cutoff val-
ues for the fits to the tail distributions of |D| and |∂D|,
respectively. We monitored the value of χ2 per degree of
freedom (shown in in Table S4) while adapting the range
[start, cutoff] of each fit with the goal of minimizing the
effect of finite-size corrections experienced by very small
and very large clusters.

All of our numerically provided distributions (such as
those of the critical couplings and ZED volumes and ar-
eas) and their associated averages (e.g., average ZED vol-
umes and areas and their fractal dimension scaling) were
computed over the sample realizations of the spin-glass
Hamiltonian of Eq. (1). As discussed in the main text, in
these sample realizations, couplings Jij were drawn with
probability density PJ(Jij) = (1/

√
2π) exp(−J2

ij/2).

AVERAGES AND MEDIANS

See Table S5 for the averages and medians of the vol-
umes and areas of the ZEDs for different lattices.

COLLAPSE ANALYSIS FOR THE VOLUME AND
SURFACE AREA DISTRIBUTIONS

Figure 3 of the main text shows the distributions
P (|D|) and P (|∂D|) of the volumes |D| and surface ar-
eas |∂D| of the ZEDs with a finite-size scaling analysis
for |D| and the square lattice in panel (a) and for |∂D|
and the simple cubic lattice in (c). In Fig. S4 we com-
plement these data by the distributions of |∂D| for the
square lattice and |D| for the cubic lattice.
The insets of Figs. 3(a) and (c) as well as Fig. S4(a)

and (b) show collapses according to the scaling forms of
Eqs. (4) and (5) for the ZED volumes and surface areas,
respectively. To determine the optimal collapse param-
eters κv and dv resp. κs and ds, we made use of the
collapsing tool autoscale.py [57] that follows a proce-
dure suggested in Ref. [58]. To account for finite-size
corrections, we performed the collapse for overlapping
sequences of three lattice sizes, i.e., for L = 16, 32, 64,
then for L = 32, 64, 128, followed by L = 64, 128, 512,
and finally L = 128, 512, 1024 for the case of the square
lattice. The resulting estimates are plotted against the
smallest L in the triple, L◦, in Fig. S5. We then extrapo-
lated the values of κv and dv resp. κs and ds in the limit

L◦ → ∞, using a power-law form

α(L◦) = α∞ + aL−w
◦ , (S6)

where α stands for one of the exponents κv, dv, κs, and
ds, respectively. We find these fits to work well, resulting
in values of α∞ providing the estimates ds = 1.275(29)
and κs = 0.351(57), as well as dv = 2.008(58) and κv =
0.2169(26). These are consistent with the values found
from direct fits to the tail distribution as compiled in
Table I of the main text. Physically, the volume fractal
dimension dv ≤ d thus suggesting that dv ≈ d = 2.
For the case of the simple cubic lattice, due to the

much more limited system sizes 5 ≤ L ≤ 12 the col-
lapses are much less stable, and the resulting exponent
estimates cannot be extrapolated using (S6). We hence
quote the collapse results for the largest triple L = 7, 10
and 12 which are dv = 3.08(5)[20], κv = 0.166(17)[8] and
ds = 2.76(2)[15], κs = 0.172(19)[4], respectively. Here,
the numbers in square brackets are an estimate of the
systematic (finite-size) error as implied by the variation
of the collapse parameters for consecutive triples of sys-
tem sizes. As the volume dimension dv is bounded by
the spatial dimension d = 3, it follows that dv ≈ d = 3.
An estimate of the systematic error from comparing the
collapse results for different ranges of system sizes leads
to the final estimates of dv and ds provided in the main
text. We note that the estimates for κv and κs from
the collapses are consistent with those from direct fits as
shown in Table I.

ZED WITH UNIFORM MAGNETIC FIELD

Applying a uniform magnetic field B to the spin glass
system (adding a term B

∑
i σi to the Hamiltonian), the

results are shown in Fig. S6. In general, the ZED vol-
ume/area scales monotonically (decreasing in size) with
increasing magnetic field strength B, see Fig. S6.

TOPOLOGICAL FEATURES OF THE ZED

We studied some topological properties of ZEDs fol-
lowing the method proposed in Ref. [24]. To this end,
we considered the probability that the ZED and its com-
plement (the lattice sites that are not part of the ZED)
both touch all boundaries in the system. For example,
there are four line boundaries in the square lattices and
six face boundaries in the cubic lattices. The volume |D|
of ZEDs is restricted to be at most half of the system vol-
ume N , i.e., |D|/N ≤ 1/2, which is achieved by a global
flip σi → −σi in case of a ZED occupying more than half
of the sites. In order to show how these probabilities vary
with the size of ZED, we plot the probabilities restricted
to ZEDs of relative sizes ν ∈ [0, 0.5], i.e., we only consider
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TABLE S2: Linear system sizes L for each lattice (resp. number of nodes for RRGs) and the corresponding number
of samples.

Lattice L Nsample

honeycomb [16, 32, 64, 96, 128] [105, 105, 105, 85395, 105]
square [16, 32, 64, 96, 128, 512, 1024] [105, 105, 105, 105, 105, 139974, 99742]

triangular [16, 32, 64, 96, 128] [105, 105, 105, 105, 101318]
simple cubic [5, 6, 7, 10, 12] [118201, 59865, 49915, 3987, 4003]

bcc [5, 7] [59883, 5960]
RRG z = 3 128 92830
RRG z = 4 128 97994
RRG z = 6 128 14969
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FIG. S4: (Color online.) (a) Tail distribution of ZED surface areas for square lattices of sizes 32 ≤ L ≤ 1024. The
inset shows the scaling function Σ of Eq. (5) assuming A0 ∼ Lds with ds = 1.275. (c) Tail distribution of ZED
volumes for simple cubic lattices of sizes with 5 ≤ L ≤ 12. The inset shows Ω of Eq. (4) assuming V0 ∼ Ldv with the
optimal collapse value of dv = 3.08. The quality of the collapse does not appreciably wane for a range of values due
to systematic finite size error. Combined with the physical requirement that this volume fractal dimension dv ≤ d,
this suggests that dv ≈ d = 3.

TABLE S3: Fit ranges for the tail distribution fits to the
distributions of ZED volumes and areas.

Lattice L volume start/cutoff area start/cutoff
honeycomb 128 20/128 20/128

square 1024 20/512 20/1024
triangular 128 40/128 40/128

simple cubic 12 5/64 20/128
bcc 7 5/25 40/128

ZEDs with volumes ν ≤ |D|/N ≤ 1/2. The results are
shown in Fig. S7 for the square and simple cubic lattices.
There is a clear difference in the behavior between the 2D
and 3D cases: while the probability of both the ZED and
its complement touching the boundaries decays to zero
as the system size L is increased in 2D, it its largely in-
dependent of system size in 3D. In 2D there is simply not
enough space for a cluster and its complement to perco-
late simultaneously. The behavior in 3D, on the other
hand, illustrates the highly non-trivial topology of ZEDs

TABLE S4: Mean-square weighted deviation per degree
of freedom, χ2/d.o.f. for the fits to the distributions of
ZED volumes and surface areas.

Lattice |∂D| |D| JC

honeycomb L = 128 1.14 0.90 1.27
square L = 1024 1.10 0.94 0.96

triangular L = 128 1.24 1.00 0.90
simple cubic L = 12 0.70 0.80 1.49

bcc L = 7 1.66 0.37 1.83

that is reminiscent of the sponge-like structure proposed
in the TNT picture [24].

PROOFS OF FINITE ENERGY CHANGES AND
OTHER PROPERTIES

We now briefly prove properties (i)- (iii) of the main
text. These properties are known and have been illus-
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FIG. S5: (Color online.) Extrapolation of the parameter estimates from the scaling collapses of the tail distribution
of (a) the ZED volume and (b) the ZED surface area. The curved lines show power-law fits to the data, yielding the
extrapolated estimates dv = 2.008(58) (and thus dv ≈ 2 since, physically, dv ≤ d = 2) and κv = 0.2169(26) for the
volumes and ds = 1.275(29) and κs = 0.351(57) for the surface areas.

TABLE S5: Averages (left)/medians (right) of the vol-
umes and areas of ZEDs for different lattices.

Lattice |∂D| |D|
honeycomb L = 128 1886.4/15 105.7/14
square L = 1024 26513.3/14 692.3/20

triangular L = 128 639.6/13 145.7/34
simple cubic L = 12 240.9/48 297.9/144

bcc L = 7 111.1/83 314.8/333

trated in other formats, e.g., [28, 39]. For the benefit
of the reader, here we compactly demonstrate these im-
portant properties. Their proofs are quite simple. A
violation of (i) implies that flipping all spins in D (that
does have the central bond as part of its boundary) cre-
ates a degenerate ground state at the critical coupling
Ji0j0 = Jc. If ∂D does not involve the central bond, this
indicates that the original configuration with the unal-
tered Ji0j0 = J0 was degenerate with another ground

state. However, apart from a set of vanishing measure
in the coupling constants, the Gaussian EA Ising system
is non-degenerate [13]. Statement (ii) may be similarly
proven by contradiction. Indeed, if additional transitions
(apart from the one at Ji0j0 = Jc) between other degen-
erate ground states appeared in either of the two regimes
in which both spins belonging to the central bond were
either of the same or opposite relative orientation then
these would only involve a change of other spins that do
not belong to the central bond (thus violating (i)). To es-
tablish (iii), we recognize that although the ground state
exhibits a change from a global spin configuration C− at
Ji0j0 < Jc to a configuration C+ at Ji0j0 > Jc (possi-
bly involving a divergent number of spins having differ-
ent assignments in the two respective ground states), the
energy of any of the 2N Ising spin configurations is, as
a function of the coupling constants {Jij}, linear. Thus,
the minimum energy amongst these states is a continuous
function of the coupling constants. Therefore, regardless
of whether C− and C+ differ by an extensive number of
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FIG. S6: The CDF distributions for the volumes (left) and areas (right) of ZEDs on L = 16 square lattices for different
applied uniform fields B.

FIG. S7: Here we show the probability Q(ν, 1/2) of a
ZED and its complement to touch all the boundaries of
the system, for different values of ν, i.e., so only ZEDs
with volumes |D| satisfying ν ≤ |D|/N ≤ 1/2 are consid-
ered in each case.

flipped spins (numerically, we find that the number of
such flipped spins is indeed extensive), the ground-state
energy is a trivial linear function of Ji0j0 as seen in (2).

(A) If the initial and final values of the central coupling
constant are both larger than Jc or if both are smaller
than Jc then varying the central coupling constant
between these initial and final values will not change
the ground-state and thus the energy, as evaluated with
the original value J0 of the central coupling constant,
will identically correspond to a vanishing energy change:
∆E = 0.

(B) We next briefly consider what transpires if the
initial and final values of the central coupling constant
lie on different sides of Jc (one being smaller than Jc
and the other being larger than Jc). The energy change
can be readily computed with the aid of (2) where now
D is the domain (ZED) of spins that differ in C− and
C+. By definition, precisely at criticality, the states C−

are C+ are degenerate and (2) vanishes. As we vary the
central coupling from Jc to the value J0 that it assumes
in the initial Hamiltonian, only the term involving the
central bond will change in the sum of (2). That is, ∆E
will increase from its vanishing value at criticality as
∆E = 2|J0 − Jc|.

Thus, if distribution of Jc values (P (Jc)) tends to well
defined (system size independent) form in the thermody-
namic limit (which numerically it indeed is (see the inset
of Fig. 2 (a)) then so is that of the associated energy
changes (P (∆E)). As described in the main text, (B)
was used to determine Jc. While the statistical proper-
ties of Jc may depend on the system size for small sys-
tems, the latter energy change will always be of order
unity (i.e., not increase with the system size since the
coupling constants do not diverge with the lattice size).
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Similarly, as we further detail in this Supplementary Ma-
terial, for the “Repulsive Boundary Conditions” there is
a weak correlation between Jc and the associated ZED
boundary area |∂D|. We numerically find that the distri-
bution P (Jc) of critical coupling constants approaches a
well-defined limit for large L. Given such a P (Jc), both
energy changes (A) (which does not depend on Jc) and
(B) will veer towards system size independent values for
large L. That is, the distribution of the energy changes
will tend to a unique form in the thermodynamic limit.

FLIPPING THE SIGN OF CENTRAL BOND AND
PROBABILITY OF CHANGING THE GROUND

STATE

We now ask what will transpire if we flip the sign of the
central bond Ji0j0 in the initial state (sampled from the
Gaussian distribution of PJ) rather than tune its value to
the critical coupling value Jc at which the ground-state
transition appears. Let us explicitly write the associ-

ated CDF as F (Jc) ≡
∫ |Jc|
0

P (|J ′
c|)dJ ′

c. By construction,
F (Jc) is the probability that the critical coupling J ′

c lies
within the interval [−|Jc|, |Jc|]. We may express the prob-
ability of changing the ground-state (G.S.) as

P (G.S. Change) =

∫ ∞

0

PJ(Ji0j0) F (Ji0j0) dJi0j0

=

∫ ∞

0

dJi0j0
1√
2π

e−
J2
i0j0
2

∫ |Ji0j0
|

0

dJc 2P (|Jc|).
(S7)

Eq. (S7) relates the Jc distributions to the probabilities
of changing the ground-states when we flip the central
bond. In Table S6, we list the such probabilities for dif-
ferent types of lattices and different system sizes. Note
the system sizes are different from what we have in Table
S2; this is another computation in which we forcefully flip
the bond, rather than tune it to Jc.

8 28 48
d = 2 honeycomb 0.2506 0.2525 0.2534

d = 2 square 0.3795 0.3744 0.3781
d = 2 triangular 0.5110 0.5133 0.5104

3 5 7
d = 3 simple cubic 0.4748 0.4887 0.4904

2 3 4
d = 3 bcc 0.6218 0.6604 0.6685

TABLE S6: The probability of changing the ground state
P (G.S. Change) following a flip of the sign of the initial
random value of the central bond (Ji0j0 → −Ji0j0).

THE DISTRIBUTION P (|Jc|) OF CRITICAL
COUPLINGS FOR DECOUPLED LOOPS

In what follows, we motivate a function that is very
similar (when |Jc| ≲ 1) to that of Eq. (3) for the partic-
ular (exactly solvable) case of decoupled loops of uniform
fixed length. Towards this end, we define the conditional
probability Q(J) ≡ P (σiσj = +1|Jij = J). Namely,
Q(J) is the probability that σiσj assumes the value of
+1 given that the link strength between the two spins is
equal to J . Note that Q(J) is, in fact, the cumulative
distribution function of Jc. That is, Q(J) allows us to
infer the probability that Jc < J . That is,

P (Jc) = Q′(Jc). (S8)

At the critical coupling strength Jc, the product σiσj

changes sign.
We next investigate individual closed loops formed of

M individual bonds (e.g., M = 3 for a single triangu-
lar plaquette, M = 4 for a minimal square plaquette,
etc.). Without loss of generality, for a particle bond (ij),
we consider Jij = J > 0. Whether closed loops are
“unfrustrated” (i.e., all bonds in Eq. (1) can be simul-
taneously minimized) or “frustated” (when they cannot)
depends on whether they respectively have an even or
odd number of negatively valued couplings Jab. For an
unfrustrated closed loop, every single bond can be sat-
isfied and thus for the specific link at hand, σiσj = +1.
Within the ground-state of a frustrated closed loop, the
link of the smallest absolute value |Jmin| ≡ |Ja∗b∗ | ≡
minab∈loop{|Jab|} will be unsatisfied (that is for that link
the product Ja∗b∗σa∗σb∗ < 0). Therefore, σiσj = +1
if and only if |Jij | is not the smallest bond among the
M bonds forming the closed loop, |J | > |Jmin|. Given
that each of the M links are drawn from the normal
distribution PJ(Jab) = (1/

√
2π) exp(−J2

ab/2), the prob-
ability that Jij is not the smallest coupling in absolute
value amongst the M coupling in the loop is, trivially,

1 − (1 − 1√
2π

∫ J

−J
dJ ′e−(J′)2/2)M−1. Thus, for a single

loop of length M ,

Q(J) = 1− (erfc(J))M−1, (S9)

with erfc(J) denoting the complementary error function
of J . Eq. (S8) then enables us to determine the probabil-
ity distribution P (Jc) of critical couplings. Numerically,
when constrained to the interval |Jc| ≤ 0.8, except for
exceedingly small arguments, the derivative of Eq. (S9)
(i.e., P (Jc) for decoupled loops) can be made match ex-
ceptionally well the empirical stretched exponential (or
stretched Gaussian) distribution (Eq. (3) of the main
text), see Fig. S8 (a). The difference between our exact
result for decoupled loops with the fitted (for measurable
probability densities) empirical general lattice and graph
form of Eq. (3) becomes far more acute when the |Jc| in-
terval is an order of magnitude larger. Indeed, as seen in
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panel (b) of Fig. S8, the critical probabilities predicted
by Eq. (3) (where the latter are fitted to Eqs. (S8, S9)
when P (Jc) is finite and measurable) become exceedingly
small for very large |Jc|. This disparity is not surprising.
We must indeed underscore that the above derivation of
Eq. (S9) applies for a single closed loop and thus, by
extension, only to decoupled loops of uniform length M .
Clearly, the full problem on the lattice/graph in the ther-
modynamic limit is not that of the limiting case of de-
coupled loops of fixed length for which Eq. (S9) is exact.
In other words, the scaling collapse of the P (Jc) curves in
the inset of Fig. 2(b) highlighting the lattice/graph coor-
dination number and the success of Eq. (3) in describing
RRGs for which only non-uniform sparse loops may ap-
pear does not, at all, follow from the above exact result
for decoupled loops. It is for all of these reasons that we
employed, in the main text, the more generic stretched
exponential (or stretched Gaussian) fit of Eq. (3) that
numerically works well over the entire very broad numer-
ically tested spectrum of |Jc| values (see Fig. 2(b)) and
captures the coordination number dependence of P (Jc)
(see Fig. 2(b) and its inset).

THE FRACTAL DIMENSIONS OF CRITICAL
DROPLETS

The fractal dimensions of ZEDs are defined from the
scaling of the boundary area resp. the volume with its
linear size. The linear size of the droplet is defined as
the ‘radius of gyration’ in the same way as it is usually
defined in the context of random percolation, see, e.g.,
Ref. [59]:

ℓ =

√√√√ s∑
i=1

|ri − rc|2
s

, (S10)

where s denotes the number of sites in the cluster, ri is
the coordinate vector of spin i in the droplet, and rc =∑s

i=1 ri/s is the center of mass (note that we employ
open boundary conditions).

We considered the droplets of a 1024 × 1024 square
lattice and droplets of a 123 simple cubic lattice. The
fractal dimensions were then extracted from the depen-
dence of the average ZED volume and surface area on
its linear extent. In computing the fractal dimension of
the ZEDs, one should be aware of numerical details may
influence the final result:

1 The bin size ℓbin. We have to bin the radii of gy-
ration such that we can compute the correspond-
ing average droplet size. We set the bin size to be
ℓbin = 4.0 for 2D and ℓbin = 0.1 for 3D.

2 The fit range ℓmin ≤ ℓ ≤ ℓmax. We fixed ℓmax =
140.0 for 2D and ℓmax = 1.5 for 3D. We also tuned

FIG. S8: (Color online.) The exact critical coupling dis-
tribution of Eqs. (S8, S9) (solid lines) for decoupled
closed loops of length M fitted by Eq. (3) (dashed lines).
(a) When |Jc| < 0.8 and the probability density P (|Jc|)
is of order unity, one sees an exceptional agreement be-
tween the exact result of Eqs. (S8,S9) for decoupled loops
(dashed lines) and the more general numerical fit of Eq.
(3) (solid lines). This agreement is evident for all but
the smallest values of |Jc|. (b) When examined over the
far broader range |Jc| < 8, there are very notable differ-
ences (on a logarithmic scale) between the exact result
for decoupled loops and the numerical fit (of Eq. (3)) to
that result. Note that the deviation shown is on a loga-
rithmic scale. In terms of absolute size, both Eqs. (S8,
S9) and well as the continuation of the empirical form
of Eq. (3) (when the latter is fitted in (a) to the exact
result (Eqs. (S8, S9)) for decoupled loops for |Jc| < 0.8)
to larger |Jc| values are, literally, exponentially close to
zero and should be completely unobservable. Empiri-
cally, however, the numerically measurable P (Jc) is not
nearly as small (see Fig. 2(b)). This discrepancy illus-
trates that the exact result for decoupled closed loops
(Eqs. (S8, S9) misses essential features of the full lattice
(and graph) systems that are correctly captured by Eq.
(3).



13

FIG. S9: The fractal dimensions dv and ds estimated
from the scaling of |D| and |∂D| with the radius of gyra-
tion for different lattice sizes.

ℓmin within a certain range to see whether the fitted
fractal dimension is stable to the fit range.

Employing such a numerical procedure, we determine
dv = 1.97(3), ds = 1.27(1) for 2D, while the values do
not appear to settle down for the available system size
range in the cubic lattice system.

The values in two dimensions are consistent with those
extracted from the collapse analysis. The values in three
dimensions, on the other hand, are likely to be strongly
affected by finite-size corrections as the systematic up-
ward trend in Fig. S9 shows. Unfortunately these results
are not accurate enough for a systematic finite-size ex-
trapolation. In contrast, the above discussed estimates
from the collapse analysis are more stable, and we sug-
gest that they are the more reliable estimates.

REPULSIVE AND HALF PERIODIC
BOUNDARY CONDITIONS

We now discuss the role of boundary conditions in some
detail. In the results that we reported on in the main

text, we used open boundary conditions. For compar-
ison with earlier work [33], however, we also employed
what we call ‘repulsive boundary conditions’. Herein,
the boundary spins are kept fixed so that, by construc-
tion, the droplets cannot reach (and are effectively re-
pelled by) the boundary. Our analysis reveals that the
divergent (in size) ZEDs and the exponents that we find
might be more readily missed, due to finite size effects,
by the use of these boundary conditions. Perusing ours
and earlier numerical results with these boundary condi-
tions [33], one finds that if only the largest system sizes
are employed with droplets lying well within in the sys-
tem bulk, then these will agree with those using open
boundary conditions. The value of the critical coupling
Jc exhibits a weak correlation with the droplet size. To
elucidate this weak effect, we investigated three differ-
ent settings: (a) free, (b) half-periodic, and (c) repulsive
boundary conditions on various quantities. In Fig. S10,
we plot, for square lattices of varying size, the difference
between the original system and that arrived at by tuning
the central bond Ji0j0 to the critical value Jc. The energy
difference between the initial and final ground states is
computed with the same initial set of coupling constants
(that with J0). As seen in Fig. S10, for the largest sys-
tem, there is no effect of the boundary conditions and all
curves tend to a constant. However, if one tries to fit the
data for the repulsive boundary conditions over all (in-
cluding small) system sizes then it may seem that there
is a non-trivial drop. For the open boundary condition
square, honeycomb, triangular, cubic, and bcc lattices,
the average single bond excitation energies are, respec-
tively, 1.9463, 1.7452, 2.3375, 2.2531, and 3.2386 (with
standard deviations of 0.0047, 0.0042, 0.0056, 0.0096, and
0.0106). As we explained earlier, when the value of Ji0j0
is varied, the associated change of the ground-state en-
ergy (as evaluated with the original coupling) is either
(A) ∆E = 0 or (B) ∆E = 2|J0 − Jc|.
Thus, the only way in which a dependence on system

size can arise is if Jc depends on the system size. In Ta-
ble S7, we provide, for different lattices of varying size,
the Spearman correlation coefficients between the ZED
boundary size |∂D| and Jc. As seen therein, the correla-
tion between Jc and the droplet size is weak and does not
naturally suggest a power-law nor other types of scaling.
As Table S7 further makes clear however, for repulsive
boundary conditions the latter correlation is nonetheless
significantly larger than that present for half-periodic or
open boundary conditions. Albeit very weak, the latter
correlation illustrates that it is not unambiguous how to
sample “typical droplets” for finite size systems.

GAUGE SYMMETRY AND ITS IMPLICATIONS

In what follows, we illustrate two simple corollaries
that stem from the well-known gauge symmetry that
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FIG. S10: (Color online.) The average single bond aver-
age excitation energy ⟨∆E⟩ on L× L square lattices for
(a) free boundary conditions, (b) half-periodic bound-
ary condition and, (c) the repulsive boundary conditions
(see text). For both the free boundary condition and half-
periodic boundary condition, the average energy does not
change systematically with the system size. For the re-
pulsive boundary conditions, there is a nontrivial depen-
dence of the energy on system size for small lattices before
the energy difference appears to saturate (within numeri-
cal accuracy) to the very same value (⟨∆E⟩ ≃ 2) obtained
with open and half-periodic boundary conditions. Note
that this particular approximate limiting average value
for the square lattice assumes other values for other lat-
tices or graphs (see Fig. 2 (a) for the full distributions).

Ising spin-glass systems possess. In particular, we will
demonstrate that any spin configuration (and thus any
excitation of arbitrary energy) can be generated by ap-
plying a sequence of (generally non-critical and overlap-
ping) ZEDs.

The even nature of the probability distribution of
coupling constants

The probability distribution of the critical coupling
strengths at which a ground-state transition occurs must
be even. The proof of this assertion is immediate. With
i and j denoting arbitrary nearest-neighbor sites and
ti = ±1, the gauge transformation

Jij → J ′
ij = Jijtitj , σi → σ′

i = σiti (S11)

leaves the general spin-glass Hamiltonian of Eq. (1) in-
variant.

We may set to = −1 (with the site “o” marking one of
the two endpoints of the central bond) leaving tr ̸=o = +1
at all other sites r. One can partition the space J of

the coupling constants over the entire lattice into two:
J> and J<, depending on whether the central bond is
positive or negative. We may then establish a one-to-
one mapping between these two spaces, as obviously the
gauge transformation of Eq. (S11) is invertible. Addi-
tionally, an instance in J<, along with its ‘gauge mir-
ror’ in J>, must have the opposite signs of Jc, accord-
ing to the nature of the gauge transformation. Since
J = J< + J>, the distribution of critical couplings is
even P (Jc) = P (−Jc). In the main text, we employed
the shorthand P (|Jc|) ≡ P (Jc) + P (−Jc) = 2P (Jc).

Excitations of arbitrary energy as composites of
ZEDs

The gauge symmetry of Eq. (S11) implies that any
Ising spin configuration C′ (which differs from the ground
state C0 of the Hamiltonian H of Eq. (1) by, say, “s” spin
flips) can be cast as a ground state of spin-glass Hamil-
tonians H ′ for some set of coupling constants. This fact
is highly significant, as it allows us to construct any spin
excitation of H (of either finite or vanishing energy) as a
geometric composite of ZEDs appearing in a sequence of
Hamiltonians,

H → H(1) → H(2) → · · · → H(f−1) → H ′. (S12)

As we will explain, here, “f” denotes the total number of
bonds that are flipped in sign in H ′ relative to those in
H. (For domain-wall excitations, this number of flipped

L Nsample Correlation
honeycomb 16 105 -0.0050
honeycomb 96 85395 0.0027

square 16 105 -0.0010
square 96 105 -0.0019

square (HPBC) 16 105 0.0003
square (HPBC) 96 105 -0.003
square (RBC) 8 105 0.0363
square (RBC) 16 105 0.0263
square (RBC) 96 105 0.0075
triangular 16 105 -0.0064
triangular 96 105 -0.0019

simple cubic 10 3987 -0.010
bcc 7 5950 -0.018

TABLE S7: The Spearman correlation coefficients be-
tween the ZED boundary area |∂D| and associated criti-
cal value of the coupling Jc at which a transition between
ground states appears. We list the correlations for dif-
ferent types of lattices. Included are also two additional
boundary conditions for the square lattice: the HPBC
(Half-Periodic Boundary Condition) and the RBC (Re-
pulsive boundary condition, see text). Note the correla-
tion coefficient is significantly larger with RBC on small
d = 2 systems.
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bonds is the domain-wall surface area discussed in the
main text.)

To illustrate the claim embodied in (S12), we may, e.g.,
start with the ground state C of Eq. (1). We then em-
ploy the gauge transformation of Eq. (S11) for a single
site. Taking an arbitrary site “1” and setting its respec-
tive gauge variable to t1 = (−1) (with tr = 1 at all other
lattice sites r ̸= “1”) transforms the initial Hamiltonian
H → H(1). By comparison to H, the couplings J1p (with
p denoting all nearest neighbor sites of “1”) now change
sign, J1p → −J1p in H(1). The ground state configura-
tion of this new Hamiltonian differs from C by this single
flipped spin (at site number “1”). We may then iter-
atively proceed in such a manner to flip another Ising
spin at an arbitrary site number “2” and then flip an-
other spin, etc., so as to ultimately flip any set of spins
in C. Following any such gauge transformation at the
s′-th step (s′ ≤ s) in which in (S11) only one single site
field ts′ is set equal to (−1) with all others being one, the
z links (with z denoting the lattice/graph coordination
number) that are attached to site s′ flip their sign with
all other links remaining untouched. The sign change of
the former z individual links may be further carried out
sequentially in any order. Some of these links may be
inverted multiple times as this gauge transformation is
carried out site by site. Any even number of flips of a
given link yields no change. In the final analysis, there
is some number (f) of bonds that are flipped an odd
number of times as the system evolves from C → C′; the
full set of these flips realizes the gauge transformation
between the two global spin configurations of C → C′

(Eq. (S12)). Any individual flip of sign of a single link
(say the n−th in (S12) (with n ≤ (f − 1))) generates a
transformation H(n) → H(n+1). This single bond trans-
formation is precisely of the form that we investigated
in the current work. As the Hamiltonians evolve accord-
ing to (S12) (yielding the full multi-spin and link gauge
transformation of (S11)), the respective ground-states of
change as

C → C1 → C2 · · · → Cf−1 → C′. (S13)

We next recall our previously established property (ii).
This property implied that whenever ground-state spins
change when an exchange-constant Jij on a given bond
is varied to a new value J ′

ij , these spins must belong to
the ZED of the bond (ij). Combining this with the fact
that any spin configuration C′ can be cast as the ground
state of some spin-glass Hamiltonian H ′, it follows as
we will describe, a “composition” of the ZEDs appearing
when individual exchange-constants Jij are sequentially
changed will yield C′. That is, after the completion of this
process described by (S12) for all altered links Jij , the
set of spins that have been overturned a total odd num-
ber of times in the chain of Eq. (S13) will form the spin
excitation C′ of the original system H. We now discuss
any individual part C(n) → C(n+1) of the transformation

chain of Eq. (S13) that is associated with the change of
the n-th link. Here, we note that similar to our earlier
discussion of property (iii), the ground-state spin config-
uration C(n+1) of H(n+1) is either
(A) Equal to the ground-state C(n) of H(n) (when the
single exchange-coupling that is varied is not made to
cross its critical value) or
(B) Forms a new ground state configuration which dif-
fers from C(n) by the ZED of link n (with the latter ZED
delineated as it appears for the system defined by H(n)).
This arises when a critical coupling crossing does occur
as the single bond flips sign.
If overlaps exist between the sets of overturned spins (i.e.,
the ZEDs) between any of the f individual steps of the
transformation of Eq. (S13) then no general statements
may be made regarding the energies of general excitations
C′ (as evaluated with H) and their typical geometries for
a given energy. However, it is worth noting that, statis-
tically, independent of any of the Hamiltonians of (S12),
following each individual bond change, the geometrical
characteristics of the flipped spins following each step
adhere to the universal scaling relations and fractal di-
mensions for the volumes and surface areas that we re-
ported on in this work. As noted in the main text, for the
systems that we examined, our found fractal dimensions
for single bond change ZEDs are very close to and statis-
tically consistent with the fractal dimension of domain-
walls that were generated by flipping a divergent number
(f = O(L)) of links at the system boundary. In the
thermodynamic limit, such asymptotically large domain-
walls are composites of f → ∞ (generally overlapping)
individual ZEDs following the recipe of (S13). We must
underscore that in determining the ZED fractal dimen-
sion, we investigated (inasmuch as possible numerically)
the volume and surface area scaling of the asymptotically
largest ZEDs (including any such ZEDs that might be
present during individual steps in sequences such as that
of (S13), a sequence whose length diverges for asymptot-
ically large domain-walls).

Statistically, if the f flipped bonds are far separated
from one another with weak correlations amongst their
respective individual ZEDs then each of the individual
single bond excitation energies may be added. The lat-
ter follow the earlier discussed distribution P (∆E′) (see
Fig. 2 (a) with, for the square lattice, the average energy
change ⟨∆E⟩ per bond of Fig. S10). For, e.g., such f
far separated bonds on a square lattice, the total mean
excitation energy relative to the ground state of H will
be given by f times the average square lattice excitation
energy ⟨∆E⟩ of Fig. S10 for a single bond (i.e., by ∼ 2f
for the square lattice).

After the completion of this work, we were told by D.
Stein that related ideas have been invoked in the study
of excitations that are associated with a change of the
boundary conditions [28] (in the discussion leading to
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Claim 9.5 therein). As emphasized above, the construct
discussed in this Section applies to all configurations and
thus to all excitations (boundary or otherwise).

A COMPARISON BETWEEN OUR FINDINGS
WITH THE PREDICTIONS OF VARIOUS

THEORIES

In what follows, we briefly discuss several key features
of contending theories for excitations in the spin-glass
phase and compare these with our results. For a de-
tailed description of these theories, the reader is referred
to some of Refs. [21–28, 60]. Before presenting this short
comparison, we would like to reiterate and underscore
one of our central findings:

We find similar behaviors for ZEDs in both d = 2 and
d = 3 lattices. That is, ZEDs exhibit similar features
independent of whether (d = 3) or not (d = 2) a fi-
nite temperature spin-glass phase appears on lattices of
dimension d.

• In the Replica Symmetry Breaking (RSB) picture,
the ratio of the interface size to the volume tends to a
non-vanishing constant in the thermodynamic limit [60].
In our investigations, we find (since the ZED surface frac-
tal dimension is smaller than that of the system, ds < d)
that the ratio of the number of spins lying on the ZED
interface to the total number of spins in the system tends
to zero with increasing system size.

• In the droplet picture [21–23], the lowest energy ex-
citations of linear size ℓ are compact. The associated
excitations have a volume (i.e., that associated with the
total number of flipped spins) fractal dimension equal
to the system spatial dimension d and a surface fractal
dimension df satisfying d − 1 < df < d. The latter in-
equality would be consistent with our findings for ZEDs
if one sets the latter predicted surface fractal dimension
to that of the ZEDs that we investigated, i.e., following

the substitution df = ds. Moreover, we cannot certify,
within our finite size numerical analysis, that the volume
fractal dimension is equal to the spatial dimension d of
the lattice.
Additionally, according to the droplet theory [21–23],

for droplets of linear scale ℓ, the droplet energies scale
as ∆E ∝ ℓθ, with a constant density of states near van-
ishing energy excitations. We now turn to our results.
Since ZEDs are, by definition, excitations of vanishing
energy for any ℓ, one cannot simply define a meaningful
finite stiffness exponent θ to describe the relation be-
tween ZED energies and their geometrical linear size. It
is possible that the ZEDs do not constitute the “typical”
lowest energy excitations of a given ℓ in the droplet the-
ory. Furthermore, as we described in detail, the ground
state of a bond configuration associated with the change
of a single bond constitutes an excitation of the original
bond configuration (i.e., that before the flip of the sin-
gle bond). As we illustrated, our numerical results show
that, for typical boundary conditions, the latter energy
cost is independent of the linear system size L (and the
average droplet size ℓ which scales with L) when L be-
comes large.

• The trivial-non-trivial (TNT) theory [24–26] posits
that either one of the droplet or the RSB theories may
capture various aspects of the physical phenomena. The
TNT theory suggests that in d = 3 dimensions a finite
fraction of the flipped spins in the critical droplet will
be on the droplet boundary while in d = 2 lattices that
fraction tends to zero.

• Lastly, in the chaotic-pair (CP) picture [27], the ex-
citations are, “space-filling” [28] (i.e., the ratio of the
number of bonds lying on the excitation interfaces rela-
tive to the total number of bonds tends to a finite number
in the thermodynamic L → ∞ limit). That is, in the CP
scenario, the surface fractal dimension of the excitation is
equal to that of the system, df = d. In our investigation,
we find that for the ZEDs, the interface surface fractal
dimension ds < d. If we set, for comparison, df = ds then
our results will imply that df < d.
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